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HIGHLIGHTS

o A generalized ML framework is developed.

e Smart meter data from ~58,000 homes used to predict residential electricity demand.
e Models also trained with weather, building, and socioeconomic datasets.

e Annual, monthly and daily usage estimated at household and census tract resolutions.
o Feature selection and importance used to improve models and their interpretability.

ARTICLE INFO ABSTRACT
Keywords: Due to the substantial portion of total electricity use attributed to the residential sector and projected rises in
Smart meter demand, anticipating future energy needs in the context of a warming climate will be essential to maintain grid
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Machine learning
Climate change
Building energy
Energy forecasting

reliability and plan for future infrastructure investments. Machine learning has become a popular tool for
forecasting residential electricity demand, but previous studies have been limited by lack of access to high
spatiotemporal resolution at a regional scale, which reduces a model’s ability to capture the relationship between
electricity and its driving factors. In this study, we develop and execute a machine learning framework to predict
residential electricity demand at varying temporal and spatial resolutions using hourly smart meter electricity
records from roughly 58,000 homes provided by Southern California Edison as well as local weather data,
building characteristics, and socioeconomic indicators. The best performing model at the household level,
multilayer perceptron (MLP), was able to predict electricity demand most accurately at a monthly resolution,
achieving an r? of 0.45, while the most accurate annual and daily models (also MLP) had r? values of 0.34 and
0.38, respectively. The results also show that models trained with data aggregated to the census tract level were
more accurate (e.g., r* = 0.82 for the monthly MLP model) than at the household level across all three temporal
resolutions analyzed. Total square footage and various climate indicators had the highest feature importance
values. Square footage was ranked first in feature importance for the annual and daily models, while the month
of the year, which is strongly tied to temperature, was most important to the monthly model. Through this
analysis we gain insight into factors that drive electricity demand and the usefulness of machine learning for
predicting residential electricity use.
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1. Introduction

The residential sector is a significant consumer of electricity, ac-
counting for 39% of US total end-use electricity consumption in 2020
[1]. Although per capita electricity consumption flattened in recent
years [2], there is an expectation that a warming climate coupled with
electrification trends will drive up electricity demand in the future
[3-5]. Given the residential sector’s significance in overall electricity
demand, anticipating future household electricity consumption will be
essential to maintaining grid reliability, managing peak demand, and
planning for new power capacity investments.

In previous studies analyzing factors driving residential electricity
consumption, temperature has been found to play one of the most sig-
nificant roles [6-8]. Additionally, physical building characteristics (e.g.,
square footage, insulation, number of stories, number of appliances)
[6,9,10], socio-economics, (i.e., occupation, income, education, class)
[11,12] and occupant behavior and preferences [6,13-15] are signifi-
cant factors in influencing electricity demand. While these studies pro-
vide some insight into the factors that shape electricity use, the accuracy
of residential electricity demand models remain limited by the diverse
and complex nature of the residential sector and the data available to
capture that diversity, as housing stock can vary significantly both
across and within regions according to home size, building materials,
appliances, demographics, occupancy patterns, etc.

Residential energy modeling studies can be categorized into two
distinct approaches: top-down [16-21] and bottom-up [22-29]. Top-
down models rely on aggregate data to establish relationships between
variables and energy use and predict energy demand [30]. In top-down
studies, historical energy consumption is typically estimated at a city,
state, or regional level and regressed against macroeconomic indicators,
such GDP or unemployment [16,17], energy prices [18,19], housing
stock trends [19,20], or weather variables [19,21]. The focus of many of
these analyses is to capture how socioeconomic characteristics impact
the electricity sector [31]. For example, one study implemented two
statistical methods, ordinary least squares (OLS) and random coefficient
(RC), to analyze the relationship between electricity consumption and
socioeconomic variables, including per capita GNP, GDP growth,
structure of the economy, urbanization, and level of literacy, using data
from 93 countries and found that electricity consumption increases with
socioeconomic development [32]. Salari and Javid estimated electricity
and natural gas demand in 48 U.S. states while considering socioeco-
nomic and demographic variables, building stock characteristics, energy
prices, and weather data. The results from three different linear
regression techniques, OLS, random effect (RE), and fixed effects (FE),
show that the socioeconomic and demographic variables of per capita
income, household size, and percentage of residents with a high school
degree have a statistically significant impact on the residential energy
demand [33]. These top-down approaches are advantageous because of
model simplicity and the wide availability of data, but their lack of detail
makes it difficult to identify local demand patterns and areas for
improvement.

In contrast, bottom-up models use microdata, i.e., highly detailed
building and appliance information, from an individual home or subset
of homes to estimate energy demand and extrapolate to the region, using
either a physics-based [22-25] or statistical approach [26-28]. Physics-
based models simulate a region’s electricity demand by utilizing a set of
building archetypes, which are described based on an extensive selec-
tion of possible user-defined input variables, to broadly represent the
region’s building stock [34,35]. A representative building stock model
for Los Angeles County was used to estimate the region’s residential
electricity and natural gas demand in 2020-2060 under climate change
scenarios and energy efficiency trends [36]. The study found that under
population growth and temperature increases, the total residential
electricity demand for the region could increase by 41-87% between
2020 and 2060. However, the total increase in electricity demand could
fall to 28% with aggressive energy efficiency policies. Physics based
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models are valuable because they describe current and prospective
technologies with high detail, including a breakdown of end-use con-
sumption, without requiring private residential electricity records and
building-specific info that are often not publicly available. Because
simulations depend on physical characteristics and thermodynamic
principles, the impact of potential technological combinations and en-
ergy efficiency measures can be quantified, and policies that more
effectively target consumption can be developed. The drawbacks of
physics based models are that many assumptions have to be made
regarding behavioral factors and their influence on energy [34], since
the models do not rely on historical data, and the building stock of a
region must be coarsened to a few types of buildings with estimations
made for the number of buildings for each type.

Statistical models, a second type of bottom-up model, use historical
data, such as energy bills or smart meter data, from a subset of homes to
relate physical building characteristics, climate, and occupancy
behavior to energy demand (see [30] for a survey). The benefit of using
actual energy data is that the effect of a homeowner’s individual be-
haviors and demographics can be considered, unlike physics-based
models which require many assumptions to estimate behavior or top-
down methods that apply broad socioeconomic indicators to their
model. For example, Min et al. performed linear regression analysis of
four different residential end use categories (space heating, water
heating, cooling and appliance) to develop a mathematical relationship
between energy use and predictor variables, including energy price,
household characteristics, housing unit characteristics, regional fixed
effects, and heating/cooling degree-days [37]. The regression models
were used to estimate residential energy by end use and fuel type for
every US zip code and provide an in depth look into how energy use
varies across regions. In general, bottom-up models are advantageous
because they reveal information about end usage and finer-scale reso-
lution energy patterns and predictions. However, both bottom-up
methods have higher complexity and computation time than top-down
methods and require detailed input data that are typically not readily
available [38].

Machine learning has emerged more recently as a method to forecast
energy usage that can address the complexity, dynamics, and nonline-
arity of building energy systems without requiring detailed information
on the building properties and energy system configurations [39-41].
This approach has been proven effective in fast and accurate forecasting
for building energy prediction studies due to its relative simplicity,
particularly in comparison to physics based models [42]. Models are
trained with historical data to determine the relationship between input
parameters (e.g., weather, building characteristics, and socioeconomic
data) and building energy consumption [40]. Like linear regression
models, machine learning models are data-driven but can be better
equipped to model nonlinear and complex patterns [43,44]. Machine
learning models are also advantageous because they require less
detailed building characteristics than physics based methods, which can
be expensive and time consuming to gather and therefore difficult to
extrapolate to a larger building stock [45]. Further, studies have shown
that machine learning models can forecast energy demand with higher
accuracy than linear regression and physics based models [46,47].
While there are advantages of using machine learning models for energy
forecasting, several gaps exist in the literature, mainly due to constraints
of the available data.

Machine learning models have been used to predict electricity de-
mand for both commercial [48-50] and residential buildings [51-53] as
well as for a mixed building stock [54-57] but substantially fewer
studies have been conducted for residential buildings than other build-
ing types. (See Table 1 for a summary of studies that use machine
learning to forecast residential electricity load). The lack of research in
the residential sector is most likely due to two limitations: there are less
data available from private residences versus commercial or industrial
buildings, and residential consumption is highly variable and greatly
driven by occupancy patterns that are difficult to model [58-60]. As the
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Table 1
A summary of studies that use machine learning to forecast residential electricity load.
Model type Temporal Spatial resolution ~ Number of Training features Region Citation
resolution Buildings
10-min, Apartment Unit
SVR Hourly, and P o Weather Data New York City Jain et al. 2014 [60]
. Floor, Building
Daily
Weather Data, Building
’ Paudel et al. 2017
SVM Hourly Building 1 Characteristics, Occupant France [(a:] cleta
Behavior o
ther Data, Buildi Antoni D t al. 201
ANN, SVR, LS-SVM, GPR, GMM Hourly Building 4 Weather Data, Building San Antonio, ong et al. 2016
Characteristics Texas [89]
San Antonio. Rahman, Srikumar,
ANN PR, BN Hourl: Buildi her D ’ ’ ]
, SVR, GPR, ourly uilding 4 Weather Data Texas and Smith 2017 [78]
SVR, MLP, LR Hourly Building 782 Weather Data Ireland I;;)Teau etal. 2013
. Rodrigues, Cardeira,
Build haracteristi Lisby ’ ’
ANN Hourly, Daily Building 93 uilding Charac Ierls 15 isbor, and Calado 2014
Occupant Behavior Portugal [o1]
ANN, SVM, Classification and Regression Tree.
’ ’ ’ New Taipei hy T 201
LR, ARIMA, Voting, Bagging, SARIMA-PSO-  Daily Building 1 Weather Data Ciet W T:sf;n ?6 201“ and Tran 2018
LSSVR, SARIMA-MetaFA-LSSVR ¥
Weather Data, Building
’ Zh M 1
SVR Daily Building 1, 20, 50 Characteristics, Occupant France a0 and Magoules
. 2012 [92]
Behavior

SVM, BPNN, RBENN, GRNN Annual Building 59 Building Characteristics g}‘:f;d(’“g’ ][“;’:]{e"’ Meng 2010

ANN, GB, DNN, RF, Stacking, KNN, SVM, DT, Annual Building 5000 Weather pasa, Building UK Olu-Ajayi et al. 2022
LR Characteristics [94]

ElasticNet, L: i LR, Baggi F, GB Zh 1. 201
asticNet, Lasso, Ridge, LR, Bagging, RF, GB, Annual Zip Code 2246 Building Characteristics Atlanta ’ang etal. 2018
Adaboost, Extra Trees [73]

- Building Characteristics, Gassar, Yun, and

MLR, RF, MNN. GB Annual District Socioeconomic Data London Kim 2019 [95]

Dail; her D Buildi
ElasticNet, Lasso, Ridge, LR, Bagging, RF, GB, any, Building, Census Weather -at‘a, uilding Southern
Monthly, 58,537 Characteristics, R . Our study
Adaboost, Extra Trees, MLP, KNN Tract . . California
Annual Socioeconomics

number of smart meter installations has increased in recent years,
electricity data for residential homes have become more widely acces-
sible and used in a growing number of machine learning studies. For
example, one study used hourly consumption data from 6309 individual
customers during the 2020 COVID mandates to predict how power
consumption patterns could change under a new remote work era using
a machine learning framework. The results showed that power con-
sumption increased by 13% in the afternoon due to COVID mandates
[61]. However, most existing machine learning studies that use high
temporal resolution residential electricity data (i.e. 15-min or hourly
intervals) only use data for one or a handful of buildings [62-65] as few
studies have had access to high volumes of individual customer smart
meter data [66,67].

Very few machine learning electric load forecasting studies have
incorporated weather data, physical building characteristics, and so-
cioeconomics together, and those studies that do often use detailed
occupant information for a select number of homes that are not publicly
available [43,68,69]. Instead of joining multiple datasets to build a
diverse feature set, many studies include only the historic electricity
data of an individual building to forecast its short-term electricity load
[70-72]. Studies that do incorporate a combination of characteristics are
often constrained by coarse resolution spatial or temporal data, or vice
versa. For example, a study by Zhang et al. used household level infor-
mation from the Residential Energy Consumption Survey (RECS), Public
Use Microdata Survey (PUMS) and American Community Survey (ACS)
datasets for ~2000 residential homes, but the study was limited by the
course temporal granularity of annual consumption and dataset length
of one year [73]. Another study trained various machine learning
models with population, building, and weather data from Dubai to
investigate the impact of different features on electricity demand, but
predictions were made at a monthly, community-wide scale [66].

Past machine learning energy forecasting studies have predicted

large scale (e.g. regional or national) energy demand at short [74,75],
medium [76-78], and long-term time horizons [68,79,80]. Short-term
load forecasts aid daily grid operations such as energy transfers and
load dispatch [81], while medium to long-term forecasts are necessary
for infrastructure investments and future capacity installments [82].
However, most studies focus on the short-term, only forecasting load up
to one day ahead. While there are studies that focus on long-term pre-
diction (e.g. months, years) they most often use data with coarse spatial
resolution, such as at a city-wide or countrywide scale [83-85]. Thus,
building a more thorough understanding of how input parameters might
affect long term demand, especially under changing conditions (e.g.,
rising temperatures, higher AC adoption rates, growing incomes), is
prudent for grid planning over the longer term for aspects such as future
grid capacity and storage investments.

The current body of electric load forecasting literature utilizing
machine learning has been constrained by limited access to 1) high
resolution data that can capture both spatial and temporal variations in
energy consumption, 2) statistically representative data at a regional
scale, and 3) combinations of weather, physical building, occupancy,
and sociodemographic data. To our knowledge, no study has investi-
gated how machine learning models perform under different spatial and
temporal resolutions for residential electricity demand projections
across entire regions, and because few machine learning studies in this
field have used high resolution, regionally representative data with a
diverse feature set, there is little insight into how to best optimize these
models. To address these research gaps, we ask the following research
questions:

1. To what extent can machine learning models accurately predict
residential electricity demand with publicly available climate,
building, and socioeconomic data?
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2. How does the spatiotemporal resolution of historical electricity
consumption data impact the ability of machine learning models to
make precise predictions of electricity demand?

3. Which features are most useful for predicting the target variable of
electricity consumption?

Here we develop a generalized, repeatable framework to predict
household-level electricity consumption for the residential sector. We
train machine learning models using smart meter electricity records for
58,537 households in the Greater Los Angeles region, as well as feature
sets derived from publicly available local site weather, building char-
acteristics, and socioeconomic data. The main contribution of our study
is to use household-level smart meter data to capture differences in
electricity usage in households across different regions, as well as dif-
ferences across individual households within regions, to better under-
stand the factors that drive trends in residential electricity consumption.
Our study improves upon previous methods of load forecasting by
leveraging a diversity of high spatiotemporal resolution datasets at a
regional scale, previously unavailable to researchers, to test model ef-
ficacy across a selection of ML models, spatiotemporal aggregations, and
feature sets.

The framework proposed here can serve as a guide for researchers in
the energy domain utilizing ML to estimate residential electricity con-
sumption for a variety of applications. Although our case study is per-
formed in southern California, our framework utilizes standardized
smart meter data and publicly available climate, building, and socio-
economic datasets so that it can be repeated in other regions that utilize
smart meters. Southern California serves as a valuable case study as it
consists of widely varying microclimates with socioeconomically diverse
populations and building stocks, making it an ideal location to develop a
methodology that can be repeated in cities around the world. The het-
erogeneity of dataset contributes to this study’s novelty, as residential
smart meter datasets used for electricity consumption analyses typically
represent a more uniform climate, set of buildings, or demographics
[6,11,73,86-88]. In an era where electricity reliability will be

Smart meter  Climate data

Building
Characteristics Indicators
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challenged by a changing climate, trends towards increasing electrifi-
cation, and massive decarbonization investments, anticipating future
demand at more granular resolutions will be important for informing
decisions related to infrastructure investment, designing equitable de-
mand response programs, and offsetting the need for additional power
plant capacity.

2. Methods

The main objectives of this study are to 1) develop a predictive
machine learning model that can be applied to new and changing sce-
narios (e.g., different regions, climates, and building stocks) to predict
residential electricity demand, 2) identify which variables are most
useful in predicting residential energy through feature selection and
feature importance, and 3) optimize model performance by training
models with various combinations of spatial and temporal data resolu-
tion. An overview of the methodology is depicted in Fig. 1.

2.1. Datasets

Southern California Edison (SCE), an Investor-Owned Utility (I0U),
provided household electricity records for roughly 200,000 customers
across Greater Los Angeles. These homes were selected to be statistically
representative of the 4.5 million homes that are in the region at a 99%
confidence level as described in [96] (note: following the data prepa-
ration steps in this analysis, the dataset was no longer statistically
representative of the region). Households within the SCE dataset that
were located in Orange County, roughly 50,000, were not included in
the study as there were no publicly available building property data to
match to the records. After the additional data processing steps
(described in Section 2.2), the final dataset utilized for our study con-
sisted of 58,537 unique single-family homes. The smart meter data were
collected from each household at 15-min intervals over the course of two
years from 2015 to 2016 and aggregated to the daily, monthly, and
annual level for model training. To conduct this study at high geospatial

Socioeconomic
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Fig. 1. Machine learning model development framework.
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resolution, the street addresses of each home were provided by the
utility. Due to the privacy concerns and security requirements of the
10U, the data were stored on the University of Southern California
Center for High Performance Computing (HPC) cluster with a highly
secure High Security Data Account.

To gain insight into the factors that influence electricity demand, site
weather, building characteristics, and socioeconomic data were also
obtained. Weather datasets with similar spatiotemporal resolution to the
electricity data were necessary to accurately capture energy-climate
interactions. Historical weather records were retrieved from two auto-
mated weather networks: the California Irrigation Management Infor-
mation System (CIMIS) and the National Oceanic and Atmospheric
Administration’s National Centers for Environmental Information
(NCEI) [97,98]. Both networks consist of hundreds of automated, land-
based stations across California that record hourly observations of cli-
matic indicators such as temperature, precipitation, dew point, and
windspeed. For this study, we use only the ambient near-surface air
temperature from 36 CIMIS stations and 43 NCEI stations. The stations
were selected based on their proximity to the households, with each
household being matched to the nearest weather station. The ambient
temperature observations were used to calculate cooling degree days
(CDD) and heating degree days (HDD). Degree days are a measure of
how cold or warm a location is. CDD (HDD) is defined as the daily cu-
mulative number of degrees above (below) a given temperature
threshold. This threshold is defined on an application-specific basis.
Here, we used 18 degrees Celsius as the threshold (approximately the
temperature at which air conditioning (AC) is expected to be needed) to
calculate the daily, monthly, and annual CDD and HDD [99]. We also
computed a customized metric that we call “extreme cooling degree
days” (ECDD) with a threshold of 35 degrees Celsius as an indicator of
extreme heat to further differentiate climates.

Various building characteristics for individual households were
retrieved from the Property Information Systems database, established
by the Office of the Assessor, for Los Angeles, San Bernardino, and
Riverside Counties, which were the three counties containing the
households analyzed in this study [100-102]. The county databases
contain public records for all the properties in each of the three counties

Table 2
Full feature set.
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including square footage, number of bedrooms and bathrooms, year of
construction, address and more, shown in Table 2. To merge datasets,
we matched electricity records provided by SCE with each building’s
physical characteristics using the given street addresses.

Demographic information was collected to explore the role of pop-
ulation characteristics on electricity use. Socioeconomic data were
retrieved from CalEnviroScreen 3.0 [103], a mapping tool developed by
the Office of Environmental Health Hazard Assessment, on behalf of
California Environmental Protection Agency, that identifies which Cal-
ifornia communities are subjected to higher pollution levels and are
often most vulnerable to the effects. CalEnviroScreen includes envi-
ronmental, health, and socioeconomic information from state and fed-
eral government sources for the approximately 8000 census tracts in
California. In this study, each individual home within a census tract is
matched with the corresponding census indicators. The indicators used
in this study are listed in Table 2.

2.2. Data preparation

Data preparation is an important step in machine learning that
transforms the raw, collected data into a quality dataset that is more
suitable for model training [104]. A few of the standard tasks that are
commonly practiced include data cleaning, data transforms, and feature
engineering [105-109]. The methods and algorithms used in an ML
study depend on the specific dataset and modeling objectives, but
broadly, the goal is to better uncover the underlying nature of the data
by removing erroneous data and produce a dataset that the desired
analysis can be carried out with. Data preparation measures applied to
the datasets utilized in this study are outlined in Fig. 1 step a.

Data cleaning is a practice that filters flawed points from a dataset. In
some cases, model performance improves by identifying and correcting
for outliers and missing values in the data [110]. For this application, we
first screened out customers with less than a year of electricity records
and homes deemed uninhabited, defined as annual consumption less
than 20 kWh, the average daily demand of a home in California [111].
Our analysis targets single family detached homes so electricity cus-
tomers with an apartment indicator in the address line (e.g., unit

Category Feature Type Mean Units Number of Categories
Physical Building Property Square footage Continuous 1808 Square feet
Bedrooms Continuous 3.3 Bedrooms
Bathrooms Continuous 3.2 Bathrooms
Presence of pool Binary
Building vintage Continuous 1971
Building vintage category Categorical 3
Climate zone Categorical 7
Annual cooling degree days Continuous 1293 Degree days
Annual heating degree days Continuous 863 Degree days
Annual extreme cooling degree days Continuous 141 Degree days
Monthly cooling degree days Continuous 101 Degree days
Monthly heating degree days Continuous 66.0 Degree days
Monthly extreme cooling degree days Continuous 9.81 Degree days
Climate Monthly average temperature Continuous 19.1 degrees Celsius
Monthly temperature delta Continuous 11.7 degrees Celsius
Daily cooling degree days Continuous 3.58 Degree days
Daily heating degree days Continuous 2.32 Degree days
Daily extreme cooling degree days Continuous 0.39 Degree days
Daily average temperature Continuous 19.2 degrees Celsius
Daily max temperature Continuous 25.6 degrees Celsius
Daily min temperature Continuous 13.1 degrees Celsius
Daily temperature delta Continuous 12.5 degrees Celsius
Education Continuous 17.8 Percent
Linguistic Isolation Continuous 8.1 Percent
Socioeconomic Poverty Continuous 32.5 Percent
Housing Burden Continuous 17.3 Percent
Unemployment Continuous 10.7 Percent
Temporal Month Categorical 12
Day of Week Categorical 7
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number) or that were designated as an apartment in the County Assessor
databases were removed from the dataset. We adopted the method
developed in our previous publication to identify homes with onsite
electricity generation (e.g. solar panels) or homes without AC because
this information was not provided by the utility [96]. With this method,
any home with at least one hour of zero electricity consumption between
10:00 and 16:00 and one or more hours of positive electricity con-
sumption between 17:00 and 23:00 on at least 5% of the days within the
two-year time period (i.e., 36 days), was identified as a household with
onsite electricity generation [96]. The electricity-temperature sensi-
tivity of a home was also characterized to determine whether a house-
hold utilized AC during the period of study based on our framework
detailed in [96]. Homes with solar panels and/or without AC were
filtered from the data as not to distort the electricity-temperature rela-
tionship of the single-family homes remaining in dataset.

Outliers were removed based on the total square footage of the home
and electricity demand. The average daily electricity demand per square
footage was calculated, and customers with an electricity demand three
times greater than the standard deviation for 10% of the time period
were filtered out to exclude possible multi-family units or very high
consuming households that might skew models. Using the same
reasoning, homes with square footage above 20,000 square feet were
identified as outliers and removed. The outliers were located throughout
the region and not biased towards certain areas. The features in each of
the datasets were also processed, and individual variables with more
than 10% of records missing were excluded. The number of stories in
each building was the only omitted feature across all the originally
included features due to the frequency at which it was missing. Table 2
summarizes the features used in the study.

Data preprocessing steps are performed to prepare the raw data for
subsequent processing steps. A few basic preprocessing steps include
handling missing data, converting formats, and data transformations.
For the weather data, numerical imputation was used when hourly
weather data were missing to compute degree days and daily average
values. Additionally, date formats were converted to match weather
data and electricity data. As stated, variables from the county assessor
databases were discarded if missing more than 10% of the time. Cate-
gorical encoding is a key data preprocessing technique that converts
categorical variables to numerical representation so that they are ma-
chine readable [112]. In this feature set, the climate zone, presence of a
pool, building vintage category, month, and day of week are all unor-
dered, categorical variables that are categorically encoded prior to
model training using OneHotEncoder from the Python Scikit-learn li-
brary [113].

Data transformations are used to convert a dataset into a format that
is more suitable for a given machine learning model. The trans-
formations might be mandatory, meaning that they are necessary for
data compatibility, or optional quality transformations, which help the
model perform better [114]. Transformations are commonly used to
scale and standardize features to the same range so that variables have
equal influence [115]. Because there is a large difference in scale across
the input variables for this study, the StandardScaler transform from the
Python Scikit-learn library was selected to standardize the numerical
features by subtracting the mean and scaling to unit variance. This en-
sures that one feature with high variance does not dominate the rest
during training. A PowerTransformer, from the Scikit-learn library, and
log transform were also implemented prior to model training, but both
reduced model performance and were thus omitted in the final analysis.

2.3. Model training and evaluation

One of the main objectives of this study is to develop an optimized
machine learning framework that can predict the electricity demand of
individual households using the variables described in Section 2.1.
Machine learning models take a set of features, X, as input variables and
a target variable, Y. The models build mathematical functions that
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define Y in terms of X based on the relationships in the training set.
Using these functions, target variable predictions are made on a test set
based on the corresponding input variables. Machine learning models
from varying machine learning model classes, including linear, non-
linear, ensemble, and tree models, were selected to see which models
and model types are best suited for this application. In step b of Fig. 1,
we trained the following 11 machine learning models from the scikit-
learn Python library in our study: ridge regressor, linear regressor,
elasticnet regressor, lasso regressor, adaboost regressor, bagging re-
gressor, gradient boosting regressor (XGBoost), random forest regressor
(RF regressor), extra trees regressor (ET regressor), multi-layer percep-
tron regressor (MLP regressor), and k-nearest neighbor regressor (KNN
regressor). It is important to note that because the goal of this study is to
build a repeatable framework that can be applied to other regions (as
opposed to creating an optimal model for our particular dataset and
region), we focus on machine learning models that are generalizable and
easy to implement. However, a more complex set of models, or combi-
nations of models, might lead to improved model performance. These
models are optimized by finding the ideal coefficients, ¢, that minimize
the sum of losses between each data point and the predicted value
calculated by a cost function, L, which varies by model. For each of the
selected models, the minimized cost function was mean squared error
with some models having added regularization penalties that are built
in.

In machine learning, hyperparameters are parameters explicitly
defined by the user that control a given model’s learning process. The
values and configurations for the hyperparameters can be adjusted prior
to training in an effort to achieve optimal performance. However,
determining the best values is often completed through rule of thumb or
trial and error, which are both time intensive. For the scope of this study,
the hyperparameters of the models were only slightly adapted from the
default settings of the scikit-learn Python library version 0.24.2 in in-
stances where the default settings might cause long run times. For the
XGBoost regressor, the max depth was adjusted to 4 and the number of
estimators was reduced to 20. Changes made to the RF regressor include
setting the max depth to 3 and the number of estimators to 60. Lastly, the
max depth for ET regressor was set to 3. For these three models, the rest
of the hyperparameters remained as the default. For all other models, all
hyperparameters were set to the defaults. Additional hyperparameter
tuning could improve model performance, and we do not suggest that
these are the optimal settings.

Resampling methods are commonly used in machine learning studies
to reduce bias in the training set by repeatedly sampling from the
original data [116-119]. The technique is used to avoid overfitting,
which happens when a model has learned the training data too well
instead of a generalizable relationship. Overfitting results in poor model
performance when predicting on new data [120]. In the model training
steps shown in Fig. 2, a bootstrap method was implemented in which n
number of equally sized subsets are extracted from the dataset with
replacement [121]. During training, data leakage can occur when in-
formation is shared between the training and testing, leading to unre-
alistically high levels of measured model performance [122]. To avoid
data leakage in this study, the entirety of each of the household’s data
was included in either the training or test set for each split (i.e., the
training and test sets have the entirety of a households two years of
data).The model was trained on each of the sampled subsets (training set
size of ~90,000, ~1,000,000, ~29,000,000 records, respectively, for
the annual, monthly, and daily models) and was evaluated on the test set
of remaining data, as illustrated in Fig. 2. To evaluate the models, we set
n equal to 10 and recorded the bootstrapped mean score for the four
error metrics described below.

For this study, several accuracy metrics were explored including
mean absolute error, median absolute error, and r? score. The mean
absolute error (MAE) and median absolute error (MdAE) are both scale
dependent error metrics, meaning the error metrics are expressed in
units. MAE measures the average magnitude of the absolute value of
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Fig. 2. Graphical representation of bootstrap resampling methods used during model training, where n is equal to 10.

errors in a set of predictions, while MdAE is the median value of all the
absolute values of the residuals. Mean absolute percent error (MAPE) is
the average difference between the forecasted value and the actual value
given as a percentage [123]. The 12 score, or the coefficient of deter-
mination, measures the amount of variance between the samples in the
dataset and predictions in the model. The drawback of scale-based
metrics for this application is that they cannot be directly compared
across temporal resolutions with differing magnitudes of electricity de-
mand. Conversely, percentage-based metrics are flawed because MAPE
might be higher for values that tend towards zero (e.g., some daily en-
ergy values) and could have different values for two predictions with the
same absolute error. Because it does not have these same interpretability
limitations, we selected the r? metric to assess best model performance
in step c of Fig. 1 [124]. The remaining metrics are still reported for
completeness.

2.4. Feature selection

Following the data preparation steps, an initial round of model
training is performed to determine the overall best models. Feature se-
lection is conducted after the first round of model training on the top five
performing models to attain the final feature set (See step d of Fig. 1).
Feature selection is the process of identifying and removing redundant
or irrelevant variables that are less useful in predicting the target vari-
able. By removing extraneous or redundant features, model performance
and computational time for training can both be improved [125-127].
Most commonly used feature selection algorithms can be broadly clas-
sified as filter or wrapper methods. Filter methods rank each feature by
evaluating the relationship between the input and target variables and
then select only the highly ranked features. Wrapper methods select the
feature subset that leads to best model performance based on a specified
performance indicator [128].

In this study we apply the wrapper method, using the sequential
forward selection (SFS) algorithm from the mlxtend library to reduce the
d-dimensional dataset into a k-dimensional dataset, where k < d [129].
SFS is a greedy search algorithm in which features are added one at a

time until the best feature subset of k features is determined based on the
cross-validated r? score. In the first iteration, each feature is individually
tested and the single feature, x, that leads to best model performance is
selected. In the subsequent iteration, every combination of feature x plus
an additional feature is tested to determine the two features that in
combination achieve the highest performance. Iterations are repeated
until a combination of features of size k is found. The value of k can be a
specified number or range of numbers. For our model, we set the range
as 0 to k, with k equal to the total number of features, to attain the
feature set size with the overall best model performance. While feature
selection is a valuable algorithm in the machine learning process
because of its ability to reduce computational time and improve model
accuracy, it does not aid in increasing the interpretability of models.
Feature selection can inform hypotheses between features and the target
variable, but it does not provide causal understanding for why specific
features were selected or discarded from the final feature set.

2.5. Spatiotemporal resolution

To explore the impact of spatiotemporal data resolution on model
performance, models were trained with daily, monthly, and annual
electricity demand (step b of Fig. 1), and model performance was
evaluated for each resolution (step c of Fig. 1). Features with a temporal
dimension were averaged (e.g., daily average temperature) or aggre-
gated (e.g., annual CDD) depending on the variable. The ability of our
model to predict on larger spatial scales was evaluated using two
different methods, illustrated in Fig. 3, to gain insight into how the
spatial resolution of the electricity consumption dataset impacts the
ability of the model to make accurate predictions. In the first method,
referred to as pre-aggregation, the models were trained with household
data, and the predicted electricity consumption for all the homes within
a census tract was averaged and compared to the true mean of the test
set observations. Conversely, in the second method, post-aggregation
models were trained and tested with census tract averages of elec-
tricity consumption and input variables.
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Fig. 3. Two data aggregation methods were executed to test how the spatial resolution of input data impacts a model’s ability to predict electricity demand.

2.6. Feature importance

Feature importance techniques are beneficial because they improve
the explainability of machine learning models that are often complex
and difficult to unpack and reveal relationships between features and
target variables [130-132]. There is often overlap between the tech-
niques used for feature importance and feature selection; the key dif-
ference is that feature selection is a preprocessing technique that is
applied before a model is trained to detect the most relevant features and
discard the others. Feature importance algorithms are typically imple-
mented following model training to determine which features are most
useful to the model and explain the model behavior [133]. In step d of
Fig. 1, we selected the permutation feature importance algorithm from
the Python Scikit-learn library, because it has a fast calculation time, is
easy to understand, and is applicable for all models in this study [134].
Permutation importance measures the deterioration of model perfor-
mance after permuting each feature, which effectively breaks the re-
lationships between the feature and the target variable. Because
permutation importance is calculated after a model has been fitted,
reordering the values of a feature does not impact the relationship
learned by the model. The process is as follows: 1) train model, 2)
individually shuffle the values of a single variable within the test set and
compute the drop in performance score, and 3) return the dataset to the

original order and repeat for each of the remaining variables. A feature
that significantly impacts the target variable will greatly reduce model
performance when shuffled, while one that is less important will have a
smaller impact on the accuracy.

3. Results and discussion

The goal of this study was to develop, evaluate, and optimize ML
models for residential electricity forecasting. Results from this study
gauge the extent to which various machine learning models can accu-
rately predict residential electricity demand with publicly available
climate, building, and socioeconomic datasets and at differing spatio-
temporal data resolutions. The feature selection and feature importance
steps also provide better understanding of the models, giving insight into
which features are most useful to make energy demand predictions at
various scales.

3.1. Model performance

We wanted to understand and compare a model’s ability to predict
short-term (e.g., daily) versus longer-term electricity consumption (e.g.,
annual), as well as household level versus more aggregated scales (e.g.,
census tracts) of electricity consumption, as projections at each of these
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various spatiotemporal resolutions offer different insights and utility
based on application. Daily household level data has the advantage of
capturing day to day variations in energy use among households, which
would be important in situations such as understanding the impacts of
demand side management strategies or behind-the-meter generation or
storage technologies across different populations. For instance, if a
utility wanted to anticipate how time-of-use rate structures might affect
wealthy versus marginalized communities within their service terri-
tories, understanding household level variability on finer timescales
would be advantageous. There are other applications in which we might
want to understand how electricity use is impacted at broader regional
scales or across longer time scales. For example, regional scale forecasts
would be most desirable for planning longer term investments in new
utility-scale generation capacity.

Table 3 presents the model results for all models across the three
temporal resolutions (complete results can be found in the SI). The best
performing models and temporal resolutions are consistent across the
four different performance metrics (e.g., MLP regressor is the best per-
forming model for each temporal resolution when evaluated by each
performance metric). In general, the MAE, MdAE, and MAPE are larger
for the annual models than monthly and daily models and larger for
monthly models than daily models. The results for MAE and MdAE are
intuitive because the yearly electricity demand is greater than the
monthly or daily demand and will then likely have larger absolute
prediction errors as well. The MAPE results suggest that the models can
more accurately predict monthly and daily electricity demand than
annual demand.

For this study, the r? value was selected as the main indicator of
model performance to allow for direct comparisons between the annual,
monthly, and daily models. The results showed that prediction accuracy
varied significantly across the different ML models and varying temporal
resolutions. Fig. 4 summarizes the results of the top five best performing

Table 3
Annual, monthly, daily results before sequential feature selection for top 5
models.

Temporal Model Mean Median r? Mean
resolution absolute absolute average
error error percent
difference
Ridge 2780 + 2120 + 0.31 £
Regressor 16.4 13.45 0.01 112£2.33
Linear 2780 + 2120 + 0.31 £
Regressor 16.4 13.48 0.01 112+£233
2780 + 2140 + 0.32 +
Annual GB Regressor 151 11.05 0.01 113 +2.18
2830 + 2180 + 0.30 +
RF Regressor 141 14.30 0.01 113 +£2.20
2740 + 2090 + 0.34 + 111 +
MLPRegressor ;5 g 8.31 0.01 2.21
Ridge 250. + 184 + 0.38 + 83.7 +
Regressor 1.02 0.69 0.0 9.65
Linear 250. + 184 + 0.38 + 83.7 +
Regressor 1.02 0.69 0.01 9.65
255 + 195 + 0.36 + 89.8 +
Monthly GB Regressor 0.98 107 0.01 11.0
RF Regressor 277 + 212 + 0.25 + 94.6 £
& 2.61 1.82 0.01 121
235 + 171 + 0.45 + 81.5 +
MLPRegressor 4 47 1.52 0.01 9.01
Ridge 9.59 + 6.96 + 0.30 + 74.9 +
Regressor 0.0266 0.0284 0.007 1.41
Linear 9.04 + 6.47 £ 0.37 £ 69.9 +
Regressor 0.0255 0.0251 0.0074 1.28
. 9.18 + 6.81 + 0.35 + 73.9 +
Daily GB Regressor 98 0.0308 0.0067  1.41
RF Regressor 9.76 £ 7.11 + 0.26 + 77.2 £
§ 0.0297 0.0401 0.0042 1.47
8.72 + 6.13 + 0.38 + 67.4 +
MLPRegressor ¢ o508 0.143 0.026  2.32
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models across all three temporal resolutions. Their r* values range from
0.25 to 0.45, suggesting that while these models can likely be useful in
informing broader trends in residential electricity use, there is still a lot
of behavioral variability across individual homes that cannot be
captured by the feature set utilized in this study, limiting the models’
performance above this r? range. It is important to note that there is
temporal variation in the model performance (e.g., monthly model
performs better in certain months), and a time-series plot of the per-
formance variation is shown in the SI.

The results depicted in Fig. 4 also show how the temporal resolution
of data impacts model performance; the r? values are slightly higher for
all the ML models trained with monthly data, rather than annual or
daily, except random forest regressor. The MLP Regressor model trained
with monthly electricity data has the highest overall r? of 0.45, with the
best r2 for annual and daily data being 0.34 and 0.38 respectively, using
MLP Regressor. Monthly models are likely more accurate in predicting
the target variable of electricity demand because the monthly data
average out some of the highly variable demand seen in the daily data
but capture seasonal weather trends more accurately than annual
models. While the monthly MLP model has the overall best model per-
formance, in general, the linear models perform with similar accuracy to
the non-linear models (e.g., MLP, RFR) when comparing r? values.

Direct comparisons of model performance between this study and
studies in the literature are limited. This is because studies either 1)
utilize household data to make short term predictions for a single
household or set of households or 2) use aggregated data to make longer
term estimates at larger spatial scales. Typically, these studies have
higher model performance as the individual homeowner’s behavior is
either more easily learned when a single household is used or averaged
out in aggregated demand loads. For example, a study that predicted
household daily electricity for one home using neural networks had r?
values ranging from 0.87 to 0.91 [63]. The results of our study are more
consistent with the few studies that have access to large samples of
household electricity data. Zhang et al. used ML models to predict
annual residential electricity demand with r? scores ranging from 0.78 to
0.88. While these values are higher than those reported in our study, the
household’s annual electricity bill was used to predict demand and was
shown to be most highly correlated [73]. A study by Williams and
Gomez predicted monthly, household residential electricity demand in
Texas with three methods: linear regression, regression trees, and
multivariate adaptive regression splines and achieved r? values ranging
from 0.41 to 0.48 [135].

Most prior electricity forecasting work has utilized coarser spatial
scale data, which has limited analysis of home-to-home variability.
While the smart meter data utilized in this study offer much better
spatial resolution, there are applications where household level pro-
jections are less desirable than for more coarse regional spatial extents.
While acknowledging this, this study is the first to analyze how different
techniques for aggregating data can affect the accuracy of ML model
performance across large spatial scales. In other words, no study has
explored whether high-resolution regional ML model projections will be
more accurate if 1) models are trained with household level data that
preserve variations in demand, and then aggregate results, or 2) data are
first aggregated to the spatial scale at which predictions are being made
prior to running the ML model.

Table 4 summarizes the model results of the two different spatial
aggregation methods. Again, the results are consistent across the four
performance metrics within a specific spatial and temporal resolution
combination (e.g., the MLP regressor is the most accurate monthly post-
aggregation model regardless of the selected performance metric). For
all three temporal resolutions and each evaluation metric, the pre-
dictions from the post-aggregation method were overall more accurate
than the predictions from the pre-aggregation method.

For direct comparison of annual, monthly, and daily results, the
overall best r? values for each combination of temporal resolution and
spatial aggregation method are highlighted in Fig. 5. The results show
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Fig. 4. Model performance measured by r? across the overall top 5 best performing models trained with annual, monthly, and daily data. The r? values, represented
by the bars, range from 0.25 to 0.45, with the monthly MLP model achieving the highest score.

Table 4

Results of the pre-aggregation and post-aggregation training for the top 5 models and all 3 temporal resolutions.

Temporal/spatial resolution Model Mean absolute error Median absolute error 2 Mean average percent difference
Ridge Regressor 1430 + 28.1 1020 + 24.2 0.47 £ 0.01 30.6 + 2.60
Linear Regressor 1430 + 28.2 1020 + 24.2 0.47 +0.01 30.6 £ 2.60
Annual Pre-aggregation GB Regressor 1410 + 30.3 1030 + 24.3 0.48 +0.01 31.1 £2.73
RF Regressor 1470 + 33.4 1090 =+ 29.1 0.44 £ 0.01 32.0 +2.73
MLP Regressor 1370 + 22.7 986 + 20.7 0.51 + 0.01 29.8 + 2.63
Ridge Regressor 831 + 30.2 618 + 28.0 0.65 + 0.04 13.3 £ 0.43
Linear Regressor 829 + 30.5 618 + 28.3 0.66 + 0.04 13.3 + 0.43
Annual Post-aggregation GB Regressor 824 + 40.8 600 +17.4 0.65 + 0.04 13.7 £ 0.77
RF Regressor 888 + 48.5 638 + 20.5 0.60 + 0.04 14.6 £ 0.73
MLP Regressor 868 + 45.5 628 + 27.7 0.63 + 0.03 13.8 £ 0.67
Ridge Regressor 135+ 1.25 97.9 + 1.94 0.58 + 0.01 25.9 +0.81
Linear Regressor 135 +1.25 97.9 +1.94 0.58 + 0.01 25.9 +£0.81
Monthly Pre-aggregation GB Regressor 147 +£1.37 113 +1.37 0.53 +£0.01 29.4 +£1.00
RF Regressor 175 +1.82 138 +1.88 0.36 + 0.02 34.5 +£1.07
MLP Regressor 112 + 1.64 78.6 + 1.44 0.70 + 0.02 22.1 + 1.10
Ridge Regressor 104 + 2.02 75.2 +£1.29 0.68 + 0.02 18.1 + 0.44
Linear Regressor 104 + 2.02 75.2 £1.29 0.68 + 0.02 18.1 £+ 0.44
Monthly Post-aggregation GB Regressor 112 + 3.57 84.7 £ 2.45 0.64 + 0.02 20.0 + 0.77
RF Regressor 144 + 3.16 106.9 + 1.49 0.40 + 0.03 25.4 + 0.84
MLP Regressor 75.2 + 2.83 51.6 + 1.77 0.82 + 0.02 13.5 + 0.63
Ridge Regressor 9.16 £+ 0.025 6.58 + 0.025 0.35 + 0.006 70.7 £1.3
Linear Regressor 9.16 £+ 0.025 6.58 + 0.025 0.35 + 0.006 70.7 £1.3
Daily Pre-aggregation GB Regressor 9.18 4+ 0.028 6.81 + 0.031 0.35 + 0.006 73.9 £1.40
RF Regressor 9.76 + 0.03 7.11 + 0.04 0.26 + 0.004 77.2 £1.47
MLP Regressor 8.71 + 0.043 6.12 + 0.125 0.38 + 0.021 67.3 + 2.68
Ridge Regressor 3.60 + 0.09 2.54 + 0.06 0.69 + 0.02 19.2 + 0.82
Linear Regressor 3.60 + 0.09 2.54 + 0.06 0.69 + 0.02 19.2 £ 0.82
Daily Post-aggregation GB Regressor 3.70 £0.13 2.67 = 0.07 0.67 + 0.02 20.4 £ 0.79
RF Regressor 4.49 £ 0.12 3.23 £ 0.06 0.53 £ 0.01 24.4 + 0.76
MLP Regressor 4.08 +0.11 2.98 +£0.10 0.62 + 0.03 22.6 + 0.95

that for models being trained with all three temporal resolutions of data,
predictions made at the census tract level with both methods are more
accurate than at the household level. Models trained with monthly data
again perform better than models trained with annual or daily data for
both aggregation methods, with the highest r? value being 0.82 for the
MLP Regressor trained with the post-aggregation method. The r? values
for annual and daily models using the post-aggregation method are 0.66

10

and 0.69, respectively. The higher performance of the post-aggregation
method suggests that, when assessing prediction accuracy for aggre-
gated data, a model originally trained and optimized on data after ag-
gregation will perform better than one that is trained prior to data
aggregation. This means that household level data are not necessary for
improving the accuracy of residential electricity projections for coarser
spatial scales, such as the census tract level.
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Fig. 5. Model performance of the best models for each combination of temporal resolution and spatial aggregation method measured by r2. The r? values, repre-
sented by the bars, range from 0.34 to 0.81, with the monthly, post-aggregation MLP model being the most accurate.

3.2. Sequential feature selection

After the initial round of model training, feature selection was
completed to find the most relevant subset of features. Sequential
feature selection is commonly implemented in ML studies both to opti-
mize model performance and to cut down on run times by reducing the
feature set. The results from the sequential feature selection algorithm
are shown in Fig. 6 for annual, monthly, and daily data resolutions.
Certain variables were consistently selected across all models and tem-
poral resolutions, such as the home’s square footage and whether a
home has a pool. Climate related features, such as the climate zone the
house belongs to, which month it is, or differing temperature indicators,
were also frequently selected. At the annual level, ECDD was selected for
all the top five models except one, while CDD and HDD were selected for
three and two of the models, respectively. For monthly models, which
month it is (a proxy for weather) was selected for all models, and ECDD
and HDD were selected for all but one. The CDD and monthly mean
temperature were only kept in the final feature set for two of the top five
monthly models. Lastly, the month variable and daily max temperature
were selected by feature selection for all models at the daily level, fol-
lowed by CDD, ECDD, daily mean temperature, and daily min temper-
ature, which were selected for all but one model.

Socioeconomic indicators, including education, linguistic isolation,
poverty, housing burden, and unemployment, were selected less
frequently. These variables reflect census tract-level.

data so they are imprecise indicators in characterizing house to
house variability. Across all three temporal resolutions, education and
linguistic isolation were the two socioeconomic indicators that were
most often kept in the final feature set. These features are often corre-
lated to household financial insecurity, which impacts electricity usage.
However, all the demographic variables are highly correlated, making it
difficult to tease out their individual influences on energy behavior or
determine why one socioeconomic indicator is more useful to model
training than another.

11

3.3. Feature importance

After training the models, permutation feature importance was used
to examine which of the features were most useful to predicting elec-
tricity consumption. The results of the algorithm showed a decrease in
model score (here, ) when the records of a specific feature are
randomly shuffled within the dataset, breaking the relationship between
the feature and the target and revealing how much the model depends
on that feature. Table 5 shows the permutation feature importance of all
the features in the final feature set for household level data with the top
performing ML model, which was MLP Regressor for annual, monthly,
and daily trained models. Total square footage was consistently one of
the most useful features to the model, ranking first for annual and daily,
with feature importance values of 0.402 and 0.232 respectively, and
second for monthly with a value of 0.272. The annual and daily feature
importance values for square footage are an order of magnitude higher
than any of the other annual or daily feature values which suggests that
the rest of the variables do not matter much for these prediction cases.

These results show that feature importance varies significantly
depending on the temporal resolution. In general, weather indicators
were much more important to the monthly model than the daily and
annual models. For example, the month of the year, which is strongly
tied to temperature, was the most important feature for the monthly
model and had a value of 0.336. Conversely, the month of the year is
ranked second overall for the daily model, but with a much lower mean
importance of 0.087. The low importance of weather features for the
daily model could be because there are so many other uncaptured,
highly variable daily occupancy factors that outweigh the impact of
weather. Similarly, ECDD was the highest ranked climate indicator for
the annual model with a low mean importance of 0.059. Because the
model was only trained with two years of data, there might not have
been enough variation in annual degree days for the model to learn,
leaving building characteristics to be more useful in predicting annual
electricity use.

The results show that socioeconomic indicators are generally less
useful to the model than climate and building characteristics, ranking
low in importance across each of the temporal resolutions. Of the five
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Fig. 6. Final feature set for top performing annual, monthly, and daily models after performing sequential feature selection. The features selected by the algorithm
are filled in with color. *Feature selection algorithm was not completed for these combinations of model/temporal resolution because it was too computation-
ally expensive.
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Table 5
Feature importance with annual, monthly, and daily data by household.
ANNUAL MLP MONTHLY MLP DAILY MLP
Feature Mean Std Feature Mean Std Feature Mean Std
importance deviation importance deviation importance deviation
Total Sqft 0.402 0.004 Month 0.336 0.001 Total Square Feet 0.232 0.049
Pool 0.075 0.002 Total Sqft 0.272 0.001 Month 0.087 0.019
ECDD 0.059 0.001 Climate Zone 0.081 0.001 Pool 0.025 0.008
CDD 0.053 0.002 Pool 0.063 0.001 Daily Max Temp 0.022 0.017
Lineuisti
Climate Zone 0.042 0.002 Linguistic Isolation ~ 0.028 0.001 inguistic 0.015 0.009
Isolation
Vintage 0.023 0.001 Bathrooms 0.026 0.001 Bathrooms 0.013 0.010
Lineuisti
inguistic 0.018 0.001 Vintage 0.026 0.000 Climate Zone 0.010 0.008
Isolation
Bathrooms 0.011 0.001 ?e:;hly Mean 0.021 0.000 Day of Week 0.004 0.003
Education 0.007 0.000 Education 0.020 0.001 Education 0.004 0.008
HDD 0.006 0.000 Bedrooms 0.016 0.000 Vintage Category 0.003 0.003
Vintage Category 0.004 0.000 Poverty 0.015 0.000 CDD 0.003 0.007
Unemployment 0.001 0.000 Vintage Category 0.011 0.001 Daily Mean Temp 0.000 0.000
Monthly Delta Temp 0.010 0.000 ECDD 0.000 0.000
ECDD 0.009 0.000 Daily Min Temp 0.000 0.000
HDD 0.007 0.000 Daily Temp Delta 0.000 0.000
CDD 0.006 0.000 HDD 0.000 0.000
Unemployment 0.005 0.000 Poverty 0.000 0.000
Housing Burden 0.003 0.000 Vintage 0.000 0.000
Bedrooms 0.000 0.000
Unemployment 0.000 0.000
Housing Burden 0.000 0.000

socioeconomic indicators, linguistic isolation is shown to have the
highest importance for annual, monthly, and daily models, with values
of 0.018, 0.028, and 0.015 respectively. Since socioeconomic variables
are only available at the census tract level, it follows that they would not
be the best predictors for household electricity demand.

In comparing feature selection and feature importance, the features
that were most frequently selected also had consistently higher values
for feature importance. Accordingly, those that were not often included
in the final feature set typically had lower values of importance in the
instances that they were included. For example, the square footage and
pool ownership variables were selected for every model and temporal
resolution, and their mean importances also ranked in the top three for
all three temporal resolutions.

4. Conclusion and future work

Machine learning models are capable of learning highly complex
relationships between electricity demand and its driving factors, making
them a promising tool for energy load forecasting. To date, studies uti-
lizing ML models to predict residential electricity demand at a regional
scale have only had access to coarse spatial (e.g., city, state, regional)
and temporal (e.g., monthly or annual) electricity data.

The results show that ML models can predict household level elec-
tricity demand with a significant degree of accuracy in certain cases; the
best performing model, MLP regressor trained with monthly data, ach-
ieves an r? value of 0.45. Monthly trained models may have superior
performance to annual and daily models because some of the highly
variable day to day differences in energy demand behavior are averaged
out while still providing a greater distribution of training data than the
annual model. Across all temporal resolutions, models predicted census
tract level residential electricity demand with higher accuracy than for
individual households. Using the post-aggregation training method for
an MLP regressor model trained with monthly data, the mean electricity
demand of census tracts was predicted with an accuracy of an r? of
0.82exi. These results are promising because they show that residential
electricity demand can be predicted at relatively high-resolution spatial
scales without needing private customer electricity data and can provide
insight into patterns of energy demand which are necessary to under-
stand for daily grid operation and future infrastructure investments.
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The total square footage of a building as well as climate indicators
were consistently selected to be in the final feature set across all the
models. These features typically were found to be most important by the
feature importance algorithm; total square footage, for example was
ranked first for the annual and daily models and second for the monthly
model. Socioeconomic indicators did not rank as high but because they
were reported at the census tract level, it is harder to determine their
influence on household demand. As this study serves as a framework for
future grid modeling studies, feature selection and feature importance
results can also give insight into where data retrieval efforts should be
focused.

Certain limitations cap the extent to which predictions of residential
electricity demand can be made. First, individual behavior of home-
owners is highly variable and unpredictable and can vastly impact
electricity demand. The socioeconomic data serves as a proxy to relate
the occupants to their possible energy behavior, but it is not informative
enough to account for many of their decisions pertaining to electricity
use. As information about the demographics of homeowners is highly
private and occupancy patterns would be almost impossible to extract, it
would be difficult to surpass this limitation. Second, while the data is
regionally representative, it is not necessarily representative of the
conditions that are the focus of the study. For example, the annual
models only have two years of data that may have, due to external
factors, been easier or more difficult for models to predict on rather than
other years.

The knowledge gained from this study can serve as a reference to
optimize building energy prediction studies, which are crucial to
anticipate future energy needs and develop climate adaption and miti-
gation plans. Researchers can build off the framework presented in this
study and improve model performance through a number of techniques
such as tuning models’ hyperparameters, using a combination of models
based on the results of a more granular performance assessment, and
employing more complex ML models. Future work will incorporate
highly resolved estimates of future temperature across the region of
study into the optimized ML model to investigate how residential elec-
tricity demand might change due to urban warming. Under a warming
climate, the distribution of temperatures, and any other weather data
used in future studies, will be fundamentally different than the historical
data that is available for model training. Building properties and
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socioeconomics will also shift, meaning the models will be trained with a
feature distribution that no longer exists. The inconsistency between the
feature set for training and real-world data will be a limitation for future
studies as models will have to both interpolate and extrapolate well to
make accurate predictions of electricity demand decades into the future.

Funding
The funding sources that supported this work include:

e CBET-CAREER 1845931
e CBET-CAREER 1752522
e Viterbi School of Engineering Graduate Student Fellowship

CRediT authorship contribution statement

McKenna Peplinski: Writing — review & editing, Writing — original
draft, Visualization, Methodology, Formal analysis, Data curation,
Conceptualization. Bistra Dilkina: Writing — review & editing, Meth-
odology. Mo Chen: Methodology, Data curation, Conceptualization.
Sam J. Silva: Writing — review & editing. George A. Ban-Weiss:
Writing — review & editing, Supervision, Methodology, Funding acqui-
sition, Conceptualization. Kelly T. Sanders: Writing — review & editing,
Supervision, Methodology, Funding acquisition, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
The data that has been used is confidential.
Acknowledgements

This work was funded in part by the National Science Foundation
under grants CAREER Grant CBET-1752522 and CAREER Grant
1845931 and an internal fellowship from USC Viterbi School of Engi-
neering. Dr. Bistra Dilkina was supported by funds allocated to her as the
Dr. Allen and Charlotte Ginsburg Early Career Chair in Computer Sci-
ence. Computation for the work described in this paper was supported
by the University of Southern California’s Center for High-Performance
Computing (hpcc.usc.edu). We also thank Southern California Edison for
access to the smart meter data. Finally, we would like to acknowledge
the meaningful contributions to this work by the late Professor George
Ban-Weiss, a great mentor and colleague who is deeply missed.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.apenergy.2023.122413.

References

[1] Electric power annual: Table 1.2. summary statistics for the United States,
2010-2020 [Online]. Available, https://www.eia.gov/electricity/annual /html/
epa_01_02.html; 2023.

Per capita U.S. residential electricity use was flat in 2020, but varied by state. htt
ps://www.eia.gov/todayinenergy/detail. php?id=49036; 2021.

Franco G, Sanstad AH. Climate change and electricity demand in California. Clim
Change 2007;87(1 SUPPL):139-51. https://doi.org/10.1007/s10584-007-9364-

[2

—

[3]

y.
Eskeland GS, Mideksa TK. Electricity demand in a changing climate. Mitig Adapt
Strat Glob Chang 2010;15(8):877-97. https://doi.org/10.1007/511027-010-
9246-x.

Sugiyama M. Climate change mitigation and electrification. Energy Policy May
2012;44:464-8. https://doi.org/10.1016/j.enpol.2012.01.028.

[4

=

[5]

14

[6

[7

[8

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Applied Energy 357 (2024) 122413

Kavousian A, Rajagopal R, Fischer M. Determinants of residential electricity
consumption: using smart meter data to examine the effect of climate, building
characteristics, appliance stock, and occupants’ behavior. Energy Jun. 2013;55:
184-94. https://doi.org/10.1016/j.energy.2013.03.086.

Psiloglou BE, Giannakopoulos C, Majithia S, Petrakis M. Factors affecting
electricity demand in Athens, Greece and London, UK: a comparative assessment.
Energy Nov. 2009;34(11):1855-63. https://doi.org/10.1016/j.
energy.2009.07.033.

Lam JC. Climatic and economic influences on residential electricity consumption.
Energ Conver Manage 1998;39(7):623-9. https://doi.org/10.1016/50196-8904
(97)10008-5.

Ahmad T, et al. Supervised based machine learning models for short, medium and
long-term energy prediction in distinct building environment. Energy 2018;158:
17-32. https://doi.org/10.1016/j.energy.2018.05.169.

Bartusch C, Odlare M, Wallin F, Wester L. Exploring variance in residential
electricity consumption: household features and building properties. Appl Energy
Apr. 2012;92:637-43. https://doi.org/10.1016/j.apenergy.2011.04.034.
McKenna E, et al. Explaining daily energy demand in British housing using linked
smart meter and socio-technical data in a bottom-up statistical model. Energ
Buildings 2022;258:111845. https://doi.org/10.1016/j.enbuild.2022.111845.
Huebner G, Shipworth D, Hamilton I, Chalabi Z, Oreszczyn T. Understanding
electricity consumption: a comparative contribution of building factors, socio-
demographics, appliances, behaviours and attitudes. Appl Energy 2016;177.
https://doi.org/10.1016/j.apenergy.2016.04.075.

Dietz T, Gardner GT, Gilligan J, Stern PC, Vandenbergh MP. Household actions
can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc Natl
Acad Sci U S A 2009;106(44):18452-6. https://doi.org/10.1073/
pnas.0908738106.

Schot J, Kanger L, Verbong G. The roles of users in shaping transitions to new
energy systems. Nat Energy 2016;1(May). https://doi.org/10.1038/
nenergy.2016.54.

Yan D, et al. Occupant behavior modeling for building performance simulation:
current state and future challenges. Energ Buildings 2015;107. https://doi.org/
10.1016/j.enbuild.2015.08.032.

Vojtovic S, Stundziene A, Kontautiene R. The impact of socio-economic indicators
on sustainable consumption of domestic electricity in Lithuania. Sustain. 2018;10
(2). https://doi.org/10.3390/s5u10020162.

Ziramba E. The demand for residential electricity in South Africa. Energy Policy
2008;36(9):3460-6. https://doi.org/10.1016/j.enpol.2008.05.026.

Alberini A, Filippini M. Response of residential electricity demand to price: the
effect of measurement error. Energy Econ 2011;33(5):889-95. https://doi.org/
10.1016/j.eneco.2011.03.009.

Dergiades T, Tsoulfidis L. Estimating residential demand for electricity in the
United States, 1965-2006. Energy Econ 2008;30(5):2722-30. https://doi.org/
10.1016/j.eneco.2008.05.005.

Wiesmann D, Lima Azevedo I, Ferrao P, Fernandez JE. Residential electricity
consumption in Portugal: findings from top-down and bottom-up models. Energy
Policy 2011;39(5):2772-9. https://doi.org/10.1016/j.enpol.2011.02.047.

Hor CL, Watson SJ, Majithia S. Analyzing the impact of weather variables on
monthly electricity demand. IEEE Trans Power Syst 2005;20(4). https://doi.org/
10.1109/TPWRS.2005.857397.

Huang J, Akbari H, Rainer L. Lawrence Berkeley National Laboratory Recent
Work Title 481 Prototypical Commercial Buildings for 20 Urban Market Areas
Permalink [Online]. Available: https://escholarship.org/uc/item/1g90f5gj;
1991.

Opitz MW, Norford LK, Matrosov YA, Butovsky IN. Energy consumption and
conservation in the Russian apartment building stock. Energ Buildings 1997;25
(1):75-92. https://doi.org/10.1016/s0378-7788(96)00995-4.

Charlier D, Risch A. Evaluation of the impact of environmental public policy
measures on energy consumption and greenhouse gas emissions in the French
residential sector. Energy Policy 2012;46(2012):170-84. https://doi.org/
10.1016/j.enpol.2012.03.048.

Shimoda Y, Fujii T, Morikawa T, Mizuno M. Residential end-use energy
simulation at city scale. Build Environ 2004;39(8 SPEC. 1SS):959-67. https://doi.
org/10.1016/j.buildenv.2004.01.020.

Lopes MAR, Antunes CH, Martins N. Towards more effective behavioural energy
policy: an integrative modelling approach to residential energy consumption in
Europe. Energy Res Soc Sci 2015;7:84-98. https://doi.org/10.1016/j.
erss.2015.03.004.

Puksec T, Mathiesen BV, Novosel T, Dui¢ N. Assessing the impact of energy saving
measures on the future energy demand and related GHG (greenhouse gas)
emission reduction of Croatia. Energy 2014;76:198-209. https://doi.org/
10.1016/j.energy.2014.06.045.

Gouveia JP, Fortes P, Seixas J. Projections of energy services demand for
residential buildings: insights from a bottom-up methodology. Energy 2012;47
(1):430-42. https://doi.org/10.1016/j.energy.2012.09.042.

Ferrando M, Causone F, Hong T, Chen Y. Urban building energy modeling
(UBEM) tools: a state-of-the-art review of bottom-up physics-based approaches.
Sustain Cities Soc 2020;62. https://doi.org/10.1016/j.5¢5.2020.102408.

Swan LG, Ugursal VI. Modeling of end-use energy consumption in the residential
sector: a review of modeling techniques. Renew Sustain Energy Rev Oct. 01,
2009;13(8. Pergamon):1819-35. https://doi.org/10.1016/j.rser.2008.09.033.
Gul M, Qa SA. Incorporating g economic and demo ographic variablesfor fore
casting electricity consumption in Pakistan. 2023.


http://hpcc.usc.edu
https://doi.org/10.1016/j.apenergy.2023.122413
https://doi.org/10.1016/j.apenergy.2023.122413
https://www.eia.gov/electricity/annual/html/epa_01_02.html
https://www.eia.gov/electricity/annual/html/epa_01_02.html
https://www.eia.gov/todayinenergy/detail.php?id=49036
https://www.eia.gov/todayinenergy/detail.php?id=49036
https://doi.org/10.1007/s10584-007-9364-y
https://doi.org/10.1007/s10584-007-9364-y
https://doi.org/10.1007/s11027-010-9246-x
https://doi.org/10.1007/s11027-010-9246-x
https://doi.org/10.1016/j.enpol.2012.01.028
https://doi.org/10.1016/j.energy.2013.03.086
https://doi.org/10.1016/j.energy.2009.07.033
https://doi.org/10.1016/j.energy.2009.07.033
https://doi.org/10.1016/S0196-8904(97)10008-5
https://doi.org/10.1016/S0196-8904(97)10008-5
https://doi.org/10.1016/j.energy.2018.05.169
https://doi.org/10.1016/j.apenergy.2011.04.034
https://doi.org/10.1016/j.enbuild.2022.111845
https://doi.org/10.1016/j.apenergy.2016.04.075
https://doi.org/10.1073/pnas.0908738106
https://doi.org/10.1073/pnas.0908738106
https://doi.org/10.1038/nenergy.2016.54
https://doi.org/10.1038/nenergy.2016.54
https://doi.org/10.1016/j.enbuild.2015.08.032
https://doi.org/10.1016/j.enbuild.2015.08.032
https://doi.org/10.3390/su10020162
https://doi.org/10.1016/j.enpol.2008.05.026
https://doi.org/10.1016/j.eneco.2011.03.009
https://doi.org/10.1016/j.eneco.2011.03.009
https://doi.org/10.1016/j.eneco.2008.05.005
https://doi.org/10.1016/j.eneco.2008.05.005
https://doi.org/10.1016/j.enpol.2011.02.047
https://doi.org/10.1109/TPWRS.2005.857397
https://doi.org/10.1109/TPWRS.2005.857397
https://escholarship.org/uc/item/1g90f5gj
https://doi.org/10.1016/s0378-7788(96)00995-4
https://doi.org/10.1016/j.enpol.2012.03.048
https://doi.org/10.1016/j.enpol.2012.03.048
https://doi.org/10.1016/j.buildenv.2004.01.020
https://doi.org/10.1016/j.buildenv.2004.01.020
https://doi.org/10.1016/j.erss.2015.03.004
https://doi.org/10.1016/j.erss.2015.03.004
https://doi.org/10.1016/j.energy.2014.06.045
https://doi.org/10.1016/j.energy.2014.06.045
https://doi.org/10.1016/j.energy.2012.09.042
https://doi.org/10.1016/j.scs.2020.102408
https://doi.org/10.1016/j.rser.2008.09.033
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0155
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0155

M. Peplinski et al.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Burney NA. Socioeconomic development and electricity consumption A cross-
country analysis using the random coefficient method. Energy Econ 1995;17(3):
185-95. https://doi.org/10.1016/0140-9883(95)00012-J.

Salari M, Javid RJ. Residential energy demand in the United States: analysis using
static and dynamic approaches. Energy Policy 2016;98:637-49. https://doi.org/
10.1016/j.enpol.2016.09.041.

Kavgic M, Mavrogianni A, Mumovic D, Summerfield A, Stevanovic Z, Djurovic-
Petrovic M. A review of bottom-up building stock models for energy consumption
in the residential sector. Build Environ 2010;45(7):1683-97. https://doi.org/
10.1016/j.buildenv.2010.01.021.

Uihlein A, Eder P. Policy options towards an energy efficient residential building
stock in the EU-27. Energ Buildings 2010;42(6):791-8. https://doi.org/10.1016/
j.enbuild.2009.11.016.

Reyna JL, Chester MV. Energy efficiency to reduce residential electricity and
natural gas use under climate change. Nat Commun 2017;8(May):1-12. https://
doi.org/10.1038/ncomms14916.

Min J, Hausfather Z, Lin QF. A high-resolution statistical model of residential
energy end use characteristics for the United States. J Ind Ecol 2010;14(5):
791-807. https://doi.org/10.1111/j.1530-9290.2010.00279.x.

Zhao HX, Magoules F. A review on the prediction of building energy
consumption. Renew Sustain Energy Rev 2012;16(6):3586-92. https://doi.org/
10.1016/j.rser.2012.02.049.

Zhang L, et al. A review of machine learning in building load prediction. Appl
Energy 2021;285(July 2020):116452. https://doi.org/10.1016/j.
apenergy.2021.116452.

Amasyali K, El-gohary NM. A review of data-driven building energy consumption
prediction studies. Renew Sustain Energy Rev March 2017;81:1192-205. https://
doi.org/10.1016/j.rser.2017.04.095.

Bourdeau M, Zhai X Qiang, Nefzaoui E, Guo X, Chatellier P. Modeling and
forecasting building energy consumption: a review of data-driven techniques.
Sustain Cities Soc 2019;48. https://doi.org/10.1016/j.5¢s.2019.101533.
Seyedzadeh S, Rahimian FP, Glesk I, Roper M. Machine learning for estimation of
building energy consumption and performance: a review. Vis Eng 2018;6(1).
https://doi.org/10.1186/540327-018-0064-7.

Robinson C, et al. Machine learning approaches for estimating commercial
building energy consumption. Appl Energy 2017;208(August):889-904. https://
doi.org/10.1016/j.apenergy.2017.09.060.

Yildiz B, Bilbao JI, Sproul AB. A review and analysis of regression and machine
learning models on commercial building electricity load forecasting. Renew
Sustain Energy Rev 2017;73(February):1104-22. https://doi.org/10.1016/j.
rser.2017.02.023.

Foucquier A, Robert S, Suard F, Stéphan L, Jay A. State of the art in building
modelling and energy performances prediction: a review. Renew Sustain Energy
Rev 2013;23:272-88. https://doi.org/10.1016/].rser.2013.03.004.

Neto AH, Fiorelli FAS. Comparison between detailed model simulation and
artificial neural network for forecasting building energy consumption. Energ
Buildings 2008;40(12):2169-76. https://doi.org/10.1016/j.
enbuild.2008.06.013.

Turhan C, Kazanasmaz T, Uygun IE, Ekmen KE, Akkurt GG. Comparative study of
a building energy performance software (KEP-IYTE-ESS) and ANN-based building
heat load estimation. Energ Buildings 2014;85:115-25. https://doi.org/10.1016/
j.enbuild.2014.09.026.

Jing R, Wang M, Zhang R, Li N, Zhao Y. A study on energy performance of 30
commercial office buildings in Hong Kong. Energ Buildings 2017;144:117-28.
https://doi.org/10.1016/j.enbuild.2017.03.042.

Deng H, Fannon D, Eckelman MJ. Predictive modeling for US commercial
building energy use : a comparison of existing statistical and machine learning
algorithms using CBECS microdata. Energ Buildings 2018;163:34-43. https://doi.
org/10.1016/j.enbuild.2017.12.031.

Mohammadiziazi R, Bilec MM. Application of machine learning for predicting
building energy use at Di ff erent temporal and spatial resolution under climate
change in USA. 2020.

Bassamzadeh N, Ghanem R. Multiscale stochastic prediction of electricity demand
in smart grids using Bayesian networks. Appl Energy 2017;193:369-80. https://
doi.org/10.1016/j.apenergy.2017.01.017.

Ma J, Cheng JCP. Identifying the influential features on the regional energy use
intensity of residential buildings based on random forests. Appl Energy 2016;183:
193-201. https://doi.org/10.1016/j.apenergy.2016.08.096.

Ma J, Cheng JCP. Estimation of the building energy use intensity in the urban
scale by integrating GIS and big data technology. Appl Energy 2016;183:182-92.
https://doi.org/10.1016/j.apenergy.2016.08.079.

Xu X, Wang W, Hong T, Chen J. Energy & Buildings Incorporating machine
learning with building network analysis to predict multi-building energy use.
Energ Buildings 2019;186:80-97. https://doi.org/10.1016/j.
enbuild.2019.01.002.

Mocanu E, Nguyen PH, Kling WL, Gibescu M. Unsupervised energy prediction in a
smart grid context using reinforcement cross-building transfer learning. Energ
Buildings 2016;116:646-55. https://doi.org/10.1016/j.enbuild.2016.01.030.
Papadopoulos S, Bonczak B, Kontokosta CE. Pattern recognition in building
energy performance over time using energy benchmarking data. Appl Energy
2018;221(March):576-86. https://doi.org/10.1016/j.apenergy.2018.03.079.
Kolter JZ, Ferreira J. A large-scale study on predicting and contextualizing
building energy usage. In: Proceedings of the National Conference on Artificial
Intelligence. vol. 2; 2011.

15

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

671

[68]

[69]

[70]

[71]

[72]

[731]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Applied Energy 357 (2024) 122413

Wei Y, et al. A review of data-driven approaches for prediction and classification
of building energy consumption. Renew Sustain Energy Rev 2018;82(August
2017):1027-47. https://doi.org/10.1016/j.rser.2017.09.108.

Wang Z, Srinivasan RS. A review of arti fi cial intelligence based building energy
use prediction: contrasting the capabilities of single and ensemble prediction
models. Renew Sustain Energy Rev 2017;75(September 2015):796-808. https://
doi.org/10.1016/j.rser.2016.10.079.

Jain RK, Smith KM, Culligan PJ, Taylor JE. Forecasting energy consumption of
multi-family residential buildings using support vector regression : investigating
the impact of temporal and spatial monitoring granularity on performance
accuracy. Appl Energy 2014;123:168-78. https://doi.org/10.1016/j.
apenergy.2014.02.057.

Ku AL, Qiu Y Lucy, Lou J, Nock D, Xing B. Changes in hourly electricity
consumption under COVID mandates: a glance to future hourly residential power
consumption pattern with remote work in Arizona. Appl Energy 2022;310.
https://doi.org/10.1016/j.apenergy.2022.118539.

Chou JS, Tran DS. Forecasting energy consumption time series using machine
learning techniques based on usage patterns of residential householders. Energy
2018;165:709-26. https://doi.org/10.1016/j.energy.2018.09.144.

Biswas MAR, Robinson MD, Fumo N. Prediction of residential building energy
consumption: a neural network approach. Energy 2016;117:84-92. https://doi.
0rg/10.1016/j.energy.2016.10.066.

Edwards RE, New J, Parker LE. Predicting future hourly residential electrical
consumption: a machine learning case study. Energ Buildings 2012;49:591-603.
https://doi.org/10.1016/j.enbuild.2012.03.010.

Fan C, Wang J, Gang W, Li S. Assessment of deep recurrent neural network-based
strategies for short-term building energy predictions. Appl Energy 2019;236(July
2018):700-10. https://doi.org/10.1016/j.apenergy.2018.12.004.

Abdallah M, Abu Talib M, Hosny M, Abu Waraga O, Nasir Q, Arshad MA.
Forecasting highly fluctuating electricity load using machine learning models
based on multimillion observations. Adv Eng Inform Aug. 2022;53:101707.
https://doi.org/10.1016/J.AEL.2022.101707.

Burlig F, Bushnell J, Rapson D, Wolfram C. Low energy: estimating electric
vehicle electricity use. AEA Pap Proc 2021;111. https://doi.org/10.1257/
pandp.20211088.

Ma Z, Ye C, Li H, Ma W. Applying support vector machines to predict building
energy consumption in China. Energy Procedia 2018;152:780-6. https://doi.org/
10.1016/j.egypro.2018.09.245.

Paudel S, et al. A relevant data selection method for energy consumption
prediction of low energy building based on support vector machine. Energ
Buildings 2017;138:240-56. https://doi.org/10.1016/j.enbuild.2016.11.009.
Taylor JW, McSharry PE. Short-term load forecasting methods: an evaluation
based on European data. IEEE Trans Power Syst 2007;22(4):2213-9. https://doi.
org/10.1109/TPWRS.2007.907583.

Hernandez L, Baladrén C, Aguiar JM, Carro B, Sanchez-Esguevillas AJ, Lloret J.
Short-term load forecasting for microgrids based on artificial neural networks.
Energies 2013;6(3):1385-408. https://doi.org/10.3390/en6031385.

Velasco LCP, Villezas CR, Palahang PNC, Dagaang JAA. Next day electric load
forecasting using artificial neural networks. In: 8th Int. Conf. Humanoid,
Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM
2015. December; 2016. p. 1-6. https://doi.org/10.1109/
HNICEM.2015.7393166.

Zhang W, et al. Estimating residential energy consumption in metropolitan areas:
a microsimulation approach. Energy 2018;155:162-73. https://doi.org/10.1016/
j-energy.2018.04.161.

Baklrtzis AG, Petrldis V, Klartzls SJ, Alexladls MC. A neural network short term
load for the greek powers department of electrical and computer engineering.
Neural Netw 1995:858-63.

Ryu S, Noh J, Kim H. Deep neural network based demand side short term load
forecasting. Energies 2017;10(1):1-20. https://doi.org/10.3390/en10010003.
Masum S, Liu Y, Chiverton J. Multi-step time series forecasting of electric load
using machine learning models. In: Lect Notes Comput Sci (including Subser Lect
Notes Artif Intell Lect Notes Bioinformatics). 10841. LNAI; 2018. p. 148-59.
https://doi.org/10.1007/978-3-319-91253-0_15.

Azadeh A, Ghaderi SF, Sohrabkhani S. A simulated-based neural network
algorithm for forecasting electrical energy consumption in Iran. Energy Policy
2008;36(7):2637-44. https://doi.org/10.1016/j.enpol.2008.02.035.

Rahman A, Srikumar V, Smith AD. Predicting electricity consumption for
commercial and residential buildings using deep recurrent neural networks. Appl
Energy 2018;212(December 2017):372-85. https://doi.org/10.1016/].
apenergy.2017.12.051.

Wang J, Li L, Niu D, Tan Z. An annual load forecasting model based on support
vector regression with differential evolution algorithm. Appl Energy 2012;94:
65-70. https://doi.org/10.1016/j.apenergy.2012.01.010.

Azadeh A, Ghaderi SF, Tarverdian S, Saberi M. Integration of artificial neural
networks and genetic algorithm to predict electrical energy consumption. Appl
Math Comput 2007;186(2):1731-41. https://doi.org/10.1016/j.
amc.2006.08.093.

Rahman S, Senior RB, Member M. An expert system based algorithm for short
term load forecast. 1988. https://doi.org/10.1109/59.192889.

Kong F, Song GP. Middle-long power load forecasting based on dynamic grey
prediction and support vector machine. Int J Adv Comput Technol 2012;4(5).
https://doi.org/10.4156/ijact.vol4.issue5.18.

Mostafavi ES, Mostafavi SI, Jaafari A, Hosseinpour F. A novel machine learning
approach for estimation of electricity demand: an empirical evidence from


https://doi.org/10.1016/0140-9883(95)00012-J
https://doi.org/10.1016/j.enpol.2016.09.041
https://doi.org/10.1016/j.enpol.2016.09.041
https://doi.org/10.1016/j.buildenv.2010.01.021
https://doi.org/10.1016/j.buildenv.2010.01.021
https://doi.org/10.1016/j.enbuild.2009.11.016
https://doi.org/10.1016/j.enbuild.2009.11.016
https://doi.org/10.1038/ncomms14916
https://doi.org/10.1038/ncomms14916
https://doi.org/10.1111/j.1530-9290.2010.00279.x
https://doi.org/10.1016/j.rser.2012.02.049
https://doi.org/10.1016/j.rser.2012.02.049
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.rser.2017.04.095
https://doi.org/10.1016/j.rser.2017.04.095
https://doi.org/10.1016/j.scs.2019.101533
https://doi.org/10.1186/s40327-018-0064-7
https://doi.org/10.1016/j.apenergy.2017.09.060
https://doi.org/10.1016/j.apenergy.2017.09.060
https://doi.org/10.1016/j.rser.2017.02.023
https://doi.org/10.1016/j.rser.2017.02.023
https://doi.org/10.1016/j.rser.2013.03.004
https://doi.org/10.1016/j.enbuild.2008.06.013
https://doi.org/10.1016/j.enbuild.2008.06.013
https://doi.org/10.1016/j.enbuild.2014.09.026
https://doi.org/10.1016/j.enbuild.2014.09.026
https://doi.org/10.1016/j.enbuild.2017.03.042
https://doi.org/10.1016/j.enbuild.2017.12.031
https://doi.org/10.1016/j.enbuild.2017.12.031
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0250
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0250
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0250
https://doi.org/10.1016/j.apenergy.2017.01.017
https://doi.org/10.1016/j.apenergy.2017.01.017
https://doi.org/10.1016/j.apenergy.2016.08.096
https://doi.org/10.1016/j.apenergy.2016.08.079
https://doi.org/10.1016/j.enbuild.2019.01.002
https://doi.org/10.1016/j.enbuild.2019.01.002
https://doi.org/10.1016/j.enbuild.2016.01.030
https://doi.org/10.1016/j.apenergy.2018.03.079
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0285
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0285
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0285
https://doi.org/10.1016/j.rser.2017.09.108
https://doi.org/10.1016/j.rser.2016.10.079
https://doi.org/10.1016/j.rser.2016.10.079
https://doi.org/10.1016/j.apenergy.2014.02.057
https://doi.org/10.1016/j.apenergy.2014.02.057
https://doi.org/10.1016/j.apenergy.2022.118539
https://doi.org/10.1016/j.energy.2018.09.144
https://doi.org/10.1016/j.energy.2016.10.066
https://doi.org/10.1016/j.energy.2016.10.066
https://doi.org/10.1016/j.enbuild.2012.03.010
https://doi.org/10.1016/j.apenergy.2018.12.004
https://doi.org/10.1016/J.AEI.2022.101707
https://doi.org/10.1257/pandp.20211088
https://doi.org/10.1257/pandp.20211088
https://doi.org/10.1016/j.egypro.2018.09.245
https://doi.org/10.1016/j.egypro.2018.09.245
https://doi.org/10.1016/j.enbuild.2016.11.009
https://doi.org/10.1109/TPWRS.2007.907583
https://doi.org/10.1109/TPWRS.2007.907583
https://doi.org/10.3390/en6031385
https://doi.org/10.1109/HNICEM.2015.7393166
https://doi.org/10.1109/HNICEM.2015.7393166
https://doi.org/10.1016/j.energy.2018.04.161
https://doi.org/10.1016/j.energy.2018.04.161
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0370
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0370
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0370
https://doi.org/10.3390/en10010003
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1016/j.enpol.2008.02.035
https://doi.org/10.1016/j.apenergy.2017.12.051
https://doi.org/10.1016/j.apenergy.2017.12.051
https://doi.org/10.1016/j.apenergy.2012.01.010
https://doi.org/10.1016/j.amc.2006.08.093
https://doi.org/10.1016/j.amc.2006.08.093
https://doi.org/10.1109/59.192889
https://doi.org/10.4156/ijact.vol4.issue5.18

M. Peplinski et al.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]
[105]
[106]
[107]

[108]

Thailand. Energ Conver Manage 2013;74:548-55. https://doi.org/10.1016/j.
enconman.2013.06.031.

Aydinalp M, Ismet Ugursal V, Fung AS. Modeling of the appliance, lighting, and
space-cooling energy consumptions in the residential sector using neural
networks. Appl Energy 2002;71(2):87-110. https://doi.org/10.1016/5S0306-
2619(01)00049-6.

Hong WC. Electric load forecasting by support vector model. App Math Model
2009;33(5):2444-54. https://doi.org/10.1016/j.apm.2008.07.010.

Fan H, MacGill IF, Sproul AB. Statistical analysis of driving factors of residential
energy demand in the greater Sydney region, Australia. Energ Buildings 2015;
105. https://doi.org/10.1016/j.enbuild.2015.07.030.

Haben S, Singleton C, Grindrod P. Analysis and clustering of residential customers
energy behavioral demand using smart meter data. IEEE Trans Smart Grid 2016;7
(1):136-44. https://doi.org/10.1109/TSG.2015.2409786.

Czétany L, et al. Development of electricity consumption profiles of residential
buildings based on smart meter data clustering. Energ Buildings Dec. 2021;252:
111376. https://doi.org/10.1016/J.ENBUILD.2021.111376.

Dong B, Li Z, Rahman SMM, Vega R. A hybrid model approach for forecasting
future residential electricity consumption. Energ Buildings 2016;117:341-51.
https://doi.org/10.1016/j.enbuild.2015.09.033.

Humeau S, Wijaya TK, Vasirani M, Aberer K. Electricity load forecasting for
residential customers: exploiting aggregation and correlation between
households. Sustain Internet ICT Sustain Sustain 2013;2013:2013. https://doi.
org/10.1109/SustainIT.2013.6685208.

Rodrigues F, Cardeira C, Calado JMF. The daily and hourly energy consumption
and load forecasting using artificial neural network method: a case study using a
set of 93 households in Portugal. Energy Procedia 2014;62:220-9. https://doi.
org/10.1016/j.egypro.2014.12.383.

Zhao HX, Magoules F. Feature selection for predicting building energy
consumption based on statistical learning method. J Algorithms Comput Technol
2012;6(1):59-77. https://doi.org/10.1260,/1748-3018.6.1.59.

Li Q, Ren P, Meng Q. Prediction model of annual energy consumption of
residential buildings. In: 2010 Int. Conf Adv Energy Eng ICAEE. 2010; 2010.

p. 223-6. https://doi.org/10.1109/ICAEE.2010.5557576.

Olu-Ajayi R, Alaka H, Sulaimon I, Sunmola F, Ajayi S. Building energy
consumption prediction for residential buildings using deep learning and other
machine learning techniques. J Build Eng 2022;45. https://doi.org/10.1016/j.
jobe.2021.103406.

Ahmed Gassar AA, Yun GY, Kim S. Data-driven approach to prediction of
residential energy consumption at urban scales in London. Energy 2019;187.
https://doi.org/10.1016/j.energy.2019.115973.

Chen M, Sanders KT, Ban-Weiss GA. A new method utilizing smart meter data for
identifying the existence of air conditioning in residential homes. Environ Res
Lett 2019;14(9). https://doi.org/10.1088/1748-9326/ab35a8.

California Irrigation Management Information Sytem (CIMIS). CIMIS station
reports [Online]. Available, https://cimis.water.ca.gov/Stations.aspx; 2023.
National Oceanic and Atmospheric Administration (NOAA) National Centers for
Environmental Information (NCEI). NOAA NCEI Local Climatological Data (LCD)
[Online]. Available, https://www.ncei.noaa.gov/cdo-web/datatools/lcd; 2023.
Schoenau GJ, Kehrig RA. Method for calculating degree-days to any base
temperature. Energ Buildings 1990;14(4). https://doi.org/10.1016/0378-7788
(90)90092-W.

Assessor Parcel Data 2016. County of Los Angeles Open Data. 2023. https://data.
lacounty.gov/browse?category=Property%2FPlanning&utf8=v.

San Bernardino County Assessor’s property characteristics 2016. Office of San
Bernardino County Assessor-Recorder-Clerk; 2016. https://sbcountyarc.org/ser
vices/property-information/.

Riverside County Assessor’s property characteristics 2016. County of Riverside
Assessor-County Clerk-Recorder; 2016. https://www.rivcoacr.org/obtaining-reco
rd-copies.

Office of Environmental Health Hazard Assessment, C.E.P.A. CalEnviroScreen 3.0.
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30; 2018.

Zhang S, Zhang C, Yang Q. Data preparation for data mining 2010;9514(2003).
https://doi.org/10.1080/713827180.

Kotsiantis SB, Kanellopoulos D. Data preprocessing for supervised leaning. Int
Dent J 2006;1(2):1-7. https://doi.org/10.1080/02331931003692557.

Guyon L. An introduction to variable and feature selection 1 introduction 2003;3:
1157-82.

Luengo J, Garcia S, Herrera F. On the choice of the best imputation methods for
missing values considering three groups of classification methods. 2012.
Alexandropoulos SAN, Kotsiantis SB, Vrahatis MN. Data preprocessing in
predictive data mining 2020;34(April):2019.

16

[109]

[110]

[111]

[112]

[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

[134]

[135]

Applied Energy 357 (2024) 122413

Ahmad T, Aziz MN. Data preprocessing and feature selection for machine learning
intrusion detection systems. ICIC Express Lett 2019;13(2):93-101. https://doi.
org/10.24507 /icicel.13.02.93.

Corrales DC, Corrales JC, Ledezma A. How to address the data quality issues in
regression models: a guided process for data cleaning. Symmetry (Basel) 2018;10
(4):1-20. https://doi.org/10.3390/sym10040099.

Household Energy Use in California [Online]. Available, https://www.eia.gov/c
onsumption/residential/reports/2009/state_briefs/pdf/ca.pdf; 2009.

Potdar K, T. S, C. D. A comparative study of categorical variable encoding
techniques for neural network classifiers. Int J Comput Appl 2017;175(4):7-9.
https://doi.org/10.5120/ijca2017915495.

Pedregosa F, et al. Scikit-learn: machine learning in Python. 2011. p. 2825-30.
Crone SF, Lessmann S, Stahlbock R. The impact of preprocessing on data mining:
an evaluation of classifier sensitivity in direct marketing 2006;173:781-800.
https://doi.org/10.1016/j.ejor.2005.07.023.

Huang J, Li Y, Xie M. An empirical analysis of data preprocessing for machine
learning-based software cost estimation. Inf Softw Technol 2015;67:108-27.
https://doi.org/10.1016/j.infsof.2015.07.004.

Dodangeh E, et al. Science of the Total Environment Integrated machine learning
methods with resampling algorithms for fl ood susceptibility prediction 2020;705.
https://doi.org/10.1016/j.scitotenv.2019.135983.

Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of
resampling methods 2005;21(15):3301-7. https://doi.org/10.1093/
bioinformatics/bti499.

Anguita D, Ghio A, Ridella S, Sterpi D. K-fold cross validation for error rate
estimate in support vector machines. In: K - fold cross validation for error rate
estimate in support vector machines. June; 2014. p. 2009.

Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and
model selectionno. June; 2013.

Goncalves 1, Silva S, Melo JB. Random sampling technique for overfitting control
in genetic programming. In: Genetic programming. Berlin, Heidelberg: Lecture
No., Springer; 2012. p. 218-29.

Horowitz JL. The bootstrap. 2001. https://doi.org/10.1016/51573-4412(01)
05005-X.

Kaufman S, Rosset S, Perlich C. Leakage in data mining: Formulation, detection,
and avoidance. 2011. https://doi.org/10.1145/2020408.2020496.

Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA,
Kamaev VA Evich. A survey of forecast error measures. World Appl Sci J 2013;24
(24). https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032.

Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is
more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression
analysis evaluation. PeerJ Comput Sci 2021;7. https://doi.org/10.7717/PEERJ-
CS.623.

Cai J, Luo J, Wang S, Yang S. Neurocomputing feature selection in machine
learning: a new perspective. Neurocomputing 2018;300:70-9. https://doi.org/
10.1016/j.neucom.2017.11.077.

Langley PAT, Flamingo L, Edu S. Selection of relevant features in machine
learning. 1994. p. 127-31.

Hall MA, Smith LA. Feature selection for machine learning: comparing a
correlation-based filter approach to the wrapper CFS: correlation-based feature.
1999.

Chandrashekar G, Sahin F. A survey on feature selection methods q. Comput
Electr Eng 2014;40(1):16-28. https://doi.org/10.1016/j.
compeleceng.2013.11.024.

Raschka S. Sequential feature selector. http://rasbt.github.io/mlxtend/user_gui
de/feature_selection/SequentialFeatureSelector/; 2014.

Hooker S, Erhan D, Kindermans PJ, Kim B. A benchmark for interpretability
methods in deep neural networks. Adv Neural Inf Process Syst 2019;32(NeurIPS).
Huang N, Lu G, Xu D. A permutation importance-based feature selection method
for short-term electricity load forecasting using random forest. Energies 2016;9
(10). https://doi.org/10.3390/en9100767.

Razmjoo A, Xanthopoulos P, Zheng QP. Online feature importance ranking based
on sensitivity analysis. Expert Syst Appl 2017;85:397-406. https://doi.org/
10.1016/j.eswa.2017.05.016.

Saarela M, Jauhiainen S. Comparison of feature importance measures as
explanations for classification models. SN Appl Sci 2021;3(2). https://doi.org/
10.1007/s42452-021-04148-9.

Permutation Feature Importance. https://scikit-learn.org/stable/modules/pe
rmutation_importance.html; 2023.

Williams KT, Gomez JD. Predicting future monthly residential energy
consumption using building characteristics and climate data: a statistical learning
approach. Energ Buildings 2016;128. https://doi.org/10.1016/j.
enbuild.2016.06.076.


https://doi.org/10.1016/j.enconman.2013.06.031
https://doi.org/10.1016/j.enconman.2013.06.031
https://doi.org/10.1016/S0306-2619(01)00049-6
https://doi.org/10.1016/S0306-2619(01)00049-6
https://doi.org/10.1016/j.apm.2008.07.010
https://doi.org/10.1016/j.enbuild.2015.07.030
https://doi.org/10.1109/TSG.2015.2409786
https://doi.org/10.1016/J.ENBUILD.2021.111376
https://doi.org/10.1016/j.enbuild.2015.09.033
https://doi.org/10.1109/SustainIT.2013.6685208
https://doi.org/10.1109/SustainIT.2013.6685208
https://doi.org/10.1016/j.egypro.2014.12.383
https://doi.org/10.1016/j.egypro.2014.12.383
https://doi.org/10.1260/1748-3018.6.1.59
https://doi.org/10.1109/ICAEE.2010.5557576
https://doi.org/10.1016/j.jobe.2021.103406
https://doi.org/10.1016/j.jobe.2021.103406
https://doi.org/10.1016/j.energy.2019.115973
https://doi.org/10.1088/1748-9326/ab35a8
https://cimis.water.ca.gov/Stations.aspx
https://www.ncei.noaa.gov/cdo-web/datatools/lcd
https://doi.org/10.1016/0378-7788(90)90092-W
https://doi.org/10.1016/0378-7788(90)90092-W
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0500
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0500
https://sbcountyarc.org/services/property-information/
https://sbcountyarc.org/services/property-information/
https://www.rivcoacr.org/obtaining-record-copies
https://www.rivcoacr.org/obtaining-record-copies
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30
https://doi.org/10.1080/713827180
https://doi.org/10.1080/02331931003692557
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0530
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0530
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0535
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0535
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0540
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0540
https://doi.org/10.24507/icicel.13.02.93
https://doi.org/10.24507/icicel.13.02.93
https://doi.org/10.3390/sym10040099
https://www.eia.gov/consumption/residential/reports/2009/state_briefs/pdf/ca.pdf
https://www.eia.gov/consumption/residential/reports/2009/state_briefs/pdf/ca.pdf
https://doi.org/10.5120/ijca2017915495
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0565
https://doi.org/10.1016/j.ejor.2005.07.023
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1016/j.scitotenv.2019.135983
https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.1093/bioinformatics/bti499
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0590
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0590
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0590
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0595
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0595
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0600
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0600
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0600
https://doi.org/10.1016/S1573-4412(01)05005-X
https://doi.org/10.1016/S1573-4412(01)05005-X
https://doi.org/10.1145/2020408.2020496
https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032
https://doi.org/10.7717/PEERJ-CS.623
https://doi.org/10.7717/PEERJ-CS.623
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.neucom.2017.11.077
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0630
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0630
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0635
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0635
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0635
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0650
http://refhub.elsevier.com/S0306-2619(23)01777-4/rf0650
https://doi.org/10.3390/en9100767
https://doi.org/10.1016/j.eswa.2017.05.016
https://doi.org/10.1016/j.eswa.2017.05.016
https://doi.org/10.1007/s42452-021-04148-9
https://doi.org/10.1007/s42452-021-04148-9
https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://doi.org/10.1016/j.enbuild.2016.06.076
https://doi.org/10.1016/j.enbuild.2016.06.076

	A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building ...
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Data preparation
	2.3 Model training and evaluation
	2.4 Feature selection
	2.5 Spatiotemporal resolution
	2.6 Feature importance

	3 Results and discussion
	3.1 Model performance
	3.2 Sequential feature selection
	3.3 Feature importance

	4 Conclusion and future work
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


