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Abstract—The adoption of blockchain in the Internet of
Things (IoT) has been increasing due to the various benefits
that blockchain brings, such as security and privacy. Current
blockchain models for mobile IoT assume there are fixed,
powerful edge devices capable of providing global communication
to all the nodes in the network. However, due to the mobile
nature of IoT or network partitioning problems (NPP), nodes
can move out of a cell area and split into smaller independent
peer-to-peer subnetworks. Existing blockchain structures either
do not support the network partitioning problem or have limi-
tations. This paper introduces a multidimensional, graph-based
blockchain structure, that utilizes k-dimensional spatiotemporal
space, to address the challenges of applying blockchain in
mobile networks with limited resources. Experimental results
show that a multidimensional blockchain structure can improve
scalability and efficiency as the blockchain grows in size, similar
to logarithmic growth, and reduce the longest chain length
by more than 99.99% compared to the traditional chain-based
blockchain structure.

Index Terms—Multidimensional, Blockchain, IoT, WSN, Cryp-
tography, Binary Search Trees, Network Partitioning, Mobility.

I. INTRODUCTION

Blockchain presented by Nakamoto [1] is a time-stamped

append-only log technology that is usually decentralized,

immutable and has led to innovative applications in many

areas such as finance, healthcare, distributed systems, voting,

industry, and real estate. When integrating blockchain into

other domains with limited resources, such as mobile IoT,

which is the focus of this paper, there are multiple challenges

to address. Traditional IoT blockchain systems rely on high

network connectivity, which implies they depend on fixed,

powerful edge devices capable of continuously providing

global communication to all the nodes Karlsson et al. [2].

However, considering the mobility nature of IoT, nodes can

split into smaller and independent peer-to-peer subnetworks

due to the absence of edge devices. Existing blockchain

structures either do not support the network partitioning prob-

lem or have limitations such as poor efficiency or resource

consumption Al Sadawi et al. [3], Wang et al. [4].

* Part of this work is supported by the NSF under Grant No. 185190 and
1801552 for the Florida International University REU and RET programs,
respectively.

A chain-based blockchain usually aims to grow on a single

chain (i.e., the longest chain) in which blocks are ordered by

their creation time. When a network split occurs, two or more

subnetworks can continue adding blocks to their blockchains,

creating distinct blockchain copies. This scenario is possible in

mobile networks, and the data from all subchains or blockchain

copies could be equally important. When these subnetworks

attempt to merge again, chain-based consensus algorithms

usually favor selecting the blockchain copy with the longest

chain and appending any future blocks on the longest chain.

This approach also ignores other blocks from sub-chains or

forks, which can be crucial for future use.

Traditional blockchain systems are designed in a single

chain or a linear-based structure Nakamoto [1] (we will use

linear-based and chain-based interchangeably). This type of

structure can result in undesirable performance in terms of

scalability, throughput, and confirmation time Wang et al. [5].

In addition, chain-based data structures can result in com-

putation, storage and communication overheads as observed

by Xu et al. [6]. Moreover, Li et al. [7] pointed out that a

single chain structure can experience centralization concerns

because powerful nodes have a higher chance of generating the

next block. Another concern is high transaction fees because

transactions are processed by powerful miners that require

high resource consumption. Several graph-based structures,

such as Directed Acyclic Graph or DAG-based blockchain,

were introduced to address these bottlenecks. Literature im-

provements include developing DAG-based blockchains that

can process or confirm transactions in parallel, requiring fewer

communications, computations, and storage overhead [8]–[11].

Despite all the benefits of the DAG structure, a large-scale

DAG-based blockchain, such as IoT scale, consumes higher

computations than traditional linear-based blockchains Wang

et al. [4].

Our contributions in this paper include developing a graph-

based blockchain structure that is immune to the dynamic

merge and split nature of mobile IoT systems while main-

taining data consistency and trust in a trustless environment.

Another contribution is designing a blockchain system that

can improve scalability and efficiency over existing blockchain

systems by utilizing an efficient algorithm using binary search
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Bentley et al. [12] for blockchain operations.

The rest of this paper is organized as follows: Section II

presents an overview and background knowledge related to

this paper. Section III highlights and summarizes some of

the related work. Section IV describes the preliminaries and

system assumptions. Section V shows the proposed model. In

Section VI, we discuss the simulation setup and experimental

results. And lastly, Section VII presents the conclusion of this

paper.

II. OVERVIEW

A. Blockchain

The oldest form of blockchain dates back to 1990 by Haber

et al. [13] which describes how to cryptographically seal and

time-stamp a digital document. The oldest running form of

blockchain, from 1995 - present, is by the New York Times

[14] using the work presented by Haber et al. [13]. The term

blockchain became more popular with the introduction of

bitcoin in 2008 by an anonymous entity known as Satoshi

Nakamoto [1]. A blockchain system consists of a peer-to-

peer (P2P) network where each node stores a copy of a

distributed ledger (or distributed database) Hsiao et al. [15]. A

blockchain consists of blocks that are chained together using

hash values Wu et al. [16]. Each block can store committed

digital interactions that can happen in the blockchain network

Yaga et al. [17]. Committed digital interactions can include

the amount of digital assets sent from one account to another,

temperature readings, logs, or any kind of data to be stored.

The blockchain grows over time by appending valid blocks to

the blockchain by special nodes called miners or forgers Zheng

et al. [18], Al Sadawi et al. [3]. Blockchains are also designed

to achieve some of the following goals: First, eliminating the

need to have a trusted third party. For example, blockchain

does not require any intermediary or central authority to

perform valid transactions, and nodes in blockchain systems

can agree on the trustfulness of any block using consensus

algorithms Dai et al. [19]. Additional goals include achieving

user privacy by concealing users’ private information while

keeping records publicly available, and ensuring data integrity

and immutability. There are three types of blockchains public

(such as Nakamoto [1] and Ethereum [20]), private, and

consortium blockchains Xu et al. [21].

To achieve trust in a blockchain, the system uses consensus

algorithms that allow nodes to agree on any block’s validity

and trustfulness before appending it into the blockchain Dai et
al. [19]. Some of the most widely used consensus algorithms

are proof of work (PoW) Back et al. [22], Nakamoto et al.
[1], proof of stake (PoS) Bentov et al. [23], delegated proof

of stake (DPoS) Larimer et al. [24], and practical Byzantine

fault tolerance (PBFT) Castro et al. [25]. For more details

about consensus protocols, we refer to this paper Xiao et al.
[26]. In (PoW), miners compete to solve a computationally-

expensive mathematical puzzle. The more hashing power a

node has, the more work it can do and the higher the chance to

solve the puzzle, mine the next block, and receive the reward

Wu et al. [16]. With blockchain systems that use PoS, the

Fig. 1. Merkle Tree Structure Bao et al. [29].

consensus algorithm requires miners or forgers to lock assets

before being selected to be validators and forging any block. In

general, forgers with higher locked assets (stake) are assumed

to be more trustful and have higher chances to forge the next

block Dorri et al. [27]. This paper applies PoS as a consensus

algorithm since it does not require extensive computations,

which is more suitable for lightweight IoT devices.

B. Merkle Tree

A Merkle tree, proposed by Merkle et al. [28], is a balanced

hash tree that stores hash values, see Fig. 1. Many research

works utilize the Merkle tree architecture in distributed com-

puting, such as bitcoin. Some of the Merkle tree’s major

applications include comparison and verification of data Bao

et al. [29]. Every leaf node in the Merkle tree is labeled with

a hash that is generated from its data content. Every non-

leaf (parent) node is labeled with a hash that is generated

by concatenating the hashes of its children. Hashing the tree

works as a bottom-up approach starting from the leaf nodes up

to the root node. In the end, a unique Merkle hash is assigned

to the root node. This Merkle hash is used in blockchain

systems and is stored in the block header. The final Merkle

hash represents proof of the validity of all transactions within

the block. One thing to note is that any modification to any

transaction will result in a different Merkle root hash value

Wu et al. [16],Wang et al. [4], Li et al. [30].

Fig. 1 depicts a simple example of the Merkle tree. The

structure is divided into two parts. The first part contains the

Merkle tree, and the second part is the data to be hashed, in

our case, block transactions. For instance, the leaf node H1

stores the hash value of transaction T1, and the hash value is

calculated using the hashing function H(T1) using Merkle et
al. [28], the same applies to other transactions. Moving up in

the tree, every non-leaf node concatenates its children’s hashes,

hashes them, and stores a new hash value. In the example, the

non-leaf node H12 concatenates H1 and H2 and assigns a

new hash to H12 as follows, H12 = H(H1|H2). This process

continues until the root node is reached, and the root node

H1234 assigns the root hash to be H1234 = H(H12|H34).
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Fig. 2. A k-d tree structure with 2-dimensions Bentley et al. [12].

C. k-d Tree

A k-d tree, introduced in the 1970s by Bentley et al. [12], is

a multidimensional binary search tree. The k symbol indicates

the number of dimensions, formally known as discriminators.

The k-d tree takes sets of inputs or points and sorts them in a

k-dimensional space; see Fig. 2. The k-d tree is a useful and

efficient data structure for cases like range search and nearest

neighbor search Moore et al. [31].

Fig. 2 shows a 2-d tree which represents a set of points

{A, ..., F} in a plane. In the tree, the circles represent the

points; and the squares represent null leaf spaces that can

accept the next input or node. At first, root node A splits

the domain or points with a vertical line into two sub-

domains (B and C). Both subdomains in this example have

an approximately equal size number of points. The splitting

process continues until no splitting is required. Nodes at

discriminator 0 split a set of points with a vertical line while

nodes at discriminator 1 split a set of points with a horizontal

line Bentley et al. [12].

D. Merkle k-d Tree

A Merkle k-d tree consists of a k-d tree with a Merkle tree

representation of the k-d tree as described in Sections II-B

and II-C. These are the main building blocks of the proposed

model. The multidimensional blockchain is an immutable k-d

tree, and the Merkle tree is a modifiable representation of the

multidimensional blockchain, more details in Section V.

III. RELATED WORK

Several works were proposed to address the issues of

scalability, throughput, and confirmation time when using

chain-based blockchain structure. Examples of these works

include sharding Wang et al. [32], sidechain Back et al.
[33], and cross-chain Zamyatin et al. [34]. In sharding, the

system divides pending transactions into smaller pieces called

shards in order to process them in parallel Zamani et al.
[35]. Sidechain, an additional solution to improve traditional

blockchain structure, allows digital assets to be transferred

between the main chain and sidechains Wu et al. [16]. Cross-

chain can help improve traditional blockchains by establishing

communication between multiple blockchains and allowing

digital assets to transfer between them. Although these ap-

proaches can enhance chain-based blockchain functionality,

their backbone structures are still based on a chain-based

blockchain structure Wang et al. [5] which is not suitable for

wireless mobile networks. In addition, chain-based structures

can suffer from linear growth scalability and inefficiency.

The end of this section (Subsection III-A) will explain why

graph-based blockchains are more suitable for mobile wireless

networks than chain-based blockchains.

Shahid et al. [36] proposed a lightweight, scalable

blockchain system for resource-constrained Internet of Things

devices called “Sensor-Chain.” Their proposed model allows

nodes to split into multiple networks based on regions, and

each network has its independent blockchain. The model also

enables blockchains to merge by aggregating blocks into a

single block, saving storage resources. However, the model

periodically erases some historical blocks when aggregating

blocks after the merge. This produces a fundamental issue

because the missing historical blocks could contain critical

data and negatively impact data availability and consistency.

Furthermore, the model uses a chain-based blockchain struc-

ture, which is not favorable to recourse-constrained devices

due to the poor overall performance metrics discussed earlier.

Due to resource limitations in IoT, many researchers pro-

posed approaches to offload the blockchain data towards more

centralized IoT resources such as edge, fog, or Roadside Units

(RSU), where full nodes are located and can store the entire

blockchain. A DAG-based blockchain system was proposed

by Yang et al. [37] to enable a lightweight and secure data

storage structure for resource-constrained Vehicular Social

Network devices (VSNs). Another work suggested aggregating

the blockchain data through base stations, roadside infras-

tructure, or service providers. Danzi et al. [38] proposed a

blockchain system for lightweight IoT devices with delay and

communication tradeoffs. In their work, the blockchain data is

aggregated in periodic updates to reduce the communication

cost of the IoT clients. Each IoT client is connected to a

set of blockchain networks through wireless base stations.

Memon et al. [39] proposed a blockchain based DualFog-

IoT system with three configuration filters that can specify

the type of incoming requests. These filters are Real-Time,

Non-Real Time, and Delay Tolerant Blockchain applications.

The DualFog architecture splits the fog layer into two parts.

Fog Cloud Cluster where it communicates with the cloud,

and Fog Mining Cluster which includes a group of trusted

fog devices that are responsible for mining for blockchain-

based applications. However, all the nodes must maintain

communication with all other nodes or at least with one full

node that’s always connected through edge/fog devices.

Kim et al. [40] proposed a graph-based blockchain system,

called Binary Blockchain, that can split and merge blockchains

to handle the mining congestion problem. Mining congestion

is a major problem in blockchains which can cause higher

transaction confirmation time. The Binary Blockchain system

splits chains when the load goes above a threshold and reduces

the number of chains when the load goes below a threshold.

However, the proposed model must maintain communication

between other multiple subchains using sync blocks. These
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sync blocks were introduced to ensure balance mining between

multiple chains. In our proposed model, we assume that a split

of forgers can work together without maintaining any type of

communication with all network participants.

Geng et al. [41] proposed a solution for tasks accomplish-

ment assurance in blockchain systems for IoT. The system uses

a DAG-based blockchain to ensure nodes can participate in

one-to-many and many-to-one tasks accomplishment without

acting maliciously. The authors addressed the incapability of

single-chain blockchain to support one-to-many and many-to-

one dependencies. Their solution involves branching/merging

of a DAG blockchain to support one-to-many and many-to-

one dependencies that satisfies recognizability, compatibility,

and authenticability.

Laube et al. [42] proposed a graph or DAG-based

blockchain model where a block can have one or multiple

parent/child blocks. Their work is the first to solve the split

and merge problem (network partitioning problem) caused

by nodes’ mobility in mobile ad hoc networks (MANETs)

using DAG. However, their model does not detect topology

changes such as network split and only relies on flooding

to disseminate data, maintain communication, and passively

detect changes in topology. Not being able to actively detect

topology changes can cause issues with adjusting consensus

for each split Cordova et al. [43]. Our model can actively

detect topology changes and adjust consensus accordingly,

even when the network is dealing with the network partitioning

problem using the work proposed by Morales et al. [44].

A. Summary of related works

In summary, most related works, such as [32]–[36] use

a chain-based blockchain structure that stores all the data

on a single chain, limiting the processing/mining of trans-

actions/blocks due to the mining competitiveness Wang et
al. [32]. All miners or forgers can work on a single chain,

which could result in them doing the exact operations and

cause wasted valuable resources such as computational power,

communication, and storage. Furthermore, only working on

a single chain does not allow nodes to process/add blocks

to the public ledger simultaneously, affecting the system’s

overall throughput.Considering mobile wireless networks, they

usually tend to have resource-constrained devices, making

chain-based blockchain structures an unfavorable fit for them.

Instead, our model uses a graph-based blockchain which has

shown to have an overall better performance, as seen in Wang

et al. [32].

Many related works, such as [37]–[39], [45], [46] assume

there are fixed, powerful devices (or high connectivity) capable

of continuously providing global communication to all the

nodes at all times. However, due to the mobility nature of IoT

and MANETs, nodes can split into smaller and independent

peer-to-peer subnetworks due to the absence of edge devices.

Our model is partition-tolerant and does not require high net-

work connectivity or fixed, powerful edge devices to provide

connectivity to all nodes at all times.

Current graph-based blockchains, such as DAG-based

blockchains [7], [37], [42], [47], [48], have a better partition

tolerance because the blockchain structure can adapt to the

dynamic changes in network typologies. However, they can

suffer from the following limitations. First, some rely on full

connectivity to all nodes using edge devices. Second, although

they can perform better than chain-based blockchains, the

DAG structure does not intrinsically order blocks, but partial

ordering is possible as in Karlsson et al. [2] and Liu et al. [49].

For ledgers to achieve consensus, they may need to traverse to

ancestors’ blocks Geng et al. [41]. Third, a large-scale DAG-

based blockchain consumes higher computational resources

than traditional linear-based blockchains Wang et al. [4]. Our

model can always order blocks which can help facilitate the

split and merge of blockchains by efficiently scanning and

adding blocks between multiple blockchains.

IV. PRELIMINARIES

This section presents an overview of the blockchain model,

notations, assumptions, and proposed model.

The blockchain model uses Proof-of-Stake (PoS) for the

consensus mechanism. Proof-of-Work (PoW) is considered

a computationally expensive consensus algorithm; therefore,

PoS seems more logical for mobile, wireless, and lightweight

devices because it does not require a lot of computation to

forge the next block. Instead of competing to forge the next

block, a node (forger) is selected to forge the next block

at fixed time interval fT (check Table I for notations). The

selection is based on uniform random mining, and every node

at the initialization has the same chance to mine the next block.

The forger gathers all transactions, prepares an mkdBlock,

adds and broadcasts the block to all peers in the network, in

which every peer will verify the new block and add the block

to the blockchain T.

A. System Model and Assumptions

The proposed model consists of a set of IoT devices and

a plane that is divided into smaller regions called cells. Each

cell can contain a set of IoT devices and a local blockchain.

A blockchain split happens when a group of nodes tries to

split into two or more groups, each with its dedicated cell.

A merge can happen when certain conditions occur: 1) when

two or more local networks meet in a single cell. 2) when a

local network gets access to a full node that stores the entire

blockchain and is always connected to the Internet using, for

example, RSU or edge devices Cordova et al. [43]. To ensure

the authenticity and integrity of transactions in a graph-based

blockchain, the block creator signs all transactions within the

block as in Karlsson et al. [2]. Transactions contain sensor

readings such as temperature readings. Another assumption is

a single or multiple nodes can move from one cell to another.

Our model can actively detect topology changes and adjust

consensus accordingly even when the network is dealing with

the network partitioning problem using Morales et al. [44].

Each local blockchain network can work independently with-

out relying on other blockchain networks. Nodes are assumed
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TABLE I
NOTATIONS

Symbol Meaning
T Merkle k-d blockchain (MKDBC)

block An arbitrary block
mkdBlock A Merkle k-d block in a T

hash The hash of block or mkdBlock
mhash The Merkle hash of mkdBlock

tx Transaction abbreviation
cT Current time
gT Genesis time
fT Forge time interval
C A cell or region
C Set of all cells
sC spatial constraint
s A sensor
S A set of sensors
S Set of all sensors
G local network

Gt
i A local network of nodes in cell i at time t

G Set of all local networks
n Total number of sensors

V t
i Set of vertices of local network Gt

i
Tt
i A local Merkle k-d blockchain in network Gt

i
TgT MKD blockchain at genesis time gT
cDim Current dimension
tDim Total number of dimensions of T, ranging from 0 to k

to be mobile within a cell using Random Way-point Mobility

found in Hyyti et al. [50] and Reference Point Group Mobility

(RPGM) for group trajectory based on Hong et al. [51]. Each

node is capable of performing simple data aggregation tasks

such as finding max, min, mean, etc. Pumpichet et al. [52]. The

proposed model does not require any additional powerful de-

vices since nodes participating in the blockchain can perform

all the necessary operations. In addition, the model utilizes

a permissioned version of blockchain where a centralized

authority controls who participates in the blockchain and

assigns a public and private key for each node. Each node

has the same genesis block. We also assume that nodes reveal

their identities to each other using a privacy-preserving method

such as Li et al. [53]. The nodes achieve consensus using

proof of stake (PoS) consensus algorithm as in Bentov et al.
[23]. The consensus algorithm is set to have finality, which

means the consensus protocol does not allow the presence of

equally valid blocks or subchains. This is achievable using

many approaches, such as applying three consensus phases

before committing any request. The three phases are: pre-

prepare, prepare, and commit as in Xing et al. [54], Castro

et al. [25]. Another approach is the NEAR protocol [55]

which can achieve finality in one round of communication.

And lastly, the work by Ethereum [56] to implement single-

slot finality for Ethereum in around 16 seconds.

V. THE MULTIDIMENSIONAL OR MERKLE k-D

BLOCKCHAIN FRAMEWORK

The Merkle k-d blockchain model (MKDBC) consists of

two major components, as shown in Fig. 3. The first one is

a multidimensional blockchain. Unlike traditional blockchain

models where blocks are structured as a linear-chain, the

MKDBC structures and sorts blocks in a way similar to a k-d

tree Bentley et al. [12], see Section II-C. The (genesis block,

previous block) in MKDBC have the same analogy as the

(root, parent) in k-d trees, respectively. The block components

of MKDBC are similar to any other traditional block except in

the block header; we have an extra field that stores the block

dimensions as a list of k values where k is the number of

dimensions of the blockchain or [Dim0, Dim1, ..., Dimk].

The second component of MKDBC is a Merkle tree repre-

sentation of the entire blockchain using the method designed

by Merkle et al. [28], see Section II-B. The primary goals of

using the Merkle tree are to provide an extra layer of security

and as a tool for fast comparison and verification of blocks;

more details in Section VI. Each time a block is added to the

multidimensional blockchain, the Merkle tree gets updated.

Generating and updating the Merkle hash tree is an efficient

process since it only needs a few modifications to the tree

rather than searching and updating the entire tree Merkle et al.
[28]. The Merkle tree is stored separately from the blockchain

since the Merkle tree is not immutable and requires frequent

updates each time a block is added to the blockchain.

Because nodes are highly mobile in mobile wireless net-

works, our model utilizes spatiotemporal data, such as co-

ordinates and time, as discriminators or dimensions for the

multidimensional blockchain. Although it’s possible to adjust

the blockchain dimensions based on the application, we de-

cided to use coordinates and time dimensions for simplicity

and the randomness of nodes’ movements. The randomness

generated from node movements turned out to be helpful in

balancing the multidimensional tree; more explanations about

this are in Section. VI. The process of blockchain split and

merge is shown in Fig. 4. The rest of this section will explain

the algorithms of our model.

Algorithm 1, lines 1 - 5, start with initializing

an empty Merkle k-d blockchain or T. Later, the

Fig. 3. The multidimensional blockchain structure with 3 dimensions or k =
3, the dimensions are 0, 1, 2.
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Fig. 4. The process of split and merge in multidimensional blockchains.

Algorithm 1 MKDBC Management

Input: Current time: cT . Genesis time: gT . Forge time inter-

val: fT . Set of all local networks: G.

Output: Updated MKDBC Tree: T

1: T ← ∅

2: insertMkdBlock(T,mkdGenesisBlock) See

Algorithm 3

3: updateMerkelHash(T,mkdGenesisBlock)
4: for each s ∈ S do
5: download(TgT )
6: end for
7: if (cT − gT ) mod fT == 0 then
8: for each Gt

i ∈ G
t do

9: Forger ← selectForger(V t
i )

10: newMkdBlock ← creatMkdBlock(Forger)
11: insertMkdBlock(Tt

i, newMkdBlock), See Algo-

rithm 3

12: end for
13: end if

blockchain gets the first mkdBlock as a genesis block using

insertMkdBlock function, and the Merkle hash is updated

using updateMerkleHash. Once the genesis block is added

to the blockchain and the Merkle hash is updated, every node

will download a copy of the blockchain at the genesis time

or T
gT . As mentioned in Subsection IV-A, for any node to

join the network, the node is required to have a copy of the

blockchain at the genesis time or TgT . This is possible because

we are using a permissioned type of blockchain where there

is a centralized entity controlling who joins the network. The

reason why we require a node to have at least a copy of TgT

is to apply some balance to the blockchain tree as it grows in

size, which will be explained further in Section VI-A. Finally,

lines 7 - 11 show whenever it is time to forge a new block, a

forger will be selected in each local network Gt
i to forge the

next mkdBlock.

Algorithm 2 MKDBC Management During Mobility

Input: Two MKD Blockchain Trees: T. Set of local networks:

G. Set of cells: C. Set of sensors: S
Output: Updated MKD Blockchain Tree: T

1: if S.Ccur �= Cnew cell then
2: Tm ← blockchainToMerge(Tcur,Tnew cell)
3: Tk ← blockchainToKeep(Tcur,Tnew cell)
4: Aggregator ← selectAggregator(V t

m, V t
k )

5: for each mkdBlockm ∈ T
t
m do

6: if mkdBlockm /∈ T
t
k then

7: newMkdBlockm ←
creatMkdBlock(Aggregator)

8: insertMkdBlock(Tt
k, newMkdBlockm), See

Algorithm 3

9: end if
10: end for
11: delete(Tt

m) from either S.Ccur or Cnew cell

12: S.Ccur ← Cnew cell

13: Gt
new new ← Gt

new new ∪Gt
curr

14: V t
m.download(Tt

k) from peers V t
k

15: end if

Algorithm 2 handles nodes’ mobility management or when

nodes are moving from one region to another. Lines 1 - 3 check

if a set of nodes S.Ccur is joining a another cell Cnew cell.

First, the algorithm decides which blockchain to keep Tk and

which blockchain to merge Tm. There are many factors to

choose from, but for simplicity, we chose to merge blockchains

based on their sizes or to merge the smaller blockchain with

the larger one. Secondly, after deciding which blockchain to

keep and which one to merge, lines 4 - 8 select an aggregator

node to handle the blockchain merge. Each block in Tm will

be scanned and merged, if needed, into Tk. The merge also

utilizes the same method of adding blocks as in Algorithm 3.

Lines 11 - 14 delete the blockchain from either the current

or new cell, depending on which blockchain to merge and

keep, update their cell/network information, and download the

blockchain Tk after the merge is complete.

Algorithm 3 describes a recursive function insertBlock
which inserts or forges block into the Merkle k-d blockchain T

as an mkdBlock. The insertion method is a modified version

from the k-d tree insertion found in Section II-C or Bentley

et al. [12]. Algorithm 3 starts by taking multiple inputs which

include the MKDBC tree: T, the block to be forged: block, a

parent block to compare with: mkdBlock, current dimension:

cDim, and the total number of dimensions of T: tDim. At the

first iteration, lines 1 - 3 check if the first parent mkdBlock
or T.root is null, however, the model assumes all nodes have

the same genesis mkdBlock and hence the algorithm will skip

lines 1 - 3. Next, at line 4, the algorithm checks whether block
is a duplicate at the current dimension in T or not. Later, at

line 6 - 9, the algorithm continues to recursively scan the tree

cycling between each dimension until it hits a null or a space

that accepts the next block. The algorithm hits a null leaf at

line 1 where block will be forged and placed in T at the proper
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Algorithm 3 insertMkdBlock

Input: MKDBC Tree: T. The block to be forged: block.

A parent block to compare with: mkdBlock. Current

dimension: cDim. Total number of dimension of T: tDim
Output: MKDBC Tree with the new forged block: T

1: if mkdBlock == null then
2: mkdBlock ← forgeBlock(block)
3: updateMerkleHash(T,mkdBlock), See algorithm 4

4: else if block == mkdBlock.data then
5: return ’duplicate block’

6: else if block[cDim] < mkdBlock[cDim] then
7: mkdBlock.left ←

insertMkdBlock(T, block,mkdBlock.left, (cDim+
1) mod tDim, tDim)

8: else
9: mkdBlock.right ←

insertMkdBlock(T, block,mkdBlock.right, (cDim+
1) mod tDim, tDim)

10: end if

location.

Algorithm 4 presents a recursive function to update the

Merkle hash of the entire MKDBC tree. The update function

is called immediately after forging any new block. Calculating

or updating the Merkle hash is an efficient process and does

not require scanning or updating the entire tree but rather one

branch of the tree Merkle et al. [28]. The update function

takes the MKDBC tree T and an arbitrary block or mkdBlock
in T. At line 1, the algorithm starts with finding the parent
block of block in T. The method used to find the parent
block is similar to the k-d search as in Section II-C. Finding

the parent block also gives access to the parent’s child

blocks. Lines 2 - 11 check if block is the root of T; if the

condition is met, the function terminates since there is no need

to update the Merkle hash of T. Next, if block is not the root

of T, block will be compared to check if it is the right or

left child of parent and update T.parent.hash accordingly

using the method in Section II-B. In summary, the recursive

function updateMerkleHash(T, block) starts from the most

recently forged block, and applies all the necessary Merkle

hash updates to the root or genesis block.

VI. EVALUATION

A. Simulation Setup

For the simulation, we used 80 nodes on a grid with

size m × n. All nodes get a copy of the initial blockchain,

which only includes the genesis block. Blocks are similar

to any other traditional blockchain except for an extra field

that stores the block dimensions; the dimensions used are

[x coordinate, y coordinate, time]. The order of dimen-

sions is critical, as we will see later. The main goal of

ordering is to allow the multidimensional blockchain to grow

as balanced as possible on both sides of the genesis block.

To achieve some balance in the blockchain tree, we set the

Algorithm 4 updateMerkleHash

Input: MKDBC Tree: T, An arbitrary block: block
Output: Updated MKDBC Tree: T

1: parent ← getParentBlock(T, block), See Section II-C

2: if block == T.root then
3: return
4: else if block == T.parent.left then
5: T.parent.mhash ←
6: hash(block.mhash|T.parent.right.mhash), See Sec-

tion II-B

7: return updateMerkleHash(T, parent)
8: else
9: T.parent.mhash ←

10: hash(T.parent.left.mhash|block.mhash)
11: return updateMerkleHash(T, parent)
12: end if

genesis block dimensions, in this case, the coordinates, as the

mid-point of the grid or 50. Since nodes are highly mobile and

travel randomly within the grid, future blocks can be added on

both sides of the genesis block. In addition, to allow additional

balance to the blockchain tree, we set time as the last in

the dimension list [x coordinate, y coordinate, time]. This

is crucial because time is an incremental value, and if we set

time to be the first dimension, the blockchain will only grow

on one side of the blockchain tree, in this case, the right side.

If time is the first dimension, the genesis block will have a

time dimension set to 0, and any future block will have time
dimension > 0 and hence will be added to the right side of

the blockchain tree.

For node mobility, we implemented two mobility models,

Reference Point Group Mobility (RPGM) based on this work

Hong et al. [51] and Random Waypoint Mobility Bettstetter

et al. [57]. In RPGM, the nodes within a group are uniformly

distributed inside a circle, and the circle center represents the

group center Sichitiu et al. [58]. In addition, the group center

travels on a random trajectory, and all nodes move at a random

velocity ranging from 0 to 1. The code to generate these types

of movements is publicly available on GitHub [59].

B. Experimental Results

Fig. 5 shows a summary of 835,000 blockchain snapshots

captured throughout the simulation. The goal is to find the

maximum chain length or height in the multidimensional

blockchain and compare it with: 1) the traditional chain-

based blockchain height such as Nakamoto [1] and 2) a

balanced k-d tree height Bentley et al. [12] (best case sce-

nario). It’s essential to consider the blockchain height because

having longer branches results in more comparisons (i.e.,

more resource consumption) to do any operation, such as

appending/merging/scanning blocks, in the multidimensional

blockchain. First, we grouped the blockchain snapshots based

on their blockchain sizes in an increment of 50 where group

one includes all the blockchains with sizes � 0 and � 49 and

so on. Then for each group, we calculated the maximum chain
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Fig. 5. The longest chain height or length, averaged per blockchain size for the
multidimensional blockchain (MKDBC), compared with a traditional chain-
based blockchain [1], and a balanced binary tree [12]. Lastly, the cumulative
average of MKDBC longest height is represented by the line

length or height per snapshot and found the total average of

the maximum chain length of the group. Based on Fig.5, the

average maximum chain height, of all MKDBC blockchains

with a size around 8000 blocks, is roughly 55. And the

maximum chain height, of a traditional blockchain with 8000

blocks, is 8000. Comparing the maximum height of MKDBC

with the traditional chain-based blockchain, we can see that

MKDBC can reduce the maximum chain length by more than

99.99%. This means, on average, it only scans less 0.01% of

the total blocks to find the place to forge or merge the next

block in MKDBC. This reduction allows the multidimensional

blockchain to perform efficiently as the blockchain grows; the

next Fig. 6 will demonstrate this. Some could argue that a

smaller sub-chain length (leaf block to genesis block) can

allow malicious nodes to redo the work of that particular

sub-chain. This is one of the reasons we use a Merkle tree

representation of the multidimensional blockchain, which is

to verify whether a sub-chain is valid relative to the entire

blockchain or has been compromised. Any modification to any

sub-chain will result in a different Merkle hash for the entire

multidimensional blockchain. An important observation is that

traditional blockchain systems’ height or chain length grows

linearly, and the chart can only cover a height up to 150 for

a blockchain with 150 blocks. However, the MKDBC height

stays relatively similar to a logarithmic growth, showing signs

of efficiency and scalability as the model grows.

The following evaluation chart or Fig. 6 shows the time

the MKDBC takes to forge or merge a block in a unit of

time (normalized), where 1 is the maximum recorded time.

The dots represent the forging time of more than 20,000
random blocks from random blockchains of different sizes.

Unlike traditional blockchain, where blocks are appended

to the end of the chain with almost no time, our model

requires searching the multidimensional blockchain for the

right location to append the next block. Luckily, the MKDBC

utilizes a binary search operation to find the right place to

forge the next block. The details on how to search and forge

Fig. 6. Time to forge a block in the multidimensional blockchain (MKDBC),
normalized to a unit of time where 1 is the maximum recorded time.

the next block are explained in the recursive Algorithm 3. As

shown in Fig. 6, the time to search and forge blocks shows

an efficient and scalable growth. Finally, we will point out

observations using the same graph to demonstrate another

practical use of multidimensional blockchain for mobile IoT

with network partitioning problems. Fig. 6 shows a cluster

of blocks, between blockchains with sizes ranging between

1 - 1000, with higher than normal forging time. The reason

is that those blocks were forged in blockchains that stayed

relatively stationary in particular areas (we will call them

stationary blockchains). Since we’re using coordinates as the

first and the second dimensions, the blockchain continued to

grow largely on one side of the multidimensional blockchain,

resulting in longer than normal sub-chains or branches (More

details in Section VI-A). The higher the branches, the more

time it takes to forge or merge blocks since it involves more

traversing and comparisons. Interestingly, the forging time

declines as those stationary blockchains start to grow, move,

and merge with other blockchains. The transition from being

stationary blockchains to becoming more active or mobile can

help in adding additional balancing to the blockchain tree and

produce blockchains with shorter branches or heights, resulting

in improving the forging time.

VII. CONCLUSION

This paper presents a multidimensional graph-based

blockchain model that eliminates the need for having fixed

and powerful peripherals for mobile IoT. The model can

allow a blockchain system to function even when dealing

with the network partitioning problem while maintaining the

blockchain’s security and privacy. Experimental results show

the multidimensional blockchain can achieve: efficiency by

having to scan only a few blocks (fewer comparisons) for

any blockchain operations, and scalability by achieving per-

formance similar to logarithmic growth. In future work, we

plan to study the effect of dimensionalities on the performance

of the multidimensional blockchain. We will investigate the

impact by experimenting with different numbers and kinds of

dimensions.

942

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on January 03,2024 at 20:00:24 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash sys-
tem.(2008),” 2008.

[2] K. Karlsson, W. Jiang, S. Wicker, D. Adams, E. Ma, R. van Renesse,
and H. Weatherspoon, “Vegvisir: A partition-tolerant blockchain for
the internet-of-things,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 1150–1158.

[3] A. Al Sadawi, M. S. Hassan, and M. Ndiaye, “A survey on the
integration of blockchain with iot to enhance performance and eliminate
challenges,” IEEE Access, vol. 9, pp. 54 478–54 497, 2021.

[4] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” Ieee Access, vol. 7, pp. 22 328–
22 370, 2019.

[5] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “Sok: Diving into dag-based
blockchain systems,” arXiv preprint arXiv:2012.06128, 2020.

[6] M. Xu, C. Liu, Y. Zou, F. Zhao, J. Yu, and X. Cheng, “wchain: a fast
fault-tolerant blockchain protocol for multihop wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 10, pp. 6915–
6926, 2021.

[7] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu,
“Direct acyclic graph-based ledger for internet of things: Performance
and security analysis,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1643–1656, 2020.

[8] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol,” Cryptology ePrint Archive, 2016.

[9] H. Pervez, M. Muneeb, M. U. Irfan, and I. U. Haq, “A comparative
analysis of dag-based blockchain architectures,” in 2018 12th Interna-
tional conference on open source systems and technologies (ICOSST).
IEEE, 2018, pp. 27–34.

[10] G. Birmpas, E. Koutsoupias, P. Lazos, and F. J. Marmolejo-Cossı́o,
“Fairness and efficiency in dag-based cryptocurrencies,” in International
Conference on Financial Cryptography and Data Security. Springer,
2020, pp. 79–96.

[11] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” Ieee Access, vol. 8, pp. 16 440–16 455, 2020.

[12] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[13] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in
Conference on the Theory and Application of Cryptography. Springer,
1990, pp. 437–455.

[14] H. Treiblmaier and T. Clohessy, Blockchain and Distributed Ledger
Technology Use Cases. Springer, 2020.

[15] S.-J. Hsiao and W.-T. Sung, “Employing blockchain technology to
strengthen security of wireless sensor networks,” IEEE Access, vol. 9,
pp. 72 326–72 341, 2021.

[16] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, and C. Rong, “A comprehen-
sive survey of blockchain: From theory to iot applications and beyond,”
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8114–8154, 2019.

[17] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology
overview,” arXiv preprint arXiv:1906.11078, 2019.

[18] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web
and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[19] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
2019.

[20] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[21] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and
P. Rimba, “A taxonomy of blockchain-based systems for architecture de-
sign,” in 2017 IEEE International Conference on Software Architecture
(ICSA). IEEE, 2017, pp. 243–252.

[22] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.

[23] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake.” IACR Cryptol. ePrint Arch., vol. 2016, p. 919, 2016.

[24] D. Larimer, “Delegated proof-of-stake (dpos),” Bitshare whitepaper,
2014.

[25] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[26] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[27] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Lsb: A
lightweight scalable blockchain for iot security and anonymity,” Journal
of Parallel and Distributed Computing, vol. 134, pp. 180–197, 2019.

[28] R. C. Merkle, “A certified digital signature,” in Conference on the Theory
and Application of Cryptology. Springer, 1989, pp. 218–238.

[29] Z. Bao, W. Shi, D. He, and K.-K. R. Chood, “Iotchain: A
three-tier blockchain-based iot security architecture,” arXiv preprint
arXiv:1806.02008, 2018.

[30] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused streams:
Enabling authentication of sliding window queries on streams,” in
Proceedings of the 33rd international conference on Very large data
bases, 2007, pp. 147–158.

[31] A. W. Moore, “Efficient memory-based learning for robot control,” Ph.D.
dissertation, 1990.

[32] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, 2019, pp. 41–61.

[33] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling
blockchain innovations with pegged sidechains,” URL: http://www.
opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, vol. 72, 2014.

[34] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: communication across
distributed ledgers.” 2019.

[35] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, 2018, pp. 931–
948.

[36] A. R. Shahid, N. Pissinou, C. Staier, and R. Kwan, “Sensor-chain:
a lightweight scalable blockchain framework for internet of things,”
in 2019 International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2019, pp. 1154–1161.

[37] W. Yang, X. Dai, J. Xiao, and H. Jin, “Ldv: A lightweight dag-
based blockchain for vehicular social networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 6, pp. 5749–5759, 2020.
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