
ACM Communications in Computer Algebra, Vol. 56, No. 2, Issue 220, June 2022

Symbolic-Numeric Integration of Univariate Expressions based on Sparse

Regression

Shahriar Iravanian
Emory University, Atlanta, GA, USA

shahriar.iravanian@emoryhealthcare.org

Carl Julius Martensen
Otto-von-Guericke University, Magdeburg, Germany

Alessandro Cheli
University of Pisa, Pisa, Italy

Shashi Gowda
Massachusetts Institute of Technology, Boston, MA, USA

Anand Jain
Julia Computing, Boston, MA, USA

Yingbo Ma
Julia Computing, Boston, MA, USA

Chris Rackauckas
Massachusetts Institute of Technology, Boston, MA, USA

accounts@chrisrackauckas.com

Abstract

The majority of computer algebra systems (CAS) support symbolic integration using a combination
of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid
(symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is
broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic
integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific
Machine Learning ecosystem of the Julia programming language), which is designed for numerical and
machine learning applications. The symbolic part of our method is based on the combination of candidate
terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory)
combined with rule-based expression transformations provided by the underlying CAS. The numeric
part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy)
technique, to find the coefficients of the candidate terms. We show that this system can solve a large
variety of common integration problems using only a few dozen basic integration rules.

1 Introduction

Symbolic integration is a core competency of most Computer Algebra Systems (CAS) and has numerous
applications. This paper presents a symbolic-numeric (hybrid) integration method, similar to the heuristic
methods, that applies numerical computations to simplify the intermediate steps.

JuliaSymbolics is a subset organization of SciML (an open source organization maintaining hundreds
of scientific computing packages for the Julia programming language). Historically, SciML began as a
collection of ordinary differential equation (ODE) solvers. Symbolic computation was added as a domain-
specific language to ease the definition of ODE systems and to aid with the automatic calculation of
Jacobian and Hessian of such systems. With the expansion of the SciML ecosystem, the purely symbolic
routines were decoupled from the ODE solvers. Considering its history and origin, JuliaSymbolics is
geared toward symbolic differentiation and numerical integration but lacks direct symbolic integration

84

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572867.3572882&domain=pdf&date_stamp=2022-11-23


Symbolic-Numeric Integration of Univariate Expressions based on Sparse Regression ISSAC 2022 poster abstracts

capabilities. Furthermore, SciML has grown to cover recent advances in scientific machine learning. As
part of our method, we utilize one of these new packages (DataDrivenDiffEq.jl) that implements data-
driven differential equation structural estimation and identification.

2 Symbolic-Numeric Integration

The integration method presented here is a variant of the method of indeterminate coefficients and is
closely related to the Risch-Norman (parallel Risch or poor man’s integrator) integration method [4]. The
main idea is to write the expected solution as a linear combination of many candidate terms (ansatz) with
unknown complex coefficients, then equate the derivative of the solution with the integrand, and, finally,
find the unknown coefficients by solving a system of linear equations.

The process described in the previous paragraph may seem purely symbolic; however, numerical compu-
tation becomes necessary to avoid relying on JuliaSymbolics to convert expressions into unique canonical
forms. Identities like sin2 x+ cos2 x = 1 may be correctly applied in this case, but in general, according to
Richardson’s theorem, the problem of finding canonical forms of transcendental expressions is undecidable.
Another reason for using numerical computation is that the list of candidates may not be (and usually is
not) linearly independent. Finding a linearly independent subset of a set of expressions is facilitated using
numerical methods.

We split the integration algorithm into two parts. The symbolic part is concerned with generating
candidate terms. The numeric part finds the coefficients of the terms. Our method, similar to the parallel
Risch algorithm and in contrast to the recursive (classic) Risch method, generates many extra candidates
that do not contribute to the solution and are expected to have zero coefficients.

Let the input function to be integrated, f : C → C, be a univariate expression of the independent
variable x. Additionally, we assume that f is well defined in a closed subset of the complex plane with
only isolated poles.

The candidate terms generation algorithm produces a list of generator expressions, G0, G1, G2, · · · , GL,
where L is a user-defined parameter that determines the number of generators to try. Each Gl is converted
to a set of candidates, Tl = {θk}, by, first, expanding it symbolically and then removing constant coefficient
from its terms. We can ignore the constant leading coefficients because the final coefficients are calculated
by the numerical part of the algorithm. The algorithm applies the numerical part to T0 first. If it finds an
acceptable answer, it is returned; otherwise, T1 to TL are sequentially tested. If no answer is acceptable
after trying TL, the algorithm fails.

2.1 Symbolic Computations (Candidate Generation)

One key observation is that the form of the anti-derivative of some functions is similar to their derivative
forms. These functions can be defined in terms of the polynomials of the exponential function and its in-
verse, i.e., f ∈ C[ex, e−x], (ex)′ = ex, and (e−x)′ = −e−x; therefore C[ex, e−x] is closed under differentiation
and integration.

In general, most integrands are not in C[ex, e−x]; however, repetitive differentiation is still the backbone
of the general algorithm. The essence of candidate generation is integration by parts followed by repeti-
tive differentiation. The continuous homotopy operators method provides a systematic way to automate
integration by parts [3]. Here, we borrow some of the machinery of the homotopy operators methodology
to enhance the generation of candidate expressions. We start by rewriting the integrand, f(x), into a form
suitable for integration,

f(x) =
N∏

i=1

ui(x)ni , (1)

85



S. Iravanian, C. J. Martensen, A. Cheli, S. Gowda, A. Jain, Y. Ma, C. Rackauckas

where ui(x) = gi(vi(x)) such that gi(v) is a function that can be integrated easily using a rule-based system,
vi(x) defines the arguments of g(v), and ni ∈ Z+. For example, if f(x) = (x+1)2 sin(x2−1), then f = u21u2
for u1 = v1, v1 = x+ 1, u2 = sin(v2) and v2 = x2 − 1.

We generate G0 by integrating each ui (with respect to vi) in turn. We integrate the first factor of f ,
i.e. un1

1 , by multiplying f by v′1/v
′
1 to split it into u1v

′
1 and f/(u1v

′
1). Ignoring the constant coefficients, the

second part can be written as (v′1)
−1∂f/∂u1. Considering that u = g(v), we have

∫
uv′ dx =

∫
g(v)v′ dx =∫

g(v) dv (remember that g is chosen to be easy to integrate). Therefore,

G0 =
N∑

i=1

(
1 +

∫
gi(v) dv

)

v←vi

(
1 + v−1i

∂f

∂ui

)
. (2)

In
(
1 +

∫
gi(v) dv

)
, 1 represents the constant of integration. Next, we generate G1, G2, · · · by repetitive

differentiation. In addition, we introduce the powers of x into the results by integration-by-parts,
∫
f dx =

∫
(x)′f dx = xf −

∫
xf ′ dx . (3)

Putting all together,

Gl+1 = (1 + x) (1 +Dx)Gl , (4)

where Dx is the total derivative operator. Converting integrands to a form compatible with Eq. 1 and find-
ing

∫
gi(v) dv in Eq. 2 are facilitated by the term-rewriting and rule definition functionality of JuliaSym-

bolics [2]. Nearly fifty rules are sufficient to cover the integration of elementary functions (exponential,
logarithmic, trigonometric, hyperbolic, and their inverses).

2.2 Numerical Computations

After the symbolic part provides a set of n candidate terms Tl = {θk}, we generate n random numbers
xi (test points) in Dd, an open disk of radius d centered at the origin (d is a parameter provided by the
user). Using xis, the algorithm creates an n-by-n matrix A = (aij) and an n-element vector b = (bi) filled,
respectively, with the values of the derivatives of the candidate terms and the input function at the test
points, i.e., aij ← dθj

dx (xi) and bi ← f(xi).
As discussed above, a potential complication at this stage is that the columns of A, corresponding to

different candidate terms, may be linearly dependent. We remedy this problem by utilizing the pivoted
QR algorithm. In short, A is decomposed into A = QRPT , where Q is an orthogonal rotation matrix, R
is an upper triangular matrix, and P is the permutation matrix. We locate the small absolute values on
the diagonal of R to find P ⊂ {1, 2, . . . , n}, such that the columns of A not in P form a maximally linearly
independent set. Then, for each i ∈ P , we remove the ith row and column from A, the ith row from b,
and the ith element from Tl.

Using full-rank A and b, we find q such that Aq = b. If A is low dimensional, this can be done simply
as q = A−1b (by construction, A is a square matrix). However, this process has the drawback of tending
to use all the terms, even those with numerically small coefficients, which obscures the results and differs
from the expected answer to integration problems. We need a parsimonious (sparse) model such that q
has the minimum number of non-zero elements while still solves Aq = b with an acceptable accuracy. We
can achieve this by recasting the problem as an optimization problem to solve

min
q
‖Aq− b‖22 + λ‖q‖i , (5)

for q, where i ∈ {1, 2 }, and λ is a regularization parameter. In this paper, we use the sequential thresh-
olded least-squares (STLSQ) algorithm, which is a component of the Sparse Identification of Nonlinear

86



Symbolic-Numeric Integration of Univariate Expressions based on Sparse Regression ISSAC 2022 poster abstracts

Dynamics (SINDy) technique [1] and uses `2-norm. This method has been chosen due to robust be-
havior within the scope of many problems related to SINDy. The sparse regression code is provided by
DataDrivenDiffEq.jl [5].

Finally, we put everything together and generate y =
∑

j qjθj , the anti-derivative of the input.

3 Results

SymbolicNumericIntegration.jl is available at
https: // github. com/ SciML/ SymbolicNumericIntegration. jl .
It can correctly solve 670 out of 937 test integrals from the RUBI test suite based on classic calculus

textbooks.
We showcase the strengths and weaknesses of the symbolic-numeric integration algorithm with following

examples. The algorithm can successfully solve the following integral,
∫ log x
x
√
1+log x

dx = 2
3x log x

√
1 + log x−

4
3

√
1 + log x. The reason for the success is that the implicit substitution u = 1 + log x transforms the

integral to easily solvable
∫

(u − 1)/
√
u du. On the other hand, the algorithm fails to solve the following

simple integral,
∫

1
1+2 cosx dx, where no simple substitution can solve the integral (it requires the tangent

of half-angle trick).
Because our method is related to the Risch-Norman method, it is particularly effective in dealing

with expressions composed of exps and logs. For example, it can solve the following test example,
∫ exp

(
1

log x

)
((log x)2−1)

(log x)2
dx = x exp

(
1

log x

)
. The candidate generation algorithm does not automatically

transform the transcendental functions into logarithmic and exponential functions; therefore, the final
result is more readable and consistent with the user’s expectations. For example, compare the out-
put of the recursive Risch algorithm,

∫
ex cos 2x =

(
1
10 − 1

5 i
)
exe2ix +

(
1
10 + 1

5 i
)
exe−2ix to our method,∫

ex cos 2x = 1
5e
x cos 2x+ 2

5e
x sin 2x.

The algorithm occasionally fails to solve an integral due to numerical accuracy issues and round-off
errors. For example,

∫
x3 sin3 x dx is solved correctly, but not

∫
x3 sin4 x dx, even though the symbolic part

of the algorithm generates all the required candidate terms. The root cause of the problem is that many
candidate terms are approximately linearly dependent while not marked as such by the QR algorithm.
Therefore, the resulting matrix A becomes ill-conditioned.

References

[1] Brunton, S. L., Proctor, J. L., Kutz, J. N., and Bialek, W. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences of the United States of America 113, 15 (apr 2016), 3932–3937.

[2] Cheli, A., and Rackauckas, C. Automated code optimization with e-graphs, 2021.

[3] Deconinck, B., and Nivala, M. Symbolic integration using homotopy methods. Mathematics and
Computers in Simulation 80, 4 (dec 2009), 825–836.

[4] Geddes, K. O., and Stefanus, L. Y. On the risch-norman integration method and its implemen-
tation in maple. Proceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC Part F130182 (7 1989), 212–217.

[5] Martensen, J., Rackauckas, C., et al. Datadrivendiffeq.jl, July 2021.

87




