Received: 8 March 2022

Revised: 30 September 2022

W) Check for updates

Accepted: 31 October 2022

DOI: 10.1002/env.2780

RESEARCH ARTICLE

WILEY

REDS: Random ensemble deep spatial prediction

Ranadeep Daw

Department of Statistics, University of
Missouri, Columbia, Missouri, USA

Correspondence

Ranadeep Daw, Department of Statistics,
University of Missouri, Columbia, MO,
USA.

Email: ranadeepdaw@mail.missouri.edu

Funding information

U.S. National Science Foundation,
Grant/Award Numbers: SES-1853096,
CNS-1429294

| Christopher K. Wikle

Abstract

There has been a great deal of recent interest in the development of spatial
prediction algorithms for very large datasets and/or prediction domains. These
methods have primarily been developed in the spatial statistics community, but
there has been growing interest in the machine learning community for such
methods, primarily driven by the success of deep Gaussian process regression
approaches and deep convolutional neural networks. These methods are often
computationally expensive to train and implement and consequently, there has

been a resurgence of interest in random projections and deep learning models

based on random weights—so called reservoir computing methods. Here, we
combine several of these ideas to develop the random ensemble deep spatial
(REDS) approach to predict spatial data. The procedure uses random Fourier
features as inputs to an extreme learning machine (a deep neural model with
random weights), and with calibrated ensembles of outputs from this model
based on different random weights, it provides a simple uncertainty quantifica-
tion. The REDS method is demonstrated on simulated data and on a classic large
satellite data set.
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1 | INTRODUCTION

There is a famous Al hacker koan on the subject of randomness in neural models, reproduced here from the abstract of
Rahimi and Recht (2008):

In the days when Sussman was a novice, Minsky once came to him as he sat hacking at the PDP-6. “What are
you doing?” asked Minsky. “I am training a randomly wired neural net to play tic-tac-toe,” Sussman replied.
“Why is the net wired randomly?” asked Minsky. Sussman replied, “I do not want it to have any preconceptions
of how to play”. Minsky then shut his eyes. “Why do you close your eyes?” Sussman asked his teacher. “So that
the room will be empty,” replied Minsky. At that moment, Sussman was enlightened.

One take-home message from this koan is that just as a room is not empty simply because you close your eyes, random
networks do have “preconceptions” (useful connections) induced by the randomness, they just are not the ones that we
might have learned directly from the data. This helps explain the fact that there has been a great deal of research and
development of random network models in the last 20 years or so, and that the randomness presents plausible networks
that can be implemented without the significant overhead associated with more standard backpropagation optimization
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methods. Building on these frameworks, we propose such an algorithm for efficient spatial prediction that uses randomly
generated hierarchical (or deep) features, requires minimal training, and uses calibrated ensembles to provide uncertainty
quantification (UQ) for the predictions.

Spatial data are often considered to be a realization from a spatially-dependent stochastic process at point locations
or fixed areas (see Banerjee et al., 2014; Cressie, 1993; Cressie & Wikle, 2015; Wikle et al., 2019, for overview of classi-
cal spatial statistics). When such data are reasonably represented by Gaussian processes (GPs) or Markov random fields
(MRFs), the primary implementation focus is on the covariance or precision matrices. Yet, it can be challenging to learn
these since we often have only one noisy realization from the underlying dependent process, which prohibits the direct
estimation of unstructured covariance or precision matrices when working with finite collections of data. Thus, fur-
ther assumptions such as the specification of a parameterized covariance function, stationarity, and isotropy are often
used along with the distributional assumption underlying the data (e.g., GPs or Gaussian MRFs). The computational
challenges associated with these methods in the presence of large data sets and prediction domains has led to vigorous
research on simplified models and advanced computational approaches to implement spatial prediction algorithms (e.g.,
see Heaton et al., 2019, for discussion and comparison of several such approaches). Recently, there has been a corre-
sponding interest in the development of machine learning methods that can provide alternative fast, easy-to-implement,
and explainable methods to analyze such data without specifying or estimating a covariance model (e.g.,
Kirkwood et al., 2020).

Deep learning (e.g., Goodfellow et al., 2016) has become very popular over the last decade in nearly every area
of data analysis, but particularly with dependent data (e.g., images and sequences). The development of useful
tools such as backpropagation, automatic differentiation, stochastic optimization, and GPU computing has allowed
researchers and practitioners to extract complex features from dependent data. Deep learning has been applied
to the analysis of spatial data in various ways such as using locations or basis expansions of locations as fea-
tures (Chen et al., 2020; Cracknell & Reading, 2014) or in terms of convolutional neural networks (CNNs) (see
the recent review of deep learning for spatial and spatio-temporal data in Wikle & Zammit-Mangion, 2022). CNNs
(Fischer, 2006) represent arguably one of the most successful deep learning tool for spatial data, but they are
focused typically on using spatial image data as predictors for regression or classification rather than spatial predic-
tion, which is more common in statistics. Deep models are typically over-parameterized and hence, require a great
deal of training data and regularization to be successful. As such, they can be challenging to fit and are almost
always quite computationally demanding (although this can be mitigated to some extent by pretraining networks on
huge image databases). This has motivated researchers to find alternate algorithms that mimic existing deep mod-
els while bypassing the expensive training required to learn the weights that connect hidden units. Perhaps the
most successful approaches fall under the umbrella of reservoir computing, which are methods that select random
weights at various layers from some reservoir distribution. Examples of reservoir methods include extreme learn-
ing machines (ELMs) (Huang et al., 2006), echo state networks (ESNs) (Jaeger, 2001), and liquid state machines
(Maass, 2011).

Our goal in this manuscript is to demonstrate that a similar deep random parameter-based model can be used
for the prediction of continuous spatial data. Note that classical CNN models require gridded data and often need
additional layers to convert such data to a continuous domain problem. Our approach is not limited by a gridded
data requirement. However, reservoir approaches face two criticisms in general. First, they can be somewhat “hit
and miss” in the sense that some randomly generated networks do not work well by chance. Second, as with classi-
cal deep learning models, these reservoir methods do not provide a model-based estimate of the uncertainty associated
with predictions. Model-based prediction uncertainty quantification (UQ) is fundamental to statistical spatial predic-
tion procedures. To address the first concern, we have developed an approach to retain the “good” networks from our
ensemble of potential networks by using a greedy cross-validation procedure that considers small random subsets of
the training data (i.e., minibatches) in every iteration to fit the model, and then examines the fitted model on the
remaining data. To address the second concern, we then use these “good” networks in a calibration-based UQ frame-
work. We call our procedure the REDS (random ensemble deep spatial) approach for spatial prediction and uncertainty
quantification.

The article is organized as follows. Section 2 contains relevant background of models and algorithms that have
motivated the REDS procedure. Section 3 describes the REDS algorithms and associated methodology. Section 4
shows the simulation and application results, and Section 5 provides a brief conclusion and discussion of future
work.
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2 | BACKGROUND

Randomization has been a fundamental component of statistical modeling since the contributions of R.A. Fisher and the
design of experiments (Fisher, 1992). Some examples of notable random learning algorithms in statistics include random
forests (Ho, 1995), the bootstrap (Efron, 1992), bagging (Breiman, 1996), random projection (Bingham & Mannila, 2001;
Dasgupta, 2013), neural networks (Schmidt et al., 1992; Suganthan & Katuwal, 2021), reservoir computing (Schrauwen
et al., 2007), random Fourier features (Rahimi & Recht, 2007), random Kitchen sinks (Rahimi & Recht, 2008), random
vector functional link networks (Pao et al., 1994), SVD (Halko et al., 2011), random augmentation (Cubuk et al., 2020;
Zhong et al., 2020), coresets (Assadi & Khanna, 2017), kernel learning (Xie et al., 2019), lazy training via neural tangent
kernels (Jacot et al., 2018), to name a few. Some of the randomization algorithms (such as reservoir computing) are used
to ease the computation cost of their deterministic counterparts, and in some cases are improvements over their deter-
ministic analogs (e.g., random forests, bagging, bootstrap). In general, the simplicity and the computational efficiency of
randomized algorithms has attracted researchers and practitioners to these methods.

Classical spatial data analysis methods such as kriging (or GP regression) can be computationally challenging in
high dimensions. For example, spatial data at n locations have an n X n covariance matrix that must be inverted with
complexity O(n?®), which is problematic when the number of observations is over several thousand. This has necessitated
the development of scalable methods for spatial prediction. Some scalable approaches include pseudo-likelihood methods
(Besag, 1975), (sparse) precision matrices (Leroux et al., 2000), graphical models (Kim & Nelson, 1999), variational Bayes,
predictive processes (Banerjee et al., 2008), to name a few. The precision matrix based approximations usually assume
conditional independence in the data given a neighborhood, which leads to sparse precision matrices. This has led to the
development of nearest neighbor based GPs and Vecchia approximations (e.g., (Datta et al., 2016; Katzfuss et al., 2020;
Vecchia, 1988). One can also introduce sparsity in the covariance matrix directly through tapering (Furrer et al., 2006;
Kaufman et al., 2008).

An alternative to the neighbor-based methods for spatial and spatio-temporal GPs is to use kernel or basis function
approximations (e.g., Higdon, 1998; Wikle & Cressie, 1999). There have been many implementations of such approaches,
with a variety of basis functions and with some methods being low rank, full rank, or overcomplete (see Cressie et al., 2021;
Hefley et al., 2017; Wikle, 2010, for overviews). There have been recent developments in low-rank basis expansions in
the machine learning community. For example, random Fourier features (RFFs) (Rahimi & Recht, 2007) provide extra
flexibility in modelling spatial data (see Hensman et al., 2017; Miller & Reich, 2022; Milton et al., 2019). RFFs have also
used in a deep feature expansion context (e.g., Cutajar et al., 2017; Xie et al., 2019). Deep RFFs derive the features by
using a set of hierarchical RFF transformation of the features. As discussed below, REDS considers a similar deep net-
work and provides more flexibility in generating features by using a combination of RFFs and other randomly generated
features. REDS first transforms the spatial coordinates into a latent space of the RFFs. Since these shallow features are
often not expressive enough to accommodate the dependence structure in high volume spatial processes, we further look
to generate more complex features. Our approach is motivated by Chen et al. (2020), where a combination of basis expan-
sions and a deep feed-forward neural network was used. However, we seek to find a more computation-friendly approach
that is free of the training burden of the deep neural network. Thus, we replace the deep networks with ELMs (Huang
et al., 2006), which use randomly-weighted reservoirs to project the inputs on to a more complex feature space. Since
ELMs replicate the deep networks in a random fashion, our approach generates more flexible features than the deep
RFFs. In other words, our method is a computationally cheaper alternative of the Deepkriging algorithm that is suitable
for large datasets.

All viable spatial prediction methodologies must include uncertainties associated with the predictions. This arises
naturally in GP-based approaches. Although UQ is not produced from traditional deep neural models, there have been
numerous approaches that accommodate UQ in these models, and it is an expanding area of research (see the review in
Abdar et al., 2021). For example, perhaps the first approach for UQ in neural networks was mixture density networks
(Bishop, 1994). These consider a mixture of Gaussians to arbitrarily approximate the residual density it uses the deep
network to predict the parameters of the mixture distribution. Another more recent example is “Monte Carlo dropout”,
which generates a set of dropout layers (Srivastava et al., 2014) that randomly remove connections in the hidden layer
and produces the corresponding set of predictions using those layers. The set of predictions are then used to construct the
prediction bounds. Other methods include Bayesian neural networks (McDermott & Wikle, 2019a; Wang & Yeung, 2016),
“Bayes by Backprop” (Blundell et al., 2015), and deep GPs (Damianou & Lawrence, 2013). Simpler alternatives for UQ have
been developed based on discrete density estimation as in Li et al. (2019) (which is the approach used in DeepKriging).
A cheaper alternative is to consider ensembles, which are particularly useful in random network approaches such as
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reservoir computing (e.g., McDermott & Wikle, 2017, 2019b). Such ensemble approaches should be calibrated to achieve
a particular coverage probability (e.g., Bonas & Castruccio, 2021). In the REDS algorithm, we consider a very simple UQ
calibration approach motivated by the procedure outlined in Serbye and Rue (2014), which was originally developed for
prior elicitation in MRF spatial models.

3 | REDS METHODOLOGY

In this section, we describe the methodology for the REDS prediction approach, including point prediction (Section 3.1)
and associated uncertainty quantification (Section3.2).

3.1 | Prediction methodology

Consider spatial locations S = {sy, ... , s, } with corresponding data represented by Y = {Y7, ... Y}, }. Our only assumption
here is that we are dealing with a spatially-dependent random variable Y; that has a continuous response; we make no
assumptions as to the nature of the spatial dependence (e.g., functional form, isotropy, stationarity). The goal here is to
provide predictions at some locations of interest § = {3, ... ,§;} where the realization of Y may not be available. Along
with this prediction task, we also try to estimate the uncertainty of our predictions. To better illustrate our approach,
we first present the REDS point prediction algorithm (Algorithm 1), and then describe the methodological motivation
corresponding to each step.

Algorithm 1. REDS: Generating an ensemble of predictions

1: Input Training locations S = {s1,...,S8,}, training data Y = {Y3, ... Y,}, minibatch size M, test locations S=
{81,....8%}

2: Draw @y, ..., ®; ~ p(w).

3 hO(s) = (cos(@!s), sin(@T's), ..., cos(os), sin(a)]Ts))T.

4 forj=1:Ndo

5: Draw number of hidden layers K; ~ 7g, hidden layer width d; ~ 74, penalty parameter 4; ~ x;.

6  if Kj>0then

A

Draw V) with elements v(f) ~qwforl=1,....K; - 1.

8: h¢+D(s) = max (V(f)h(f)(s), 0) forl=1,... ,K- -1
9: end if
10: Select a random subset S from S of size M.

11 Fit the model: Y; = p(h®(3); ;) using {Y; : § € S}.
122 Predict Y = p(h®3); 4) for § € § (similarly, predict ¥ for s € Su ).
S

(V9 - v,)*.

seS

13: Compute the training RMSEs as ¢; = \/ % >
14: end for

15: Order the training RMSEsaseqy < - eg) < -+ < eyy.

16: Define J C {1,...,N} as the set of good networks correspondlng to €, ..., €®)-
17: Ensemble predlctlon Vons = medlan(Y(’)) jeJforseSuSs.

18: Ensemble uncertainty: 6o, 5 = IQR(YS(’)) jeJforseSu S.

19: Output ¥, and 6., fors € SUS.

Step 2 and 3 of Algorithm 1 transforms the input to a random basis layer using a set of random frequencies
from distribution p(w). The output features ({cos(a)st), sin(a)st}) are known as random Fourier features (RFFs), as
introduced by Rahimi and Recht (2007); see Liu et al. (2020) for a review of different RFF approaches. RFFs are moti-
vated by the well-known Bochner’s theorem (Rudin, 2017), which states that any positive definite and shift invariant
kernel £(x,y) : S X S — ® can be rewritten as the Fourier transform of a probability density p(w) as the following
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K-yl = [ exp {iollx -1} ple do. 1)

The consequence of the above representation is that it allows us to approximate the kernels using a Monte Carlo eval-
uation of Equation (1) by simulating random frequencies Q = {®;, ... , ®,} from p(®). The kernel K is then approximated
by the following Monte Carlo summation

Kl =yl ~ 1 Y exp {io] x =yl } = (#60, $0)). @
j=1

The last equality in Equation (2) follows from the kernel trick (Berlinet & Thomas-Agnan, 2011), where ¢(s)
are feature vectors corresponding to the data Y. In the RFF case, the most common choice of ¢ is ¢(s) =
(cos(@Ts), sin(@s), ... ,cos(@]s), sin(w’s)) " which is used in the step 3 of Algorithm 1. Hence, step 3 is a fully ran-
dom basis expansion following a certain family. In our work, we chose the frequency distribution p(®) in such a way
that allows for multi-resolution training, which has often been used in kriging to approximate the associated covariance
matrix for a finite sample of observation locations (e.g., Chen et al., 2020; Nychka et al., 2015). We describe our choice of
p(w) in Section 3.3.

Step 5 randomly simulates the hyperparameters of each network, that is, the number of hidden layers, the hidden
layer width, and the lasso regression penalization parameter from distributions described in Section 3.3. Following these
choices, steps 7 and 8 in Algorithm 1 perform a series of (deep) non-linear stochastic transformations that generates a
collection of potential features. This is the same as passing the input through a deep ELM. Recall, a deep ReLU net-

A A A
work model takes an input z and performs a series of transformations as in: hy = z = h; = max(A; hy, 0) 3.3 h, =

max(Ashs_1,0) A—T Ay1h, = Y. Inaclassical deep network, all the weight matrices A; are learned using an optimization
algorithm such as stochastic gradient descent. In order to increase the computational efficiency and avoid the variance
in the gradient propagating through different layers, ELMs do not estimate the intermediate weight matrices A4, ... , Ay
and instead generate them from a common distribution such as a Gaussian or uniform distribution. Only the last layer
is learned, and can be done so using any simple regularization learning algorithm such as a penalized regression or
Bayesian regression (or analogous regularization approaches for non-Gaussian responses). In our case, V) are the ran-
dom weight matrices, which are simulated from a distribution q(v). The random projection is then rectified through a
ReLU transformation in step 8.

The final training is then done with a randomly selected minibatch (i.e., a random subsample) in steps 10 and 11 using
a lasso regression with the penalty parameter 4; chosen in step 5. This avoids overfitting from an overcomplete set of ran-
dom basis functions and also helps reject the poor performing networks in two ways. First, penalized regression such as
ridge, lasso, elastic net, allows shrinkage on the regression coefficients to avoid overfitting. Second, fitting with penal-
ized regression only on a minibatch sample avoids using excess data and hence provides additional protection to avoid
overfitting. Minibatch training is often used in deep learning methods such as stochastic gradient descent (Amari, 1993).
The training root mean square error (RMSE) (¢;) is then computed by calculating the RMSEs over the full training set in
step 13.

Note that after computing the first hidden layer h® of the RFFs, the remaining tasks are performed N times. This
gives us an ensemble set of N training RMSES, (1) < - - - e, out of which we keep only the best R networks. This allows
us to remove the poor performing networks that are sometimes generated in reservoir models. We define .J as the set of
indices corresponding to the ensemble members that are retained. The final prediction is taken as the ensemble median
(step 17). In addition, for the UQ procedure describe in Section 3.2, we also require a measure of the ensemble uncer-
tainty, for which we used the ensemble inter quartile range (IQR) (step 18). Predictions and IQR values for each spatial
location in the training sample, S, and for the locations without associated responses, S, are output from the algorithm
(step 19).

3.2 | REDS: Uncertainty quantification

Algorithm 1 produces a set of ensemble median point predictions and IQR estimates for spatial locations of interest,
but does not provide a calibrated measure of prediction uncertainty. Thus, we consider a simple approach for UQ that

A ‘T €20T XS606601

:sdny woxy papeoy

ASULIIT suowo)) dAneal) ajqeorjdde ay) £q pauIdA0S aIe SIdILE Y (2SN JO SN 10J KIRIqIT AUI[UQ AD[IAY UO (SUONIPUOD-PUB-SULIA) /W00 K[ 1M KIeIqI[aul[uo//:sd)y) SuonIpuo) pue swia ], 3y 23S *[+70¢/10/€0] uo Kreiqiy auljuQ A3IA\ ‘BIqUIN[O)) LINOSSIA] JO ANsIoAtun £q (8L AUS/Z00] 0 /10p/wod" Kofim  Kreiqrjaul|



60of15 DAW AND WIKLE
WILEY

calibrates the ensemble predictions and uncertainties from the output of this algorithm. Specifically, our approach is moti-
vated by the procedure outlined in Serbye and Rue (2014) that was developed for prior elicitation in MRF spatial models.
As outlined in Algorithm 2, the approach uses the set of R ensemble predictions and uncertainties from Algorithm 1 to
construct a prediction bound as follows. We define the lower and upper confidence intervals for a given cutoff vas L,(.) and
U, (.) and the corresponding coverages are denoted by C, . In steps 2 and 3 of Algorithm 2, we compute L, (s) = Yen’s — VBens
and U,(s) = ?en,s + V6ens and then compute the coverage C, = % Yses LIL,(s) < Ys < U,(s)] using s from the training
dataset, S. Then in step 4, ¥ is optimized using a simple Brent’s bisection method (Brent, 1971) to calibrate the optimal
cutoff such that Cy = a, which is the target level of the confidence. Thus, this gives the prediction bounds {Yen,s + Oﬁen,s}
that contain 100(1 — a)% of the observations.

Algorithm 2. REDS: Ensemble uncertainty quantification

1: Input The outputs from Algorithm 1, that is, Yen,s and 6., for s € S (and similar outputs for the locations in S),
a target Type I confidence level «, and an initial cutoff value, v.

Given v > 0, define the confidence bounds as L,(s) = Yens — V6ens and U,(s) = Yens + Véens.

Compute the coverage as C, = % Yses L[Lu(s) < Yy < Uy (9))).

Compute the optimal calibration cutoff ¥ such that C; =1 — a.

Compute the prediction intervals for each s in the test set S as (?en,s + O&en,s).

3.3 | Selection of hyperparameters

Deep learning algorithms are notorious for having a large number of tuning hyper-parameters. Random learning algo-
rithms are no exception. These tuning parameters often have a significant impact on how good the random layers
perform and typically lead to choices that are non-convex, meaning that a linear update of the parameters would not
provide a monotonic increase or decrease in the model performances. We discuss the rationale behind our choices of the
hyper-parameters, @ = {J,N, f,d, K, A}, below.

Like any machine-learning model, REDS requires extensive validation strategy to find the best networks. Our experi-
ments with simulated data suggest that instead of using one good value for each hyperparameter, prediction, and coverage
results improve when we use different values for hyperparameters across the different minibatches. Therefore, we con-
sider parameters selected randomly from intervals instead of specific values to tune REDS. Such intervals do not need to
be mutually exclusive and instead can consider overlapping ranges as shown below. The primary message here is that
different minibatches may require different choices of hyperparameters and therefore random selection of hyperparame-
ters improves our results. It is also easier to find a continuous range of values rather than searching for the “best” points
since the RMSEs are often nonlinear in terms of these hyperparameters.

We find that there are some hyperparameters in REDS do not require tuning. The ELM parameter distribution and the
RFF distribution are two such examples. The ELM distributions are selected from typical choices (Gaussian/uniform).
Varying the associated hyperparameters showed little to no effect on results during our simulation testing. The RFF
distribution is chosen to represent a multi-resolutional basis expansion. This distribution can sometimes change the
prediction results results, but our experiments with Gaussian process data suggested that our choice is robust for
moderate to large-sized datasets. Therefore, we kept these hyperparameters fixed and investigated the effect of vary-
ing other hyperparameters. However, for some applications, it might be beneficial to tune the hyperparameters that
we have fixed. The following list describes the choices for hyperparameter selection for those parameters that were
not fixed.

i Number of RFFs (J): In our examples, we followed the guidance in Chen et al. (2020) for the RFF basis expansion.
Layer-0, that is, the RFF expansion, is specified in a multi-resolution fashion. Specifically, we convert the spatial
region into a [0 X 1]? square grid and then select three different resolutions of radii, 0.1,0.2,0.3. For each of these
resolutions we simulate 500,300, and 200 random frequencies, respectively, since it is usually the case that the small
scale variation needs comparatively more expansion features to generate an accurate representation. This leads to a
total of J = 500 4 300 + 200 = 1000 basis functions. Sinceeach w; : j =1, ... ,J gives two features, cos(ijs), sin(ijs),

the dimension of the layer-0 hidden layer h©(s) is 2(1000) = 2000. We use these choices for our simulations and real
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data example. It should be noted that computation of the cosine and sine functions takes more time compared to the
other matrix computations used here and so the generation of RFFs is performed only once.

ii Distribution of hidden layer elements (q): A common choice for q is a Gaussian or uniform distribution. In exploratory
studies, we found that the uniform distribution typically performed better than the Gaussian distribution. We also
saw that the model predictions do not vary much with the choice of the range of the uniform distribution. Thus, we
used a uniform distribution between —0.1 and 0.1 for the choice of gq.

iii Distribution of number of hidden layers (nx): An advantage of the ensemble approach used in REDS is that we can
draw important hyper-parameters from a distribution for each ensemble member. This is helpful for the number of
hidden layers. Specifically, we select the number of hidden layers K; corresponding to the jth network randomly from
a distribution zx. We allow zg to be a discrete uniform distribution over the following ranges: 1-2, 1-3, 1-4. The
deeper networks were not particularly helpful in our applications and also increase the computational cost in the
large examples.

iv Distribution of hidden layer width (zy): First note that, for simplicity, we use the same width for each hid-
den layer (although, this need not be the case). We experimented with various widths between 500 and 2000
and noticed that the choice of this parameter directly effects the run-time of the algorithm since the compu-
tational complexity is proportional to djz. In the validation study, the different distributions considered for the
hidden width are: 200-500, 500-1000, 1000-1200. In each case, the width is sampled uniformly from the given
range.

v Distribution over penalization parameter (1 ,): We experimented with various choices of the lasso penalization param-
eter. The ranges we considered for 4 are: 0.001-0.005, 0.005-0.01, 0.01-0.05. Note that we also experimented with
ridge and elastic net penalization methods and lasso was slightly better.

vi Number of ensembles (N), “good” ensembles (R) and minibatch size (M): Our experiments showed that although the
accuracy results were similar for N of moderate size, the smoothness of the prediction boundary and the coverage
values improve with increasing N. For small to medium sized datasets, one can fit several thousand ensembles to get
results within a minute. For large datasets, it becomes crucial to manage the computational time. For the two large
examples (n of the order of 10°), we can fit N = 500 ensemble networks efficiently.

To choose R, we investigated the RMSEs over the training set. We found that most of the networks are quite poor
compared to the best available results. Thus, we considered the best 20% of the networks based on RMSE, which left
us with R = 100 networks on which to base the ensemble prediction and coverage calculations.

Finally, the minibatch size M is kept fixed at [n/10] (one tenth of the training sample).

3.4 | Implementation and comparison metrics

We implemented the REDS algorithms using MATLAB (MATLAB, 2018) on a 40 core high-performance cluster.
The calculations for each ensemble member are implemented in parallel. Note that simulation examples with a
few thousand observations can be solved within a few seconds, whereas the two large data examples in Section 4
take around 5-6 min with 500 ensembles. The predictive performance is evaluated using five metrics as described
below.

Prediction accuracy is evaluated using two metrics—mean absolute error (MAE) and RMSE. For a set of n test locations
S with observed realizations {Y; : s € 8} and predictions {¥; : s € 8}, these metrics are defined as follows:

- 1 o
MAE®S) = = 3 |Y; = Vi,

seS

RMSE(S) = /%Z(Ys ~Y".
seS

We also consider three UQ summary metrics: prediction interval coverage (CO), interval score (IS), and con-
tinuous rank probability score (CRPS) (Gneiting & Raftery, 2007). Specifically, consider a location s with obser-
vation and point prediction Yy and Yj, respectively, and let 7y denote the standard deviation of our predic-
tion. Also, let the 100(1 — @)% prediction interval for this location be denoted by [Lg, Us]. Then, for a particular
location, s,

A ‘T €20T XS606601

:sdny woxy papeoy

ASULIIT suowo)) dAneal) ajqeorjdde ay) £q pauIdA0S aIe SIdILE Y (2SN JO SN 10J KIRIqIT AUI[UQ AD[IAY UO (SUONIPUOD-PUB-SULIA) /W00 K[ 1M KIeIqI[aul[uo//:sd)y) SuonIpuo) pue swia ], 3y 23S *[+70¢/10/€0] uo Kreiqiy auljuQ A3IA\ ‘BIqUIN[O)) LINOSSIA] JO ANsIoAtun £q (8L AUS/Z00] 0 /10p/wod" Kofim  Kreiqrjaul|



8of15 DAW AND WIKLE
WILEY

COs = 1(Ls < Y5 < Uy),

ISs = (Us - Ls) + % [(Ls - Ys) ]I(Ys < Ls) + (Ys - Us) ]l(Ys > Us)] s

CRPSg = £ L—zy/(Y‘st) - <stYs> <2l{' <u> —1) )
\/; T T T

where y(.) and W(.) are the standard normal pdf and cdf, respectively. Then, given a set of n test locations 8, the prediction
interval coverage, interval score, and the continuous rank probability score for the test set is given by

co(3) = 5 Y'co.,

seS
18(3) = 2 Y Is,,
nseg
CRPS (8) = lZCRPSS.
M ses

4 | SIMULATION AND APPLICATION RESULTS

In this section, we demonstrate the REDS algorithm on two simulated datasets and real world satellite data. In particular,
we use REDS to generate point predictions and uncertainty bounds for these datasets.

4.1 | Simulation: One-dimensional Gaussian process

Consider simulated data that follow a stationary GP over a univariate domain between 0 and 1 with covariance function
given by a Gaussian kernel: ¢; = cov(t;, ;) = exp~'%4~%" + 0.15;. This process is simulated at n = 2500 locations generated
from a uniform distribution between 0 and 1.

We randomly selected intervals of width 0.1 and assigned the data within those intervals to be missing while training
the model. We evaluated the performance of REDS at these missing locations for validation. We used the hyperparameter
tuning strategy outlined in Section 3.3 to find the best fitting hyperparameters. In particular, we used 1-4 hidden layers,
300-500 hidden units, and A in the range of 0.001-0.005. We compared the REDS results to a full GP regression (kriging)
implementation assuming that form of the true covariance kernel was known. Table 1 shows the prediction and UQ
metric comparisons. The metrics for the REDS predictions are quite similar to those for GP regression, even though the
GP regression had the advantage of knowing the true data generating process. Figure 1 shows the comparison between the
REDS and GP regression fits and demonstrates that the REDS prediction intervals are quite similar to the GP prediction
intervals.

4.2 | Simulation: High volume two-dimensional Gaussian process

To demonstrate REDS effectiveness on a high volume spatial dataset, we consider the simulated data discussed in Heaton
et al. (2019). These data were simulated using parameters that were estimated from a randomly selected subset from a

TABLE 1 One-dimensional stationary Gaussian process example: Comparison between the performance of REDS and GP regression
(kriging) on the simulated data in Figure 1 that is generated from a the one-dimensional stationary GP.

Metric MAE RMSE (610] CRPS IS
REDS 0.0785 0.0990 0.9737 0.0566 0.5056
Kriging 0.0768 0.0969 0.9634 0.0546 0.4568

Note: The accuracy metrics (CO, coverage; CRPS, continuous rank probability score; IS, interval score; MAE, mean absolute error; RMSE, root mean square
error) demonstrate the prediction power of the REDS method is reasonable compared to the performance of the kriging model with known covariance
function, although REDS attain slightly higher interval score.
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L5
® True
® REDS
1 ® Kriging

0.5

-0.5

0 0.2 0.4 0.6 0.8 1

FIGURE 1 One-dimensional stationary Gaussian process example: With the best hyperparameters selected as described in Section 3.3,
REDS is applied to data simulated from a stationary GP in one dimension. To train REDS, only the data with white background is used and
the data with gray background is used as the test set. The green points are the data and the red line shows the prediction interval from a GP
regression (kriging) model with the covariance function known. The blue lines are the prediction intervals generated from the REDS
algorithm. Note that REDS is providing a prediction bound that is quite similar to that obtained from the kriging model.

Full Data Train vs Test Locations
37.5¢ <4 375
® Train Locations
52 Test Locations
37 37
{ 50
365 36.5
| 48
36| w 46 36
- -~
3 a4 5
35.5 35.5
42
35 i 40 35
38
34.5 34.5
36
34 1 1 1 1 J 34 34 1 1 1 L ]
-96 -95 -94 -93 -92 -91 -96 -95 -94 -93 -92 -91
Lon Lon

FIGURE 2 High volume simulated two-dimensional data from a GP: The left panel shows the full simulated data from Heaton
et al. (2019). The right panel shows the training data locations (in black) and test data locations (in grey) used to fit the spatial models.

true satellite image of temperature, which we use in the real-world example in Section 4.3. The simulated data are on a
regular grid of size 500 x 300. The missing locations are kept the same as in Heaton et al. (2019) to facilitate comparison
to the results presented therein. Specifically, Figure 2 shows the distribution of the 105,569 training locations and 44,431
test locations.

To apply REDS, we reformat the data to lie within a square grid with domain [0, 1]%. We compare our results to the
state-of-the-art methods that were applied to the same dataset in Heaton et al. (2019). The summary metrics from REDS
are within the range of those presented for the state-of-the-art methods in Table 2. Similarly, the prediction and uncer-
tainty maps shown in Figures 3 and 4 suggest that the model is providing reasonable predictions. However, like most basis
function approaches, the predictions shown in Figure 4 have somewhat smoothed over the very fine-scale structures, but
the uncertainty bounds reasonably capture the associated uncertainty.
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TABLE 2 Comparisons of predictive metrics for high volume simulated data from a two-dimensional GP: Results from the application
of REDS on the simulated data in Figure 2 are shown here.

Metric MAE RMSE Coverage CRPS IS
REDS 0.8860 1.1232 0.9626 0.6356 5.6257
Other methods in Heaton et al. (2019) 0.61-1.06 0.83-1.43 0.44-1.00 (0.96 best) 0.43-0.76 3.64-18.01

Note: The first row shows the prediction summaries (CO, coverage; CRPS, continuous rank probability score; IS, interval score; MAE, mean absolute error;
RMSE, root mean square error) from the REDS procedure and the bottom row shows the range of corresponding summary values obtained by other competing
algorithms from that paper.

True Data Predicted Data

50 50

) 45 45
© ©
|| -

40 40

34 35 34 35

-96 -94 92 -96 -94 -92
Lon Lon

e -+~
© ©
-l -

FIGURE 3 High volume simulated data and predictions from a two-dimensional GP: The top left panel shows the true simulated
values from Heaton et al. (2019) at the test locations. The top right panel shows the predicted values at these locations from REDS. The
bottom row presents the uncertainty bounds associated with the REDS predictions; specifically, the left bottom and right bottom images
correspond to the point-wise lower 2.5%-tiles and upper 97.5%-tiles, respectively.

4.3 | Real world satellite data prediction: Application to a large spatial dataset

Following the example in Section 4.2 that was used for comparing spatial prediction methodologies, we consider the
true satellite data corresponding to land surface temperatures presented in Heaton et al. (2019). The data were obtained
by the Terra instrument on board the MODIS satellite from August 4, 2016 (Level-3 data) and is available for download
using the MODIS re-projection tool web interface (MRTweb)!. The collected observations are given on an equidistant
500 x 300 rectangular grid between longitude —95.91153 to —91.28381 and latitude 34.29519 to 37.06811, out of which
105,569 observations were used as training data. Note that the difference between this dataset and the simulated data in
Section 4.2 is that the simulated data were generated following an assumed stationary Gaussian process, in which the
mean surface was subtracted from the true data to make the data stationary in space. Importantly, REDS does not require
that we subtract a linear effect of locations since it can automatically pick the necessary features from the over-complete
basis formulation. Nevertheless, for demonstration, we also consider the case where a linear effect in terms of latitude and
longitude is first removed from the data, the residuals are then considered as data in REDS with associated predictions,
and the linear effect is added back.

Thttps://mrtweb.cr.usgs.gov/
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FIGURE 4 High volume simulated data and predictions from a GP: The top left panel shows the true simulated data from Heaton

et al. (2019) at all locations. The top right panel shows the predicted surface from REDS. The bottom row shows the uncertainty bounds
associated with the REDS prediction; specifically, the left bottom and right bottom images correspond to the point-wise lower 2.5%-tiles and
upper 97.5%-tiles, respectively.

TABLE 3 Prediction results for satellite temperature data: The top row shows REDS prediction and uncertainty quantification summary
metrics (CO, coverage; CRPS, continuous rank probability score; IS, interval score; MAE, mean absolute error; RMSE, root mean square
error) from prediction on the high volume satellite temperature dataset in Heaton et al. (2019).

Metric MAE RMSE Coverage CRPS IS

REDS (no mean adjustment) 2.0105 2.3540 0.9341 1.3673 11.1448
REDS (mean adjustment) 2.0213 2.3687 0.9295 1.3747 11.3419
Other methods in Heaton et al. (2019) 1.10-2.08 1.53-2.64 0.36-0.97 (0.95 best) 0.83-1.55 7.44-34.78

Note: The second row shows the REDS prediction when a linear effect of latitude and longitude is removed first (see text). The bottom row presents the range of
corresponding values obtained by other competing algorithms from the Heaton et al. (2019) paper.

Table 3 shows that REDS provides RMSE, MAE, coverage, and interval scores that are within the range of values
from the state-of-the-art models in Heaton et al. (2019). In addition, note that the REDS results for the case where the
mean is removed first are essentially the same as the case when we do not remove the mean first, suggesting that REDS
is robust to stationarity in this case. Figure 5 shows the prediction surfaces and prediction intervals obtained from REDS
for the missing (hold out) observations. The spatial plots are in agreement with the metrics in the sense that the pre-
dictions are visually similar to the hold out sample, and the prediction intervals show reasonable coverage. As with the
simulated case in Section 4.2, the REDS procedure does appear to filter out very small scale spatial features. These results
provide strong support that randomization methods such as REDS are able to learn how to predict high volume spatial
data using a completely random initialization mechanisms and perform in the range of state-of-the-art spatial prediction
methods.
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True Temperature

Predicted Temperature
37 I <

60 37! i

Lat
Lat

Lat
Lat

FIGURE 5 Prediction images for satellite temperature data temperature: REDS is applied to the large (500 x 300 grid) satellite
temperature dataset from Heaton et al. (2019). The top left panel shows the observed temperature at the missing locations, which are the
same as in the simulated example from Section 4.2. The top right panel shows the plot of the predicted temperatures from REDS at the
missing data locations. The bottom panels shows the associated REDS prediction intervals (i.e., the left bottom and right bottom images
correspond to the point-wise lower 2.5%-tiles and upper 97.5%-tiles, respectively).

5 | DISCUSSION

We develop a spatial prediction methodology by using random feature expansions in a hierarchical (or deep) manner, and
then select the necessary features and corresponding expansion coefficients by employing a penalized regression (lasso).
The methodology is applicable to continuous-valued spatial data, although it can easily be extended to other data types
by changing the regression model in the last layer. The proposed methodology uses a rejection ensemble mechanism
where for every ensemble member, the input data are first converted to a random basis expansion layer using a random
Fourier transformation. Then, these transformations are passed through several random projection layers as with ELMs.
The final stage is trained using a penalized lasso regression with minibatch samples. This is performed for each ensemble
member and the training RMSE is computed for each. The poorly performing random networks with the highest RMSEs
are then rejected and the remaining networks are used to obtain the predictions as the point-wise medians. Uncertainty
quantification is implemented by computing the IQR of the point predictions from these remaining “good” networks.
Then, an optimal cutoff constant is calibrated such that the training data coverage matches a target Type I error level.
It is important to note that other than the last layer in which a penalized regression is used, and the calibration of the
uncertainty quantification, there is no learning in this approach—the basis function and deep layer weight matrices are
all generated randomly.

As with all “new” algorithms in machine learning, REDS is motivated by other models and so its structure is sim-
ilar to many existing algorithms in statistics and machine learning. First, REDS can thought of as a fully randomized
version of DeepKriging Chen et al. (2020) that combines basis transformations and deep learning to provide predictions
for spatial data. The primary difference with REDS is that the deep learning comes from the random projection layers
(ELMs), and the basis transformation is based on flexible RFFs. Indeed, due to the presence of the RFF layer, REDS is
directly related to other basis transformation based spatial models where prediction is a linear function of a determin-
istic family of basis transformations (e.g., fixed rank kriging, Cressie & Johannesson, 2008). In addition, REDS has a
connection to the so-called random kitchen sink algorithm (Rahimi & Recht, 2008). The random kitchen sink predic-
tion is a linear function of RFFs, whereas the REDS prediction further transforms the RFFs through the deep random
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projection layers to add flexibility. There are also similarities to (deep) kernel ELMs (Huang et al., 2011) in the sense that
REDS uses a RFF instead of a fixed transformation in the first layer before considering deep hidden random projections
layers.

The purpose of the REDS algorithm is to provide a cost-effective and scalable algorithm that requires minimal train-
ing and yet can represent complex high-volume dependent data. Like all deep learning models, the algorithm requires
the specification of some tuning parameters—but, importantly, the ensemble approach allows us to simulate over these if
desired. REDS is a greedy rejection algorithm in the sense that we reject low-performing networks by studying the train-
ing RMSE after performing simple regularized model fitting on small minibatch samples of the data. Furthermore, the
ensemble predictions and uncertainty quantification are based on robust statistics (median and IQR) to protect against
poor networks. With all these carefully chosen steps, the algorithm performs well in terms of both accuracy and UQ.
Indeed, its success is demonstrated by providing spatial predictions (point and interval coverage) that are within the range
of comparison metrics to many state-of-the-art algorithms when compared with simulated datasets and a large satel-
lite based image dataset. Average computation time for REDS is between 5 and 6 min for the large dataset from Heaton
et al. (2019), which is among the best candidates presented in the paper.

The REDS approach represents a simple attempt to perform random deep learning for spatial data. Despite its promise,
there are several areas that can be improved and warrant future research. For example, although we have considered
spatial data here, the method can easily be used for temporal data, spatio-temporal data, and other high-dimensional
domains. Furthermore, different data types can also be considered by substituting the regression training in the final
layer of the network with some other penalized loss training. Plausible hyper-parameters were chosen by studying various
simulation runs to build intuition on model performance and then fixing some and letting the most important ones be
sampled from subjectively-specified distributions for each ensemble member. It is likely that this procedure can be made
more systematic with additional research.

In addition, our ensemble based prediction intervals are often non-smooth, and optimal approaches to smooth them
are the subject of future research. Also, although the model is computationally less costly than many spatial prediction
algorithms, performing a penalized regression for each ensemble still requires moderate computational cost for large
datasets, which likely can be improved by considering scalable regression algorithms such as greedy variable selection.
Finally, from a theory perspective, it will be important to more formally consider the choices of hyper-parameters and the
convergence rates for specific families of functions.
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