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Small area estimation (SAE) has become an important tool in official sta-
tistics, used to construct estimates of population quantities for domains
with small sample sizes. Typical area-level models function as a type of
heteroscedastic regression, where the variance for each domain is
assumed to be known and plugged in following a design-based estimate.
Recent work has considered hierarchical models for the variance, where
the design-based estimates are used as an additional data point to model
the latent true variance in each domain. These hierarchical models may
incorporate covariate information but can be difficult to sample from in
high-dimensional settings. Utilizing recent distribution theory, we
explore a class of Bayesian hierarchical models for SAE that smooth
both the design-based estimate of the mean and the variance. In addition,
we develop a class of unit-level models for heteroscedastic Gaussian
response data. Importantly, we incorporate both covariate information as
well as spatial dependence, while retaining a conjugate model structure
that allows for efficient sampling. We illustrate our methodology through
an empirical simulation study as well as an application using data from
the American Community Survey.
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1. INTRODUCTION

Large-scale national surveys such as the American Community Survey (ACS)
are typically designed to produce reliable estimates for a variety of demo-
graphic and household characteristics for large geographic regions. However,
data users often need population estimates at smaller areas or domains than can
be reliably provided by direct estimates, which use only domain-specific sam-
ple. By small area or domain, we mean any geographic region or demographic
subpopulation for which the domain-specific sample size is small. These direct
estimates, which use only domain-specific survey response data, may not be
sufficiently precise for reliable inference due to small sample sizes and unrea-
sonably high standard errors. To meet the demand for more granular estimates
based on smaller sample sizes, model-based approaches, or small area estima-
tion (SAE) models, are commonly used in place of direct estimates. Area-level
models such as the popular Fay–Herriot (FH) model (Fay and Herriot 1979)
can incorporate covariates or other dependencies to smooth the direct estimates
and improve precision by “borrowing strength” from areas with large sample
size. The FH model assumes that the sampling variance of the direct estimator
is fixed and known, which is rarely the case in real survey data settings. In
practice, the sampling variance is estimated from the survey data and then
plugged into the model. Sampling variances tend to vary across geographic
areas; thus, these area-level SAE models may be seen as a type of model for
heteroscedastic data.

Statement of Significance

This article introduces new methodology for fitting Bayesian small area
estimation models that consider various types of heteroscedastic structure.
Current approaches do not yield conjugate full conditional distributions
and are difficult to scale due to the challenge of sampling from the poste-
rior distribution. Our proposed approach develops a conditionally conju-
gate model structure that allows for straightforward Gibbs sampling. This
allows us to scale our approach by building richer structure into the
model. Thus, we build on this by developing models with spatial depend-
ence structure for both the mean and variance. Finally, we develop a
model for unit-level data with heteroscedastic structure under informative
sampling.
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Recently, a variety of extensions to the FH model have been considered to
address the issue of unknown sampling variances (You and Chapman 2006;
You 2021). For example, Maiti et al. (2014) use a hierarchical modeling
approach to jointly smooth both direct mean and variance estimates. Sugasawa
et al. (2017) fit a similar model in a Bayesian setting. In both cases, covariates
may be used to aid in the variance smoothing, but in the Bayesian case,
Sugasawa et al. (2017) required the use of a Metropolis–Hastings step within
the Gibbs sampler, due to a full-conditional distribution with unknown form.

Incorporating estimates of the sampling error variance of the direct estimator
is a topic of significant interest in the course of producing model-based esti-
mates for official statistics. In this direction, Bradley et al. (2016) propose a
model to include both the direct estimates and an estimate of the sampling error
variance in a Poisson area-level spatial change-of-support model for the ACS.
The proposed model uses the variance estimates as another data source and
exploits the Poisson equidispersion assumption (i.e., equal mean and variance)
to condition on a common latent process.

The approach proposed here differs from Bradley et al. (2016) and exploits
the distribution theory of Bradley et al. (2020). Specifically, we extend the
approach proposed in Parker et al. (2021) for heteroscedastic data to the SAE
setting for both area-level and unit-level models. Importantly, our approach
yields models that are fully conjugate for both the mean and variance regres-
sion parameters and thus leads to extremely computationally efficient estima-
tion (see sections 2 and 3 for additional detail).

Although SAE methods have a long and rich history, the literature on jointly
modeling the mean (direct estimates) and variance (sampling error variance) is
significantly more recent by comparison. For example, Savitsky and
Gershunskaya (2022) propose a Bayesian nonparametric model that jointly
models the mean and the variance in the context of the Consumer Expenditure
Survey. Similarly, Polettini (2017) proposes a semiparametric Bayesian FH
model that shrinks both the means and variance. In general, these approaches
can be computationally expensive and, thus, there is a need for models that
scale computationally to meet the high-dimensional demands that are faced by
statistical agencies and subject-matter practitioners. The method proposed here
meets this demand.

Outside of the SAE literature, there exists a substantial literature on joint
models for the mean and covariance. For example, Pourahmadi (1999, 2011)
and Chen and Dunson (2003), among others, model Cholesky-based factoriza-
tions of unstructured covariances. In general these methods are extremely use-
ful; nevertheless, they are not immediately applicable to the SAE problems
considered here. In particular, the SAE setting is comprised of a diagonal cova-
riance (variance) structure with a model on the latent variances. A comprehen-
sive review of Cholesky-based joint mean and covariance modeling can be
found in Pourahmadi (2013) and the references therein.

Conjugate Modeling Approaches 3
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There has also been significant research on modeling covariance
structure using covariates, many of which arise in the spatio-temporal litera-
ture. For example, see Schmidt et al. (2011) and Gladish et al. (2014), among
others. The main challenge that arises in this context is computational. In
general, most of the proposed methods proceed using Bayesian methods and
lead to non-conjugate updates, necessitating migration away from straight-
forward Gibbs sampling. One notable exception is proposed by Parker et al.
(2021), which provides a starting point for the method proposed here.

This article also proposes a novel unit-level SAE model for heteroscedas-
tic Gaussian survey data. The main complication of unit-level SAE modeling
is accounting for the survey design in the model. When the survey design is
noninformative, in the sense that the distribution of the sampled response
values is the same as the distribution of the unsampled values, the effect of
the survey design can largely be ignored. However, when the probability of
selection in the survey is correlated with the response variable, the survey
design is said to be informative, in which case the population distribution
and the distribution for the sampled data will differ. Under informative sam-
pling, the survey design must be carefully accounted for in the SAE model
to avoid biased estimates. To this end, we also propose a heteroscedastic
unit-level model under informative sampling using the pseudo-likelihood
(Binder 1983; Skinner 1989; Savitsky and Toth 2016). For a comprehensive
review of unit-level approaches to SAE, see Parker et al. (2019) and the
references therein.

Although the methodology proposed here is extremely general and applies
to a broad set of applications that are encountered by data users and official
statistical agencies, our motivating example considers income estimation
and is related to the Small Area Income and Poverty Estimates Program
(SAIPE). In particular, SAIPE produces income estimates for all US states
and counties (Bell et al. 2016) and in many cases, the estimates may be used
in the administration of federal programs and the allocation of federal funds
to local juridictions; for more details, see https://www.census.gov/programs-
surveys/saipe/about.html. Therefore, using the ACS, we demonstrate our
proposed approach by estimating the average income by PUMA for the state
of California.

This article proceeds as follows. Section 2 provides background and
introduces our heteroscedastic model for area-level data. Unit-level models
are presented in section 3. To evaluate the effectiveness of our approach,
an empirical simulation study is provided in section 4 and an analysis
of ACS income data is presented in section 5. Discussion is provided in
section 6.
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2. AREA-LEVEL HETEROSCEDASTIC MODELS

2.1 Background

The FH model (Fay and Herriot 1979) is given by

yijhi,r2i �ind Nðhi, r2i Þ, i ¼ 1, . . . , d

hi ¼ x0ibþ �i

�i �ind Nð0, r2�Þ,

where yi is the direct estimate, r2i is the sampling variance of the direct estimate
and is assumed known, and i ¼ 1, . . . , d indexes the small areas of interest.
Thus, the FH model may be seen as a type of heteroscedastic data model where
the variance is known. Typically, the true value of r2i is unknown; thus, a
design-based estimate, s2i , is plugged in instead.

To reflect the additional uncertainty attributed to s2i , a second data model
may be used. For example, You and Chapman (2006) suggest the following
model to address the issue of unknown sample variances:

yijhi,r2i �ind Nðhi, r2i Þ, i ¼ 1, . . . , d

s2i jr2i �ind Gamma
ni � 1
2

,
ni � 1

2r2i

� �
, i ¼ 1, . . . , d

hi ¼ x0ibþ �i

�i �ind Nð0, r2�Þ

r2i �ind IGðai, biÞ,

where ni represents the sample size in area i and IGða, bÞ denotes an inverse
gamma distribution with shape parameter a and scale parameter b. In principal,
the data model for s2i given here is only valid in the case of a simple random
sample within area i. For complex sample designs, it may be important to give
careful consideration to the degrees of freedom. Although estimation of the
appropriate degrees of freedom is beyond the scope of this work, for more dis-
cussion on this matter, see Maples et al. (2009).

Sugasawa et al. (2017) provide a Bayesian extension of this approach that

considers covariates in the variance model by letting r2i �ind IG ai, bi expðx02ib2Þ
� �

.
Although the use of covariates here may improve small area estimates,
Sugasawa et al. (2017) required the use of a Metropolis–Hastings sampler for b2,
which can be extremely difficult to tune, especially in high dimensions.

Conjugate Modeling Approaches 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article/doi/10.1093/jssam
/sm

ad002/7058158 by Fam
ily and C

om
m

unity M
edicine Lib user on 03 January 2024



2.2 Conjugate Priors for Heteroscedastic Models

The foundation of our modeling framework is the multivariate log-Gamma
(MLG) distribution, introduced by Bradley et al. (2018, 2020). The MLG dis-
tribution was initially developed to model dependent data using a Poisson like-
lihood. The density for the MLG distribution is given as

f ðyÞ ¼ detðV�1Þ
Yn
i¼1

jaii
CðaiÞ

( )
exp a0V�1ðy�lÞ�j0 exp V�1ðy�lÞ

� �� 	
,

denoted by MLGðl,V,a,jÞ. The length n vector l acts as a centrality parame-
ter and the n�n matrix V controls the correlation structure. The length n vec-
tors a and j are shape and rate parameters, respectively. Sampling from
Y �MLGðl,V,a,jÞ is straightforward using the following steps:
(1) Generate a vector g as n independent Gamma random variables with shape

ai and rate ji, for i ¼ 1, . . . , n.
(2) Let g� ¼ logðgÞ.
(3) Let Y ¼ Vg� þ l.

In most cases, Bayesian inference using the MLG prior distribution also
requires simulation from the conditional multivariate log-Gamma (cMLG) dis-
tribution. Letting Y � MLGðl,V, a,jÞ, Bradley et al. (2018) show that Y can
be partitioned into ðY0

1,Y
0
2Þ0, where Y1 is r-dimensional and Y2 is

ðn� rÞ-dimensional. The matrix V�1 is also partitioned into HB½ �, where H is
an n� r matrix and B is an n� ðn� rÞ matrix. Then,

Y1jY2 ¼ d,l�,H, a, j � cMLGðl�,H, a,jÞ,
with density

M exp a0HY1 � j0 expðHY1 � l�Þ� �
,

where l� ¼ V�1l� Bd, and M is a normalizing constant. Bradley et al.
(2018) show that it is also straightforward to sample a draw from the cMLG
distribution using the linear transformation ðH0HÞ�1H0Y, where Y is first
sampled from MLGðl, I, a,jÞ.

Another key result given by Bradley et al. (2018) is that
MLGðc, a1=2V, a1, a1Þ converges in distribution to a multivariate normal distri-
bution with mean c and covariance matrix VV0 as the value of a approaches
infinity. This allows for the computational benefits of MLG priors while main-
taining effectively the same shape and structure as a Gaussian prior.

Although the original use of the MLG distribution was as a prior in high-
dimensional Poisson regression, recently, Parker et al. (2021) found that the
MLG distribution acts as a conjugate prior for variance regression when
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using a negative log link function. This insight is the basis for our proposed
approach.

2.3 Proposed Area-Level Approach

To account for the additional uncertainty around s2i in the context of area-level
SAE, we construct a joint model for the direct point estimate and variance.
Critically, this model relies on the MLG distribution as a conjugate prior for
the variance regression parameters. Our heteroscedastic area-level model
(HALM) is given as

yijhi,r2i �ind Nðhi,r2i Þ, i ¼ 1, . . . , d

s2i jr2i �ind Gamma
ni � 1
2

,
ni � 1

2r2i

� �
, i ¼ 1, . . . , d

hi ¼ x0ib1 þ g1i

�logðr2i Þ ¼ x0ib2 þ g2i

g1jr2g1 � Nð0, r2g1IÞ
g2jr2g2 � MLGð0, a1=2rg2I, a1, a1Þ

b1 � Nð0,r2b1IÞ
b2 � MLGð0, a1=2rb2I, a1, a1Þ
r2g1 � IGða, bÞ
rg2 � Nþ ð0, cÞ:

Here, yi represents the direct estimate of an unknown population quantity, hi,
while s2i represents the design-based variance around this estimate. Note that
this model requires ni > 1, i ¼ 1, . . . , d. The unknown population quantity is
written as a linear combination of the length p vector of covariates, xi, as well
as an area-level random effect, g1i: The unknown variance, r2i , is modeled
using the negative log link function as a linear combination of xi as well as an
additional area-level random effect, g2i: To establish conjugate full-conditional
distributions, b2 takes on an MLG prior distribution that is asymptotically
equivalent to a Nð0,r2bIÞ distribution. Similarly, conditional on r2g2 , g2 takes
an MLG prior distribution that is asymptotically equivalent to a Nð0, r2g2IÞ dis-
tribution. Finally, we place a conjugate inverse Gamma prior distribution on
r2g1 as well as a half-normal prior on rg2 . We note that this prior for rg2 is not
conjugate and, thus, requires a Metropolis–Hastings step. However, this is only
for a single parameter and we have found that there is very little effect on the
mixing of the MCMC due to this. We use a random-walk Metropolis–Hastings
step with a Normal distribution truncated below at zero for a proposal

Conjugate Modeling Approaches 7
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distribution, although, depending on the setting, it may be helpful to consider
other proposals. The model is completed by the specification of
a,r2b1 ,r

2
b2
, a, b, c > 0: In practice, we work with relatively diffuse priors by

using r2b1 ¼ r2b2 ¼ 1,000, a ¼ b ¼ 0:5, and c ¼ 5: The value for a should be

sufficiently large to invoke the asymptotic equivalence to the multivariate nor-
mal distribution. Similar to Bradley et al. (2018), we have found a¼ 1,000 to
be sufficient for our purposes, although in some other cases this may be data
dependent. The full conditional distributions for this model are given in appen-
dix A in the supplementary data online.

Often within SAE, more precise estimates can be generated through the use of
spatial dependence modeling (e.g., see Marhuenda et al. 2013; Porter et al. 2015).
This motivates the need for spatially correlated prior structures for the mean and
variance models. To this end, we develop a spatial variant of the HALM, termed
the spatial heteroscedastic area-level model (SHALM). This model is similar to
HALM, with the replacement of the prior structure for g1 and g2,

g1jr2g1 � N 0,r2g1ðD�WÞ�1

 �

g2jr2g2 � MLGð0, a1=2rg2ðD�WÞ�1=2, a1, a1Þ:

Here, the d� d matrixW is an area-level adjacency matrix, with entryWij ¼ 1 if
areas i and j share a border andWij ¼ 0 otherwise. By convention, an area is not
considered a neighbor of itself, resulting in a zero value for all diagonal ele-
ments. The d � d matrix D is a diagonal matrix, where the ith entry corresponds
to the number of neighbors shared by area i, or equivalently, the sum of the ith
row of the matrix W: This prior for g1 is known as the intrinsic conditional
autoregressive (ICAR) prior (Besag et al. 1991). Note that the matrices D and
W are computed prior to model fitting and do not involve any unknown parame-
ters. Similarly, the prior for g2 is asymptotically equivalent to an ICAR prior.

3. UNIT-LEVEL HETEROSCEDASTIC MODELS

An increasingly common alternative to area-level models for SAE is that of
unit-level modeling. Unit-level models opt to model the survey data directly
rather than the design-based estimates as in the area-level case. For example,
the basic unit-level model (BULM) was introduced by Battese et al. (1988) and
is written as

yij�indNðlij,r2Þ, j 2 S
lij ¼ x0ijbþ gi

gi�iidNð0, r2gÞ:

8 Parker, Holan, and Janicki
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Here, yij is the response for unit j in the sample, S, residing in area i, while xij
is a vector of unit-level covariates. It is important to note that the covariates
used in the unit-level model must be known for both sampled and non-sampled
individuals. The area-level random effects, gi, allow for dependence among
respondents within the same area. For this model, as well as other unit-level
modeling approaches, the model may be fit using the observed sample data and
predictions can be made for the entire non-sampled population using
l̂ij ¼ x0ijb̂þ ĝi. In essence, this results in a synthetic population that may be
aggregated as necessary to produce area-level estimates at the desired spatial
resolution. Finally, in a Bayesian setting, this may be done for each sample of
the parameters from the posterior distribution.

One major limitation of the BULM is that it assumes the survey design to
be ignorable. Many surveys result in an informative sampling scheme in
which there is a relationship between the response of interest and the unit
probabilities of selection. Let U i be an enumeration of the finite population in
area i, and let Si � U i be the survey sample from area i selected according to
a known sampling scheme with inclusion probabilities P j 2 Sið Þ ¼ pij.
Define the survey weights as wij ¼ 1=pij. Informative survey designs occur
when survey inclusion indicators are correlated with survey response varia-
bles, even after conditioning on observable covariates and design variables. In
these situations, use of a model that does not consider the survey design may
result in large biases. One popular solution to this problem is the use of
an exponentially weighted pseudo-likelihood (Binder 1983; Skinner 1989).
More recently, Savitsky and Toth (2016) popularized the use of a pseudo-
likelihood in general Bayesian model settings. This results in a
pseudo-posterior distribution that is proportional to the product of the pseudo-
likelihood and the prior distribution,

p̂ðhjy, ~wÞ /
Y
j2S

f ðyijjhÞ~wij
� 


pðhÞ:

In this case, ~wij represents the survey weights after scaling to sum to the sample
size. For example, a Bayesian pseudo-likelihood alternative to the BULM may
be written as

yjl,r2 /
Y
j2S

Nðyijjlij,r2Þ~wij

lij ¼ x0ijbþ gi

gi�iidNð0, r2gÞ:

(1)

Although there are many other approaches to account for an informative sam-
ple design, our focus here will be strictly on the Bayesian pseudo-likelihood.
For an overview of alternative approaches, see Parker et al. (2019).

Conjugate Modeling Approaches 9
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Another limitation of the BULM is the assumption of constant variance
across survey units. In practice, the dispersion of a particular response of inter-
est may vary along with certain covariates or by geographic region.

3.1 Proposed Unit-Level Approach

To address limitations of the BULM, we propose a unit-level model that
accounts for a possibly informative sample design while also relaxing the con-
stant variance assumption. This approach is termed the heteroscedastic unit-
level model (HULM) and is written as

yjl, r2 /
Y
j2S

Nðyijjlij, r2ijÞ ~wij

lij ¼ x0ijb1 þ g1i

�logðr2ijÞ ¼ x0ijb2 þ g2i

g1jr2g1 � Nð0,r2g1Þ
g2jr2g2 � MLGð0, a1=2rg2I, a1, a1Þ

b1 � Nð0,r2b1Þ
b2 � MLGð0, a1=2rb2I, a1, a1Þ
r2g1 � IGða, bÞ
rg2 � Nþ ð0, cÞ:

This approach uses a Gaussian pseudo-likelihood with individual mean and
variance to model the data. The individual means, lij, are written as a linear
combination of the length p covariate vector, xij, as well as an area-level ran-
dom effect, g1i: Using a negative log link function, the individual variances,
r2ij, are also modeled as a linear combination of xij and an additional area-level
random effect, g2i:

The model structure for g1, g2, b1, and b2 is identical to the HALM. In
particular, g1 and g2 are modeled hierarchically with unknown variance param-
eters while both g2 and b2 take MLG prior distributions to allow for computa-
tional feasibility. Although not directly explored here, it is straightforward to
extend this approach to consider spatially correlated random effects similar to
the SHALM (e.g., see Sun et al. 2022). The full conditional distributions for
this model are given in appendix B in the supplementary data online.

4. EMPIRICAL SIMULATION STUDY

In many cases, the decision whether to use an area-level versus a unit-level
model will depend on whether an analyst has access to unit-level microdata.

10 Parker, Holan, and Janicki

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article/doi/10.1093/jssam
/sm

ad002/7058158 by Fam
ily and C

om
m

unity M
edicine Lib user on 03 January 2024

https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad002#supplementary-data
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad002#supplementary-data


In addition, in situations where many areas contain little or no data, an area-
level approach may be infeasible due to the lack of appropriate design-based
estimates. Here, we aim to compare a variety of both area-level and unit-level
models by devising an appropriate simulation study. However, we note that, in
practice, it is possible that some subset of the models explored here may not be
appropriate.

To construct our simulation study, we require a population of individuals
that we may sample from. Rather than using a synthetic population drawn from
some parametric distribution, we instead take an existing survey dataset and
treat it as our population to preserve many of the characteristics associated with
the real data. In particular, we use the public-use microdata sample (PUMS)
from the ACS. We restrict our scope to the 1-year PUMS data with positive
income for the state of California only, as it is often of interest to estimate the
mean income among the population that actually earns an income. This empiri-
cal population contains roughly 179,000 individuals. Each individual is associ-
ated with a geographic region known as the public-use microdata area
(PUMA). The state of California contains 265 PUMAs. Ultimately our goal is
to estimate average income of positive income earners by PUMA using a sam-
ple from this population.

We consider two different approaches for subsampling from the empirical
population. First, we take a stratified random sample by PUMA with a simple
random sample without replacement of five observations per PUMA. Second,
we take a probability proportional to size sample using the Poisson method
(Brewer et al. 1984) with an expected total sample size of 1,000. For the sec-
ond sample design, we construct the size variables as exp 2 þ 0:3� wij þð
0:3� ~yijÞ, where wij is the original scaled survey weight and ~yij is the income
for unit j in area i, after scaling to have mean zero and variance one. The use of
income in the size variable enforces an informative design. For both sampling
approaches, we repeat the sampling and estimation procedure K¼ 100 times.
Horvitz–Thompson direct estimates of mean income are calculated for each
PUMA.

We consider two different unit-level models for this study. First, we present
the Bayesian pseudo-likelihood alternative of the BULM (PL-BULM) given in
(1). We also compare to the proposed HULM. We note that exploratory analy-
sis indicated that the spread of income did not vary by PUMA, so for the
HULM, we constrain g2 ¼ 0: For both unit-level approaches, we model
income after taking a log transformation, and we use age, sex, and race as cova-
riates. We note that at the unit level, Gaussian models for income are a starting
point, but further work is necessary in this area. For the PUMS data in particu-
lar, there is some rounding and top-coding that occurs as a disclosure avoid-
ance mechanism. The unit-level models explored here are adequate for
characterization of the first moment of income, but a more complex model,
such as a censored or inflated model, seems necessary to adequately model the
full distributional uncertainty.
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We also consider four area-level models. First, we fit the basic FH model.
Second, we consider the model used by Sugasawa et al. (2017) that shrinks
both the design-based mean and variance estimates (STK). Lastly, we fit both
the proposed HALM and SHALM. All area-level models are fit after log trans-
forming the design-based estimates of income and using the delta method for
variance estimates. Log population size was used as a covariate. All models
were fit using MCMC with 3,000 iterations, discarding the first 1,000 iterations
as burn-in. Convergence was assessed via traceplots of the sample Markov
chains, with no lack of convergence detected.

We are primarily interested in two forms of assessment for these models.
First, we examine the root mean squared error (RMSE) of our point estimates,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1

ðĥk � hÞ2
K

vuut :

Here, h represents the true population quantity of interest while ĥk represents
an estimate for sample dataset k. RMSE has the desirable property of being
composed of both a bias and variance term. We also consider the interval score
(Gneiting and Raftery 2007) for our 95 percent credible interval estimates,

1
K

XK
k¼1

uk � ‘kð Þ þ 2
a

‘k � hð ÞI h < ‘kð Þ þ 2
a

h� ukð ÞI h > ukð Þ
� 


,

where a ¼ 0:05, uk is the upper bound of the interval and ‘k is the lower
bound of the interval for sample dataset k. For the interval score, a lower score
is desirable. Thus, narrow intervals are rewarded, but a penalty is incurred if
the interval misses the true value. Along with these, we report the absolute
bias,

��� 1
K

XK
k¼1

ĥk � h
���

and the coverage rate,

1
K

XK
k¼1

Ið‘k < h < ukÞ:

Results for the stratified sampling design and the probability proportional to
size design are summarized in tables 1 and 2, respectively. All results are aver-
aged across PUMAs. RMSE is presented relative to the direct estimator, where
a value less than 1 indicates a reduction in RMSE relative to the direct estima-
tor. For the stratified sampling design, all models were able to reduce the
RMSE relative to the direct estimator with the exception of the PL-BULM.
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Thus, the proposed HULM was able to offer substantial improvement over a
model that assumes constant variance. For the HULM, the interval estimates
were also improved relative to the PL-BULM, although as discussed previ-
ously, further model development here is desirable. In terms of area-level
approaches, the FH model performed worst in terms of both RMSE and inter-
val score. Therefore, shrinkage of both the mean and variance appears to be
important to improve the quality of generated estimates. The HALM and STK
model resulted in quite similar RMSE and interval scores. Finally, the SHALM
was able to leverage spatial dependence resulting in the lowest RMSE and
interval scores across all models. Results were similar for the probability pro-
portional to size design, indicating robustness to the assumption of a simple
random sample within each area used in the variance shrinkage model.

Table 2. Empirical Simulation Results for Probability Proportional to Size
Sampling using the 2018 1-Year American Community Survey Public-Use
Microdata Sample

Estimator Rel. RMSE Abs. bias (� 103) Cov. rate Int. score (� 104)

PL-BULM 0.766 (0.71) 19.607 (9.33) 0.392 (0.33) 30.846 (23.48)
HULM 0.646 (0.65) 16.509 (8.48) 0.461 (0.35) 23.574 (20.17)
FH 0.492 (0.18) 6.815 (4.27) 0.955 (0.04) 8.855 (4.33)
HALM 0.442 (0.26) 9.765 (6.95) 0.958 (0.09) 6.800 (2.76)
SHALM 0.401 (0.21) 8.481 (6.13) 0.913 (0.14) 6.267 (4.15)
STK 0.429 (0.24) 9.195 (6.73) 0.958 (0.09) 6.468 (2.92)

NOTE.—All results are averaged across PUMAs (standard deviation across PUMAs is
shown in parentheses). RMSE is presented relative to the direct estimator. For RMSE
and Interval Score, the best performing estimator is given in bold.

Table 1. Empirical Simulation Results for Stratified Random Sampling by
PUMA using the 2018 1-Year American Community Survey Public-Use
Microdata Sample

Estimator Rel. RMSE Abs. bias (� 103) Cov. rate Int. score (� 104)

PL-BULM 1.080 (1.08) 20.299 (9.46) 0.368 (0.37) 30.570 (25.52)
HULM 0.687 (0.79) 11.356 (7.37) 0.596 (0.37) 14.720 (17.14)
FH 0.694 (0.11) 5.126 (4.80) 0.894 (0.04) 8.790 (3.55)
HALM 0.640 (0.18) 7.677 (7.60) 0.956 (0.09) 6.695 (4.13)
SHALM 0.561 (0.17) 6.759 (6.34) 0.933 (0.12) 6.031 (4.82)
STK 0.636 (0.15) 6.958 (6.82) 0.952 (0.07) 6.648 (3.92)

NOTE.—All results are averaged across PUMAs (standard deviation across PUMAs is
shown in parentheses). RMSE is presented relative to the direct estimator. For RMSE
and Interval Score, the best performing estimator is given in bold.
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We also compare the RMSE by PUMA between the direct estimates and
each model-based estimate. Figure 1 presents these results for the stratified
sample design. With the exception of the PL-BULM, most to all PUMAs expe-
rience a reduction in RMSE relative to the direct estimator, as indicated by
points that fall below the one-to-one line. Among the area-level models, there
is a general downward shift in points for the STK, HALM, and STK models
compared to the FH model. This indicates a general reduction in RMSE for
most areas when compared to the FH model. Similarly, the SHALM appears to
have a general downward shift when compared to the STK and HALM meth-
ods. Similar results are presented for the probability proportional to size design
in figure 2, for which similar patterns hold.

Taken collectively, this simulation illustrates that heteroscedastic modeling
techniques may be used to improve the quality of small area estimates. At the
area level, these techniques may be used to simultaneously shrink both the
design-based means and variances. At the unit level, our framework allows for
respondent-specific variances when modeling continuous data. In both cases,
our framework has the potential to improve the precision of associated small
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Figure 1. Empirical Simulation Results of Direct Versus Model-Based RMSE by
PUMA for Stratified Random Sampling using the 2018 1-Year American
Community Survey Public-Use Microdata Sample.
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area estimates relative to approaches that do not have flexible models for the
variance.

5. ANALYSIS OF ACS INCOME DATA

One important application of SAE techniques is the estimation of mean or
median income for various geographies. For example, the SAIPE produces
income estimates for all US states and counties (Bell et al. 2016). In many
cases, the estimates produced by SAIPE or similar programs may be used to
allocate critical federal aid. Thus, improving the quality of model-based esti-
mates for various outcomes such as income constitutes an important research
problem. To this end, we demonstrate an application of our proposed SHALM
approach by estimating the average income of positive income earners by
PUMA for the state of California using the 2018 1-year ACS PUMS sample.
PUMA sample sizes ranged from 265 to 1,297. The SHALM is fit analogously
to section 4, with the exception that the entire PUMS dataset was used rather
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Figure 2. Empirical Simulation Results of Direct Versus Model-Based RMSE by
PUMA for Probability Proportional to Size Sampling using the 2018 1-Year
American Community Survey Public-Use Microdata Sample.
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than a subsample. For reference, the model took roughly 6.5min to fit using a
standard 2.3-GHz Intel Core i9 processor.

The model-based estimates of mean income by PUMA are shown in figure 3,
along with their standard errors. The estimates are generally as expected with
higher incomes around city centers with high cost of living, such as the San
Francisco Bay area and Los Angeles, and lower incomes in more rural parts of
the state. Uncertainty is higher in areas that had lower sample sizes, but also in
some areas with very high estimated income. For these counties, there was con-
siderably more spread in the observed incomes, which contributes to the uncer-
tainty around the estimated mean.

We also compare the model-based estimates to the direct estimates in figure 4.
Here, we see that the two estimates generally agree, with points falling close to
the one-to-one line. However, we also see that the model-based approach tends
to result in slightly higher estimates for areas with low average income and
slightly lower estimates for areas that exhibited high average income.

Finally, we compare the ratio of the SHALM-based estimates and the direct
estimates to the PUMA sample sizes in figure 5. We expect that the model-
based and direct estimates would be more similar for larger sample sizes. This
is generally the case, as there is more variability around the one-to-one line for
smaller sample sizes than for large sample sizes.

6. DISCUSSION

Small area/domain estimation is an area of wide-spread interest both for data
users and official statistical agencies. Consequently, there has been significant
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Figure 3. Model-Based Estimates of Mean Income by Public-Use Microdata Area
along with Associated Log-Transformed Standard Errors. Estimates are constructed
using the 2018 1-year American Community Survey Public-Use Microdata Sample.
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research on both area-level and unit-level models with the goal of improving
the precision of target estimates. Nevertheless, model-based approaches typi-
cally focus on modeling the mean, with a few notable exceptions. As illustrated
here, in the presence of heteroscedasticity, simultaneously modeling both the
mean and variance can achieve estimates with both reduced MSE and superior
frequentist coverage properties.

By extending Bradley et al. (2020) and Parker et al. (2021), our approach to
simultaneously modeling the mean and variance produces fully conjugate
updates for hard-to-estimate parameters and is, therefore, extremely computa-
tionally efficient. Importantly, our approach is extremely flexible and allows
for the incorporation of spatial dependence and covariates in the portion of the
model for the variance.

Although our main focus is on area-level modeling, we also introduce unit-
level models that account for informative sampling through the use of the
pseudo-likelihood. These models can be extremely effective in situations where
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Figure 4. Direct Versus SHALM-Based Estimates of Mean Income by Public-Use
Microdata Area as well as FH Model-Based versus SHALM-Based Estimates.
Estimates are constructed using the 2018 1-year American Community Survey Public-
Use Microdata Sample.
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tabulations are desired for custom-geographies and/or situations when internal
aggregation consistency is desired.

Our motivating example focused on modeling income and showcased the
gains achieved from using our proposed approach. Nevertheless, for this exam-
ple, our area-level models outperformed the models that were estimated at the
unit level. One reason for this is that the Gaussian assumption at the unit level
may not be an optimal starting point for this application due to data issues that
arise from disclosure avoidance mechanisms. In this direction, there are several
avenues for future work, including extensions to non-Gaussian data or
Gaussian mixtures for both unit- and area-level models. In addition, future
work also includes the extension to multivariate applications and applications
where data integration is advantageous.

Supplementary Materials

Supplementary materials are available online at academic.oup.com/jssam.
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Figure 5. Sample Size Versus Ratio of SHALM-Based Estimates to Direct
Estimates. Estimates are constructed using the 2018 1-year American Community
Survey Public-Use Microdata Sample.
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