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ON THE STRUCTURE OF THE SOLUTIONS TO THE MATRIX
EQUATION G*JG=J

ALAN EDELMAN AND SUNGWOO JEONG

ABSTRACT. We study the mathematical structure of the solution set (and its
tangent space) to the matrix equation G*JG = J for a given square matrix
J. In the language of pure mathematics, this is a Lie group which is the
isometry group for a bilinear (or a sesquilinear) form. Generally these groups
are described as intersections of a few special groups.

The tangent space to {G : G*JG = J} consists of solutions to the linear
matrix equation X*J + JX = 0. For the complex case, the solution set of this
linear equation was computed by De Teran and Dopico.

We found that on its own, the equation X*J 4+ JX = 0 is hard to solve.
By throwing into the mix the complementary linear equation X*J — JX =0,
we find that the direct sum of the two solution sets is an easier to compute
linear space. Thus, we obtain the two solution sets from projection maps. Not
only is it possible to now solve the original problem, but we can approach the
broader algebraic and geometric structure. One implication is that the two
equations form an h and m pair familiar in the study of pseudo-Riemannian
symmetric spaces.

We explicitly demonstrate the computation of the solutions to the equa-
tion X*J + XJ = 0 for real and complex matrices. However, real, complex
or quaternionic case with an arbitrary involution (e.g., transpose, conjugate
transpose, and the various quaternion transposes) can be effectively solved
with the same strategy. We provide numerical examples and visualizations.

1. INTRODUCTION

We study the structure of the matrix group {G : G invertible!, G*JG = J} and
its tangent space at the identity {X : X*J+JX = 0}. We assume J is a given square
matrix and the “star” superscript, G*, is either G (the usual matrix transposition)
or GH (conjugate transposition). Previous work related to this question may be
found in [10, 11, 16, 34, 35, 38, 43].

The group {G : G*JG = J} is often called the automorphism group or the
isometry group (of a bilinear/sesquilinear form) [27, 32, 34]. Given a bilinear form
(x,y); = 2T Jy or a sesquilinear form (z,y); = xJy, the automorphism group is
the collection of linear operators that preserve this form, i.e., (z,y); = (Gz, Gy) ;.
Representing the linear operators as matrices, they are the solutions G to the matrix
quadratic equation G*JG = J. For some special J’s, the automorphism groups are
well known as classical Lie groups [50].

Three closely related questions are the strict equivalence of pencils of the form
J + AJT [16, 17, 40], the orbits of matrices under the congruence transformation
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J — KJK* where K is invertible [26, 46], and the question of similar automorphism
groups (the focus of this paper).

The familiar example from elementary linear algebra would be J = I,,, where
the automorphism group (of the real bilinear form) is the orthogonal group O(n)
(all orthogonal matrices). Another key example is J = [_?n Ig ], namely the skew-
symmetric bilinear form, where the automorphism group is the symplectic group
Sp(2n,R) that appears in symplectic geometry and classical mechanics. Let us
define notations which come up frequently for real and complex cases.

Definition 1.1. For a complex J € C™"*", define groups G; and G¥ as follows:
G;={G:G"IG=JGecC™}, GY.={G:GHIG =17 GcC™"}.
Also for real J € R™ ", define G% := {G : GTJG = J,G € R"*"}.

Visualizations for Gﬂ}, generic J € R¥4

{0/1771704%072}
(laal, Jaz| = 1)

{/\17 )%17/\27 )\LZ}
(A1, A2 €R)

FIGURE 1. Four types of generic 4 x 4 real J’s classified by the
eigenvalue characteristic of J~7J and the visualizations of corre-
sponding G]l}. Plots are three dimensional projections (from 16
dimensions) of the identity component of the surface G%. See Sec-
tion 2.4.1 for more details.

Remark 1. For a 4 x 4 real J, the case J=1, which leads to the orthogonal group
O(4) is not at all a generic case.? The reader would do well to wonder what the
generic cases look like. There are four possible generic cases whose solution in each
case is a two dimensional surface in 16 dimensions as illustrated in Figure 1, with

2Note that J is generic if it is nonsingular and J~7J has no double eigenvalues, which is
essentially excluding the “special” cases we will describe in Sections 2 to 5.
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details following in Section 2.4.1. The following Example 1.2 considers one of these
generic cases.

For an arbitrary J the group {G : G*JG = J} is known to be the intersection
of the groups determined by the symmetric and skew-symmetric (Hermitian and
skew-Hermitian if *+ = H) parts of J [39, p.92]. For example if J is real 2n x 2n,
decompose J into its symmetric/skew-symmetric parts J = S+ A and assume S, A
nonsingular. Let (p, q) be the signature of S. We obtain the two groups G% and G%
each isomorphic (not necessarily identical) to O(p, ¢) and Sp(2n,R), such that the
intersection equals G%. Correspondingly, the tangent space {X : X7J + JX = 0}
is the intersection of the tangent spaces of the two groups.

Though it is known that the groups are intersections of two other groups, it seems
if one wants to find the intersection computationally one might have to perform
linear algebra operations such as the SVD on n? x n? matrices with a prohibitive
dense complexity of O(n%). In this paper, we demonstrate an approach using the
generalized eigenstructure that directly provides a basis for the intersection.

Example 1.2. In this example we define a .J € R*** where the symmetric part of
J is positive definite. The group G% is the intersection of groups similar to O(4)
and Sp(4,R). Let

1 1-1-1 o 1 -1 -1

T R | -1 -1
J= 1 1-1| "~ Sl + 1 -1 ’

111 1 1 111 -

symmetric part Iy  skew-symmetric part A
1 - -1 1 1
V1K, where K =|? © @ =
- ’ 111
R L1

Then, the group G% and its Lie algebra g% are defined as,
G5 =0) N (K 'Sp(4,R)K), g5 =o0(4)N (K 'sp(4, R)K).

0(4) = {All skew-symmetric matrices} is 6 dimensional and sp(4,R) is a 10 dimen-
sional linear subspace with the following standard basis:

wom ([ [ [ [ ]
R LT L

Writing down a basis of 0(4) and K ~'sp(4,R)K:

w {FEL R
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Computing the intersection of 0(4) and K ~'sp(4, R)K, we finally obtain a basis:

1-1-2 -1 1 -1
gy =0(4)N <K—1sp<4,R>K)=Span< R R )
2 1 1 - 1-1-1

As one can see in the above example, working with the tangent space is less
complicated as it is linear. In practice, the matrices in the tangent space could be
mapped to G]§ by the exponential map. For details on the exponential map, see
Section 2.7. One of our main focuses is the outline of a computation of a basis of the
tangent space {X : X*J+JX = 0}. A key observation is that the direct sum of the
two solution sets {X : X*J £+ JX = 0} is a well-known and easier to compute linear
spaces. In particular if J is nonsingular the direct sum is the centralizer of J—*J
(Corollary 2.6.1). The bases for the solution sets could be computed by projection
maps. Additionally we obtain a basis of {X : X*J — JX = 0} as a byproduct.

With a more direct strategy, De Terdan and Dopico [10, 11] computed the solu-
tions of X.J +JXT =0 and X.J+ JX =0 for complex matrices® using the congru-
ence canonical form?* studied by Horn and Sergeichuk [26]. One needs only to com-
pute the solutions for canonical J’s of the congruence transformation J — K*JK
since the groups {G : G*JG = J} are similar for congruent J’s. They carefully
worked out case-by-case solutions for each canonical form and their interactions.®
Some complicated cases were later brought to the explicit expressions in [6, 21].

Our approach solves the equation X*J + JX = 0 in a more general setting
(regardless of real, complex, and quaternion) by directly exploring structure. In
particular, we point out that the relationship between solutions of X7.J + JX =0
brings to mind the structure of symmetric spaces [23]. For a nonsingular J we have

{g:9(J )= TDg} ={h: K" T+ Jh=0}® {m:m"J — Jm = 0},

which is the Lie algebra decomposition of a pseudo-Riemannian symmetric space
g = h @ m. Furthermore the centralizer of the cosquare J~T.J has a well-known
structure we can adapt to solve the equations X7J + JX = 0 at hand.

The situation gets complicated when it comes to a singular J since the cosquare
J~TJ is no longer well defined. However the theory of matriz pencils is broad
enough to cover such cases. The Kronecker structure [20, 29, 30, 47] of the matrix
pencil J — AJT provides a generalization of the eigenstructure of the cosquare,
enabling one to compute the solution set of X7.J + JX = 0 in a similar manner.
By revealing the structure, our approach is advantageous since it is not limited to
the complex case. Moreover it can be applied to the situation when we have an
involution other than the complex conjugation.

The outline of the paper is the following: In Section 2 we provide background
for solving the equations X*J + JX = 0 and investigate some small sized groups
{G : G*JG = J}. The main tools developed are Theorems 2.8, 2.9, and 2.12 which
provide an explicit way to construct a basis of the solution set of X*J + JX =
0. We also demonstrate the analysis on structures of 2 x 2 matrix groups G]§ in
Section 2.4.2. In Sections 3 to 5 we determine precise bases of the solution sets to

3Obviously7 the transposed solution sets of [11, 10] are equivalent to our solution sets.

4\We refer to De Teran’s clear summary [9] for different types of congruence canonical forms.

5The canonical forms of the congruence transformation is related to the *-palindromic matrix
pencil J — AJ*. The results in [10, 11] are further extended using this idea in [12], where the
authors use the Kronecker structure of general matrix pencils.
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X*J+ JX = 0. In Section 6 we discuss numerical details of the computation and
visualization of automorphism groups and their tangent spaces.

2. BACKGROUND

2.1. Warm up : Centralizer and Jordan (generalized eigenvector) chains.
Given an n X n matrix A, the set of all matrices that commute with A is the
centralizer (in operator theory, commutant) of A, denoted by cent(A). Typically
cent(A) can be obtained directly from the Jordan canonical form of A [1, 20].

One way of describing cent(A) is using Jordan chains (i.e., generalized eigenvector
chains) of A. Fix an eigenvalue A and let rq,...,r; be the sizes of the Jordan
blocks. Select matrices W1, ..., Wy with their columns filled with Jordan chains so
that AW, = W; Jr)‘j holds for the r; x r; Jordan block JT)‘J_ . Similarly, choose Jordan

chain matrices Py, ..., P, of AT. Then, cent(A) is constructed as follows.
Definition 2.1. Denote the n x n backwards identity matrix by F,. For j <

min(s,t) define E;*t, the s x ¢t matrix with zeros except for its upper left j x j
corner being F;.

Lemma 2.2. Let W € F"*¢ P € F"*? be Jordan chain matrices corresponding to
the eigenvalue \ of A and AT, respectively. (They may not correspond to the same
Jordan block.) Then the collection of the matrices (m = min(a,b))

(1) WESPT WESPPT . WE%'PT,
for all X (and all combinations of W, P) span cent(A).
Proof. This is a simple variant of the description in Chapter VIII of [20]. ]

Counting the total number of matrices of the form (1) we obtain the dimension
of the centralizer. (See, for instance, [1, 20, 22, 33].)

Corollary 2.2.1. Let A be a square matriz with the Jordan form A = @?:1 J;\jj,

dim(cent(A)) = Z r;+ Z min(2r;, 2ry).
j=1 A=Ak

2.2. Basics : solution and cosolution. We start by defining some basic notation.
We label the solution sets to the equations X*J + JX = 0 as follows.

Definition 2.3. For a given square matrix J define four solution sets,
sol(J) :={X : XTJ+JX =0},  cosol(J):={X: XTJ - JX =0}
sol(J) = {X : X"+ JX =0},  cosol?(J):={X: XH] - JX =0}.
We call sol(J) the solution and cosol(J) the cosolution.

Remark 2. At first glance, one might believe all four of these sets are complex
vector spaces (implying, for example, that multiplying by a complex scalar is a
closed operation) given that J is complex, since they seem to be the homogeneous
solutions of linear equations. But a closer inspection reveals that the “H” spaces
are not complex vector spaces since, for example, if X is a solution, ¢X need not
be. They are, however, real vector spaces. The matrix transposition is an analytic
map and sol(J) is a complex vector space just like the Lie group G is a complex
manifold. On the other hand, the Lie group G§I is not a complex group since the



6 ALAN EDELMAN AND SUNGWOO JEONG

conjugate transposition is not analytic. As a consequence, sol” (J) and cosol® (J)
are real (but not complex) vector spaces. For example, U(n) is a real Lie group
and u(n) (skew-Hermitian matrices) is a real vector space. O(n, C) is a complex Lie
group and o(n, C) (complex skew-symmetric matrices) is a complex vector space.

2.3. Nonsingular J and the cosquare. Assume for a moment that our J is
complex nonsingular, because many key intuitions arise when we study nonsingular
J. Singular J will be discussed later in Section 2.6. One can also consider real or
quaternionic J with a simple modification of what we describe in this section.

An important matrix related to sol(.J) and cosol(.J) is the cosquare® J=7J of .J.

Definition 2.4. Given a square nonsingular matrix A, the matrix A~7A is called
the cosquare of A and denote it by cosq(A). If A is a complex or quaternionic
matrix define the H-cosquare of A by A=HA and denoted it by cosq (A).

Obviously C' = J~1J ~ JJ~T (~ stands for matrix similarity) since AB ~ BA
for any invertible A, B. (A"1(AB)A = BA.) Using that any matrix is similar to its
transpose (e.g., see [25, Thm 3.2.3.1]), JJ~T ~ J=1JT = C~1. Lemma 2.5 follows.

Lemma 2.5. For a given nonsingular J, the cosquare C is similar to its inverse.
Thus, C,CT,C~1,C~T are all similar to each other. Moreover, the H-cosquare D
is similar to its conjugate inverse, DT,

From Lemma 2.5 the eigenstructures (sizes and numbers of Jordan blocks) of
C,CT,C~1,C~T are all identical. Let us select four Jordan chain” matrices W, U, P, Q
of C,C~1,CT,C~T, respectively, all corresponding to the same Jordan block with
eigenvalue A\. The columns of W, for example, wq, ..., w, satisfy the relationships
(C = A)w; = wj_1 with wy = 0, namely,

| | | R

C w1 Wy = (w1 Wy 1

| | | | A
By definition, the four Jordan chains satisfy (with the Jordan block J*)
(2) cw=wJy* clv=uvJ ocT'p=prPJ* CTQ=QJ

Interestingly, J~TJW = W.J is equivalent to JJ 7 (JW) = (JW) J*, which
makes the matrix JW eligible as a choice of Q. Moreover, J-TJW = WJ* is
equivalent to JJ_T(JTW) = (JTW) J*, which makes JTW eligible as a choice of
Q. We deduce the following relationships. (Denote the set of all possible choices of
a Jordan chain W by {W}, and similarly the other chains.)

3 JW,JTW € {Q}, JU,JTU e {P},
3) J1P,J-TP e {U}, J71Q,J7TQ e (W}.

Then, sol(J), cosol(J) and cent(cosq(J)) have the following important property.

6The definition of the cosquare of J is sometimes different. In fact, the four matrices JJ*,
J*J=1, J=1J* J—*J are all very much alike. Authors usually select one of them for their own
needs. For example in [25] the cosquare is given as J~*J and in [44] it is defined as J~1.J*.

"We state only the results for the regular transpose but the cases XH.J 4+ JX = 0 are similar.



SOLUTIONS TO THE MATRIX EQUATION G*JG = J 7

Theorem 2.6. Let Z € cent(cosq(J)). Then the following holds:
(4) Z—J 172V =27z—-JTZ7J7 €s0l(J),
(5) Z+J 2 =2+ TZ7J" € cosol(J).

Similarly, we have Z — J ' Z0J = 7 — J=H ZH JH ¢ sol (J) and Z + T 27 ] =
Z + JHZHJH ¢ cosol™ (J) for Z € cent(cosq™ (J)).

Proof. One needs only a simple algebraic manipulation to see this. Since Z €
cent(cosq(J)), we have ZJ~TJ = J~TJZ. Then, for X := 7 — J 27 ],

XTg+ X =2YJ-J%z Tg+J7z-2%J
= J' g tjZz4+JZ=-JZ+JZ=0.
Similarly one can obtain all other results. O

Any X in sol(J) N cosol(J) satisfies X7J = JX = 0 and the invertibility of
J implies X = 0. Since the intersection is trivial, one can compute for any Z €
cent(cosq(J)) unique X € sol(J), Y € cosol(J) such that Z =X + Y.

Corollary 2.6.1. For a nonsingular J we have
sol(J) @ cosol(J) = cent(cosq(J)).
For the conjugate transpose we have sol™ (.J) @ cosol™ (J) = cent(cosq™ (.J)).

The two maps Z + (Z — J71ZTJ)/2 and Z — (Z + J1Z1J)/2 serve as
projections of cent(cosq(.J)) down to sol(J) and cosol(J). Thinking of J=1ZTJ as
a special transpose, one can treat sol(J) and cosol(J) as analogs of skew-symmetric
and symmetric matrices, respectively. (In fact, for J = I this is exactly the case.)

2.4. The automorphism group when J is a small matrix.

2.4.1. Generic 4 x 4 real J. It is certainly helpful to work out some small cases to
get a grasp on the structures of the automorphism groups. For small sized matrices,
Lemma 2.5 can be directly applied to determine the eigenvalue characteristic of the
cosquare. Figure 1 in the introduction contains one such example. The four generic
eigenvalue profiles (in red) in Figure 1 are the four possible scenarios by applying
Lemma 2.5 to the real 4 x 4 cosquare J~1J.

If there are no double eigenvalues as in these cases, we have a simpler situation.
Using Theorem 2.1.(d) of [26] it follows that a given generic J € R**? is congruent
to a block combination of 2 X 2 type (ii) matrices, 4 x 4 type (ii’) matrices, and 2 x 2
type (iii’) matrices in the Theorem. Type (ii) matrices have their cosquares with
two real eigenvalues (A, 1/)), type (ii’) matrices’ cosquares contain four eigenvalues
(A A, 1/, 1/X), A € C\R, and type (iii’) matrices have their cosquares with pairs of
unit eigenvalues (o, &), |a| = 1. For example, a matrix J with the top left eigenvalue
profile of Figure 1 is congruent to a combination of two (iii’) blocks with distinct
unit complex eigenvalues.

Then by computing the block solutions (since there are no interactions be-
tween blocks) as in [11] but with real matrices, one realizes that the solution sets
have log-level eigenvalue profiles. Namely, for type (ii) J block with the cosquare

X{A 1//\]X_1, we have the solution set {X[* _,|X~':t € R}. Similarly for a type

(it") J block we have sol(J) similar to the collection of diag(¢, —t,¢, —t),t € C\R,
and for a type (iii") J block we have sol(.J) similar to all diag(it, —it), ¢ € R.
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Then we use the exponential map (see Section 2.7) to obtain G%. The eigenvalue
profiles of the matrices in G% become the eigenvalue profile of cosq(J). This could
already be seen from the fact that cosq(J) = J~TJ itself belongs to G%. For
instance, in the top left case of Figure 1 we have a J such that the eigenvalues of
cosq(J) are (aq, @1, ag, @) with a1, as both in the unit complex circle. The group
GH§ then is similar to the collection of all (3, 3,7, 75) where 3,7 are on the complex
unit circle. Thus, GE‘? is diffeomorphic to S! x S1.

Figure 1 is the visualizations of the identity components of G% for the four pos-
sible cases: circle x circle (top left), C\{0} (top right), hyperbola X circle (bottom
left) and hyperbola x hyperbola (bottom right). They are also the eigenstructure
of the cosquare in each case. Furthermore, since the set of real eigenpairs (A, 1/))
are disconnected for positive and negative \’s, there are two such components for
the bottom left case. Similarly for the bottom right case the group G% contains
four isomorphic copies of the identity component.

2.4.2. 2 x 2 real J. We consider J € R?2X2, For a given J, let J = S + A be the
decomposition of J into its symmetric part S and skew-symmetric part A. It is
useful that the signature of S and the rank of A are both invariant under congruence
transformations on J. Carefully classifying the group structure for all real 2 x 2
cases we obtain the following Table 1.

Groups G5 = {G : G'JG = J} up to similarity transformation, J € R?*?

J up to Eigenvalues | Signature(S5), Group structure Di
congruence of cosq(J) rank(A) (up to conjugation) m
@ Generic A3 (1,1),2 {[32] :xGR\{O}} 1
Sign(S)=(1,1) AER T (Hyperbola)
Generic A A {[$2]: P +s* =1}
@ | sign($)=@.0) | =1 (2,0),2 (Circle) !
L gl 0(2)
@ L SLeA (2,0),0 (Two circles) L
(1 0 1 1 O(lv 1)
@ ha _[0 71] SL@A (1,1),0 (Two hyperbolae) !
(5) [fl) (1)] J et (0,0),2 SL(2,R) = Sp(2, R) 3
0 -1 1 {£[61]: 2 eR}
@ L 1] 72 (1,0),2 (Two Real lines) !
z 0| |
©) [0 1] ; (1,1),2 {[Ol] v € R\([0} | 1
00 (Hyperbola)
1 0 {[ilg]l’wGR,y?éO}
0 0 - (1,0),0 (=1, 1} x Afi(1, R) 2
@ Zero matrix - (0,0),0 GL(2,R) 4

TABLE 1. Nine types of the real group G% for a 2 x 2 real J (and
their dimensions). Note that the signature (a,b) represents both
(a,b) and (b, a).
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The nine cases also have the closure graph (sometimes called bundle stratification
or closure hierarchy) as illustrated in Figure 2. In short, a closure graph is a Hasse
diagram with a partial order <, where x < y if z is contained in the closure of y.
See [16, 19] for more on the closure graphs of matrix groups. After working out the
real case for 2 x 2 and 3 x 3 matrices (for 3 x 3 case, see [28]), we were happy to
find that the slightly simpler complex cases can already be found in [16]. Figure 2
is analogous to the relationships (e.g., Figures 1 and 2) in [16] since congruent J’s
deduce similar automorphism groups.

dim(G )

O N O o)

OQ] 1

FIGURE 2. The closure relationship of real 2 x 2 matrices classified
by the structure of G%. Details of each cell can be found in Table 1.
Each cell contains a simple illustration of the group structure such
as circle, hyperbola and more. 3)—(B) means that “the closure of
A contains B”.

2.5. Main results. By Theorem 2.6, it is possible to construct a basis and compute
the dimension of sol(.J). Begin with a basis of cent(cosq(J)) and use the maps (4),
(5) to obtain the sets that contain bases of sol(J) and cosol(J). More explicitly,
if we select a basis U{WEZ’bPT} of cent(C') and apply (4) with a substitution of
J7IP = U, we obtain U{WE*UTJT — UEY*WTJ}. This is the projection of
a basis of cent(cosq(J)) onto sol(J). In Sections 3 to 5 we will rule out linearly
dependent matrices from the projections to determine precise bases of sol(J) and
cosol(J).
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Definition 2.7. For matrices J € C"*" W € C**®, U € C"*? define four matrices
Xr, Yr, Xg, Yy as follows: (k=1,...,min(a,bd))

(6) Xp(k, J,3W,U) = WESUTJT —UEY*WT J,
k k

(7) Yr(k, J,W,U) = WEXUTJT + UEP*WT J,

(8) Xy (k, J,W,U) = WERUH JH —UEY W J,

(9) Yi(k, J,W,U) = WER'UH JH L UEY*WH J.

Theorem 2.8 (Computing sol(.J), cosol(J) for a complex J). Given a nonsingular
J € C*™ et A(C) be the set of eigenvalues of C = cosq(J). Let r1,...,ry, be the
sizes of the Jordan blocks of C' corresponding to A € A(C). Forj=1,...,m, select

the Jordan chain matrices Wij), Uﬁj) € C™ 7 of C,C~! respectively, corresponding
to the eigenvalue A. Then, the sets

min(re,re)
w - so= U (U U o),

AEA(C) M1<st<m =

min(rs,re)
o mw=U (U U {reamon)),
)

AeA( 1<s,t<m
span the complex vector spaces sol(J) and cosol(J), respectively.

Proof. From Lemma 2.2 and (3) we have a basis of cent(C),

min(rs,re)
U (U U {wrmm’s)

AEA(C) M1<s,t<m

Since sol(J) @ cosol(J) = cent(C) we apply the projection map cent(C) — sol(J)
in Theorem 2.6 to the above basis and obtain the set

min(rs,re)
U < U U {W( )Emﬂ‘t U(t) JT — U t)ErtaT.s W;\S)J}>,

AEA(C) M 1Zs,t<m

which is exactly B (.J). Note that B (J) spans sol(J) since it is a projected basis
of cent(C). (Nonetheless, Bf(J) may not be a linearly independent.) The set
B1(J) could also be obtained and it spans cosol(J). O

For the equation XJ 4+ JX = 0, the solution set solH(J) is similarly obtained.
However as discussed in Remark 2, the solution and the cosolution sets are real
vector spaces. Then sol (J) and cosol” (J) are spanned by the following matrices.

Theorem 2.9 (Computing sol”? (.J), cosol” (J) for a complex J). Given a nonsin-
gular J € C™*" let A(C) be the set of eigenvalues of C = cosqf (J). Letri,... 1,
be the sizes of the Jordan blocks of C correspondmg toxe A(C). Forj=1,...,m,

select Jordan chain matrices W(]) U € C"<"i of C,C1, correspondmg to the
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eigenvalues \ and X\, respectively. Then, the sets
min(rgs,r¢)
12) Bf(J) = Xk, WS UDY vy (k, J WS Uyl
H A A A A
AEA(C) 1<s,t<m k=1
min(rgs,r¢)
13) B;(J iXp(k, J WS U, vy (k, 7, WS, UW
H A X A A
AEA(C) 1<s,t<m k=1

span, the real vector spaces sol™ (J) and cosol™ (.J), respectively.

Proof. The proof is nearly identical to the proof of Theorem 2.8, except for that
one has to consider a real basis of cent(C) by separating W EPT and iW EPT in
Lemma 2.2. O

Now we consider the real case.® Define auxiliary matrices as in Definition 2.7.

Definition 2.10 (The “realify” map). Let A be an n x m complex matrix. Define
the realify map [ - |g : C"*™ — R?"X2™ a5 the following block matrices:
(Alp = re(A) im(A)
B= 1 —im(4) re(4)

Definition 2.11. Let J be a nonsingular real n x n matrix. For W € R"*2¢,

U € R™*?0 and an integer k& < min(a,b) we define the following matrices Xg, Y:
Xg(k, J,W,U) = W(Ey @ ELYUTJT —U(Ey @ EvYWTJ,
Ya(k, J,W,U) = W (Ey ® EL"YUTJT + U(By @ EXYWT .

The solution and cosolution sets sol(.J), cosol(J) C R™*™ for the real case follows.

Theorem 2.12 (Computing real sol(.J), cosol(J) for areal .J). Given a nonsingular
J € R™™ ™ let A(C) be the eigenvalues of C = cosq(J). For all real eigenvalues
in A(C), proceed as in Theorem 2.8 with real Jordan chain matrices. Denote the
resulting sets (10), (11) by B (J,R), B5(J,R). For all other A\ € A(C)\R, let
r1,...,7m be the sizes of Jordan blo(cks of C corresponding to . For j =1,...,m,

select real Jordan chain matrices WAJ), U( ) ¢ Rnx2rs corresponding to the pair X\, A
such that CW)(\J) = W;\j)[JT’\j] and C~1Uy W) = U(J)[J)‘] . Then, the sets

min(rs,r:)
14 Bi()=BiIRU | ( U U {XRw,J,WS%Ui“)}),

AEA(CNR “N1<st<m k=1

min(rs,r¢)
15 Bi())=Br(IB)U | ( U U {YR%,J,WS’,U@)}»)

AEA(C)\R M1<s,t<m k=1
span the real vector spaces sol(J) and cosol(J), respectively.
Proof. This time we need a basis of cent(C) that lies inside R™*™, which is a
modification of Lemma 2.2. Instead of using a complex Jordan matrix to derive a

centralizer basis, we use a real modified Jordan form of C. Since eigenvalues A, A
exist together (with the same sized Jordan blocks) the two Jordan blocks Jﬁj and

8The quaternionic version of sol(J), cosol(J) can be obtained in a similar manner but in this
work we will not discuss the details.
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Jr > together could be expressed as [J) ’\] . Then, with real Jordan chain matrices

W € R"*27s P € R™*?"* such that CW = W[J ]z and CTP = P[J}]g (one can
obtain such W P by realifying complex Jordan chain matrices of \) it could be
deduced that the collection of W(Es @ E;*"*)PT is a basis of cent(C). Then, we
proceed as in Theorems 2.8 to obtain the sets By (J), By (J). O

The following proposition states that the selection of the Jordan chains in The-
orems 2.8, 2.9, and 2.12 does not affect the resulting vector spaces.

Proposition 2.13 (equivalence of Jordan chains). In Theorems 2.8, 2.9, and 2.12,
the choices of the Jordan chains Wf\]), U>(\J) do not change the spanned vector spaces.

Proof. See Appendix B. O

Remark 3 (Different expressions for basis elements). The matrices Xp, Y, Xp,
Yu, Xgr, Yg could be expressed in several different ways. Using the relationships
(3), one obtains some equivalent expressions. For example, if we substitute J 1P
for U and J~7Q for W, we obtain an equivalent definition of (6),

(16) Xr(k, J,P,Q) = J-TQE"PT — J7'PEP*QT.

Moreover, another equivalent expression could also be obtained from the second
terms of (4), (5). For example, applying the map Z — J~TZTJT on Z = WEPT ¢
cent(cosq(J)) and substituting P for J7U we obtain,

(17) Xp(k, JW,U) = WEX'UTJ — UEP*WTJT.

Also setting Z = UEQT (€ cent(C~1!) = cent(C)) one obtains similar expressions.

Proposition 2.14. For a given complex nonsingular J and C = cosq(J), let A\, \ ™1

be eigenvalues of C' with the sizes of the Jordan Il)locks' being r1,...,"m. For j =
1,...,m, select the ' Jordan chain matrices Wy ) U(J) C™*7i of C,C~1 corre-
spondzng to A. Similarly select Jordan chains W(]) U(j). Then, for 1 < s,t < m,

the sets | j:l {XT 7, ,W)(\S),U(t )} and UJ 1 {XT 7, dJ, Wgt),U(S))} span the same
vector space. The same results are obtained for the matmces YT,XH,YH For a
complez eigenvalue A of the real cosq(J) of a real J, the sets U§:1 {XR(j, J, W/{S), Uit))}
and szl {X]R(j, J, WX(S)7 Ug))} (also true for Yr ) span the same vector space.

Proof. See Appendix B. |
Now let us discuss a few examples.

Example 2.15. Let J and cosq(J) be

5 6-9 -9 TEEEE
1011 on_ 15 536
J=136 7 7] cosal/)=517 5 7 3
6 2 20 20 2 1

The Jordan form of C' = cosq(J) is J3 @ J21 /2, Computing generalized eigenvector
chains of C,C~! for the eigenvalue A = 2, we get two Jordan chain matrices

6 1 -4 7
(1 _ | 128 (1 _ |-8 15
Wor=1 %61V = |4 s
00 -4 7



SOLUTIONS TO THE MATRIX EQUATION G*JG = J 13

From Proposition 2.14 we only need ZJQ'=1{XT(ja J, WQ(I), U2(1))},

5-1-3 0

WiV B U TIT - U ERA WD) =20 1 20 0
4 0-4 0
-23 4 12 6
Wi ERAUS)T T — UV ERA (WD) = |7 5 %0 02
-16 0 16 3

These two matrices form a basis of the complex vector space sol(J).

Example 2.16. We discuss the case of a real J (and real solution set sol(J)) where
its cosquare has complex eigenvalues. Let J and C = cosq(J) be given as

10 -3 -2 D
1010 o _1lo 2-12 7
J=1, 5 4| cosal)=¢l g 5 6 o
0-1-1-2 6 4 6 4

The four eigenvalues A\, A, 1/, 1/ are 1+i,1—14,0.5+0.54,0.5—0.5i. Proceeding as
described in Theorem 2.12 and using Proposition 2.14, we obtain four (real) Jordan

chain matrices I/V)(\l)7 Uil), ng), u®.

1 1

X X
2 3 -5 0 -5 0 2 3
13 0 -4 3 -4 3 13 0
-2 -3 |(’|-1-3|"|-1-3]|"|-2-3}
-4 -6 1 3 1 3 -4 -6

satisfying C’W)(\l) = W)(\l)u 1, C_lU)(\l) = Uil)[}l 1] and similar identities for .
The two basis elements Xg(1, J, I/V)(\l)7 Uil)),XR(l, J, Wil), U(j)) are
A A
13 -8 -34 14 -39 9 22 -32
Ll 213 -62-20| 1|-51 39 86-10

3 8 8 7 10|°3]-9 -9-16 5|
-32 16 20 -7 36 -18 10 16

which form a real basis of the two dimensional linear subspace sol(J).

Remark 4 (Symmetric space). For a given square matrix J and C=cosq(J) let U
be the Lie group {G : G invertible, GC' = CG} with its Lie algebra u = cent(C).
The decomposition u = {X : XTJ + JX = 0} + {X : XTJ — JX = 0} can be
obtained by the eigenspaces of the involution X + —J 'X7.J. This becomes
the tangent space of a (not necessarily Riemannian) symmetric space U/K where
K is the automorphism group {G : GTJG = J}. For example, if J = I, we
have a Riemannian symmetric space GL(n,R)/O(n). Another example would be
J = I, 4 where I, , = diag(1,...,1,—1,...,—1). We obtain the pseudo-Riemannian
T/ —_———
symmetric space GL(n,R)/O(p, q).

2.6. Singular J. For a nonsingular J the eigenstructure (Jordan form) of the
cosquare plays a central role. However, if J is singular the cosquare no longer
exists. Rather, we can work with the Kronecker structure of the matrix pencil
J — AJT. The Kronecker structure of A — AB reveals the usual eigenstructure of
B~1A (for invertible B), as well as the generalized eigenstructure (oo, 8 situations)
when B! A is not well defined. In this section X is always the indeterminate.
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The structured matrix pencil J — AJ7T is called a T-palindromic pencil and the
Kronecker forms of the palindromic pencils are studied in [40, 41]. The Kronecker
structure of J — AJ7 is consisting of (i) Jordan blocks of nonzero eigenvalues, (ii)
(0,00) Jordan block pairs and (iii) pairs of singular blocks.

Define the set Z; C C*"*" x C"*" consisted of pairs of matrices Z7, Zo

Z7:={(21,2) : Zy(J = NJT) — (J = A\JT)Zy = 0}.
To have Zy(J — AJT) — (J = AJT)Zy = 0 for all X it reduces down to two equations
(18) ZJ=JZ, and  Z,J" =727,

The set Z; is a linear subspace whose dimension can be computed by the outline
suggested in [13], under the name of the codimension of the orbits.

Recall from Corollary 2.6.1 that sol(J) @ cosol(J) = cent(J~7J). When J
is singular, sol(J) N cosol(J) is nontrivial. Thus we define the product sol(.J) x
cosol(J) = {(X,Y) : X € sol(J),Y € cosol(J)} which plays the role of sol(J) @
cosol(J) in previous sections. The following lemma describes what might be called
a “higher order 45 degree rotation” between pairs (Z1, Zs) that satisfy equations
(18) and pairs (X,Y") that consist of solutions and cosolutions:

Lemma 2.17. For a given J, Z; and sol(J) X cosol(J) are diffeomorphic.

Proof. The map (Z1, Zo) v (ZF — Zy, Z¥ + Z5) is a diffeomorphism from Z; to
sol(J) x cosol(J) with the inverse map (X,Y) — (X7 +Y7T)/2,(Y — X)/2). O

As a result, it suffices to compute Z; to obtain sol(J). To see the analogy
to Section 2.3, let us assume that J is nonsingular. Explicitly solving (18) we
obtain Z; = {(Z7,J71Z1J) : Z € cent(J~TJ)} with ZT = Z; in (18). The map
(Zy, Zy) = ZT — Z is exactly the map Z +— Z — J~1Z7J in Theorem 2.6.

Recall we began with the explicit expression of a basis of cent(cosq(J)) to com-
pute sol(J) for a nonsingular J. For singular J, on the other hand, a basis of Z;
is less well known but still computable. In particular, we need to compute a pair
(E, F) such that E - K1(A\)T — Ky()\) - F = 0 for two Kronecker blocks K and Ko,
which play the role of E,(j’b matrix when J is nonsingular. As discussed in Section 5
of [13], (or similarly in [10, 11]) computing a basis of the collection of all (E, F') can
be broken down into computing (E, F') of each component and interaction between
components. In Appendix A we give a full basis of the collection of (E, F') pairs
for each Kronecker block and interaction.

Furthermore, we define an extension of Jordan chain matrices for matrix pencils.
Let K(\) be an r X r canonical block in the Kronecker structure of an n x n pencil
J — MJT. (Since singular blocks Lj,L? always come in pairs we group them to
make a single square canonical block.) Select n x r matrices W, U, P, Q that satisfy”

(19) (J=XNDOW=Q-K(\) and (JT-XHU=P-K(\).

If K()\) is the usual Jordan block, i.e., K(\) = J* — AI., (19) agrees with the
definition of the ordinary Jordan chain matrices W, U, P, Q in (2).

The union of all (QEUT,WFPT) for W,U, P,Q that satisfy (JT — A\J)U =
P-Ki(\), (J =AW = Q - K3()\), form a basis of Z;. Using the mapping in
Lemma 2.17 on Z; and collecting UET QT — W FPT one obtains a basis of sol(.J).

9These are bases of the deflating spaces and in particular for singular pencils they are bases of
the reducing spaces. Recall that Jordan chains are often thought as a basis of invariant subspaces.
Deflating and reducing subspaces [48] are extension of the invariant subspace for matrix pencils.
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Theorem 2.18. Given J € C"*" et K1(A),..., Kn()\) be the (square) Kronecker
blocks of J — X\JT with the block sizes ry,...,7m. Select for all k = 1,...,m the
matrices WE UF PE QF) ¢ C* such that (J — AJT)YWHE = QW K (\)
and (JT = XNHU®) = POK(N). Fors #t let {(E;’t,Fjs’t)}j:L__Qd be the basis
of the collection of (E,F) for the interaction of Ks(\) and K(X\), listed in Ap-
pendiz A. Denote the union of all {U®)(E;NT(QW)T — WOES (PN}, 4
and {UD(E;)T(QEN)T = WEE(POYTY _gi1 oa for all 1 < s #t < m by
Binter- Denote the collection of all matrices U(“‘)(E;’S)T(Q(s))T—W(S)F;’S(P(S))T,
fors=1,...,m, by Baiag. The set Binter U Baiag spans sol(J).

Alike previous theorems, Theorem 2.18 can also be extended to cosol(J) with
s S,0\T t)\T t) st sN\T t Lava s\T s) st t\T
U (ENHTQUWT + WOFS(PO)T and U (EF)T(QW)T + W FH (PO)T,

2.7. The exponential map and the Lie algebra. In Section 2 we have mostly
discussed the tangent space of the group {G : G*JG = J}. An important tool that
connects the Lie group {G : G*JG = J} to its tangent space (Lie algebra) is the
exponential map, exp: {X : X*J +JX =0} — {G: G'JG = J}.

A natural question arises: Will the exponential map recover the whole Lie group
{G : G*JG = J}? The answer to this surjectivity problem is rather complicated,
but it has been studied for classical Lie groups, e.g., see [31, 37]. To begin with,
a classical result states that any connected, compact Lie group G has a surjective
exponential map exp : Lie(G) — G [37]. However this is not enough.

Nonetheless, there are helpful results that help us understand the exponential
map, and, further assist us when using the exponential map numerically. In the
real case G = G%, a result by Sibuya [42] is practical: For any matrix ¥ € G%,
J € R™*™ there exists a matrix X in the tangent space, X € {X : X7J +JX = 0},
such that exp(X) = Y or exp(X) = Y2. Furthermore if Y has no real negative
eigenvalues we can always find X such that exp(X) =Y.

Numerically, we could take all possible square roots of all exp(X), X € {X :
XTJ + JX = 0} to obtain the whole group. If the eigenstructure of exp(X)
has m Jordan blocks, there exist 2™ matrix square roots (counting non-principal
branches). From [35, Theorem 7.2] it is known that the Jordan blocks of matri-
ces in G always have their counterparts (either (A, 1/)) or (X, 1/)) pair), and one
could take non-principal branches of each paired Jordan blocks together to reduce
complexity. (So that a matrix square root again has the correct Jordan block pairs.)

Chu extends the result of Sibuya to the complex case, as Theorem 7 of [7] states
the following: For a complex J, the exponential map of G¥ is surjective, which
means every matrix Y in G could be obtained by exponentiating a matrix X in
sol (.J). Also for any matrix Y € Gy we have X in the tangent space sol(.J) such
that exp(X) =Y or exp(X) = Y2, Again, if Y has no real negative eigenvalue we
always have X such that exp(X) =Y as in the real case.

3. DIMENSION COUNT, COMPLEX XTJ 4+ JX =0

In Sections 3 to 5 we compute the bases of the solution and cosolution by elim-
inating the overlapping elements. We define few useful direct sums of Kronecker
blocks that appear in the Kronecker structure of J — AJ7.

Definition 3.1. Define three paired Kronecker blocks (pencils) as follows:
L,:=1L,®LY, Z,:=J0 @ J>, TN =T e Jr,
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with sizes (2n + 1) x (2n + 1), 2n x 2n, and 2n X 2n, respectively.
A simple modification of Theorem 2.1.(a) of [26] is the following lemma.

Lemma 3.2. For J € C"*", the Kronecker structure of the pencil J — A\JT could
be divided into four parts as follows.

Ky= (ﬁsl DD ﬁsa) (singular L block pairs)
D2, DD Zy,) (0, 0o Jordan pairs)
O (g, @B Iy ) (S @@ J ) (£ 1 Jordan blocks)
& @ j;;j (Ajs )\;1 Jordan pairs).
=1
(0 £51,0,00)

In the following theorem, we will say A\j ~ A, when {)\j7>\;1} = { e, A\ Y, e,

A
when Jp; and Jp);f represent the same Kronecker structure.

Theorem 3.3. Let J be an n xn complex matrixz with the Kronecker structure
K of the pencil J — A\JT given as Lemma 3.2. Then, the complex dimension
of the solution of XT.J + JX = 0 is the sum of:

(a) Dimension Dy, from the singular blocks L,

a

Dp =Y (sj+1)+ Y max(2s; + 1,25, + 1) + (# of s; = s1).
Jj=1 i<k

(b) Dimension Dz from 0 and oo block pairs 2,

b
DZ = th + Zmin(2tj,2tk).
j=1

j<k
(¢) Dimensions Dy and D_1 from £1 Jordan blocks

c d
D, = Z {%J + gcmin(mj,mk), D_; = Z [%] + Zmin(nj,nk).

j=1 j=1 j<k

(d) Dimension Dp from all other paired Jordan blocks in.j

e
Dp=Y pj+ Y min(2p;,2ps).
j=1 Aj~ Ak

(e) Dimension Dy from the interaction of L blocks and the others

a

D=%" (n - @2s+ 1)) —a(n - (25 +1)).

J=1 k=1 k=1

Proof. (d) Blocks jp/\jj with eigenvalue pairs {\j,1/X;}: We begin with the most
generic case. Recall that the blocks of the centralizer do not interact if they have
different eigenvalues [1]. Since the solutions are projected from the centralizer of
the cosquare of the nonsingular part of J, we also have that the solutions of different
eigenvalues do not interact. Thus we focus on a fixed A. Using the same setting

as Theorem 2.8, abbreviate the matrix Xr(k, J, I/V)(\S)7 Uit)) by X ks (and Yr by
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Y\ k,s,t).- By Proposition 2.14 we can eliminate linearly dependent elements in B;
of (10), reducing Uy, , {Xxk,s,6: X1 g oo} 80 Uy s 1 {X5 kst Similarly for By of
(11) we reduce the set Uy, o AYa k5,60 Y1 0} 10 Up 5 1 {¥2 ks, }- So far we have the
maximum sum of the solution and cosolution dimensions equal to the dimension of
the subset of the centralizer corresponding to the A, 1/\ Jordan structures of the
cosquare. Thus we conclude {X y s : Vk,s,t} and {Ya ks : VK, s,t} are both
already linearly independent basis sets. The dimension Dp follows as

e
Dp = ij + Z min(2p;, 2px) .
Jj=1 )\j:/\k
——
All XA,k.j,j X/\kajyk with j 75 k

(¢) Jordan blocks with +1 eigenvalues: The Jordan blocks with A = +1 have
a special property that W% and U% coincide with Wy and U) respectively for all
Jordan chain matrices. By Proposition 2.14 the sets |J, {X7(k, J, Wf\s), Uit))} and
Up{ X7 (E, J, Wit), Uis))} span the same vector space (similarly for Yr) if s # t.
Using the same logic in the proof of (d), the maximum dimension sum of the
two sets is the dimension of the (s,t), (t,s) interaction of the centralizer. Thus
we obtain the off-diagonal basis |, ., U {X7(k,J, W;\S),Uy))}. We are left to
determine the basis in the set | J, {Xr(k, J, W;\S), U)(\S)}. Let us first consider A = 1.
Since JTU; = JU; we have Xr equal to (let us drop the superscript () for a
moment) W1 E,ULJ — Uy EFW{EJ. Using the K = Kj in the proof of Proposition
2.14 there exist Uy, W1 such that U{K = W; and W{K = U;. Moreover from the
proof of Proposition 2.13 we have T,,, Ty, such that U, = U;T, and W{ = W, T,
holds. Observe that T, KEKTTE = Y5, ¢; By, with ¢y = (—1)F~1. If k = 1 we
have

Xr(1,J, Wy, Uy) = WiE UL T — U ETW T
=U, T KEyK'T! Wl - W T, KE KT Ul J,

which becomes Xr(1,J,W1,U;) = —Xr(1,J,W;,U;) and thus equals zero. Sim-
ilarly for an odd k Xr(k,J,W1,U1) and US_{{Xr(j,J,W1,U1)} are linearly de-
pendent and for an even k Yr(k, J,Wq,U;) and U?;%{YT(j, J,W1,U1)} are linearly
dependent. Since the dimension of span({Xr(k, J, Wy,U1), Yr(k, JJ, W1,Uy)}) is
1 we deduce that the dimensions of the solution and cosolution are |ms/2] and
[ms/2], respectively. For A = —1 it is similar except that —JT U, = JU), which
leads to the opposite; For A = —1, X1 does not add dimension if k is even and Yr
does not add dimension if £ is odd. Combining these two results we have

c c

m; . m. .
D= § L*ZJJ + § min(m;,my) and D_;= E f#l + E min(m;, mg) .
i=1 A=Ak j=1 A=Ak
— N——
From X1 1 ;,; X1,k,j,k with j #k From X_1 k,j,; X 1k 6 With j # k

(b) 0 and oo Jordan pair blocks Z;;: The 0,00 Jordan pair Z;, = Jg, @® Ji7 in
K ; corresponds to the even sized 2¢; x 2t; Jordan block of eigenvalue 0 in terms of
the congruence canonical form. Although they contain zero and co eigenvalues, we
can treat them as a pair of eigenvalues A, 1/ and proceed as above. The dimension
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count and the linearly independent basis elements are identical to the situation of
(d).
(a) Left-right singular pairs L,;: The Kronecker block L, corresponds to the
congruence canonical matrix Jgsj 41 and this cannot be made into a nonsingular
block by the Mobius transformation. In this case we use Theorem 2.18 and the
given basis of all (E, F') blocks in Appendix A. Fix L, and denote the canonical
blocks provided in Appendix A.1 by (Ey, F1),...,(Fas, 2, Fos;42). We outline
a similar technique to the proof of (d) to deduce that UET QT — WF,PT and
UE,Q_SJ_ +1QT — WFkJrSjHPT are linearly dependent. (We drop the superscript
U) of W,U, P,Q.) Since we have a T-palindromic Kronecker structure [40] the
canonical block Sy, 41 (defined in Appendix A) is used instead of £,,. From the
construction AT (J—-AJT)A = S2s, 41D+ -+ of Sag; 41 block, the first 2s;+1 columns
of A and A7 eligilble for W and @, as defined in (19). Observe that U can
be selected as the matrix with the permuted columns of W in the order of s; +
1,s5,...,1,28; +1,2s5,...,s; + 1. (Select P similarly with the same permuted
columns of @.) Then from the shapes of (Ey, Fy) and (Eas, y2-&, Fas, y2-1) We
find UEkTQT = Wngj+g_kPT and WF,PT = UE2Tsj+27kQT. The dimensions of
sol(J) and cosol(J) are at most s; + 1 each and the maximum dimension sum is
2s;+2, obtaining a basis UZLT{UE,?QT—PF;CWT} of sol(J) corresponding to L, .
For the interaction between L, and L, , (assume s; < s, and let the dimension of
(E, F) from appendices A.1 or A.2 be 2d) the set Uzzl{UEkTQT — PF,WT} and
iidH{UE;{QT — PEIFWT} are linearly dependent as in Proposition 2.14.

(e) Interaction between L, and all other blocks: As we discuss in Appendix A,
only the interactions between the singular pairs L, and the Jordan blocks are left.
Let us fix a singular pair £, and a Jordan block JI;\:. From Appendix A.3 the
dimension of the collection of all (E, F') is 2p, and it is independent of s;. Since
(Es, Fs) = (FL . tiper ELi s t1p,) from the derivation, it is easily verified that only
the first pi elements of the given basis of the collection of (E, F') create independent
elements to UETQT — PF,WT. Thus we have the dimension of the solution and
cosolution both equal to pg. Adding the dimension for all possible choice of Jordan
block we have the dimension of the interaction (Size of all Jordan blocks) = n —
(size of all £ blocks) =n — > (2s; + 1). Summing for all j we obtain Dj. O

In the course of the proof of Theorem 3.3 we have also identified the linearly
dependent elements in B (J). A reader can obtain a basis of cosol(J) in the same
manner. We briefly state the dimension of the cosolution set as follows.

Corollary 3.3.1. For a given complex J with the Kronecker structure of J — \JT
in Lemma 3.2, the complex dimension of the solution of XTJ — JX =0 is

c d
ms; .
DL +Dz+Dp+Dj+ g [7]-‘ + E min(m;, mg) +
=1 i<k i=

V%JJ + Z min(n;, ng),

1 j<k

dim(cent(£1 blocks))—D1—D_1

where Dy, Dy, Dp, Dy are identical to the ones defined in Theorem 3.3.



SOLUTIONS TO THE MATRIX EQUATION G*JG = J 19

4. DIMENSION COUNT FOR COMPLEX XHJ 4+ JX =0

Recall that dim(sol” (.J)) is equal to dim(cosol (.J)) since sol(.J) = i cosol(.J).
The dimension of sol (.J) (and also cosol” (.J)) is just half of the codimension of
the orbit of J — AJ* which could be computed by [13, Theorem 2.2].

On the other hand, the following Theorem 4.3 computes the dimension (which
gives the same result as above) by providing the precise basis set of sol (J). The
Kronecker structure of the pencil J — AJH always has (A, 1/)\) pair [40]. We begin
by defining a paired Kronecker block as in Definition 3.1.

Definition 4.1. Define the paired 2n x 2n Kronecker block J* for a pair A, 1/\
Tt =T e I
Again modifying Theorem 2.1.(c) of [26], we obtain the following lemma.
Lemma 4.2. The Kronecker structure of the pencil J — N\J for J € C™ " is

Kj= (L, ® - ®Ls,) (singular L block pairs)
OEZ, e D Zy) (0 and oo Jordan pairs)
o (JE e J) (laj| =1 Jordan blocks)
d
® @ T (A\j, 1/X; Jordan pairs).
=1
(|>\7‘|;0,1700)

In the following theorem, we will say \j ~ A\, when {A\;,1/X\;} = { A, 1/Ar}, i.e.,
when jp);j’* and Jp);j’* represent the same Kronecker structure.

Theorem 4.3. Let J be an n xn complex matrix with the Kronecker structure
K of the pencil J — NJ™ given as Lemma 4.2. Then, the real dimension of
the solution set of XJ + JX = 0 is the sum of:

(a) Dimension Dy, from the singular blocks L,

a

D= (2s;+2)+ Y _ 2max(2s; + 1,25 + 1) + 2(# of 55 = sx).
Jj=1 J<k

(b) Dimension Dz from 0 and oo block pairs 2,

b
Dz = 2t;+ Y min(4t;,4ty).
j=1 j<k

¢) Dimension D, Jordan blocks Jy?. with eigenvalues |o| = 1
3J J

C

D, = ij + Z min(2m;, 2my,).

J=1 aj=ay

(d) Dimension Dp from all other paired Jordan blocks Jp);:’
d

Dp =Y 2p;+ Y min(dp;,4py).

j=1 Aj~ A
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(e) Dimension Dj from the interaction of L blocks and the others

a a

D=3 (2n —S s+ 2)) —a(2n— > (4 +2).

j=1 k=1 k=1

Proof. The basis elements corresponding to (a), (b), (d), and (e) could be deter-
mined similarly as in the proof of Theorem 3.3, except that in this case we are
computing the real dimensions. The real dimensions are 2 times the complex di-
mensions in Theorem 2.8.

(¢) Jordan blocks with eigenvalues |a;| = 1: For eigenvalues a; such that |a;| =1
we have a; = 1/@; which means we are in a same situation as in (c¢) of Theorem
3.3. Using the same technique it can be proved that for each k, iYy (k, J, Wy, Us)
is linearly dependent to Ule Xk, J, Wy, Us) and i Xg(k,J, Wy, Us) is linearly
dependent to U§:1 Yy (k, J, Wy, Us). With a similar argument used in the proof of
Theorem 3.3, by examining the maximum sum of the dimensions, we deduce that
the sets U§:1 Xu(k, J,Wy,Us) and U§:1 Yu(k, J,Wy,Us) for all Jordan blocks
(and their interactions) are linearly independent bases of the solution set and the
cosolution set. (]

Corollary 4.3.1. For a given complex J with the Kronecker structure of J — \JH
given as in Theorem 4.3, the real dimension of the solution to XHJ —JX =0, i.e.,
dim(cosol™ (1)), is the same as dim(sol” (.J)) described in Theorem 4.3.

5. DIMENSION COUNT FOR REAL X7J +JX =0

The dimension and a basis of the real solution of XTJ + JX = 0 when J is real
is determined. We define another canonical block that appears in the Kronecker
structure of real J — AJ7T as follows.

Definition 5.1. For A € C\R, define a block diagonal matrix,
(20) T = (R @ e e RN

The matrix j,;\’R represents the four Jordan blocks J,i‘, J;}7 J,l/A, J,ll/A of the Kro-
necker structure at once.

From Theorem 2.1.(d) of [26] we obtain the following lemma for the real case.

Lemma 5.2. Let Q2 be the union of R and the complex unit circle minus the points
{~1,0,1}. The Kronecker structure of the real pencil J — \J* for J € R"*" is

K;= (L’Sl oD Esa) (singular L block pairs)
EB(ZtlEB"'EBth) (
&y, @ e )e(le o Jn_dl) (£ 1 Jordan blocks)
@(jpczl@"'@jpie) (

0 and oo Jordan pairs)

j_l € Q Jordan pairs)

ay,

f
o P 7" (\js Aj, A7 AT blocks).
j=1

j=
(A;€C\R)
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In the following theorem, we will say a; ~ o  (resp. A; ~ Ag) when {o;, a%} =
Y Y . Qj
{a, o%k} (resp. {Aj,Aj, )\ij, % = { ks Aes ﬁ, Xl—k}), i.e., when Jp; and Jp* (resp.

AR AR
Jg and Jy7 ) represent the same Kronecker structure.

Theorem 5.3. Let J be an n X n real matriz with Kronecker structure Ky of
the pencil J — X\JT given as Lemma 5.2. Then, the real dimension of the real
solution set of XTJ + JX =0 is the sum of:

(a) Dimension Dy, from the singular blocks L,

a

Dp =7 (sj+1)+ ) max(2s; + 1,255 + 1) + (# of 55 = s)-

Jj=1 J<k

(b) Dimension Dz from 0 and oo block pairs 2,

b
Dz =) tj+ Y min(2t;,2t).
J=1 J<k
(¢) Dimensions Dy and D_; from +1 Jordan blocks

c d
D, = Z {%J + ;Cmin(mj,mk), D_; = Z [%-‘ + Zmin(nj,nk).

Jj=1 Jj=1 J<k

(d) Dimension D, from Jordan block pairs Jp’

e
D, = ij + Z min(2p;, 2p).
j=1

Qo

(e) Dimension Dp from blocks Jquj’R with all other \j, Aj, )\;1, 5\;1

f
Dp = Z2qj + Z min(4gq;, 4q).
j=1 Aj~Ak

(f) Dimension Dy from the interaction of L blocks and the rest

a

Dy =a(n— ZSZ)

i=1

Proof. The basis elements corresponding to (a), (b), (c) and (f) are computed
identically as in the proof of Theorem 3.3. (The proofs of (a), (b), (¢), (f) in
Theorem 3.3 does not assume a complex J.)

(d) Jordan block pairs jp(jj with o € Q: If a; € R, the corresponding basis
elements are determined as in (d) of Theorem 3.3. If «; is on the unit circle, the
basis elements are determined by applying Proposition 2.14 (deleting Xg and Yg
matrices corresponding to a—lj) and using the maximum dimension argument.

(e) Jordan blocks of \;, ;\j, /\;1, 5\;1: Proposition 2.14 is used to delete the
elements corresponding to the eigenvalues \; and ;\;1. O
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6. COMPUTING THE SOLUTIONS NUMERICALLY AND GENERATING PLOTS

In this section we discuss numerical applications related to the group {G :
G*JG = J} and its tangent space {X : X*J + JX = 0}.

6.1. Sampling random matrices from {G : G*JG = J} for a given J. Al-
though the main focus of Sections 3 to 5 is the tangent space sol(.J) (and sol” (.J))
of the group G, the computed basis of sol(J) could be used to sample and plot
the identity component of G; by the exponential map. The surjectivity of the
exponential map is addressed in Section 2.7. The following simple algorithm is
one way to sample N random elements from the identity component of the group

(G: GG = J}.

Algorithm 1 Sampling N random points from {G : G*JG = J}

Input: Square matrix J, number of samples N
G < Empty vector of N matrices
S « Vector of basis elements of sol(.J) obtained from Theorems 3.3, 4.3, or 5.3
m <+ size(S)
for i < N do
r < Length m random vector
Glil « exp(32, rlj] - Slj))
end for
Output: G

In the case of G§I , Algorithm 1 samples the whole Lie group, and for G ; and G%
it samples all elements except for the matrices that have real negative eigenvalues,
as discussed in Section 2.7.

A possible application of Algorithm 1 is sampling test points for structured
matrix computations [3, 5, 18].

6.2. Plotting 3D projections of the group {G : G*JG = J}. Using Algorithm
1 one can sample points of {G : G*JG = J} but generally they lie inside higher
dimensional manifolds which cannot be visualized directly. Algorithm 2 is one
obvious way to visualize such a manifold (in particular the group G%) using a
random three dimensional projection. Plotting functions such as scatter are useful
for creating the projected images.

Algorithm 2 Plotting a 3D projection of G%

Input: n x n real matrix J, number of samples NV
G < N random points of {G : GTJG = J} from Algorithm 1
X <Empty N x 3 matrix
Q + n? x 3 “tall skinny” orthogonal matrix

for : < N do
Xi,:] « vec(G[i])T - Q
end for

scatter(X|[1,:], X[2,:], X[3,:])




SOLUTIONS TO THE MATRIX EQUATION G*JG = J 23

FIGURE 3. Scatter plots of the automorphism groups of two ran-
domly selected .J € R®*8, created with the programming language
Julia [4]. Each plot is 50000 sample points from the four dimen-
sional manifold G% projected onto the column space of a randomly
selected @ in Algorithm 2 and scattered in R3.

Figure 3 provides some examples of randomly projected three dimensional scatter
plots. Figure 3 is two sets of 50000 randomly sampled points of the group GH§ for
J € R®8 scattered in R? using the programming language Julia.

Additionally if the group is a two dimensional surface so that the basis set S has
two matrices, one can use the plotting function surface instead of scatter, by
substituting r[1], r[2] values in Algorithm 1 by grid vertices. Examples of the visu-
alization created from the plotting function surface are used in Figure 1 (using the
package Makie.jl [8]) where the plotting function scatter creates visualizations
as the following Figure 4.

6.3. Numerical implementation of the computation. It is well known that
computing Jordan chain matrices of a given matrix is not a numerically stable
procedure. Therefore, the above derivation of bases of sol(J) and cosol(J) is often
unstable since it depends on a computation of the Jordan chain matrices. For
a stable implementation, the staircase format [30] is preferred for revealing the
eigenstructure.

For a given J, let J~TJ = WDW ! and J'J~! = PDP~! be the Jordan
decompositions of cosq(.J) and cosq(J)T. We have J~TJW = WD and JTJ~'P =
PD where D is the Jordan canonical form of J~7J. A basis of cent(cosq(J))
discussed in Section 2.1 can also be derived by the following. Let WEPT be
an ansatz of a basis. Then J-TJWEPT = WEPTJ~TJ becomes WDEPT =
WEDTPT and E has to satisfy DE = EDT. When D is a Jordan form, a basis of
matrices E satisfying DE = EDT is the set of block matrices each having a single
block with its upper left corner having the backwards identity (the collection of E;’t
matrices). This block nature of the E' matrices corresponding to the Jordan form
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FIGURE 4. Scatter plot visualizations of two dimensional surfaces.
Left: random points from the Bohemian dome (top left of Figure
1) are plotted. Right: direct product of a circle and a hyperbola
(bottom left surface of Figure 1).

D allows us to isolate the corresponding columns of W and P matrices. (Lemma
2.2.)

Instead of the Jordan canonical form, let us consider the case where we use a
numerically stable staircase form. We obtain two (unitary) matrices W, P such that
JTIW =WTyw, J'J'P = PTp where Ty and Tp are staircase forms. What is
left to us is the similar equation Ty E = ETZ, which is a Sylvester equation. (See
[24, Chapter 16] for a thorough discussion on the Sylvester’s equation.) To solve
a Sylvester equation, one can use various software implementations most of which
are based on the Bartels-Stewart algorithm [2] and its variants.

For a similar reason, the Kronecker canonical form of J — AJ7 is also not pre-
ferred. Instead, the generalized Schur staircase format computed by the GUPTRI
algorithm [14, 15] (or any other preferred algorithm to obtain a stable staircase
format, e.g., the generalized Brunovsky canonical form [36, 45] or the Kronecker-
like form [49]) is preferred for computing the Kronecker structure of a given pencil.
For a given J the staircase formats of the two pencils J — AJ? and J? — \J are
QU (J = NJTYW = Ky (\) and PH(J — X\JT)U = Kyy()\) with all W, U, P, Q being
unitary matrices. With two staircase forms Ky () and Ky(A) one needs to find a
solution for E- Ky (\)T — Ky (\)F = 0, and construct (Z1, Z2) = (QEUT, WF PT)
which satisfies Z1(J — AJT) — (J — AJT)Zy = 0. Then, we can again collect all
ZT — Z5 to obtain the solution set.
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APPENDIX A. CANONICAL BLOCKS (E, F)

In this section we introduce a basis of the collection of pairs (E, F') (discussed
in Section 2.6) for each canonical block of the Kronecker structure. For a single
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Kronecker canonical block K () we provide a basis of the pair (F,F) such that
E-K\T —K()\)-F = 0. For two canonical blocks (i.e., interaction) K;(A) and
Ks()), we provide a basis of the pair (F, F') such that

E-KiMN' —Ky(\)-F=0 or E K\ —Ki(\)-F=0.

The Kronecker structure of J — AJT is consisted of singular pair blocks £ (see
Definition 3.1) and Jordan structures. We will use a special canonical form for £
which appears in [40]. For an odd n = 2n' 4+ 1, define an n x n matrix pencil

o Ly
5= [LZ/ 0}’

where L,, is the (m + 1) x m matrix pencil with ones on the diagonal and (—\) on
the subdiagonal. The canonical block S, is equivalent to the pencil L, & LL,.

In this section the matrices E;"", E,, in Definition 2.1 are denoted by B;"", B,,
to avoid confusion.

Al K(A\) =S8,. Let K(A\) =S8, with n =2n/ 4+ 1. Then a basis of the collection
of (E,F) € (R™*" R™"*™) (dimension n + 1) is the following:

B,

SN L=t
0 By
1) (B F) = 0o o] [o B .
n'n'+1 s s ]—27...77’7/
B o |0 0
(Fl,El), ]:n—i—l

A2, Ki(\) = Sp, K2(A) = Sy, Let two canonical structures be Ki(\) = S,, and

Ks(\) = S, where m > n. Let m/,n’ = mT’l, ”T’l Then a basis of the collection

of (E, F) satisfying ES! — S,,,F = 0 is the following with the dimension m:

m’4+1,n"+1
Bn/+j 7 0 L, , jzl,,m;n‘i‘l
N
(E;, Fj) = ol
m'+1,n
: /01 0110 Bimtw—nsn| ), jom=n o m.
Bﬁ&tn,ﬂ) 0 0 0 ’

For ESL — S, F = 0 we have a dimension m basis set for (E, F):
(Ej,Fj)Z(FjT_m,EjT_m), j=m+1,...,2m.

The total dimension is 2m. For m = n we add (Fy, F1) as (Em+1, Frmy1) to obtain
the total dimension 2m + 2.

A.3. S, and a Jordan block. Let two canonical structures be K7(\) = S, and
Ky(N\) = J% — M, where the Jordan block has the eigenvalue a. Again let n =
2n’ + 1. First define a matrix G&,,

al ] k+j—m
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For example, if m = 3, then

0 O 1
=10 1 «
1 2a ao?

Then a basis of the collection of (E, F) € (R™*™ R™*™) (dimension m) can be
described as the following. For a fixed j < m, E; is the matrix with its (j —k+1)*"
column having its bottom n’ entries equal to the (n’ — k + 1) column of G2,

for k=1,...,n/. (Ignore negative indexed columns and just discard them.) Also,
Fj is the matrix with its (j — k + 1)"" column having its top n’ + 1 entries equal
to the (n' — k + 2)" column of G, r4q for k= 1,...,n" + 1. For example when
=T7,n =5, we have
0 0 0 0 0 0 O 0 1 0 0 0 0 O
0 0 0 0 0 0 O 1 o 0 0 0 0 O
EyyFbo=10 0 0 0 0 0 0,20 > 0 0 0 0 O
01 00 0O0O0 0O 0 0 0 0 0 O
1 « 000 0O 0O 0 0 0 0 0 O
Also for EK3(A\)T — K1 (\)F = 0 we have
(Ej, Fy) = (F] ., E]_,.), j=m+1,...,2m.

The total dimension is 2m.

APPENDIX B. PROOFS OF PROPOSITIONS 2.13 AND 2.14

B.1. Proof of Proposition 2.13.

Proof. We prove the result for Xp with two different W’s. The other cases are
similar. Let W and W’ be two n X r Jordan chain matrices of C. Realizing Jordan
chain as a chain of basis elements of the nullspaces null(C' — AI)? there exists
an invertible upper triangular 7' such that WT = W’. From CW' = W'J} we
have CWT = WTJ}) = WJM. Since W is of full rank we deduce J)T = TJ),
which makes T a Toeplitz matrix. (cent(J?) is the set of upper triangular Toeplitz
matrices.) The r X r upper triangular Toeplitz matrix T can be expressed as
T= thE;’TE}?’“.

Now let us consider two matrices Xr(k, J,W,U) and Xr(k,J, W', U) where U
is an n x m Jordan chain matrix of C~!. We have

Xr(k, JW U)=WTE"UTJ" —UETTWTJ

k
- Z tr+j—kXT(ja Jv W U)a
j=1
which proves the sets U;”:l {Xr(j,J,W',U)} and U§:1 {Xr(j,J,W,U)} span the
same vector space. O

B.2. Proof of Proposition 2.14.

Proof. For a fixed j, let (J’\)fl =K, Jrlj/’\Kf1 be the Jordan decomposition of

(J2) 7" From oW = W7 we obtain O~ (W K;) = (W K;) /> which
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makes (W/{] K j) as an eligible choice of U(ﬁ). Similarly (U )(\j )Kj) is an eligible
A

choice of ng ). Finally for 1 < s,t < m we have

X

Xr(k, W, U) = Xp(k, J, 0 K, WKL),
A

1

A
for some choice of Jordan chain matrices Uﬁt), W/&S). By Proposition 2.13 and (17),
we need show K E,*"" K = Zle c B> for some scalars ¢;. This turns out to be
true since matrix H := K E,*"" K] E;"" is an upper triangular Toeplitz matrix,

by the definition of K, K; and the fact that H commutes with JT’\S .
A similar technique also proves the results for Yr, Xy, Yy, Xgr, Yr. [l
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