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H I G H L I G H T S  

• A generalized ML framework is developed. 
• Smart meter data from ~58,000 homes used to predict residential electricity demand. 
• Models also trained with weather, building, and socioeconomic datasets. 
• Annual, monthly and daily usage estimated at household and census tract resolutions. 
• Feature selection and importance used to improve models and their interpretability.  
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A B S T R A C T   

Due to the substantial portion of total electricity use attributed to the residential sector and projected rises in 
demand, anticipating future energy needs in the context of a warming climate will be essential to maintain grid 
reliability and plan for future infrastructure investments. Machine learning has become a popular tool for 
forecasting residential electricity demand, but previous studies have been limited by lack of access to high 
spatiotemporal resolution at a regional scale, which reduces a model’s ability to capture the relationship between 
electricity and its driving factors. In this study, we develop and execute a machine learning framework to predict 
residential electricity demand at varying temporal and spatial resolutions using hourly smart meter electricity 
records from roughly 58,000 homes provided by Southern California Edison as well as local weather data, 
building characteristics, and socioeconomic indicators. The best performing model at the household level, 
multilayer perceptron (MLP), was able to predict electricity demand most accurately at a monthly resolution, 
achieving an r2 of 0.45, while the most accurate annual and daily models (also MLP) had r2 values of 0.34 and 
0.38, respectively. The results also show that models trained with data aggregated to the census tract level were 
more accurate (e.g., r2 = 0.82 for the monthly MLP model) than at the household level across all three temporal 
resolutions analyzed. Total square footage and various climate indicators had the highest feature importance 
values. Square footage was ranked first in feature importance for the annual and daily models, while the month 
of the year, which is strongly tied to temperature, was most important to the monthly model. Through this 
analysis we gain insight into factors that drive electricity demand and the usefulness of machine learning for 
predicting residential electricity use.   
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1. Introduction 

The residential sector is a significant consumer of electricity, ac
counting for 39% of US total end-use electricity consumption in 2020 
[1]. Although per capita electricity consumption flattened in recent 
years [2], there is an expectation that a warming climate coupled with 
electrification trends will drive up electricity demand in the future 
[3–5]. Given the residential sector’s significance in overall electricity 
demand, anticipating future household electricity consumption will be 
essential to maintaining grid reliability, managing peak demand, and 
planning for new power capacity investments. 

In previous studies analyzing factors driving residential electricity 
consumption, temperature has been found to play one of the most sig
nificant roles [6–8]. Additionally, physical building characteristics (e.g., 
square footage, insulation, number of stories, number of appliances) 
[6,9,10], socio-economics, (i.e., occupation, income, education, class) 
[11,12] and occupant behavior and preferences [6,13–15] are signifi
cant factors in influencing electricity demand. While these studies pro
vide some insight into the factors that shape electricity use, the accuracy 
of residential electricity demand models remain limited by the diverse 
and complex nature of the residential sector and the data available to 
capture that diversity, as housing stock can vary significantly both 
across and within regions according to home size, building materials, 
appliances, demographics, occupancy patterns, etc. 

Residential energy modeling studies can be categorized into two 
distinct approaches: top-down [16–21] and bottom-up [22–29]. Top- 
down models rely on aggregate data to establish relationships between 
variables and energy use and predict energy demand [30]. In top-down 
studies, historical energy consumption is typically estimated at a city, 
state, or regional level and regressed against macroeconomic indicators, 
such GDP or unemployment [16,17], energy prices [18,19], housing 
stock trends [19,20], or weather variables [19,21]. The focus of many of 
these analyses is to capture how socioeconomic characteristics impact 
the electricity sector [31]. For example, one study implemented two 
statistical methods, ordinary least squares (OLS) and random coefficient 
(RC), to analyze the relationship between electricity consumption and 
socioeconomic variables, including per capita GNP, GDP growth, 
structure of the economy, urbanization, and level of literacy, using data 
from 93 countries and found that electricity consumption increases with 
socioeconomic development [32]. Salari and Javid estimated electricity 
and natural gas demand in 48 U.S. states while considering socioeco
nomic and demographic variables, building stock characteristics, energy 
prices, and weather data. The results from three different linear 
regression techniques, OLS, random effect (RE), and fixed effects (FE), 
show that the socioeconomic and demographic variables of per capita 
income, household size, and percentage of residents with a high school 
degree have a statistically significant impact on the residential energy 
demand [33]. These top-down approaches are advantageous because of 
model simplicity and the wide availability of data, but their lack of detail 
makes it difficult to identify local demand patterns and areas for 
improvement. 

In contrast, bottom-up models use microdata, i.e., highly detailed 
building and appliance information, from an individual home or subset 
of homes to estimate energy demand and extrapolate to the region, using 
either a physics-based [22–25] or statistical approach [26–28]. Physics- 
based models simulate a region’s electricity demand by utilizing a set of 
building archetypes, which are described based on an extensive selec
tion of possible user-defined input variables, to broadly represent the 
region’s building stock [34,35]. A representative building stock model 
for Los Angeles County was used to estimate the region’s residential 
electricity and natural gas demand in 2020–2060 under climate change 
scenarios and energy efficiency trends [36]. The study found that under 
population growth and temperature increases, the total residential 
electricity demand for the region could increase by 41–87% between 
2020 and 2060. However, the total increase in electricity demand could 
fall to 28% with aggressive energy efficiency policies. Physics based 

models are valuable because they describe current and prospective 
technologies with high detail, including a breakdown of end-use con
sumption, without requiring private residential electricity records and 
building-specific info that are often not publicly available. Because 
simulations depend on physical characteristics and thermodynamic 
principles, the impact of potential technological combinations and en
ergy efficiency measures can be quantified, and policies that more 
effectively target consumption can be developed. The drawbacks of 
physics based models are that many assumptions have to be made 
regarding behavioral factors and their influence on energy [34], since 
the models do not rely on historical data, and the building stock of a 
region must be coarsened to a few types of buildings with estimations 
made for the number of buildings for each type. 

Statistical models, a second type of bottom-up model, use historical 
data, such as energy bills or smart meter data, from a subset of homes to 
relate physical building characteristics, climate, and occupancy 
behavior to energy demand (see [30] for a survey). The benefit of using 
actual energy data is that the effect of a homeowner’s individual be
haviors and demographics can be considered, unlike physics-based 
models which require many assumptions to estimate behavior or top- 
down methods that apply broad socioeconomic indicators to their 
model. For example, Min et al. performed linear regression analysis of 
four different residential end use categories (space heating, water 
heating, cooling and appliance) to develop a mathematical relationship 
between energy use and predictor variables, including energy price, 
household characteristics, housing unit characteristics, regional fixed 
effects, and heating/cooling degree-days [37]. The regression models 
were used to estimate residential energy by end use and fuel type for 
every US zip code and provide an in depth look into how energy use 
varies across regions. In general, bottom-up models are advantageous 
because they reveal information about end usage and finer-scale reso
lution energy patterns and predictions. However, both bottom-up 
methods have higher complexity and computation time than top-down 
methods and require detailed input data that are typically not readily 
available [38]. 

Machine learning has emerged more recently as a method to forecast 
energy usage that can address the complexity, dynamics, and nonline
arity of building energy systems without requiring detailed information 
on the building properties and energy system configurations [39–41]. 
This approach has been proven effective in fast and accurate forecasting 
for building energy prediction studies due to its relative simplicity, 
particularly in comparison to physics based models [42]. Models are 
trained with historical data to determine the relationship between input 
parameters (e.g., weather, building characteristics, and socioeconomic 
data) and building energy consumption [40]. Like linear regression 
models, machine learning models are data-driven but can be better 
equipped to model nonlinear and complex patterns [43,44]. Machine 
learning models are also advantageous because they require less 
detailed building characteristics than physics based methods, which can 
be expensive and time consuming to gather and therefore difficult to 
extrapolate to a larger building stock [45]. Further, studies have shown 
that machine learning models can forecast energy demand with higher 
accuracy than linear regression and physics based models [46,47]. 
While there are advantages of using machine learning models for energy 
forecasting, several gaps exist in the literature, mainly due to constraints 
of the available data. 

Machine learning models have been used to predict electricity de
mand for both commercial [48–50] and residential buildings [51–53] as 
well as for a mixed building stock [54–57] but substantially fewer 
studies have been conducted for residential buildings than other build
ing types. (See Table 1 for a summary of studies that use machine 
learning to forecast residential electricity load). The lack of research in 
the residential sector is most likely due to two limitations: there are less 
data available from private residences versus commercial or industrial 
buildings, and residential consumption is highly variable and greatly 
driven by occupancy patterns that are difficult to model [58–60]. As the 
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number of smart meter installations has increased in recent years, 
electricity data for residential homes have become more widely acces
sible and used in a growing number of machine learning studies. For 
example, one study used hourly consumption data from 6309 individual 
customers during the 2020 COVID mandates to predict how power 
consumption patterns could change under a new remote work era using 
a machine learning framework. The results showed that power con
sumption increased by 13% in the afternoon due to COVID mandates 
[61]. However, most existing machine learning studies that use high 
temporal resolution residential electricity data (i.e. 15-min or hourly 
intervals) only use data for one or a handful of buildings [62–65] as few 
studies have had access to high volumes of individual customer smart 
meter data [66,67]. 

Very few machine learning electric load forecasting studies have 
incorporated weather data, physical building characteristics, and so
cioeconomics together, and those studies that do often use detailed 
occupant information for a select number of homes that are not publicly 
available [43,68,69]. Instead of joining multiple datasets to build a 
diverse feature set, many studies include only the historic electricity 
data of an individual building to forecast its short-term electricity load 
[70–72]. Studies that do incorporate a combination of characteristics are 
often constrained by coarse resolution spatial or temporal data, or vice 
versa. For example, a study by Zhang et al. used household level infor
mation from the Residential Energy Consumption Survey (RECS), Public 
Use Microdata Survey (PUMS) and American Community Survey (ACS) 
datasets for ~2000 residential homes, but the study was limited by the 
course temporal granularity of annual consumption and dataset length 
of one year [73]. Another study trained various machine learning 
models with population, building, and weather data from Dubai to 
investigate the impact of different features on electricity demand, but 
predictions were made at a monthly, community-wide scale [66]. 

Past machine learning energy forecasting studies have predicted 

large scale (e.g. regional or national) energy demand at short [74,75], 
medium [76–78], and long-term time horizons [68,79,80]. Short-term 
load forecasts aid daily grid operations such as energy transfers and 
load dispatch [81], while medium to long-term forecasts are necessary 
for infrastructure investments and future capacity installments [82]. 
However, most studies focus on the short-term, only forecasting load up 
to one day ahead. While there are studies that focus on long-term pre
diction (e.g. months, years) they most often use data with coarse spatial 
resolution, such as at a city-wide or countrywide scale [83–85]. Thus, 
building a more thorough understanding of how input parameters might 
affect long term demand, especially under changing conditions (e.g., 
rising temperatures, higher AC adoption rates, growing incomes), is 
prudent for grid planning over the longer term for aspects such as future 
grid capacity and storage investments. 

The current body of electric load forecasting literature utilizing 
machine learning has been constrained by limited access to 1) high 
resolution data that can capture both spatial and temporal variations in 
energy consumption, 2) statistically representative data at a regional 
scale, and 3) combinations of weather, physical building, occupancy, 
and sociodemographic data. To our knowledge, no study has investi
gated how machine learning models perform under different spatial and 
temporal resolutions for residential electricity demand projections 
across entire regions, and because few machine learning studies in this 
field have used high resolution, regionally representative data with a 
diverse feature set, there is little insight into how to best optimize these 
models. To address these research gaps, we ask the following research 
questions:  

1. To what extent can machine learning models accurately predict 
residential electricity demand with publicly available climate, 
building, and socioeconomic data? 

Table 1 
A summary of studies that use machine learning to forecast residential electricity load.  

Model type Temporal 
resolution 

Spatial resolution Number of 
Buildings 

Training features Region Citation 

SVR 
10-min, 
Hourly, and 
Daily 

Apartment Unit, 
Floor, Building 

1 Weather Data New York City Jain et al. 2014 [60] 

SVM Hourly Building 1 
Weather Data, Building 
Characteristics, Occupant 
Behavior 

France Paudel et al. 2017 
[69] 

ANN, SVR, LS-SVM, GPR, GMM Hourly Building 4 Weather Data, Building 
Characteristics 

San Antonio, 
Texas 

Dong et al. 2016 
[89] 

ANN, SVR, GPR, BN Hourly Building 4 Weather Data San Antonio, 
Texas 

Rahman, Srikumar, 
and Smith 2017 [78] 

SVR, MLP, LR Hourly Building 782 Weather Data Ireland 
Humeau et al. 2013 
[90] 

ANN Hourly, Daily Building 93 
Building Characteristics, 
Occupant Behavior 

Lisbon, 
Portugal 

Rodrigues, Cardeira, 
and Calado 2014 
[91] 

ANN, SVM, Classification and Regression Tree, 
LR, ARIMA, Voting, Bagging, SARIMA-PSO- 
LSSVR, SARIMA-MetaFA-LSSVR 

Daily Building 1 Weather Data 
New Taipei 
City, Taiwan 

Chou and Tran 2018 
[62] 

SVR Daily Building 1, 20, 50 
Weather Data, Building 
Characteristics, Occupant 
Behavior 

France Zhao and Magoules 
2012 [92] 

SVM, BPNN, RBFNN, GRNN Annual Building 59 Building Characteristics Guandong, 
China 

Li, Ren, Meng 2010 
[93] 

ANN, GB, DNN, RF, Stacking, KNN, SVM, DT, 
LR 

Annual Building 5000 Weather Data, Building 
Characteristics 

UK Olu-Ajayi et al. 2022 
[94] 

ElasticNet, Lasso, Ridge, LR, Bagging, RF, GB, 
Adaboost, Extra Trees Annual Zip Code 2246 Building Characteristics Atlanta 

Zhang et al. 2018 
[73] 

MLR, RF, MNN. GB Annual District  
Building Characteristics, 
Socioeconomic Data London 

Gassar, Yun, and 
Kim 2019 [95] 

ElasticNet, Lasso, Ridge, LR, Bagging, RF, GB, 
Adaboost, Extra Trees, MLP, KNN 

Daily, 
Monthly, 
Annual 

Building, Census 
Tract 58,537 

Weather Data, Building 
Characteristics, 
Socioeconomics 

Southern 
California Our study  
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2. How does the spatiotemporal resolution of historical electricity 
consumption data impact the ability of machine learning models to 
make precise predictions of electricity demand?  

3. Which features are most useful for predicting the target variable of 
electricity consumption? 

Here we develop a generalized, repeatable framework to predict 
household-level electricity consumption for the residential sector. We 
train machine learning models using smart meter electricity records for 
58,537 households in the Greater Los Angeles region, as well as feature 
sets derived from publicly available local site weather, building char
acteristics, and socioeconomic data. The main contribution of our study 
is to use household-level smart meter data to capture differences in 
electricity usage in households across different regions, as well as dif
ferences across individual households within regions, to better under
stand the factors that drive trends in residential electricity consumption. 
Our study improves upon previous methods of load forecasting by 
leveraging a diversity of high spatiotemporal resolution datasets at a 
regional scale, previously unavailable to researchers, to test model ef
ficacy across a selection of ML models, spatiotemporal aggregations, and 
feature sets. 

The framework proposed here can serve as a guide for researchers in 
the energy domain utilizing ML to estimate residential electricity con
sumption for a variety of applications. Although our case study is per
formed in southern California, our framework utilizes standardized 
smart meter data and publicly available climate, building, and socio
economic datasets so that it can be repeated in other regions that utilize 
smart meters. Southern California serves as a valuable case study as it 
consists of widely varying microclimates with socioeconomically diverse 
populations and building stocks, making it an ideal location to develop a 
methodology that can be repeated in cities around the world. The het
erogeneity of dataset contributes to this study’s novelty, as residential 
smart meter datasets used for electricity consumption analyses typically 
represent a more uniform climate, set of buildings, or demographics 
[6,11,73,86–88]. In an era where electricity reliability will be 

challenged by a changing climate, trends towards increasing electrifi
cation, and massive decarbonization investments, anticipating future 
demand at more granular resolutions will be important for informing 
decisions related to infrastructure investment, designing equitable de
mand response programs, and offsetting the need for additional power 
plant capacity. 

2. Methods 

The main objectives of this study are to 1) develop a predictive 
machine learning model that can be applied to new and changing sce
narios (e.g., different regions, climates, and building stocks) to predict 
residential electricity demand, 2) identify which variables are most 
useful in predicting residential energy through feature selection and 
feature importance, and 3) optimize model performance by training 
models with various combinations of spatial and temporal data resolu
tion. An overview of the methodology is depicted in Fig. 1. 

2.1. Datasets 

Southern California Edison (SCE), an Investor-Owned Utility (IOU), 
provided household electricity records for roughly 200,000 customers 
across Greater Los Angeles. These homes were selected to be statistically 
representative of the 4.5 million homes that are in the region at a 99% 
confidence level as described in [96] (note: following the data prepa
ration steps in this analysis, the dataset was no longer statistically 
representative of the region). Households within the SCE dataset that 
were located in Orange County, roughly 50,000, were not included in 
the study as there were no publicly available building property data to 
match to the records. After the additional data processing steps 
(described in Section 2.2), the final dataset utilized for our study con
sisted of 58,537 unique single-family homes. The smart meter data were 
collected from each household at 15-min intervals over the course of two 
years from 2015 to 2016 and aggregated to the daily, monthly, and 
annual level for model training. To conduct this study at high geospatial 

Fig. 1. Machine learning model development framework.  
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resolution, the street addresses of each home were provided by the 
utility. Due to the privacy concerns and security requirements of the 
IOU, the data were stored on the University of Southern California 
Center for High Performance Computing (HPC) cluster with a highly 
secure High Security Data Account. 

To gain insight into the factors that influence electricity demand, site 
weather, building characteristics, and socioeconomic data were also 
obtained. Weather datasets with similar spatiotemporal resolution to the 
electricity data were necessary to accurately capture energy-climate 
interactions. Historical weather records were retrieved from two auto
mated weather networks: the California Irrigation Management Infor
mation System (CIMIS) and the National Oceanic and Atmospheric 
Administration’s National Centers for Environmental Information 
(NCEI) [97,98]. Both networks consist of hundreds of automated, land- 
based stations across California that record hourly observations of cli
matic indicators such as temperature, precipitation, dew point, and 
windspeed. For this study, we use only the ambient near-surface air 
temperature from 36 CIMIS stations and 43 NCEI stations. The stations 
were selected based on their proximity to the households, with each 
household being matched to the nearest weather station. The ambient 
temperature observations were used to calculate cooling degree days 
(CDD) and heating degree days (HDD). Degree days are a measure of 
how cold or warm a location is. CDD (HDD) is defined as the daily cu
mulative number of degrees above (below) a given temperature 
threshold. This threshold is defined on an application-specific basis. 
Here, we used 18 degrees Celsius as the threshold (approximately the 
temperature at which air conditioning (AC) is expected to be needed) to 
calculate the daily, monthly, and annual CDD and HDD [99]. We also 
computed a customized metric that we call “extreme cooling degree 
days” (ECDD) with a threshold of 35 degrees Celsius as an indicator of 
extreme heat to further differentiate climates. 

Various building characteristics for individual households were 
retrieved from the Property Information Systems database, established 
by the Office of the Assessor, for Los Angeles, San Bernardino, and 
Riverside Counties, which were the three counties containing the 
households analyzed in this study [100–102]. The county databases 
contain public records for all the properties in each of the three counties 

including square footage, number of bedrooms and bathrooms, year of 
construction, address and more, shown in Table 2. To merge datasets, 
we matched electricity records provided by SCE with each building’s 
physical characteristics using the given street addresses. 

Demographic information was collected to explore the role of pop
ulation characteristics on electricity use. Socioeconomic data were 
retrieved from CalEnviroScreen 3.0 [103], a mapping tool developed by 
the Office of Environmental Health Hazard Assessment, on behalf of 
California Environmental Protection Agency, that identifies which Cal
ifornia communities are subjected to higher pollution levels and are 
often most vulnerable to the effects. CalEnviroScreen includes envi
ronmental, health, and socioeconomic information from state and fed
eral government sources for the approximately 8000 census tracts in 
California. In this study, each individual home within a census tract is 
matched with the corresponding census indicators. The indicators used 
in this study are listed in Table 2. 

2.2. Data preparation 

Data preparation is an important step in machine learning that 
transforms the raw, collected data into a quality dataset that is more 
suitable for model training [104]. A few of the standard tasks that are 
commonly practiced include data cleaning, data transforms, and feature 
engineering [105–109]. The methods and algorithms used in an ML 
study depend on the specific dataset and modeling objectives, but 
broadly, the goal is to better uncover the underlying nature of the data 
by removing erroneous data and produce a dataset that the desired 
analysis can be carried out with. Data preparation measures applied to 
the datasets utilized in this study are outlined in Fig. 1 step a. 

Data cleaning is a practice that filters flawed points from a dataset. In 
some cases, model performance improves by identifying and correcting 
for outliers and missing values in the data [110]. For this application, we 
first screened out customers with less than a year of electricity records 
and homes deemed uninhabited, defined as annual consumption less 
than 20 kWh, the average daily demand of a home in California [111]. 
Our analysis targets single family detached homes so electricity cus
tomers with an apartment indicator in the address line (e.g., unit 

Table 2 
Full feature set.  

Category Feature Type Mean Units Number of Categories 

Physical Building Property Square footage Continuous 1808 Square feet  
Bedrooms Continuous 3.3 Bedrooms  
Bathrooms Continuous 3.2 Bathrooms  
Presence of pool Binary    
Building vintage Continuous 1971   
Building vintage category Categorical   3 

Climate 

Climate zone Categorical   7 
Annual cooling degree days Continuous 1293 Degree days  
Annual heating degree days Continuous 863 Degree days  
Annual extreme cooling degree days Continuous 141 Degree days  
Monthly cooling degree days Continuous 101 Degree days  
Monthly heating degree days Continuous 66.0 Degree days  
Monthly extreme cooling degree days Continuous 9.81 Degree days  
Monthly average temperature Continuous 19.1 degrees Celsius  
Monthly temperature delta Continuous 11.7 degrees Celsius  
Daily cooling degree days Continuous 3.58 Degree days  
Daily heating degree days Continuous 2.32 Degree days  
Daily extreme cooling degree days Continuous 0.39 Degree days  
Daily average temperature Continuous 19.2 degrees Celsius  
Daily max temperature Continuous 25.6 degrees Celsius  
Daily min temperature Continuous 13.1 degrees Celsius  
Daily temperature delta Continuous 12.5 degrees Celsius  

Socioeconomic 

Education Continuous 17.8 Percent  
Linguistic Isolation Continuous 8.1 Percent  
Poverty Continuous 32.5 Percent  
Housing Burden Continuous 17.3 Percent  
Unemployment Continuous 10.7 Percent  

Temporal 
Month Categorical   12 
Day of Week Categorical   7  
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number) or that were designated as an apartment in the County Assessor 
databases were removed from the dataset. We adopted the method 
developed in our previous publication to identify homes with onsite 
electricity generation (e.g. solar panels) or homes without AC because 
this information was not provided by the utility [96]. With this method, 
any home with at least one hour of zero electricity consumption between 
10:00 and 16:00 and one or more hours of positive electricity con
sumption between 17:00 and 23:00 on at least 5% of the days within the 
two-year time period (i.e., 36 days), was identified as a household with 
onsite electricity generation [96]. The electricity-temperature sensi
tivity of a home was also characterized to determine whether a house
hold utilized AC during the period of study based on our framework 
detailed in [96]. Homes with solar panels and/or without AC were 
filtered from the data as not to distort the electricity-temperature rela
tionship of the single-family homes remaining in dataset. 

Outliers were removed based on the total square footage of the home 
and electricity demand. The average daily electricity demand per square 
footage was calculated, and customers with an electricity demand three 
times greater than the standard deviation for 10% of the time period 
were filtered out to exclude possible multi-family units or very high 
consuming households that might skew models. Using the same 
reasoning, homes with square footage above 20,000 square feet were 
identified as outliers and removed. The outliers were located throughout 
the region and not biased towards certain areas. The features in each of 
the datasets were also processed, and individual variables with more 
than 10% of records missing were excluded. The number of stories in 
each building was the only omitted feature across all the originally 
included features due to the frequency at which it was missing. Table 2 
summarizes the features used in the study. 

Data preprocessing steps are performed to prepare the raw data for 
subsequent processing steps. A few basic preprocessing steps include 
handling missing data, converting formats, and data transformations. 
For the weather data, numerical imputation was used when hourly 
weather data were missing to compute degree days and daily average 
values. Additionally, date formats were converted to match weather 
data and electricity data. As stated, variables from the county assessor 
databases were discarded if missing more than 10% of the time. Cate
gorical encoding is a key data preprocessing technique that converts 
categorical variables to numerical representation so that they are ma
chine readable [112]. In this feature set, the climate zone, presence of a 
pool, building vintage category, month, and day of week are all unor
dered, categorical variables that are categorically encoded prior to 
model training using OneHotEncoder from the Python Scikit-learn li
brary [113]. 

Data transformations are used to convert a dataset into a format that 
is more suitable for a given machine learning model. The trans
formations might be mandatory, meaning that they are necessary for 
data compatibility, or optional quality transformations, which help the 
model perform better [114]. Transformations are commonly used to 
scale and standardize features to the same range so that variables have 
equal influence [115]. Because there is a large difference in scale across 
the input variables for this study, the StandardScaler transform from the 
Python Scikit-learn library was selected to standardize the numerical 
features by subtracting the mean and scaling to unit variance. This en
sures that one feature with high variance does not dominate the rest 
during training. A PowerTransformer, from the Scikit-learn library, and 
log transform were also implemented prior to model training, but both 
reduced model performance and were thus omitted in the final analysis. 

2.3. Model training and evaluation 

One of the main objectives of this study is to develop an optimized 
machine learning framework that can predict the electricity demand of 
individual households using the variables described in Section 2.1. 
Machine learning models take a set of features, X, as input variables and 
a target variable, Y. The models build mathematical functions that 

define Y in terms of X based on the relationships in the training set. 
Using these functions, target variable predictions are made on a test set 
based on the corresponding input variables. Machine learning models 
from varying machine learning model classes, including linear, non- 
linear, ensemble, and tree models, were selected to see which models 
and model types are best suited for this application. In step b of Fig. 1, 
we trained the following 11 machine learning models from the scikit- 
learn Python library in our study: ridge regressor, linear regressor, 
elasticnet regressor, lasso regressor, adaboost regressor, bagging re
gressor, gradient boosting regressor (XGBoost), random forest regressor 
(RF regressor), extra trees regressor (ET regressor), multi-layer percep
tron regressor (MLP regressor), and k-nearest neighbor regressor (KNN 
regressor). It is important to note that because the goal of this study is to 
build a repeatable framework that can be applied to other regions (as 
opposed to creating an optimal model for our particular dataset and 
region), we focus on machine learning models that are generalizable and 
easy to implement. However, a more complex set of models, or combi
nations of models, might lead to improved model performance. These 
models are optimized by finding the ideal coefficients, θ, that minimize 
the sum of losses between each data point and the predicted value 
calculated by a cost function, L, which varies by model. For each of the 
selected models, the minimized cost function was mean squared error 
with some models having added regularization penalties that are built 
in. 

In machine learning, hyperparameters are parameters explicitly 
defined by the user that control a given model’s learning process. The 
values and configurations for the hyperparameters can be adjusted prior 
to training in an effort to achieve optimal performance. However, 
determining the best values is often completed through rule of thumb or 
trial and error, which are both time intensive. For the scope of this study, 
the hyperparameters of the models were only slightly adapted from the 
default settings of the scikit-learn Python library version 0.24.2 in in
stances where the default settings might cause long run times. For the 
XGBoost regressor, the max depth was adjusted to 4 and the number of 
estimators was reduced to 20. Changes made to the RF regressor include 
setting the max depth to 3 and the number of estimators to 60. Lastly, the 
max depth for ET regressor was set to 3. For these three models, the rest 
of the hyperparameters remained as the default. For all other models, all 
hyperparameters were set to the defaults. Additional hyperparameter 
tuning could improve model performance, and we do not suggest that 
these are the optimal settings. 

Resampling methods are commonly used in machine learning studies 
to reduce bias in the training set by repeatedly sampling from the 
original data [116–119]. The technique is used to avoid overfitting, 
which happens when a model has learned the training data too well 
instead of a generalizable relationship. Overfitting results in poor model 
performance when predicting on new data [120]. In the model training 
steps shown in Fig. 2, a bootstrap method was implemented in which n 
number of equally sized subsets are extracted from the dataset with 
replacement [121]. During training, data leakage can occur when in
formation is shared between the training and testing, leading to unre
alistically high levels of measured model performance [122]. To avoid 
data leakage in this study, the entirety of each of the household’s data 
was included in either the training or test set for each split (i.e., the 
training and test sets have the entirety of a households two years of 
data).The model was trained on each of the sampled subsets (training set 
size of ~90,000, ~1,000,000, ~29,000,000 records, respectively, for 
the annual, monthly, and daily models) and was evaluated on the test set 
of remaining data, as illustrated in Fig. 2. To evaluate the models, we set 
n equal to 10 and recorded the bootstrapped mean score for the four 
error metrics described below. 

For this study, several accuracy metrics were explored including 
mean absolute error, median absolute error, and r2 score. The mean 
absolute error (MAE) and median absolute error (MdAE) are both scale 
dependent error metrics, meaning the error metrics are expressed in 
units. MAE measures the average magnitude of the absolute value of 
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errors in a set of predictions, while MdAE is the median value of all the 
absolute values of the residuals. Mean absolute percent error (MAPE) is 
the average difference between the forecasted value and the actual value 
given as a percentage [123]. The r2 score, or the coefficient of deter
mination, measures the amount of variance between the samples in the 
dataset and predictions in the model. The drawback of scale-based 
metrics for this application is that they cannot be directly compared 
across temporal resolutions with differing magnitudes of electricity de
mand. Conversely, percentage-based metrics are flawed because MAPE 
might be higher for values that tend towards zero (e.g., some daily en
ergy values) and could have different values for two predictions with the 
same absolute error. Because it does not have these same interpretability 
limitations, we selected the r2 metric to assess best model performance 
in step c of Fig. 1 [124]. The remaining metrics are still reported for 
completeness. 

2.4. Feature selection 

Following the data preparation steps, an initial round of model 
training is performed to determine the overall best models. Feature se
lection is conducted after the first round of model training on the top five 
performing models to attain the final feature set (See step d of Fig. 1). 
Feature selection is the process of identifying and removing redundant 
or irrelevant variables that are less useful in predicting the target vari
able. By removing extraneous or redundant features, model performance 
and computational time for training can both be improved [125–127]. 
Most commonly used feature selection algorithms can be broadly clas
sified as filter or wrapper methods. Filter methods rank each feature by 
evaluating the relationship between the input and target variables and 
then select only the highly ranked features. Wrapper methods select the 
feature subset that leads to best model performance based on a specified 
performance indicator [128]. 

In this study we apply the wrapper method, using the sequential 
forward selection (SFS) algorithm from the mlxtend library to reduce the 
d-dimensional dataset into a k-dimensional dataset, where k < d [129]. 
SFS is a greedy search algorithm in which features are added one at a 

time until the best feature subset of k features is determined based on the 
cross-validated r2 score. In the first iteration, each feature is individually 
tested and the single feature, x, that leads to best model performance is 
selected. In the subsequent iteration, every combination of feature x plus 
an additional feature is tested to determine the two features that in 
combination achieve the highest performance. Iterations are repeated 
until a combination of features of size k is found. The value of k can be a 
specified number or range of numbers. For our model, we set the range 
as 0 to k, with k equal to the total number of features, to attain the 
feature set size with the overall best model performance. While feature 
selection is a valuable algorithm in the machine learning process 
because of its ability to reduce computational time and improve model 
accuracy, it does not aid in increasing the interpretability of models. 
Feature selection can inform hypotheses between features and the target 
variable, but it does not provide causal understanding for why specific 
features were selected or discarded from the final feature set. 

2.5. Spatiotemporal resolution 

To explore the impact of spatiotemporal data resolution on model 
performance, models were trained with daily, monthly, and annual 
electricity demand (step b of Fig. 1), and model performance was 
evaluated for each resolution (step c of Fig. 1). Features with a temporal 
dimension were averaged (e.g., daily average temperature) or aggre
gated (e.g., annual CDD) depending on the variable. The ability of our 
model to predict on larger spatial scales was evaluated using two 
different methods, illustrated in Fig. 3, to gain insight into how the 
spatial resolution of the electricity consumption dataset impacts the 
ability of the model to make accurate predictions. In the first method, 
referred to as pre-aggregation, the models were trained with household 
data, and the predicted electricity consumption for all the homes within 
a census tract was averaged and compared to the true mean of the test 
set observations. Conversely, in the second method, post-aggregation 
models were trained and tested with census tract averages of elec
tricity consumption and input variables. 

Fig. 2. Graphical representation of bootstrap resampling methods used during model training, where n is equal to 10.  
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2.6. Feature importance 

Feature importance techniques are beneficial because they improve 
the explainability of machine learning models that are often complex 
and difficult to unpack and reveal relationships between features and 
target variables [130–132]. There is often overlap between the tech
niques used for feature importance and feature selection; the key dif
ference is that feature selection is a preprocessing technique that is 
applied before a model is trained to detect the most relevant features and 
discard the others. Feature importance algorithms are typically imple
mented following model training to determine which features are most 
useful to the model and explain the model behavior [133]. In step d of 
Fig. 1, we selected the permutation feature importance algorithm from 
the Python Scikit-learn library, because it has a fast calculation time, is 
easy to understand, and is applicable for all models in this study [134]. 
Permutation importance measures the deterioration of model perfor
mance after permuting each feature, which effectively breaks the re
lationships between the feature and the target variable. Because 
permutation importance is calculated after a model has been fitted, 
reordering the values of a feature does not impact the relationship 
learned by the model. The process is as follows: 1) train model, 2) 
individually shuffle the values of a single variable within the test set and 
compute the drop in performance score, and 3) return the dataset to the 

original order and repeat for each of the remaining variables. A feature 
that significantly impacts the target variable will greatly reduce model 
performance when shuffled, while one that is less important will have a 
smaller impact on the accuracy. 

3. Results and discussion 

The goal of this study was to develop, evaluate, and optimize ML 
models for residential electricity forecasting. Results from this study 
gauge the extent to which various machine learning models can accu
rately predict residential electricity demand with publicly available 
climate, building, and socioeconomic datasets and at differing spatio
temporal data resolutions. The feature selection and feature importance 
steps also provide better understanding of the models, giving insight into 
which features are most useful to make energy demand predictions at 
various scales. 

3.1. Model performance 

We wanted to understand and compare a model’s ability to predict 
short-term (e.g., daily) versus longer-term electricity consumption (e.g., 
annual), as well as household level versus more aggregated scales (e.g., 
census tracts) of electricity consumption, as projections at each of these 

Fig. 3. Two data aggregation methods were executed to test how the spatial resolution of input data impacts a model’s ability to predict electricity demand.  
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various spatiotemporal resolutions offer different insights and utility 
based on application. Daily household level data has the advantage of 
capturing day to day variations in energy use among households, which 
would be important in situations such as understanding the impacts of 
demand side management strategies or behind-the-meter generation or 
storage technologies across different populations. For instance, if a 
utility wanted to anticipate how time-of-use rate structures might affect 
wealthy versus marginalized communities within their service terri
tories, understanding household level variability on finer timescales 
would be advantageous. There are other applications in which we might 
want to understand how electricity use is impacted at broader regional 
scales or across longer time scales. For example, regional scale forecasts 
would be most desirable for planning longer term investments in new 
utility-scale generation capacity. 

Table 3 presents the model results for all models across the three 
temporal resolutions (complete results can be found in the SI). The best 
performing models and temporal resolutions are consistent across the 
four different performance metrics (e.g., MLP regressor is the best per
forming model for each temporal resolution when evaluated by each 
performance metric). In general, the MAE, MdAE, and MAPE are larger 
for the annual models than monthly and daily models and larger for 
monthly models than daily models. The results for MAE and MdAE are 
intuitive because the yearly electricity demand is greater than the 
monthly or daily demand and will then likely have larger absolute 
prediction errors as well. The MAPE results suggest that the models can 
more accurately predict monthly and daily electricity demand than 
annual demand. 

For this study, the r2 value was selected as the main indicator of 
model performance to allow for direct comparisons between the annual, 
monthly, and daily models. The results showed that prediction accuracy 
varied significantly across the different ML models and varying temporal 
resolutions. Fig. 4 summarizes the results of the top five best performing 

models across all three temporal resolutions. Their r2 values range from 
0.25 to 0.45, suggesting that while these models can likely be useful in 
informing broader trends in residential electricity use, there is still a lot 
of behavioral variability across individual homes that cannot be 
captured by the feature set utilized in this study, limiting the models’ 
performance above this r2 range. It is important to note that there is 
temporal variation in the model performance (e.g., monthly model 
performs better in certain months), and a time-series plot of the per
formance variation is shown in the SI. 

The results depicted in Fig. 4 also show how the temporal resolution 
of data impacts model performance; the r2 values are slightly higher for 
all the ML models trained with monthly data, rather than annual or 
daily, except random forest regressor. The MLP Regressor model trained 
with monthly electricity data has the highest overall r2 of 0.45, with the 
best r2 for annual and daily data being 0.34 and 0.38 respectively, using 
MLP Regressor. Monthly models are likely more accurate in predicting 
the target variable of electricity demand because the monthly data 
average out some of the highly variable demand seen in the daily data 
but capture seasonal weather trends more accurately than annual 
models. While the monthly MLP model has the overall best model per
formance, in general, the linear models perform with similar accuracy to 
the non-linear models (e.g., MLP, RFR) when comparing r2 values. 

Direct comparisons of model performance between this study and 
studies in the literature are limited. This is because studies either 1) 
utilize household data to make short term predictions for a single 
household or set of households or 2) use aggregated data to make longer 
term estimates at larger spatial scales. Typically, these studies have 
higher model performance as the individual homeowner’s behavior is 
either more easily learned when a single household is used or averaged 
out in aggregated demand loads. For example, a study that predicted 
household daily electricity for one home using neural networks had r2 

values ranging from 0.87 to 0.91 [63]. The results of our study are more 
consistent with the few studies that have access to large samples of 
household electricity data. Zhang et al. used ML models to predict 
annual residential electricity demand with r2 scores ranging from 0.78 to 
0.88. While these values are higher than those reported in our study, the 
household’s annual electricity bill was used to predict demand and was 
shown to be most highly correlated [73]. A study by Williams and 
Gomez predicted monthly, household residential electricity demand in 
Texas with three methods: linear regression, regression trees, and 
multivariate adaptive regression splines and achieved r2 values ranging 
from 0.41 to 0.48 [135]. 

Most prior electricity forecasting work has utilized coarser spatial 
scale data, which has limited analysis of home-to-home variability. 
While the smart meter data utilized in this study offer much better 
spatial resolution, there are applications where household level pro
jections are less desirable than for more coarse regional spatial extents. 
While acknowledging this, this study is the first to analyze how different 
techniques for aggregating data can affect the accuracy of ML model 
performance across large spatial scales. In other words, no study has 
explored whether high-resolution regional ML model projections will be 
more accurate if 1) models are trained with household level data that 
preserve variations in demand, and then aggregate results, or 2) data are 
first aggregated to the spatial scale at which predictions are being made 
prior to running the ML model. 

Table 4 summarizes the model results of the two different spatial 
aggregation methods. Again, the results are consistent across the four 
performance metrics within a specific spatial and temporal resolution 
combination (e.g., the MLP regressor is the most accurate monthly post- 
aggregation model regardless of the selected performance metric). For 
all three temporal resolutions and each evaluation metric, the pre
dictions from the post-aggregation method were overall more accurate 
than the predictions from the pre-aggregation method. 

For direct comparison of annual, monthly, and daily results, the 
overall best r2 values for each combination of temporal resolution and 
spatial aggregation method are highlighted in Fig. 5. The results show 

Table 3 
Annual, monthly, daily results before sequential feature selection for top 5 
models.  

Temporal 
resolution 

Model Mean 
absolute 
error 

Median 
absolute 
error 

r2 Mean 
average 
percent 
difference 

Annual 

Ridge 
Regressor 

2780 ±
16.4 

2120 ±
13.45 

0.31 ±
0.01 

112 ± 2.33 

Linear 
Regressor 

2780 ±
16.4 

2120 ±
13.48 

0.31 ±
0.01 112 ± 2.33 

GB Regressor 
2780 ±
15.1 

2140 ±
11.05 

0.32 ±
0.01 113 ± 2.18 

RF Regressor 2830 ±
14.1 

2180 ±
14.30 

0.30 ±
0.01 

113 ± 2.20 

MLPRegressor 2740 ± 
15.8 

2090 ± 
8.31 

0.34 ± 
0.01 

111 ± 
2.21 

Monthly 

Ridge 
Regressor 

250. ±
1.02 

184 ±
0.69 

0.38 ±
0.0 

83.7 ±
9.65 

Linear 
Regressor 

250. ±
1.02 

184 ±
0.69 

0.38 ±
0.01 

83.7 ±
9.65 

GB Regressor 255 ±
0.98 

195 ±
1.07 

0.36 ±
0.01 

89.8 ±
11.0 

RF Regressor 277 ±
2.61 

212 ±
1.82 

0.25 ±
0.01 

94.6 ±
12.1 

MLPRegressor 
235 ± 
1.47 

171 ± 
1.52 

0.45 ± 
0.01 

81.5 ± 
9.01 

Daily 

Ridge 
Regressor 

9.59 ±
0.0266 

6.96 ±
0.0284 

0.30 ±
0.007 

74.9 ±
1.41 

Linear 
Regressor 

9.04 ±
0.0255 

6.47 ±
0.0251 

0.37 ±
0.0074 

69.9 ±
1.28 

GB Regressor 
9.18 ±
0.028 

6.81 ±
0.0308 

0.35 ±
0.0067 

73.9 ±
1.41 

RF Regressor 
9.76 ±
0.0297 

7.11 ±
0.0401 

0.26 ±
0.0042 

77.2 ±
1.47 

MLPRegressor 
8.72 ± 
0.0508 

6.13 ± 
0.143 

0.38 ± 
0.026 

67.4 ± 
2.32  
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that for models being trained with all three temporal resolutions of data, 
predictions made at the census tract level with both methods are more 
accurate than at the household level. Models trained with monthly data 
again perform better than models trained with annual or daily data for 
both aggregation methods, with the highest r2 value being 0.82 for the 
MLP Regressor trained with the post-aggregation method. The r2 values 
for annual and daily models using the post-aggregation method are 0.66 

and 0.69, respectively. The higher performance of the post-aggregation 
method suggests that, when assessing prediction accuracy for aggre
gated data, a model originally trained and optimized on data after ag
gregation will perform better than one that is trained prior to data 
aggregation. This means that household level data are not necessary for 
improving the accuracy of residential electricity projections for coarser 
spatial scales, such as the census tract level. 

Fig. 4. Model performance measured by r2 across the overall top 5 best performing models trained with annual, monthly, and daily data. The r2 values, represented 
by the bars, range from 0.25 to 0.45, with the monthly MLP model achieving the highest score. 

Table 4 
Results of the pre-aggregation and post-aggregation training for the top 5 models and all 3 temporal resolutions.  

Temporal/spatial resolution Model Mean absolute error Median absolute error r2 Mean average percent difference 

Annual Pre-aggregation 

Ridge Regressor 1430 ± 28.1 1020 ± 24.2 0.47 ± 0.01 30.6 ± 2.60 
Linear Regressor 1430 ± 28.2 1020 ± 24.2 0.47 ± 0.01 30.6 ± 2.60 
GB Regressor 1410 ± 30.3 1030 ± 24.3 0.48 ± 0.01 31.1 ± 2.73 
RF Regressor 1470 ± 33.4 1090 ± 29.1 0.44 ± 0.01 32.0 ± 2.73 
MLP Regressor 1370 ± 22.7 986 ± 20.7 0.51 ± 0.01 29.8 ± 2.63 

Annual Post-aggregation 

Ridge Regressor 831 ± 30.2 618 ± 28.0 0.65 ± 0.04 13.3 ± 0.43 
Linear Regressor 829 ± 30.5 618 ± 28.3 0.66 ± 0.04 13.3 ± 0.43 
GB Regressor 824 ± 40.8 600 ± 17.4 0.65 ± 0.04 13.7 ± 0.77 
RF Regressor 888 ± 48.5 638 ± 20.5 0.60 ± 0.04 14.6 ± 0.73 
MLP Regressor 868 ± 45.5 628 ± 27.7 0.63 ± 0.03 13.8 ± 0.67 

Monthly Pre-aggregation 

Ridge Regressor 135 ± 1.25 97.9 ± 1.94 0.58 ± 0.01 25.9 ± 0.81 
Linear Regressor 135 ± 1.25 97.9 ± 1.94 0.58 ± 0.01 25.9 ± 0.81 
GB Regressor 147 ± 1.37 113 ± 1.37 0.53 ± 0.01 29.4 ± 1.00 
RF Regressor 175 ± 1.82 138 ± 1.88 0.36 ± 0.02 34.5 ± 1.07 
MLP Regressor 112 ± 1.64 78.6 ± 1.44 0.70 ± 0.02 22.1 ± 1.10 

Monthly Post-aggregation 

Ridge Regressor 104 ± 2.02 75.2 ± 1.29 0.68 ± 0.02 18.1 ± 0.44 
Linear Regressor 104 ± 2.02 75.2 ± 1.29 0.68 ± 0.02 18.1 ± 0.44 
GB Regressor 112 ± 3.57 84.7 ± 2.45 0.64 ± 0.02 20.0 ± 0.77 
RF Regressor 144 ± 3.16 106.9 ± 1.49 0.40 ± 0.03 25.4 ± 0.84 
MLP Regressor 75.2 ± 2.83 51.6 ± 1.77 0.82 ± 0.02 13.5 ± 0.63 

Daily Pre-aggregation 

Ridge Regressor 9.16 ± 0.025 6.58 ± 0.025 0.35 ± 0.006 70.7 ± 1.3 
Linear Regressor 9.16 ± 0.025 6.58 ± 0.025 0.35 ± 0.006 70.7 ± 1.3 
GB Regressor 9.18 ± 0.028 6.81 ± 0.031 0.35 ± 0.006 73.9 ± 1.40 
RF Regressor 9.76 ± 0.03 7.11 ± 0.04 0.26 ± 0.004 77.2 ± 1.47 
MLP Regressor 8.71 ± 0.043 6.12 ± 0.125 0.38 ± 0.021 67.3 ± 2.68 

Daily Post-aggregation 

Ridge Regressor 3.60 ± 0.09 2.54 ± 0.06 0.69 ± 0.02 19.2 ± 0.82 
Linear Regressor 3.60 ± 0.09 2.54 ± 0.06 0.69 ± 0.02 19.2 ± 0.82 
GB Regressor 3.70 ± 0.13 2.67 ± 0.07 0.67 ± 0.02 20.4 ± 0.79 
RF Regressor 4.49 ± 0.12 3.23 ± 0.06 0.53 ± 0.01 24.4 ± 0.76 
MLP Regressor 4.08 ± 0.11 2.98 ± 0.10 0.62 ± 0.03 22.6 ± 0.95  
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3.2. Sequential feature selection 

After the initial round of model training, feature selection was 
completed to find the most relevant subset of features. Sequential 
feature selection is commonly implemented in ML studies both to opti
mize model performance and to cut down on run times by reducing the 
feature set. The results from the sequential feature selection algorithm 
are shown in Fig. 6 for annual, monthly, and daily data resolutions. 
Certain variables were consistently selected across all models and tem
poral resolutions, such as the home’s square footage and whether a 
home has a pool. Climate related features, such as the climate zone the 
house belongs to, which month it is, or differing temperature indicators, 
were also frequently selected. At the annual level, ECDD was selected for 
all the top five models except one, while CDD and HDD were selected for 
three and two of the models, respectively. For monthly models, which 
month it is (a proxy for weather) was selected for all models, and ECDD 
and HDD were selected for all but one. The CDD and monthly mean 
temperature were only kept in the final feature set for two of the top five 
monthly models. Lastly, the month variable and daily max temperature 
were selected by feature selection for all models at the daily level, fol
lowed by CDD, ECDD, daily mean temperature, and daily min temper
ature, which were selected for all but one model. 

Socioeconomic indicators, including education, linguistic isolation, 
poverty, housing burden, and unemployment, were selected less 
frequently. These variables reflect census tract-level. 

data so they are imprecise indicators in characterizing house to 
house variability. Across all three temporal resolutions, education and 
linguistic isolation were the two socioeconomic indicators that were 
most often kept in the final feature set. These features are often corre
lated to household financial insecurity, which impacts electricity usage. 
However, all the demographic variables are highly correlated, making it 
difficult to tease out their individual influences on energy behavior or 
determine why one socioeconomic indicator is more useful to model 
training than another. 

3.3. Feature importance 

After training the models, permutation feature importance was used 
to examine which of the features were most useful to predicting elec
tricity consumption. The results of the algorithm showed a decrease in 
model score (here, r2) when the records of a specific feature are 
randomly shuffled within the dataset, breaking the relationship between 
the feature and the target and revealing how much the model depends 
on that feature. Table 5 shows the permutation feature importance of all 
the features in the final feature set for household level data with the top 
performing ML model, which was MLP Regressor for annual, monthly, 
and daily trained models. Total square footage was consistently one of 
the most useful features to the model, ranking first for annual and daily, 
with feature importance values of 0.402 and 0.232 respectively, and 
second for monthly with a value of 0.272. The annual and daily feature 
importance values for square footage are an order of magnitude higher 
than any of the other annual or daily feature values which suggests that 
the rest of the variables do not matter much for these prediction cases. 

These results show that feature importance varies significantly 
depending on the temporal resolution. In general, weather indicators 
were much more important to the monthly model than the daily and 
annual models. For example, the month of the year, which is strongly 
tied to temperature, was the most important feature for the monthly 
model and had a value of 0.336. Conversely, the month of the year is 
ranked second overall for the daily model, but with a much lower mean 
importance of 0.087. The low importance of weather features for the 
daily model could be because there are so many other uncaptured, 
highly variable daily occupancy factors that outweigh the impact of 
weather. Similarly, ECDD was the highest ranked climate indicator for 
the annual model with a low mean importance of 0.059. Because the 
model was only trained with two years of data, there might not have 
been enough variation in annual degree days for the model to learn, 
leaving building characteristics to be more useful in predicting annual 
electricity use. 

The results show that socioeconomic indicators are generally less 
useful to the model than climate and building characteristics, ranking 
low in importance across each of the temporal resolutions. Of the five 

Fig. 5. Model performance of the best models for each combination of temporal resolution and spatial aggregation method measured by r2. The r2 values, repre
sented by the bars, range from 0.34 to 0.81, with the monthly, post-aggregation MLP model being the most accurate. 
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Fig. 6. Final feature set for top performing annual, monthly, and daily models after performing sequential feature selection. The features selected by the algorithm 
are filled in with color. *Feature selection algorithm was not completed for these combinations of model/temporal resolution because it was too computation
ally expensive. 
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socioeconomic indicators, linguistic isolation is shown to have the 
highest importance for annual, monthly, and daily models, with values 
of 0.018, 0.028, and 0.015 respectively. Since socioeconomic variables 
are only available at the census tract level, it follows that they would not 
be the best predictors for household electricity demand. 

In comparing feature selection and feature importance, the features 
that were most frequently selected also had consistently higher values 
for feature importance. Accordingly, those that were not often included 
in the final feature set typically had lower values of importance in the 
instances that they were included. For example, the square footage and 
pool ownership variables were selected for every model and temporal 
resolution, and their mean importances also ranked in the top three for 
all three temporal resolutions. 

4. Conclusion and future work 

Machine learning models are capable of learning highly complex 
relationships between electricity demand and its driving factors, making 
them a promising tool for energy load forecasting. To date, studies uti
lizing ML models to predict residential electricity demand at a regional 
scale have only had access to coarse spatial (e.g., city, state, regional) 
and temporal (e.g., monthly or annual) electricity data. 

The results show that ML models can predict household level elec
tricity demand with a significant degree of accuracy in certain cases; the 
best performing model, MLP regressor trained with monthly data, ach
ieves an r2 value of 0.45. Monthly trained models may have superior 
performance to annual and daily models because some of the highly 
variable day to day differences in energy demand behavior are averaged 
out while still providing a greater distribution of training data than the 
annual model. Across all temporal resolutions, models predicted census 
tract level residential electricity demand with higher accuracy than for 
individual households. Using the post-aggregation training method for 
an MLP regressor model trained with monthly data, the mean electricity 
demand of census tracts was predicted with an accuracy of an r2 of 
0.82exi. These results are promising because they show that residential 
electricity demand can be predicted at relatively high-resolution spatial 
scales without needing private customer electricity data and can provide 
insight into patterns of energy demand which are necessary to under
stand for daily grid operation and future infrastructure investments. 

The total square footage of a building as well as climate indicators 
were consistently selected to be in the final feature set across all the 
models. These features typically were found to be most important by the 
feature importance algorithm; total square footage, for example was 
ranked first for the annual and daily models and second for the monthly 
model. Socioeconomic indicators did not rank as high but because they 
were reported at the census tract level, it is harder to determine their 
influence on household demand. As this study serves as a framework for 
future grid modeling studies, feature selection and feature importance 
results can also give insight into where data retrieval efforts should be 
focused. 

Certain limitations cap the extent to which predictions of residential 
electricity demand can be made. First, individual behavior of home
owners is highly variable and unpredictable and can vastly impact 
electricity demand. The socioeconomic data serves as a proxy to relate 
the occupants to their possible energy behavior, but it is not informative 
enough to account for many of their decisions pertaining to electricity 
use. As information about the demographics of homeowners is highly 
private and occupancy patterns would be almost impossible to extract, it 
would be difficult to surpass this limitation. Second, while the data is 
regionally representative, it is not necessarily representative of the 
conditions that are the focus of the study. For example, the annual 
models only have two years of data that may have, due to external 
factors, been easier or more difficult for models to predict on rather than 
other years. 

The knowledge gained from this study can serve as a reference to 
optimize building energy prediction studies, which are crucial to 
anticipate future energy needs and develop climate adaption and miti
gation plans. Researchers can build off the framework presented in this 
study and improve model performance through a number of techniques 
such as tuning models’ hyperparameters, using a combination of models 
based on the results of a more granular performance assessment, and 
employing more complex ML models. Future work will incorporate 
highly resolved estimates of future temperature across the region of 
study into the optimized ML model to investigate how residential elec
tricity demand might change due to urban warming. Under a warming 
climate, the distribution of temperatures, and any other weather data 
used in future studies, will be fundamentally different than the historical 
data that is available for model training. Building properties and 

Table 5 
Feature importance with annual, monthly, and daily data by household.  

ANNUAL MLP   MONTHLY MLP   DAILY MLP   

Feature Mean 
importance 

Std 
deviation 

Feature Mean 
importance 

Std 
deviation 

Feature Mean 
importance 

Std 
deviation 

Total Sqft 0.402 0.004 Month 0.336 0.001 Total Square Feet 0.232 0.049 
Pool 0.075 0.002 Total Sqft 0.272 0.001 Month 0.087 0.019 
ECDD 0.059 0.001 Climate Zone 0.081 0.001 Pool 0.025 0.008 
CDD 0.053 0.002 Pool 0.063 0.001 Daily Max Temp 0.022 0.017 

Climate Zone 0.042 0.002 Linguistic Isolation 0.028 0.001 
Linguistic 
Isolation 0.015 0.009 

Vintage 0.023 0.001 Bathrooms 0.026 0.001 Bathrooms 0.013 0.010 
Linguistic 

Isolation 
0.018 0.001 Vintage 0.026 0.000 Climate Zone 0.010 0.008 

Bathrooms 0.011 0.001 Monthly Mean 
Temp 

0.021 0.000 Day of Week 0.004 0.003 

Education 0.007 0.000 Education 0.020 0.001 Education 0.004 0.008 
HDD 0.006 0.000 Bedrooms 0.016 0.000 Vintage Category 0.003 0.003 
Vintage Category 0.004 0.000 Poverty 0.015 0.000 CDD 0.003 0.007 
Unemployment 0.001 0.000 Vintage Category 0.011 0.001 Daily Mean Temp 0.000 0.000    

Monthly Delta Temp 0.010 0.000 ECDD 0.000 0.000    
ECDD 0.009 0.000 Daily Min Temp 0.000 0.000    
HDD 0.007 0.000 Daily Temp Delta 0.000 0.000    
CDD 0.006 0.000 HDD 0.000 0.000    
Unemployment 0.005 0.000 Poverty 0.000 0.000    
Housing Burden 0.003 0.000 Vintage 0.000 0.000       

Bedrooms 0.000 0.000       
Unemployment 0.000 0.000       
Housing Burden 0.000 0.000  
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socioeconomics will also shift, meaning the models will be trained with a 
feature distribution that no longer exists. The inconsistency between the 
feature set for training and real-world data will be a limitation for future 
studies as models will have to both interpolate and extrapolate well to 
make accurate predictions of electricity demand decades into the future. 
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