

WILEY

MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for Water Security in the Climate Change Era

Journal:	WIREs Water
Manuscript ID	WATER-828.R2
Wiley - Manuscript type:	Overview
Date Submitted by the Author:	n/a
Complete List of Authors:	Wutich, Amber Thomson, Patrick; Oxford University, Geography Jepson, Wendy; Texas A and M University System, Geography Stoler, Justin; University of Miami Cooperman, Alicia Doss-Gollin, James Jantrania, Anish Mayer, Alex Nelson-Nuñez, Jami Walker, W. Shane Westerhoff, Paul
Choose 1-3 topics to categorize your article:	Water, Health, and Sanitation (WAAB) < Engineering Water (WAAA), Water Governance (WBAB) < Human Water (WBAA), Sustainable Engineering of Water (WAAC) < Engineering Water (WAAA)
Keywords:	hybrid, informality, point-of-use, justice, sanitation

SCHOLARONE™
Manuscripts

1
2
3 **Title: MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for**
4 **Water Security in the Climate Change Era**
5

6 First Author:
7

8 Amber Wutich 0000-0003-4164-1632
9

10 School of Human Evolution & Social Change, Cady Mall, Tempe, AZ 85281
11

12 Arizona State University
13

14 awutich@asu.edu
15

16 Patrick Thomson 0000-0002-0697-1866
17

18 University of Oxford
19

20 patrick.thomson@ouce.ox.ac.uk
21

22 Corresponding Author:
23

24 Wendy Jepson 0000-0002-7693-1376
25

26 Texas A&M University
27

28 wjepson@tamu.edu
29

30 Justin Stoler 0000-0001-8435-7012
31

32 University of Miami
33

34 stoler@miami.edu
35

36 Alicia D. Cooperman 0000-0002-1652-4488
37

38 George Washington University
39

40 acooperman@email.gwu.edu
41

42 James Doss-Gollin 0000-0002-3428-2224
43

44 Rice University
45

46 jdossgollin@rice.edu
47

48 Anish Jantrania 0000-0003-4335-3423
49

50 Texas A&M University
51

52 ajantrania@tamu.edu
53

54 Alex Mayer 0000-0003-3226-2307
55

56 University of Texas at El Paso
57

58 amayer2@utep.edu
59

60 Jami Nelson-Nuñez 0000-0002-2001-6494
61

62 University of New Mexico
63

64 jaminunez@unm.edu
65

66 W. Shane Walker 0000-0002-4136-8499
67

68 University of Texas at El Paso
69

70 wswalker2@utep.edu
71

72 Paul Westerhoff 0000-0002-9241-8759
73

74 Arizona State University
75

76 p.westerhoff@asu.edu
77

Abstract

Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of—and reversing gains made by—this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community-based water management, small drinking water systems, point-of-use treatment, small-scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance.

1. Introduction

Centralized water infrastructure has, over the last century, secured safe and reliable drinking water for much of Global North and, to some extent, Global South (Meehan et al. 2021). But extreme weather events, combined with aging and underfunded water infrastructure, are increasingly testing the limits of these large-scale systems connecting pipes and water treatment centers (Stoler et al. 2022, Hasan and Foliente 2015, Baird 2010). Safe drinking water is becoming more expensive to produce (Teodoro 2020, Heyman et al. 2022), while local political constraints and complex processes to access infrastructure funds make it difficult to finance water infrastructure maintenance and the workforce to operate it (Kane and Tomer 2018). Many of those responsible for extending water provision and sanitation to previously underserved populations—both rural and urban—are grappling with the unsustainability of centralized 20th century service models given future climate and financial projections (Vorosmarty et al. 2013; Bogardi et al. 2013; Abel et al. 2019).

In the 19th and 20th centuries enormous gains in water security were made through the expansion of public utilities (Melosi 2008). In many cases these efforts involved the decommissioning of small-scale decentralized systems (*e.g.*, local wells) in favor of centralized piped systems which were, and still are, considered the gold standard of water service delivery (Hardy, 1991, Malin, 2022). Piped, centralized water solutions, implicitly situated at the top of the WHO/UNICEF Joint Monitoring Program (or JMP) drinking water ladder (WHO 2019), are preferred and prioritized as the means of achieving “safely managed water” under the United Nations Sustainable Development Goal SDG 6.1. (WHO 2021). However, it is increasingly obvious that, despite Herculean efforts in monitoring and infrastructure investment, not all of the global population will reach the top of the ladder by 2030 (WHO 2021). Indeed, there will be backsliding in the water provision achievements made in some communities due to underfunding, climate change, and other disruptions (Nunes et al. 2018; Thomson et al., 2019; Spearing and Faust 2020; Odimayomi et al. 2021; Robinne et al. 2021; Hohner et al. 2019; Glazer et al. 2021; Norriss et al. 2021). Hundreds of millions of people—many of them with some connection to piped water and sanitation in both the Global North and Global South—are facing “the end of water,” where “Day Zero” is an endemic condition (De Coss-Corzo 2022).

While acknowledging the transformative societal benefits achieved through centralized water systems (Salzman 2017; Troesken et al 2021; Anderson et al 2022, Beach 2022), we must also promote alternatives to centralized water provision and sanitation. The benefits of centralized water systems have been incomplete and uneven, whether for those living on the “last mile,” in small towns and remote areas, or in excluded or segregated communities across the globe (Jepson 2014; Jepson and Brown 2014; Cheng 2015; Vandewalle and Jepson 2015; Rodina and Harris 2016; Clark 2018; Deitz and Meehan 2019; Meehan et al. 2020a; Meehan et al. 2020b; Glade and Ray 2022; Wells et al. 2022). These systems have been increasingly prone to failure due to growing climate risks (Vázquez-Rowe et al. 2017). These current gaps and future threats to water systems lead us to rethink our water paradigm; we believe it is imperative to re-examine non-centralized approaches to achieving household water security in the 21st century. Here, we set forth a research agenda that explores the advantages and limits of alternative water provisioning approaches.

New models of modular, adaptive, and decentralized (MAD) water systems are emerging, often with new opportunities for coordination that can expand their reach and scale (Stoler et al. 2022). In many cases, these are made possible by novel technologies, institutions, and practices that produce, transport, store, and treat safe water. Such technological systems can operate in the absence of—or integrated alongside—existing formal, centralized systems of water provision and sanitation (Arora et al. 2015). In other cases, previously overlooked MAD water systems, such as water sharing (Wutich et al. 2018; Brewis et al. 2019; Stoler et

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
al. 2019; Harris et al. 2020; Jepson et al. 2021; Roque et al. 2021; Wutich et al. 2022) or
rainwater harvesting (de Melo Bronc et al. 2005; Gomes et al. 2014; Campisano et al. 2017;
Soler et al. 2018; Staddon et al. 2018; Crosson et al. 2021; Alim et al. 2020, Doss-Gollin et al.
2015), are receiving new attention from scholars and practitioners. Yet, piped water remains
the focus of mainstream policy debates, as exemplified by India's Jal Jeevan Mission to provide
every rural household with a tap connection by 2024 (Sarkar and Bharat 2021). As water system
performance declines, simpler systems may offer more resilience than the grander schemes
preferred by policy makers (Harvey and Drouin 2006; Kleemeier 2000). These MAD water
models may help provide access to safe, reliable, affordable water delivery and sanitation in a
world of increasing uncertainty: a world characterized by ongoing climate disruption, increased
population mobility, and political volatility.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Without a holistic framework to understand these responses and consider the wide-ranging scope and implementation process, there is a serious risk of maladaptation that leads to undesirable, unsustainable, and unjust outcomes (Barnett and O'Neill 2010; Juhola et al 2016; Magnan et al 2016). We argue that a shift to decentralization is already happening, but that the water community at large is doing little to reconceptualize this shift beyond singular technical fixes and mechanistic responses. Without acknowledgement of this shift and a better empirical basis for decision-making, MAD solutions could have inequitable and detrimental implications for water in several water domains: provision, justice, sustainability, governance, and economics. There is thus a fundamental need to integrate existing scholarship across social and engineering sciences into a convergent approach that can mitigate negative outcomes of this nearly-invisible and haphazard socio-technical transition. Our hope is to harness—following successful integrative approaches in interdisciplinary water scholarship (e.g., Ostrom 1990, Pahl-Wostl 2009, Sivipalan et al. 2014, Budds et al. 2014, Jepson 2017)—valuable insights from a wide range of existing perspectives, theories, and cases to form a new integrated field. We suggest a series of frameworks for theorizing a shift to MAD water systems in ways to that can guide the transition productively and avoid reproducing or reinforcing historical WASH inequities.

36 37 2. A New MAD Paradigm: Beyond Centralized Piped Water (and Sewer) Systems

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
The water literature is rife with examples of systems that are neither centralized nor
networked, but still meet water needs of local communities in important ways. Examples are
documented in literatures including, but not limited to, water and informality (Kooy 2014,
Schwartz et al. 2015, Truelove 2019), community-based water management (Cox et al. 2010,
Mansuri and Rao 2004, Adams et al. 2020), small-scale water vendors (Whittington et al. 1991,
Solo 1999, Kariuki and Schwartz 2005), small drinking water systems (McFarlane and Harris
2018, Klasic et al. 2022), hybrid water systems and regimes (Yates and Harris 2018, Wahby
2021, Storey 2021), decentralized water provision (Arora et al. 2015), green infrastructures for
water and wastewater management (Sharma and Malaviya 2021, Green et al. 2021), and
packaged water (Wilk 2006, Gleick 2010, Stoler 2012, 2017, Morinville 2017, Pacheco-Vega
2019). Our work builds on this literature by proposing a framework that can bring these
contributions into closer, more integrated (and convergent) conversation. As we discuss, this
scholarship crucially illustrates the range of innovations in MAD water provision and
sanitation, often foregrounding important advances in engineering technology (Dongare et al
2017; Alvarez et al 2018). Yet, we argue the need to equally consider justice, institutional
design, and long-term environmental sustainability.

56
57
58
59
60
Political-economic dynamics move households and communities to hybrid and
decentralized systems in complex ways. For example, on the one hand, there are “shove out”
water systems, in which marginalized populations are forced into self-provision or self-
management of drinking water (e.g., Vandewalle and Jepson 2015). On the other hand, there

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
are “opt-out” water systems, in which elite or high-income residents disengage and divest from collective water systems (e.g., Lloréns 2021, Workman and Shah 2022). As an example of the rapid rate of growth of such hybrid systems in the absence of formal water policies, personal preferences have created a \$20B/year market in point-of-use water treatment devices that are growing at >10% annually; this is over five times larger and faster growing than the global centralized desalination market (Chen et al. 2021). Yet, despite this market success, achieving water security for all remains elusive.

This reconfiguration of waterscapes is happening in both the Global South and Global North, with examples providing a rich foundation for theorizing a coherent framework for assessing the outcomes of these non-centralized, non-piped, and sometimes small-scale water and sewer systems on health and human wellbeing. The ethical and political concerns are significant. “Shove out” MAD water scenarios may create heavy financial and labor burdens for those excluded from centralized piped water systems, or merely shift water provision risks, responsibilities, and costs to vulnerable populations least equipped to manage these (Hope et al. 2020). Scholarship on water insecurity underscores this dynamic. For example, peri-urban neighborhoods on the outskirts of Cochabamba, Bolivia, that were historically denied access to the municipal water utility, were forced to rely on small-scale water vendors (Wutich et al. 2016). Residents in low-income rural subdivisions in South Texas faced a “no-win waterscape,” forced to buy expensive water from vending machines as piped water did not provide the quality of service or water to meet all their needs (Jepson 2014; Jepson and Lee 2014). By contrast, high-income Puerto Rico residents built fully independent off-grid water and energy provision in luxury communities after Hurricane María (Lloréns 2021). MAD water systems enabled such an “opt-out” by higher-income and politically powerful populations, allowing them to abandon the costs and responsibilities of participation in solving society-wide water challenges. This emerging, dynamic, socio-technological shift in water infrastructure carries significant implications for water governance, system operation (and more common maintenance), equity, and justice.

MAD water systems are neither inherently good nor inherently bad. Rather, recent trends suggest that communities will increasingly be forced off, or choose to abandon, centralized piped water systems as old models break down under the pressure of under-investment and climate disruptions. We already see the efficacy of the centralized model eroding under the current climatological, demographic, and financial trajectories, as evidenced in the U.S., for example by the aftermath of California’s wildfires or the ongoing water quality disaster in Flint, Michigan (Bosscher et al 2019). Such disruptions result in new moves to opt-out of networked water, as well as the formation of communities that are shoved out of centralized systems. As this phenomenon becomes more widespread and common, there is a need for broader, more coordinated research on the benefits and challenges of different configurations of MAD water. In this introduction to MAD water, we lay out key definitions, case examples, and considerations for future research. Our work leverages interdisciplinary contributions from across the social, engineering, finance, and health sciences to describe MAD water systems and understand the future role they have in promoting global just water security. We also outline critical challenges to the environmental, economic, and social sustainability of these new socio-technical configurations. Figure 1 presents a conceptual model of the feedback loop between these components that we believe will be crucial for ensuring that the transition to, and local development of, MAD water systems promotes positive societal and environmental outcomes in a changing world.

57
58
59
60
INSERT FIGURE 1 (CAPTION BELOW)

Figure 1. Conceptual model outlining examples of economic and governance considerations for successful implementation MAD water systems; measurable benefits to justice, human health, and the environment; and the feedback loop that helps MAD water systems adapt to new contexts.

Given the inherent interdisciplinary nature of MAD water, now is a particularly fruitful time to develop alternatives to dominant water paradigms, given the push toward convergence research (e.g., Westerhoff et al. 2021, Roque et al. 2021, Peek et al. 2020). Convergence research challenges teams from across the sciences to cooperatively develop basic research that can contribute to solving major global problems such as water insecurity and inadequate sanitation. This convergence approach is necessary as we develop this new field of research around MAD water systems, as its success or failure will be decided as much within the realms of justice and environmental sustainability, as in those of hydrology and engineering.

3. MAD Water Systems: Key Definitions

Our work tracks the emergence of new models of MAD water systems. In many cases, these systems are made possible by novel technologies, institutions, and practices that produce, transport, and store safe water – as well as allow for treating and safely reusing water to supplement safe water. These systems include, for example, point-of-use water filtration technologies and onsite wastewater treatment and reuse technologies (Chen et al. 2021; Zodrow et al. 2017). These systems can operate in the absence of—or integrated alongside—existing formal, centralized systems of water or sewer provision. In other cases, previously ignored MAD water systems, such as water sharing (Rosinger et al. 2020) and informal water markets (Garrick et al. 2023), are newly receiving attention from scholars and practitioners. In other cases, we see a hybrid of old practices, such as rainwater harvesting, with new technologies (e.g., Voth-Gaeddert et al. 2022).

Table 1 explains key terms for the MAD water framework. Modularity, adaptability, and decentrality are the key characteristics observed in water systems, and we define these terms in Table 1. In the next section, we provide a series of examples that illustrate how a MAD approach can help us better understand large-scale shifts in the water sector. We do not seek to rigidly define what is or is not MAD; rather, we observe that water systems and their management, exist along gradients of increasing modularity, adaptability, and/or decentrality. Finally, our definition of MAD water involves scalar implications. MAD water systems range in connectivity and operational scale, from systems that include an array of household technologies and relations that are fully decentralized to more distributed systems within smaller, localized networks. Following Stoler and colleagues (2022), we conceptualize MAD water across five key dimensions of water security: harvesting, treating, distributing, monitoring, and governing. Table 2 lists some examples of the application of the MAD water framework for a range of water systems. Several of these examples, including lower-tech ones, are described in the following case studies.

<Table 1. Key Terms, Definitions & Examples for MAD (Modular, Adaptive, or Decentralized) Water Approaches>

4. MAD Water Case Studies

4.1 MAD Example: Sand Scoops in Ephemeral Rivers

Sand scoops represent one of the oldest and simplest technological forms that fits within, and illustrates, the MAD water framework. Water can be collected from ephemeral streams when dry by digging scoop holes into the sand of a dry riverbed to form a shallow well. Even when the river is not flowing, rivers can hold substantial volumes of water near the surface of the

1
2
3 riverbed. Water just below the riverbed can be easily accessed using a simple hand tool, or
4 even one's hands. This water can be conveyed to where it needs to be by a person carrying a
5 gourd, by donkey, or by motor vehicle. When one scoop hole is dry or no longer usable, a
6 similar scoop can be made elsewhere in the same river or river system or replicated nearby if
7 demand is higher. Informal governance systems may dictate how close an existing scoop a new
8 one can be dug. While this can—in principle—yield good quality water, it is often
9 contaminated (Quinn et al. 2018). As with the method of conveyance, treatment can vary from
10 low-tech, such as filtering through a piece of fabric, to high tech such as an advanced filtration
11 membrane or bio-sand filter. The latter example illustrates how within a MAD water system at
12 different stages in the chain can have starkly different technology levels, but how these can
13 combine to produce potable water for final users.
14
15

17 **4.2 MAD Example: Point-of-Use Drinking Water Systems**

18 One example of a technology that can contribute to MAD water systems is engineered point-
19 of-use (POU) drinking water treatment, where a treatment unit is used at individual locations
20 in a household. POU treatment can take many forms, including media filtration (e.g., granular
21 activated carbon block filtration in a pitcher or biosand filtration), membrane filtration (e.g.,
22 reverse osmosis), or disinfection (e.g., ultraviolet light, chlorination, boiling) (Pooi and Ng
23 2018). Many systems implement more than one of these technologies (Oyanedel-Craver and
24 Smith 2008). POU treatment embodies the idea that not all water used within a household needs
25 to be treated to drinking water standards (Wolff and Gleick 2002; Zodrow et al. 2017). Many
26 POU treatment units are modular, and water treatment capacity (e.g., liters per day) can be
27 increased with additional units. These units may be purchased (e.g., under-sink filters) or
28 constructed using locally available materials (e.g., ceramic filters or biosand filters). POU
29 drinking water treatment is used around the world, either as a primary form of treatment, to
30 improve water aesthetics, or to remove the most recent class of emerging organic contaminants
31 such as per- and poly-fluoroalkyl substances (PFAS) (Patterson et al., 2019). Lower cost water
32 quality monitoring using colorimetric and microfluidic technology (Phuangsajai et al., 2021;
33 Jaywant & Arif, 2019) may empower community or households to independently test their
34 water quality. When combined with real-time water quality monitoring using information and
35 communication technology and sensors in micro-networked households, POU treatment could
36 substantially improve water quality (Stoler et al. 2021). However, effective maintenance and
37 monitoring of POU devices and sensors can pose a challenge to poor communities—if the
38 burden of operation and maintenance are placed on poor communities rather than the
39 centralized system—and may occur as a “shove out” technology that could subvert longer-term
40 efficacy of water provision (Vandewalle and Jepson 2015). A recent survey in the USA found
41 that lower income households spend more of their income on POU devices and bottled water,
42 compared with higher income households, suggesting a potential need for public funding of
43 POU devices (Kidd et al. 2020).
44
45

49 **4.3 MAD Example: Handpumps**

50 Handpumps are used across the world to access shallow groundwater, most commonly in the
51 Global South (Foster et al. 2019). They are used both in rural areas that may be hundreds of
52 km from the nearest piped water system, and in informal urban settlements where household
53 or even standpipe connection to the nearby centralized water system is blocked for institutional
54 or politically reasons, the aforementioned “shove out” communities. The pumps themselves
55 are off-the-shelf modular items, often bought in bulk by governments or development agencies
56 (MacArthur 2015). Wells can be drilled or dug where needed and replicated if demand is high
57 or an initial well fails; in this way, they can be adaptive. Finally, they are off-grid and,
58 depending on the distance between them and aquifer properties, hydrologically decentralized
59
60

1
2
3 as well. They are situated technologically between shallow wells accessed by buckets, and
4 boreholes with motorized pumps, the latter also being a technology of choice for high-income
5 “opt out” communities (Fox et al., 2016; Hynds et al., 2013). Conceptualizing handpumps and
6 their management and monitoring as MAD water systems (Thomson et al., 2012; Thomson and
7 Koehler, 2016; Koehler et al., 2018) may serve us better—and the households that use them—
8 than viewing them as an interim step between untreated surface water and piped, treated
9 connection to the home.
10
11

12 **4.4 MAD Example: Onsite Systems for Wastewater Management**

13 The concept of clean sanitation originally started at a small, decentralized scale, focusing
14 mainly on disposal of human waste using systems such as privies. During the 19th and 20th
15 Centuries, with the advent of piped water systems, the focus shifted to treatment of wastewater
16 from densely populated areas, prior to discharge into local surface, through large scale
17 centralized treatment. While decentralized systems may have become less common in the
18 Global North, at least in urban areas, they remain ubiquitous in the Global South: only 7% of
19 people in Sub-Saharan, and 13% of people in Central and Southern Asia have a sewer
20 connection, compared with 83% in Europe and North America (World Health Organization &
21 UNICEF, 2017).
22
23

24 In addition to higher tech systems such as the Gates Foundation toilet (Hiolski, 2019) and
25 containerized sanitation (Ferguson et al., 2022), there is revived interest in composting systems
26 (Mariwah et al., 2022; Anand & Apul, 2014) as a means of safely managing fecal waste. These
27 systems, by which we mean both the technology (Li et al., 2023; Geetha Varma et al., 2022)
28 and the management models and institutional environment in which they sit, can be considered
29 as MAD systems. These decentralized systems may not always be modular—artisanal/bespoke
30 septic tanks are common—but the management of fecal sludge is inherently adaptive, with the
31 conceptualization and monetization of fecal sludge as a resource opening up new business
32 models (Wichelns et al., 2015; Shukla et al., 2023).
33
34

35 In the Global North, septic systems were considered a temporary solution for wastewater
36 management, but millions in less dense rural areas in the Global North still use them. The mass
37 use of septic tanks has long been known to have detrimental effects on groundwater in some
38 regions (e.g., Bloetscher & Van Cott 1999). In late 1990, US EPA reported to Congress (US
39 EPA 832-97-001b) that not all the areas in the US are going to be sewered and some type of
40 onsite/decentralized systems will be used on a permanent basis. Moreover, advances in
41 technologies for onsite treatment, disposal and reuse have attracted attention of the centralized
42 municipalities as a means to improve climate resilience and water security for their customers
43 (Water Environment Research Foundation 2010). The innovations in decentralized sanitation
44 and fecal sludge management developed in the Global South may be increasingly seen in the
45 Global North as well.
46
47

48 **4.5 MAD Example: Rainwater Cisterns**

49 For over a decade, the Brazilian government and NGOs executed several programs to construct
50 cisterns for domestic water, livestock, and crops in support of rural communities across the
51 semi-arid Northeast region (Água Para Todos; Projeto São José; One Million Cisterns Program;
52 Program One Piece of Land and Two Types of Water) (Gomes et al. 2012; Gomes et al. 2014;
53 Gnadlinger et al. 2020; Cirilo, 2008; Enéas da Silva et al., 2013). Rainwater cistern programs
54 in Brazil sought to increase water access for many rural households in the drought-prone semi-
55 arid zone (Gomes et al. 2012). The first version of the program involved cement cisterns for
56 individual households, where the government partnered with civil society to distribute raw
57 materials.
58
59

1
2
3 materials to rural residents via community associations. Community members worked together
4 to construct the cisterns for individual households—these were harvesting and distribution
5 systems with decentralized governance and service—and included programs for gender
6 empowerment (Morais and Rocha 2013). The materials were standardized and easily
7 replicable, making them modular forms of harvesting and distribution. Later versions of the
8 program involved plastic cisterns that are also replicable and more quickly distributed—
9 meaning that they were adaptive. Treatment and monitoring, if performed, is at the household
10 level (Silva et al. 2020). Rainwater cisterns can be vulnerable to extended drought (Doss-Gollin
11 et al. 2015), and water quality is highly variable, with *E. coli* detected in many cisterns (Da
12 Silva et al. 2020).
13

14 **4.6 MAD Example: Rural Water Management in Brazil**

15 Many rural communities in the Brazilian state of Ceará participate in a non-governmental
16 program called System for Rural Sanitation (*Sistema de Saneamento Rural – SISAR*) that
17 functions as a network of community associations (Meleg et al. 2012; Dos Santos Rocha and
18 Salvetti 2017). Similar programs exist in other Brazilian states and other countries as well
19 (Grillos et al 2021; Dupuits 2019). SISAR has eight regional offices that facilitate self-
20 management of water distribution systems for approximately 100-300 rural communities in
21 their region. SISAR operates in communities that are not connected to the primary municipal
22 piped water system, and it does not fund investment in new water system infrastructure. Rural
23 communities that participate in SISAR primarily harvest water through a pre-existing
24 community-scale well or local reservoir connected to a small, piped water network serving 30-
25 100 households. The SISAR regional office provides technical assistance and trains community
26 operators to treat water and maintain community-scale water distribution systems. SISAR
27 trains operators to monitor the status of the distribution system and household water use, though
28 operators do not monitor the status of the water resource such as water level in the well
29 (Cooperman et al. 2020). The SISAR regional office oversees household billing and provides
30 social support for localized governance through community associations. Each of these features
31 of the water system uses a similar model across all communities and can be modified to adapt
32 to changes in local conditions, making them modular and adaptive.
33

34 **4.7 MAD Example: Packaged Water: Sachets, Bottles, and Bags**

35 We further acknowledge that increasing the MAD characteristics of a water service sometimes
36 presents important tradeoffs. For example, the many forms of vended and delivered water
37 around the world include packaged water, most commonly bottled and bagged (or “sachet”)
38 water (Vedachalam et al. 2017). In high-income settings, bottled water tends to be an optional
39 luxury good, but in low-income settings—particularly water scarce communities—bottled or
40 sachet water can effectively serve as a virtual extension of existing water infrastructure,
41 whether centralized and decentralized (Stoler 2017). Packaged water harvesting, treatment, and
42 distribution are all remarkably MAD as entrepreneurs can set up filling machines wherever
43 there is a reliable groundwater or municipal water source, and nimbly supply communities who
44 lack centralized water infrastructure. In many West African countries, for example, sachet
45 water has become the *de facto* drinking water supply in communities not connected to
46 municipal water grids. While federal governments have centralized monitoring and governance
47 schemes for packaged water, the most effective governance has been decentralized, self-
48 administered industry quality control as market forces shape leading producers’ desire to
49 burnish their product’s reputation. Yet, while packaged water has temporarily bailed out many
50 governments from their duty to provide constituents with safe water, ever growing streams of
51 plastic waste and the lack of price controls to stabilize household drinking water expenses
52

1
2
3
4
5
highlight the downsides and unsustainability of this form of MAD water (Stoler 2012, Pacheco-Vega 2019).

6
7
8
<TABLE 2>

9
5. Assessing MAD Water Systems: Considerations for Future Research

10
11
12
13
14
15
16
17
18
From our perspective, the concept of household water security is defined by the lived
19
and relational experiences that contribute to human flourishing and well-being (Jepson et al.,
2017; 2018). That is, access to safe water is necessary but not sufficient to achieve water
21
security. The water and sanitation systems we have described above—to varying degrees—
22
provide some level of household water security. Technical solutions alone will not create water
23
security. Other critical dimensions, such as affordability, adequacy, and reliability for all water
24
needs also should be part of a holistic understanding of water security achieved by MAD water
25
(Bakker and Morinville 2013; Jepson, 2014; Jepson et al. 2017).

26
27
28
29
More than meeting basic needs, we also consider water security to be relational in the
30
sense of enhancing the socio-cultural, economic, and governance capabilities of communities
31
and households (Jepson et al. 2019; Sultana and Loftus 2019; Meehan et al. 2023)—as well as
32
long-term environmental sustainability. Our view of MAD water is thus framed not only in
33
terms of water as a material good to be distributed, but water as part of a larger set of social
34
relations (Budds et al. 2014, Linton and Budds 2014) that has implications on many dimensions
35
of social life. In this way, we recognize the profound relational shifts MAD water systems will
36
have on hydro-social relations. Therefore, hydro-social relations—including cultural and
37
psychosocial dimensions—must necessarily constitute water security, and thus, be part of how
38
we conceptualize and assess MAD water systems moving forward.

39
40
41
42
43
44
Modern water systems attempt to convey treated water to as close to households as
45
possible, ideally with access inside the household or compound. Such conveyance efforts
46
therefore aim to minimize or eliminate fetching distance and time and create some degree of
47
household autonomy through access to water using a private tap. Water governance structures
48
generally aim to ensure that the water remains affordable for users, and to ensure ongoing
49
financial viability of the system. One of the biggest challenges of MAD water systems is to
50
make them easy for households to use in order to ensure user acceptance (Contzen, Killmann,
51
and Mosler 2023), while allowing for appropriate levels of local engagement for system
52
governance and the protection of human and environmental health. Here, we position justice
53
as a primary goal and highlight issues in the key domains of economics, governance, human
54
health, and environmental sustainability that must be approached differently under the MAD
water paradigm.

55
5.1 MAD Water & Justice

56
57
58
59
Adaptive, decentralized systems allow for variation in how they are conceptualized,
60
managed, and used. By their nature they can be outside the established, albeit imperfect and
contested, paradigm of centralized water provision. As much as being an advantage, this also
poses risks, such as elite capture, predatory pricing, or neglect. Therefore, our approach to
MAD water and the efficacy of this paradigm to support water security necessarily includes a
fundamental consideration of water justice (Sultana and Loftus 2019, Boelens et al. 2018,
Wade 2018, Zeitoun et al. 2016).

61
62
63
64
65
We draw on the expansive scholarship on environmental justice to illustrate how the
66
MAD water paradigm intersects with considerations of water justice (Table 3). As mentioned
67
earlier, water security refers to access, affordability, adequacy, and reliability for all water
68
needs, including physical, cultural, social, and economic. These needs are broadly defined and
69
directly align with distributive definitions of water justice.

A challenge for MAD water is to ensure that these benefits of water security are experienced equitably. A goal we propose is to assess MAD water's efficacy as a paradigm to facilitate equitably distributed current and future water provision. Within *distributive justice* frameworks, one also needs to consider "the community of justice" (who are the recipients of these benefits?). For MAD water, we consider benefits to be accrued across individuals, households, and communities whose risks may be differently determined by race/ethnicity, indigeneity, class, gender and sexuality (Brewis et al. in revision, Leonard et al. 2023, Meehan et al. 2020). These dimensions are often difficult to balance, and in tension, but they do need to be considered. Indeed, *interpersonal justice* (or interactional justice) operates within the distributive paradigm in that as people navigate the waterscape, individuals, regardless of social category, should experience equitable treatment and respect (Wutich et al. 2016).

We also recognize the critical importance of *procedural justice*, understood in terms of fair participatory processes and rules for decision making, for MAD water systems. This also draws from the definition of water security, as referring to securing "the ability of individuals, households, and communities to navigate hydro-social relations and secure safe and affordable water particularly in ways that support the sustained development of human capabilities and wellbeing in their full breadth and scope" (Jepson et al. 2017, 3). This is a central dimension of justice, navigating hydro-social relations as necessarily participatory, but it is often missing in transitions that are driven by technological change. Our argument is that MAD water systems need to incorporate regulatory governance systems to ensure inclusion, informed consent, and participatory efficacy, and to avoid elite capture (as described in Brewis et al. 2021). There are several principles of participatory governance, from shared decision-making to access to information, and considering the diversity of MAD water, and these principles will vary; however, inclusion of participatory approaches are critical for achieving just water security. We note a promising trend toward developing participatory convergence research to ensure that MAD Water interventions are co-designed (Hargrove and Heyman 2020, Hargrove et al. 2020, Roque et al. 2021, 2024) by communities and researchers, to make certain the community's needs and desires are centered in the design of MAD Water systems.

Water justice incorporates another critical dimension that is salient for experiences with water provision and use: *recognition as justice*. The dominant paradigm of water provision considers modern water as an economic good that is commodified and transferable. Yet, that is only one water world view. Recently scholars have challenged the universality of water with different world views and values (Leonard et al. 2023, Yates et al. 2017, Wilson and Inkster 2018). The implications for calls to incorporate other water worlds and values hold wide-ranging consequences for MAD water systems. From a water justice perspective, MAD water systems should be co-designed in ways that accommodate cultural values in ways that are respected.

Finally, and perhaps most powerfully, is the potential for MAD Water to address the need for *transformative justice* (Morris 2000), an approach similar to restorative justice (Nocella and Anthony 2011). Transformative justice seeks to redress past harms by addressing root causes of oppression, centering victims' need for justice, and reintegrating communities. Transformative and restorative justice are nascent fields in water research (Neal et al. 2014, Nikolakis and Quentin Grafton 2014, Corral-Verdugo and Frías-Armenta 2006), but research led by Indigenous scholars indicates that such approaches have the potential to powerfully reshape water systems and knowledge (Leonard et al. 2023, Wilson et al. 2021). The potential role of MAD water systems to contribute to transformative justice is currently unknown, but an important potential area for future research.

<Table 3. Defining justice for MAD water approaches>

5.2 Political Economy of MAD Water: Economics & Governance

Economies of scale tend to favor larger, centralized systems. This may be changing, even for large municipalities in the Global North, due to the cost challenges of maintaining or expanding aging infrastructure to meet capacity and sustainability goals of communities (Garrido-Baserba et al. 2022). The move to MAD systems may be driven by financial pressures in these cases, but it is an open question what the financial logic of MAD solutions may be across countries and contexts. On one hand, the development and maintenance of smaller scale systems may increase total spending on water systems in the short term, adding financial pressure to governments and households. Yet, MAD solutions may represent an investment in employment and skill transfer to currently underserved populations and more efficient water and energy use, leading to more sustainable long-term benefits. Safety, financing, affordability, and education and training are key. Table 4 lists economic considerations for factors and examples of how MAD water and conventional water systems (Table 4) fit into those factors.

The high fixed costs, low variable costs, and scale of centralized systems allow for high levels of subsidy and cross-subsidy. These can be progressive, such as lifeline tariffs or legal restrictions on cut-offs, or they can be regressive (Fuente et al., 2016; Morales-Novelo et al., 2018), such as in the United States where poor, urban communities must address deteriorating infrastructure after White flight to suburbs. Other examples of regressive costs include high connection fees or bulk discounts when the system is functioning correctly, or—when it is not—cutting off poorer and more marginalized communities or neighborhoods when underinvestment reduces system reach or performance (“shove out”). Those remaining on the system continue to receive water at a cost that is lower than the long-term cost of production. In either case, these subsidies are often hidden or implicit.

As they capitalized on economies of scale, centralized public utilities created institutional structures that, along with policies, enabled progressive contributions and cross-subsidy that led to more equitable access for users of the public system. The move to MAD systems will change this. Being decentralized, the costs of supplying water using MAD water systems could be more closely linked to the local cost of supply, making cost differences overt and subsidies explicit. The regulatory and policy environment for water supply has been built around the natural monopoly of centralized water systems. These governance structures, and the discourse around subsidies, will have to adapt to the different economic characteristics of MAD systems to ensure that water remains affordable, and outcomes are sustainable and equitable. An important line of inquiry in the shift from centralized systems to MAD approaches will be the economic implications in terms of affordability and progressive (or regressive) distribution. The need to address this at both national and local levels is not the only political consideration associated with MAD water. Table 5 lists factors associated with water governance and example application of these factors to MAD water.

The development of large, centralized public utilities also reshaped political landscapes, with public good and natural monopoly arguments combining to create mandates for government involvement in water and sanitation services. Yet, the political challenges created by these centralized approaches have undermined their ability to deliver on promises of universal access and financial efficiency. As governments managed public utilities, either as direct service providers or as principals overseeing contracts with private providers, many could not overlook the opportunities for corruption and patronage (Herrera 2017). Achieving good governance of centralized systems entails a complex approach of creating avenues for participation and representation while also insulating utilities from special interests and parallels the principle of participatory justice outlined above. The political pressure to keep tariffs low can undermine the ability of managers to maintain and expand infrastructure, leaving an uneven patchwork of service and reifying the inequities centralized approaches

1
2
3 aimed to address. Those being left out of the maintenance are usually the same groups that are
4 excluded from politics and are economically vulnerable.
5

6 MAD water holds the potential to address these challenges, but this shift can have
7 divergent impacts on political representation, accountability, and equity (Table 5). Water
8 systems are managed at different scales with complex networks of overlapping jurisdictions,
9 including utilities, regulatory agencies, watershed or river basin management, and specialized
10 water districts. It is hard for citizens to know which actor to hold accountable for service
11 failures, and coordination across these actors is very challenging (Mullin 2009). In addition,
12 small scale community systems, especially privately-owned ones, may not be well integrated
13 into larger scale planning efforts, increasing risks during drought for already vulnerable
14 communities (Mullin 2020). “Temporary” shifts to MAD solutions, such as bottled water
15 distribution during contamination and natural hazards or POU water treatment for household
16 wells or hauled water, can overcome dangerous drinking water quality or quantity conditions.
17 MAD solutions provide flexibility in the timing and scale of emergency response since
18 different systems can be introduced at different times as local needs shift (e.g., Roque et al.
19 2021). However, they have high costs and place financial burdens and monitoring challenges
20 on already marginalized communities (Jepson and Brown 2014). Emergency relief is also
21 vulnerable to political pressures and electoral cycles (Cooperman 2022), and short-term shifts
22 to MAD systems can reduce the urgency of public investment and let officials off the hook for
23 fulfilling mandates to provide secure, reliable drinking water or sanitation services (e.g.,
24 Vandewalle and Jepson 2015). Over time, MAD approaches may disincentivize public officials
25 from expanding piped water and sanitation systems, leaving residents in an indefinite
26 precarious situation. MAD approaches often require local collective action, and communities
27 that are more likely to successfully engage in collective action, often due to long-time
28 relationships of trust and reciprocity, are better able to harness the gains of MAD systems.
29 Those communities that lack the political connections for adequate distribution and
30 maintenance are left even farther behind, leading to increased inequality between groups
31 (Cooperman 2019, Dobbin and Lubell 2021).
32
33

34 <Table 4. Economic Considerations for MAD Water >
35
36

37 <Table 5. Governance Considerations for MAD Water >
38
39

40 41 5.3 Human & Environmental Health

42 MAD water systems have the potential to improve human health and broader
43 environmental health. The human health implications are broad, spanning communicable and
44 non-communicable diseases, injuries, and mental health disorders (see Table 6). Improvements
45 to water quantity and quality have long been associated with preventing a wide range of
46 waterborne, water-washed, water-related, and water-based communicable diseases originally
47 organized by the Bradley-Feachem classification (Bartram and Hunter 2015). Reducing water
48 fetching and the need to store drinking water by having a nearby, reliable system will drive
49 down these communicable disease risks. The non-linear relationship between water quality and
50 diarrheal disease (Thomson et al., 2022) by which even short periods of drinking contaminated
51 water have disproportionate health impacts (Hunter, Zmirou-Navier and Hartemann, 2009;
52 Brown and Clasen 2012) makes addressing water-related health risks all the more important.
53 Minimizing fetching needs and increasing autonomy is also theorized to reduce other non-
54 communicable health risks including dehydration and carriage-associated injuries (Geere et al.
55 2018; Rosinger & Young 2020). Finally, more recent scholarship has shown that further health
56 gains associated with improving water services provision are related to improved mental health
57
58
59
60

(Wutich et al. 2020). All of these can be addressed through *properly designed, implemented, and managed* MAD water systems.

Water quality improvements also reduce non-communicable disease risk factors associated with natural and anthropogenic water pollutants ranging from arsenic to old industrial pollutants like benzene or lead and emerging organic chemical pollutants like PFAS and phthalates (Wutich et al. 2021). MAD water systems are particularly well-positioned to help with emerging contaminants because they can be tailored to local water needs. However, the monitoring, management, and disposal of difficult toxicants such as PFAS or disinfection by-products, and pathogens such as *Cryptosporidium*, may challenge MAD water systems. MAD water systems may be able to respond more quickly than large, centralized systems to changing water quality and treatment needs. For example, products like PFAS can be readily absorbed, and removed from, water on activated carbon blocks or separated from water by reverse osmosis in commercially available POU systems (Herkert et al. 2020). However, these updates can be narrow, including only the users with the knowledge, salience, and resources, or short-lived compared to upgrading treatment at centralized facilities. Moreover, MAD system managers may not be well-suited to properly dispose of the forever chemicals.

MAD water approaches should also prioritize environmental sustainability and ideally promote ecosystem services, sustainability, and resilience for local communities (Table 7). For example, wastewater reuse systems can discharge water into appropriate green infrastructure, providing benefits to the community and the environment. MAD water systems can also be compatible with ecosystem services, such as locating rainwater collection infrastructure in a drainage basin that already needs to absorb floodwaters. At the very least, MAD water systems must not undermine ecosystem services provided by wildlife or natural landscapes. MAD water systems should be sustainable and not impose any downstream burdens, such as new waste streams, which are likely to affect water supplies or compromise ecosystem services elsewhere. This implies the adoption of recyclable treatment media, protocols for safely handling any dangerous waste products that accumulate during treatment and filtration or using sustainably sourced or renewable consumables.

Finally, MAD water systems could enhance community abilities to recover and thrive from extreme events such as floods and droughts, rapid socio-demographic changes such as a mass migration event, or economic shocks such as a depression or sudden currency devaluation. In such high-risk contexts, MAD water infrastructure should ideally be quickly scalable to a sudden increase in usage, potentially physically mobile to help relocate away from danger, and require maintenance sustained through reliable supply chains that are relatively insulated from global institutions and politics. However, small water systems often struggle to provide water security during drought shocks due to economic, infrastructural, planning, and enforcement challenges (Mullin 2020). A shift toward MAD water systems could enhance human and ecosystem resilience, depending on the political, economic, and justice perspectives described above.

<Table 6. Human Health Outcomes for MAD Water >

<Table 7. Environmental Sustainability for MAD Water >

6. Conclusions and Next Steps

MAD water systems may have the capacity to provide better water and sanitation services for communities and households currently relying on poor water supplies, and for whom piped water to the home is a pipe dream rather than a realistic policy goal. It will be important for MAD water to be built, as a field, on empirical assessments of how specific MAD

1
2
3 configurations perform in terms of key outcomes like justice, environmental sustainability,
4 human health, governance, and economic wellbeing. We suggest a simple framework (Figure
5 1) as a place to start. We invite scholars to join us in this effort. Many scholars are already
6 working on crucial components of this research agenda, but not yet in conversation with each
7 other as part of an integrated field. Others are beginning convergence efforts, working with
8 interdisciplinary teams to solve intractable water or sanitation problems. Still others are
9 developing ways to work ethically, equitably, and respectfully with water-insecure
10 communities, contributing new methods for research, communication, and collaboration. And
11 many practitioners have important practical insights that are not yet well-understood in the
12 academic literature. All of these perspectives will be crucial as we move beyond the 20th
13 century water provision paradigm. MAD water systems are poised to make substantial
14 contributions to confronting the global challenges of climate change, population displacement,
15 and financial upheaval expected later this century.
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1
2
3
4

References

5 Abel, G. J., M. Brottrager, J. C. Cuaresma & R. Muttarak (2019) Climate, conflict and forced
6 migration. *Global environmental change*, 54, 239-249.

7 Adams, E. A., Zulu, L., & Ouellette-Kray, Q. (2020). Community water governance for urban
8 water security in the Global South: Status, lessons, and prospects. *Wiley
9 Interdisciplinary Reviews: Water*, 7(5), e1466.

10 Alim, M. A., A. Rahman, Z. Tao, B. Samali, M. M. Khan & S. Shirin (2020) Suitability of roof
11 harvested rainwater for potential potable water production: A scoping review. *Journal
12 of cleaner production*, 248, 119226.

13 Anand, C. K., & Apul, D. S. (2014). Composting toilets as a sustainable alternative to urban
14 sanitation – A review. *Waste Management*, 34(2), 329–343.
<https://doi.org/10.1016/j.wasman.2013.10.006>

15 Arora, M., Malano, H., Davidson, B., Nelson, R., & George, B. (2015). Interactions between
16 centralized and decentralized water systems in urban context: A review. *Wiley
17 Interdisciplinary Reviews: Water*, 2(6), 623-634.

18 Anderson, D. M., K. K. Charles & D. I. Rees (2022) Reexamining the contribution of public
19 health efforts to the decline in urban mortality. *American Economic Journal: Applied
20 Economics*, 14, 126-57.

21 Arora, M., H. Malano, B. Davidson, R. Nelson & B. George (2015) Interactions between
22 centralized and decentralized water systems in urban context: A review. *Wiley
23 Interdisciplinary Reviews: Water*, 2, 623-634.

24 Baird, G. M. (2010). A game plan for aging water infrastructure. *Journal-American Water
25 Works Association*, 102(4), 74-82.

26 Bakker, K., & Morinville, C. (2013). The governance dimensions of water security: a review.
27 *Philosophical Transactions of the Royal Society A: Mathematical, Physical and
28 Engineering Sciences*, 371(2002), 20130116.

29 Barnett, J. & S. O'Neill. 2010. maladaptation. 211-213. Pergamon.

30 Bartram, J. & P. Hunter. 2015. Bradley Classification of disease transmission routes for water-
31 related hazards. In *Routledge handbook of water and health*, 38-55. Routledge.

32 Beach, B. (2022) Water infrastructure and health in US cities. *Regional Science and Urban
33 Economics*, 94, 103674.

34 Beach, B., J. Parman & M. Saavedra. 2022. Segregation and the Initial Provision of Water in
35 the United States. In *AEA Papers and Proceedings*, 193-98.

36 Bloetscher, F., & Van Cott, W. R. (1999). Impact of septic tanks on wellhead protection
37 efforts. *Florida Water Resources Journal*, 51(2), 38-41.

38 Boelens, R., Perreault, T., & Vos, J. (Eds.). (2018). *Water justice*. Cambridge University Press.

39 Bogardi, J. J., B. M. Fekete & C. J. Vörösmarty (2013) Planetary boundaries revisited: a view
40 through the ‘water lens’. *Current Opinion in Environmental Sustainability*, 5, 581-589.

41 Bosscher, V., D. A. Lytle, M. R. Schock, A. Porter & M. Del Toral (2019) POU water filters
42 effectively reduce lead in drinking water: a demonstration field study in flint, Michigan.
43 *Journal of Environmental Science and Health, Part A*, 54, 484-493.

44 Boutroue, B., M. Bourblanc, P.-L. Mayaux, S. Ghiotti & M. Hrabanski (2021) The politics of
45 defining maladaptation: enduring contestations over three (mal) adaptive water projects
46 in France, Spain and South Africa. *International Journal of Agricultural Sustainability*,
47 1-19.

48 Brewis, A., K. Meehan, M. Beresford, A. Wutich. (2021) Anticipating Elite Capture: The
49 Social Devaluation of Municipal Tap Water Users in the Phoenix Metropolitan Area.
50 *Water International*. 46(6).

51

52

53

54

55

56

57

58

59

60

1
2
3 Brewis, A., A. Rosinger, A. Wutich, E. Adams, L. Cronk, A. Pearson, C. Workman, S. Young
4 & HWISE RCN (2019) Water sharing, reciprocity, and need: A comparative study of
5 interhousehold water transfers in sub-Saharan Africa. *Economic Anthropology*, 6, 208-
6 221.
7 Brewis, A., Z. Dubois, A. Wutich, E. Adams, S. Dickins, S. Elliott, V. Empinotti, L. Harris, E.
8 Ilboudo Nébié, M. Korzenewica-Proud (in revision). Gender and water insecurity harm:
9 Re-theorizing risks for cisgender men and transgender, non-binary, and gender diverse
10 people. *WIREs Water*.
11 Brown, J. & T. Clasen (2012) High adherence is necessary to realize health gains from water
12 quality interventions. *PloS one*, 7, e36735.
13 Budds, J., Linton, J., & McDonnell, R. (2014). The hydrosocial cycle. *Geoforum*, 57, 167-169.
14 Campisano, A., D. Butler, S. Ward, M. J. Burns, E. Friedler, K. DeBusk, L. N. Fisher-Jeffes,
15 E. Ghisi, A. Rahman & H. Furumai (2017) Urban rainwater harvesting systems:
16 Research, implementation and future perspectives. *Water research*, 115, 195-209.
17 Chen, B., J. Jiang, X. Yang, X. Zhang & P. Westerhoff (2021) Roles and knowledge gaps of
18 point-of-use technologies for mitigating health risks from disinfection byproducts in
19 tap water: a critical review. *Water Research*, 200, 117265.
20 Cheng, D. (2015) Contestations at the last mile: The corporate-community delivery of water
21 in Manila. *Geoforum*, 59, 240-247.
22 Cirilo, J. A. (2008). Políticas públicas de recursos hídricos para o semi-árido. *Estudos
23 Avançados*, 22, 61-82. <https://doi.org/10.1590/S0103-40142008000200005>
24 Clark, A. 2018. *The poisoned city: Flint's water and the American urban tragedy*. Metropolitan
25 Books.
26 Contzen, N., Kollmann, J., & Mosler, H. J. (2023). The importance of user acceptance, support,
27 and behaviour change for the implementation of decentralised water technologies.
28 *Nature Water*, 1-13. <https://doi.org/10.1038/s44221-022-00015-y>
29 Cooperman, A., A. R. McLarty & B. Seim (2021) Understanding uptake of community
30 groundwater monitoring in rural Brazil. *Proceedings of the National Academy of
31 Sciences*, 118, e2015174118.
32 Cooperman, A. D. 2019. Trading favors: Local politics and development in Brazil. Columbia
33 University.
34 Cooperman, A. (2022). (Un)Natural Disasters: Electoral Cycles in Disaster
35 Relief. *Comparative Political Studies* 55(7): 1158-1197.
36 Corral-Verdugo, V., & Frías-Armenta, M. (2006). Personal normative beliefs, antisocial
37 behavior, and residential water conservation. *Environment and Behavior*, 38(3), 406-
38 421.
39 Cox, M., Arnold, G., & Tomás, S. V. (2010). A review of design principles for community-
40 based natural resource management. *Ecology and Society*, 15(4).
41 Crosson, C., D. Tong, Y. Zhang & Q. Zhong (2021) Rainwater as a renewable resource to
42 achieve net zero urban water in water stressed cities. *Resources, Conservation and
43 Recycling*, 164, 105203.
44 Da Silva, J., C. Bezerra & A. d. A. Ribeiro (2020) Avaliação da qualidade da água armazenada
45 em cisternas no Semiárido Cearense. *Revista Brasileira de Engenharia de
46 Biossistemas*, 14, 27-35.
47 De Coss-Corzo, A. (2022) Working with the end of water: Infrastructure, labour, and everyday
48 futures of socio-environmental collapse in Mexico city. *Environment and Planning E:
49 Nature and Space*, 25148486221100391.
50 De Melo Branco, A., J. Suassuna & S. A. Vainsencher (2005) Improving access to water
51 resources through rainwater harvesting as a mitigation measure: The case of the
52

1
2
3 Brazilian semi-arid region. *Mitigation and Adaptation Strategies for Global Change*,
4 10, 393-409.

5 de Moraes, A. F. J. & C. Rocha (2013) Gendered waters: the participation of women in the
6 'One Million Cisterns' rainwater harvesting program in the Brazilian Semi-Arid region.
7 *Journal of cleaner production*, 60, 163-169.

8 Deitz, S. & K. Meehan (2019) Plumbing poverty: mapping hot spots of racial and geographic
9 inequality in US household water insecurity. *Annals of the American Association of
10 Geographers*, 109, 1092-1109.

11 Dobbin, K. B., & Lubell, M. (2021). Collaborative governance and environmental justice:
12 Disadvantaged community representation in California sustainable groundwater
13 management. *Policy Studies Journal*, 49(2), 562-590.

14 Dos Santos Rocha, Wilson; Salvetti, Maria. 2017. Case Study—SISAR Ceará, Brazil. World
15 Bank, Washington DC. World Bank.
16 https://openknowledge.worldbank.org/handle/10986/28382 License: CC BY 3.0 IGO

17 Doss-Gollin, J., de Souza Filho, F. de A., & da Silva, F.O.E. (2015). Analytic modeling of
18 rainwater harvesting in the Brazilian Semiarid Northeast. *Journal of the American
19 Water Resources Association*, 52(1), 129–137. <https://doi.org/10.1111/1752-1688.12376>

20 Dupuits, E. (2019). Water community networks and the appropriation of neoliberal practices:
21 Social technology, depoliticization, and resistance. *Ecology and Society*, 24(2).

22 Enéas da Silva, F. O., Heikkila, T., de Souza Filho, F. de A., & Costa da Silva, D. (2013).
23 Developing sustainable and replicable water supply systems in rural communities in
24 Brazil. *International Journal of Water Resources Development*, 29(4), 622–635.
25 https://doi.org/10.1080/07900627.2012.722027

26 Ferguson, C., Mallory, A., Anciano, F., Russell, K., Valladares, H. del R. L., Riungu, J., &
27 Parker, A. (2022). A qualitative study on resource barriers facing scaled container-
28 based sanitation service chains. *Journal of Water, Sanitation and Hygiene for
29 Development*, 12(3), 318–328. <https://doi.org/10.2166/washdev.2022.218>

30 Foster, Tim, Sean Furey, Brian Banks, and Juliet Willets. "Functionality of Handpump
31 Water Supplies: A Review of Data from Sub-Saharan Africa and the Asia-Pacific
32 Region." *International Journal of Water Resources Development*, 2019, 1–15.
33 https://doi.org/10.1080/07900627.2018.1543117

34 Fox, Mary A., Keeve E. Nachman, Breeana Anderson, Juleen Lam, and Beth Resnick.
35 "Meeting the Public Health Challenge of Protecting Private Wells: Proceedings and
36 Recommendations from an Expert Panel Workshop." *Science of The Total
37 Environment* 554–555 (June 1, 2016): 113–18.
38 https://doi.org/10.1016/j.scitotenv.2016.02.128.

39 Fuente, David, Josephine Gakii Gatua, Moses Ikiara, Jane Kabubo-Mariara, Mbutu Mwaura,
40 and Dale Whittington. "Water and Sanitation Service Delivery, Pricing, and the Poor:
41 An Empirical Estimate of Subsidy Incidence in Nairobi, Kenya." *Water Resources
42 Research* 52, no. 6 (2016): 4845–62. <https://doi.org/10.1002/2015WR018375>.

43 Garcia, L. B., Sabin, C., Tomaka, J., Santiago, I., Palacios, R., & Walker, W. S. (2016). A
44 comparison of water-related perceptions and practices among West Texas and South
45 New Mexico Colonia residents using hauled-stored and private well water. *Journal of
46 Environmental Health*, 79(2), 14-21.

47 Garrick, D., Balasubramanya, S., Beresford, M., Wutich, A., Gilson, G.G., Jorgensen, I.,
48 Brozović, N., Cox, M., Dai, X., Erfurth, S. and Rimšaitė, R., (2023). A systems
49 perspective on water markets: barriers, bright spots, and building blocks for the next
50 generation. *Environmental Research Letters*, 18(3), p.031001.

51
52
53
54
55
56
57
58
59
60

Garrido-Baserba, M., Barnosell, I., Molinos-Senante, M., Sedlak, D. L., Rabaey, K., Schraa, O., Verdaguer, M., Rosso, D., & Poch, M. (2022). The third route: A techno-economic evaluation of extreme water and wastewater decentralization. *Water Research*, 218, 118408.

Geere, J.-A., J. Bartram, L. Bates, L. Danquah, B. Evans, M. B. Fisher, N. Groce, B. Majuru, M. M. Mokoena & M. S. Mukhola (2018) Carrying water may be a major contributor to disability from musculoskeletal disorders in low income countries: a cross-sectional survey in South Africa, Ghana and Vietnam. *Journal of global health*, 8.

Geere, J.-A. L., M. Cortobius, J. H. Geere, C. C. Hammer & P. R. Hunter (2018) Is water carriage associated with the water carrier's health? A systematic review of quantitative and qualitative evidence. *BMJ Global Health*, 3, e000764.

Geetha Varma, V., Jha, S., Himesh Karthik Raju, L., Lalith Kishore, R., & Ranjith, V. (2022). A review on decentralized wastewater treatment systems in India. *Chemosphere*, 300, 134462. <https://doi.org/10.1016/j.chemosphere.2022.134462>

Glade, S. & I. Ray (2022) Safe drinking water for small low-income communities: the long road from violation to remediation. *Environmental Research Letters*, 17, 044008.

Glazer, Y. R., D. M. Tremaine, J. L. Banner, M. Cook, R. E. Mace, J. Nielsen-Gammon, E. Grubert, K. Kramer, A. M. Stoner & B. M. Wyatt (2021) Winter Storm Uri: A Test of Texas' Water Infrastructure and Water Resource Resilience to Extreme Winter Weather Events. *Journal of Extreme Events*, 2150022.

Gleick, P. H. (2010). *Bottled and sold: The story behind our obsession with bottled water*. Island Press.

Gnadlinger, J. (2020) Smart rainwater management and its impacts on drought resilience by Rural Semi-Arid communities: a case study of Northeast Brazil. *International rainwater catchment systems experiences*, 207-219.

Gomes, U. A., L. Heller, S. Cairncross, L. Domenèch & J. L. Pena (2014) Subsidizing the sustainability of rural water supply: the experience of the Brazilian rural rainwater-harvesting programme. *Water International*, 39, 606-619.

Gomes, U. A., L. Heller & J. L. Pena (2012) A national program for large scale rainwater harvesting: an individual or public responsibility? *Water resources management*, 26, 2703-2714.

Green, D., O'Donnell, E., Johnson, M., Slater, L., Thorne, C., Zheng, S., Stirling, R., Chan, F.K., Li, L. and Boothroyd, R.J., 2021. Green infrastructure: The future of urban flood risk management?. *Wiley Interdisciplinary Reviews: Water*, 8(6), p.e1560.

Grillos, T., Zarychta, A., & Nelson Nuñez, J. (2021). Water scarcity & procedural justice in Honduras: Community-based management meets market-based policy. *World Development*, 142, 105451.

Hardy, A. (1991). Parish pump to private pipes: London's water supply in the nineteenth century. *Medical History*, 35(S11), 76-93. <https://doi.org/10.1017/S002572730007112X>

Hargrove, W. L., & Heyman, J. M. (2020). A comprehensive process for stakeholder identification and engagement in addressing wicked water resources problems. *Land*, 9(4), 119.

Hargrove, W. L., Holguin, N., Tippin, C. L., & Heyman, J. H. (2020). The soft path to water: A conservation-based approach to improved water access and sanitation for rural communities. *Journal of Soil and Water Conservation*, 75(2), 38A-44A.

Harvey, P. A., & Drouin, T. (2006). The case for the rope-pump in Africa: A comparative performance analysis. *Journal of Water and Health*, 4(4), 499-510. <https://doi.org/10.2166/wh.2006.0033>

1
2
3 Hasan, S., & Foliente, G. (2015). Modeling infrastructure system interdependencies and
4 socioeconomic impacts of failure in extreme events: emerging R&D challenges.
5 *Natural Hazards*, 78(3), 2143-2168.

6
7 Herkert, N. J., Merrill, J., Peters, C., Bollinger, D., Zhang, S., Hoffman, K., Ferguson, P. L.,
8 Knappe, D. R. U., & Stapleton, H. M. (2020). Assessing the Effectiveness of Point-of-
9 Use Residential Drinking Water Filters for Perfluoroalkyl Substances (PFASs).
10 *Environmental Science & Technology Letters*, 7(3), 178-184.
11 <https://doi.org/10.1021/acs.estlett.0c00004>

12 Herrera, V. 2017. *Water and politics: Clientelism and reform in urban Mexico*. University of
13 Michigan Press.

14 Heyman, J., Mayer, A., Alger, J. (2022). Predictions of household water affordability under
15 conditions of climate change, demographic growth, and fresh groundwater depletion in
16 a southwest US city indicate increasing burdens on the poor, *PLoS ONE* 17(11):
17 e0277268. <https://doi.org/10.1371/journal.pone.0277268>

18
19 Hiolski, E. (2019). The Toilet Gets a Makeover. *ACS Central Science*, 5(8), 1303-1306.
20 <https://doi.org/10.1021/acscentsci.9b00769>

21 Hohner, A. K., C. C. Rhoades, P. Wilkerson & F. L. Rosario-Ortiz (2019) Wildfires alter forest
22 watersheds and threaten drinking water quality. *Accounts of Chemical Research*, 52,
23 1234-1244.

24 Hope, R., Thomson, P., Koehler, J., & Foster, T. (2020). Rethinking the economics of rural
25 water in Africa. *Oxford Review of Economic Policy*, 36(1), 171-190.ba

26 Hunter, P. R., D. Zmirou-Navier & P. Hartemann (2009) Estimating the impact on health of
27 poor reliability of drinking water interventions in developing countries. *Science of the
28 total environment*, 407, 2621-2624.

29 Hynds, Paul D., Bruce D. Misstear, and Laurence W. Gill. "Unregulated Private Wells in the
30 Republic of Ireland: Consumer Awareness, Source Susceptibility and Protective
31 Actions." *Journal of Environmental Management* 127 (September 30, 2013): 278-88.
32 <https://doi.org/10.1016/j.jenvman.2013.05.025>

33 Jaywant, S. A., & Arif, K. M. (2019). A Comprehensive Review of Microfluidic Water Quality
34 Monitoring Sensors. *Sensors* 19(21): Article 21. <https://doi.org/10.3390/s19214781>

35 Jepson, W. (2014) Measuring 'no-win' waterscapes: Experience-based scales and classification
36 approaches to assess household water security in colonias on the US-Mexico border.
37 *Geoforum*, 51, 107-120.

38 Jepson, W. & H. L. Brown (2014) 'If no gasoline, no water': privatizing drinking water quality
39 in South Texas colonias. *Environment and Planning A*, 46, 1032-1048.

40 Jepson, W., J. Budds, L. Eichelberger, L. Harris, E. Norman, K. O'Reilly, A. Pearson, S. Shah,
41 J. Shinn & C. Staddon (2017) Advancing human capabilities for water security: A
42 relational approach. *Water Security*, 1, 46-52.

43 Jepson, W., P. Tomaz, J. O. Santos & J. Baek (2021) A comparative analysis of urban and rural
44 household water insecurity experiences during the 2011-17 drought in Ceará, Brazil.
45 *Water International*, 46, 697-722.

46 Jepson, W., Wutich, A., & Harris, L. M. (2019). Water-security capabilities and the human
47 right to water. In *Water politics* (pp. 84-98). Routledge.

48 Juhola, S., E. Glaas, B.-O. Linnér & T.-S. Neset (2016) Redefining maladaptation.
49 *Environmental Science & Policy*, 55, 135-140.

50 Kane, J. & A. Tomer (2018) Renewing the water workforce. *London: Brookings Metropolitan
51 Policy Program*.

52 Kariuki, M., & Schwartz, J. (2005). Small-scale private service providers of water supply and
53 electricity: a review of incidence, structure, pricing, and operating characteristics.
54 *Policy Research Working Paper Series*, (3727), DC: World Bank.

55
56
57
58
59
60

1
2
3 Kidd, J., P. Westerhoff & A. D. Maynard (2020) Public perceptions for the use of nanomaterials
4 for in-home drinking water purification devices. *NanoImpact*, 18, 100220.
5 Klasic, M., Fencl, A., Ekstrom, J. A., & Ford, A. (2022). Adapting to extreme events: small
6 drinking water system manager perspectives on the 2012–2016 California Drought.
7 *Climatic Change*, 170(3), 1-25.
8 Kleemeier, E. (2000). The Impact of Participation on Sustainability: An Analysis of the Malawi
9 Rural Piped Scheme Program. *World Development*, 28(5), 929–944.
10 [https://doi.org/10.1016/S0305-750X\(99\)00155-2](https://doi.org/10.1016/S0305-750X(99)00155-2)
11
12 Koehler, J., Rayner, S., Katuva, J., Thomson, P., & Hope, R. (2018). A cultural theory of
13 drinking water risks, values and institutional change. *Global Environmental Change*,
14 50, 268–277.
15 Kooy, M. (2014). Developing Informality: The Production of Jakarta's Urban Waterscape.
16 *Water Alternatives*, 7(1).
17 Leonard, K., David-Chavez, D., Smiles, D., Jennings, L., 'Anolani Alegado, R., Tsinnajinnie,
18 L., Manitowabi, J., Arsenault, R. and Begay, R.L., 2023. Water Back: A Review
19 Centering Rematriation and Indigenous Water Research Sovereignty. *Water
20 Alternatives*, 16(2), p.2.
21 Li, Z., Zheng, L., Koottatep, T., & Vinnerås, B. (2023). Editorial: Decentralized wastewater
22 treatment technologies. *Frontiers in Environmental Science*, 11.
23 <https://www.frontiersin.org/articles/10.3389/fenvs.2023.1199552>
24 Linton, J., & Budds, J. (2014). The hydrosocial cycle: Defining and mobilizing a relational-
25 dialectical approach to water. *Geoforum*, 57, 170-180.
26 MacArthur, J. (2005) *Handpump Standardisation in Sub-Saharan Africa*. Rural Water Supply
27 Network. Publication 2015-1. <https://www.ircwash.org/sites/default/files/1-652-2-1421834932.pdf>
28 Magnan, A. K., E. L. F. Schipper, M. Burkett, S. Bharwani, I. Burton, S. Eriksen, F. Gemenne,
29 J. Schaar & G. Zervogel (2016) Addressing the risk of maladaptation to climate
30 change. *Wiley Interdisciplinary Reviews: Climate Change*, 7, 646-665.
31 Malin, G. C. (2022, May 18). What Is Public and What Is Private in Water Provision: Insights
32 from 19th-Century Philadelphia, Boston, and New York. *Oxford Research
33 Encyclopedia of Environmental Science*.
34 <https://doi.org/10.1093/acrefore/9780199389414.013.683> Mansuri, G., & Rao, V.
35 (2004). Community-based and-driven development: A critical review.
36 *The World Bank Research Observer*, 19(1), 1-39.
37 Mariwah, S., Drangert, J.-O., & Adams, E. A. (2022). The potential of composting toilets in
38 addressing the challenges of faecal sludge management in community-led total
39 sanitation (CLTS). *Global Public Health*, 17(12), 3802–3814.
40 <https://doi.org/10.1080/17441692.2022.2111453>
41
42 McFarlane, K., & Harris, L. M. (2018). Small systems, big challenges: Review of small
43 drinking water system governance. *Environmental Reviews*, 26(4), 378-395.
44 Meehan, K., W. Jepson, L. M. Harris, A. Wutich, M. Beresford, A. Fencl, J. London, G. Pierce,
45 L. Radonic & C. Wells (2020) Exposing the myths of household water insecurity in the
46 global north: a critical review. *Wiley Interdisciplinary Reviews: Water*, 7, e1486.
47 Meehan, K., W. Jepson, L. M. Harris, A. Wutich, M. Beresford, A. Fencl, J. London, G. Pierce,
48 L. Radonic, C. Wells & others (2020) Exposing the myths of household water insecurity
49 in the global North: A critical review. *Wiley Interdisciplinary Reviews: Water*, e1486.
50 Meehan, K., J. R. Jurjevich, N. M. Chun & J. Sherrill (2020) Geographies of insecure water
51 access and the housing–water nexus in US cities. *Proceedings of the National Academy
52 of Sciences*, 117, 28700-28707.
53
54
55
56
57
58
59
60

Meehan, K., Odetola, M., & Griswold, A. (2022). Homelessness, Water Insecurity, and the Human Rights to Water and Sanitation. King's College London.
<https://doi.org/10.18742/pub01-085>

Meehan, K., Mirumachi, N., Loftus, A., & Akhter, M. (2023). Water: A Critical Introduction. John Wiley & Sons.

Meleg, A. (2012) SISAR: a sustainable management model for small rural decentralized water and wastewater systems in developing countries. *Journal of Water, Sanitation and Hygiene for Development*, 2, 291-300.

Melosi, M. V. 2008. *The sanitary city: Environmental services in urban America from colonial times to the present*. University of Pittsburgh Pre.

Morales-Novelo, Jorge A., Lilia Rodríguez-Tapia, and Daniel A. Revollo-Fernández. "Inequality in Access to Drinking Water and Subsidies between Low and High Income Households in Mexico City." *Water* 10, no. 8 (August 2018): 1023. <https://doi.org/10.3390/w10081023>.

Morinville, C. (2017). Sachet water: Regulation and implications for access and equity in Accra, Ghana. *Wiley Interdisciplinary Reviews: Water*, 4(6), e1244.

Morris, R. (2000). *Stories of transformative justice*. Canadian Scholars' Press.

Mullin, M. (2009). *Governing the tap: Special district governance and the new local politics of water*. MIT Press.

Mullin, M. (2020). The effects of drinking water service fragmentation on drought-related water security. *Science*, 368(6488), 274-277.

Neal, M. J., Lukasiewicz, A., & Syme, G. J. (2014). Why justice matters in water governance: some ideas for a 'water justice framework'. *Water policy*, 16(S2), 1-18.

Nocella, A. J., & Anthony, J. (2011). An overview of the history and theory of transformative justice. *Peace & conflict review*, 6(1), 1-10.

Norriess, J., M. Cunningham, A. R. DeRosa & S. Vedachalam (2021) Too Small to Succeed: State-Level Consolidation of Water Systems. *Journal-American Water Works Association*, 113, 8-15.

Nunes, J. P., S. H. Doerr, G. Sheridan, J. Neris, C. Santín, M. B. Emelko, U. Silins, P. R. Robichaud, W. J. Elliot & J. Keizer (2018) Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. *Hydrological Processes*, 32, 687-694.

Odumayomi, T. O., C. R. Proctor, Q. E. Wang, A. Sabbaghi, K. S. Peterson, D. J. Yu, J. Lee, A. D. Shah, C. J. Ley & Y. Noh (2021) Water safety attitudes, risk perception, experiences, and education for households impacted by the 2018 Camp Fire, California. *Natural Hazards*, 108, 947-975.

Organization, W. H. (2021) Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs.

Ostrom, E. (1990). *Governing the commons: The evolution of institutions for collective action*. Cambridge University Press.

Oyanedel-Craver, V. A. & J. A. Smith (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. *Environmental science & technology*, 42, 927-933.

Pacheco-Vega, R. (2019). Human right to water and bottled water consumption: Governing at the intersection of water justice, rights and ethics. In *Water politics* (pp. 113-128). Routledge.

Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. *Global environmental change*, 19(3), 354-365.

Patterson, C., Burkhardt, J., Schupp, D., Krishnan, E. R., Dyment, S., Merritt, S., Zintek, L., & Kleinmaier, D. (2019). Effectiveness of point-of-use/point-of-entry systems to remove per- and polyfluoroalkyl substances from drinking water. *AWWA Water Science*, 1(2), e1131.

Peek, L., Tobin, J., Adams, R. M., Wu, H., & Mathews, M. C. (2020). A framework for convergence research in the hazards and disaster field: The natural hazards engineering research infrastructure CONVERGE facility. *Frontiers in Built Environment*, 6, 110.

Phuangsajai, N., Jakmunee, J., & Kittiwachana, S. (2021). Investigation into the predictive performance of colorimetric sensor strips using RGB, CMYK, HSV, and CIELAB coupled with various data preprocessing methods: A case study on an analysis of water quality parameters. *Journal of Analytical Science and Technology*, 12(1), 19. <https://doi.org/10.1186/s40543-021-00271-9>

Pooi, C. K. & H. Y. Ng (2018) Review of low-cost point-of-use water treatment systems for developing communities. *NPJ Clean Water*, 1, 1-8.

Quinn, R., O. Avis, M. Decker, A. Parker & S. Cairncross (2018) An assessment of the microbiological water quality of sand dams in Southeastern Kenya. *Water*, 10, 708.

Robinne, F.-N., D. W. Hallema, K. D. Bladon, M. D. Flannigan, G. Boisramé, C. M. Bréthaut, S. H. Doerr, G. Di Baldassarre, L. A. Gallagher & A. K. Hohner (2021) Scientists' warning on extreme wildfire risks to water supply. *Hydrological processes*, 35, e14086.

Rodina, L. & L. M. Harris (2016) Water Services, Lived Citizenship, and Notions of the State in Marginalised Urban Spaces: The case of Khayelitsha, South Africa. *Water Alternatives*, 9.

Roque, A., Wutich, A., Brewis, A., Beresford, M., García-Quijano, C., Lloréns, H., & Jepson, W. (2021). Autogestión and water sharing networks in Puerto Rico after Hurricane María. *Water International*, 46(6), 938-955.

Roque, A., Wutich, A., Quimby, B., Porter, S., Zheng, M., Hossain, M. J., & Brewis, A. (2022). Participatory approaches in water research: A review. *Wiley Interdisciplinary Reviews: Water*, 9(2), e1577.

Roque, A., A. Wutich, A. Brewis, M. Beresford, L. Landes, O. Morales, R. Lucero, W. Jepson, Y. Tsai, M. Hanemann, Action for Water Equity Consortium. (2024) Community-based participant-observation (CBPO): A participatory method for ethnographic research. *Field Methods*. 36(2).

Rosinger, A.Y., Brewis, A., Wutich, A., Jepson, W., Staddon, C., Stoler, J., Young, S.L. and Coordination, HWISe RCN, 2020. Water borrowing is consistently practiced globally and is associated with water-related system failures across diverse environments. *Global Environmental Change*, 64, p.102148.

Rosinger, A. Y. & S. L. Young (2020) The toll of household water insecurity on health and human biology: current understandings and future directions. *Wiley Interdisciplinary Reviews: Water*, 7, e1468.

Sadler, R. C., & Highsmith, A. R. (2016). Rethinking Tiebout: The Contribution of Political Fragmentation and Racial/Economic Segregation to the Flint Water Crisis. *Environmental Justice*, 9(5), 143–151.

Sarkar, A. (2019). The role of new 'Smart technology' to provide water to the urban poor: a case study of water ATMs in Delhi, India. *Energy, Ecology and Environment*, 4(4), 166-174.

Sarkar, S. K., & Bharat, G. K. (2021). Achieving Sustainable Development Goals in water and sanitation sectors in India. *Journal of Water, Sanitation and Hygiene for Development*, 11(5), 693–705. <https://doi.org/10.2166/washdev.2021.002>

Sarkar, U. D., & Choudhary, B. K. (2020). Reconfiguring urban waterscape: water Kiosks in Delhi as a new governance model. *Journal of Water, Sanitation and Hygiene for Development*, 10(4), 996-1011.

Schwartz, K., Tutasaus Luque, M., Rusca, M., & Ahlers, R. (2015). (In) formality: the meshwork of water service provisioning. *Wiley Interdisciplinary Reviews: Water*, 2(1), 31-36.

Scruggs, C. E., & Heyne, C. M. (2021). Extending traditional water supplies in inland communities with nontraditional solutions to water scarcity. *Wiley Interdisciplinary Reviews: Water*, 8(5), e1543.

Sharma, R., & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. *Wiley Interdisciplinary Reviews: Water*, 8(2), e1507.

Shrestha, K.B., Thapa, B.R., Aihara, Y., Shrestha, S., Bhattarai, A.P., Bista, N., Kazama, F. and Shindo, J., 2018. Hidden cost of drinking water treatment and its relation with socioeconomic status in Nepalese urban context. *Water*, 10(5), p.607.

Shukla, A., Patwa, A., Parde, D., & Vijay, R. (2023). A review on generation, characterization, containment, transport and treatment of fecal sludge and septage with resource recovery-oriented sanitation. *Environmental Research*, 216, 114389. <https://doi.org/10.1016/j.envres.2022.114389>

Silva, M. E. D., J. C. A. Alcócer, O. R. de Oliveira Pinto, C. de Miranda Pinto & A. M. da Fonseca (2020) Percepção de beneficiários do Programa Cisternas: manuseio de águas em Ibaretama, Ceará. *Brazilian Journal of Development*, 6, 37847-37867.

Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C.A., Wescoat, J.L. and Rodríguez-Iturbe, I., 2014. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. *Earth's Future*, 2(4), pp.225-230.

Soler, N. G., T. Moss & O. Papasozomenou (2018) Rain and the city: Pathways to mainstreaming rainwater harvesting in Berlin. *Geoforum*, 89, 96-106.

Solo, T. M. (1999). Small-scale entrepreneurs in the urban water and sanitation market. *Environment and urbanization*, 11(1), 117-132.

Spearing, L. A. & K. M. Faust (2020) Cascading system impacts of the 2018 Camp Fire in California: The interdependent provision of infrastructure services to displaced populations. *International Journal of Disaster Risk Reduction*, 50, 101822.

Staddon, C., J. Rogers, C. Warriner, S. Ward & W. Powell (2018) Why doesn't every family practice rainwater harvesting? Factors that affect the decision to adopt rainwater harvesting as a household water security strategy in central Uganda. *Water international*, 43, 1114-1135.

Stoler, J. (2012) Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water. *Tropical Medicine & International Health*, 17, 1506-1508.

Stoler, J. (2017) From curiosity to commodity: a review of the evolution of sachet drinking water in West Africa. *Wiley Interdisciplinary Reviews: Water*, 4, e1206.

Stoler, J., A. Brewis, L. M. Harris, A. Wutich, A. L. Pearson, A. Y. Rosinger, R. C. Schuster & S. L. Young (2019) Household water sharing: a missing link in international health. *International health*, 11, 163-165.

Stoler, J., W. Jepson, A. Wutich, C. A. Velasco, P. Thomson, C. Staddon & P. Westerhoff (2022) Modular, adaptive, and decentralised water infrastructure: promises and perils for water justice. *Current Opinion in Environmental Sustainability*, 57, 101202.

Storey, A. D. (2021). Implicit or illicit? Self-made infrastructure, household waters, and the materiality of belonging in Cape Town. *Water Alternatives*, 14(1), 79-96.

Sultana, F., & Loftus, A. (Eds.). (2019). *Water politics: Governance, justice and the right to water*. Routledge.

1
2
3 Teodoro, M. P. & R. R. Saywitz (2020) Water and sewer affordability in the United States: a
4 2019 update. *AWWA Water Science*, 2, e1176.
5 Thomson, P. (2021) Remote monitoring of rural water systems: A pathway to improved
6 performance and sustainability? *Wiley Interdisciplinary Reviews: Water*, 8, e1502.
7 Thomson, P., Hope, R., & Foster, T. (2012). Is silence golden? Of mobiles, monitoring, and
8 rural water supplies. *Waterlines*, 31(4), 280–292. <https://doi.org/10.3362/1756-3488.2012.031>
9
10 Thomson, P., & Koehler, J. (2016). Performance-oriented Monitoring for the Water SDG –
11 Challenges, Tensions and Opportunities. *Aquatic Procedia*, 6, 87–95.
12 <https://doi.org/10.1016/j.aqpro.2016.06.010>
13
14 Thomson, P., Bradley, D., Katilu, A., Katuva, J., Lanzoni, M., Koehler, J., & Hope, R. (2019).
15 Rainfall and groundwater use in rural Kenya. *Science of The Total Environment*, 649,
16 722–730.
17
18 Thomson, P., Stoler, J., Byford, M., Bradley, D. (2022) The Impact of Rapid Handpump
19 Repairs on Diarrhoea Morbidity in Children: A Cross-Sectional Study. *JMIR Preprints*.
20 08/09/2022:42462
21
22 Troesken, W., N. Tynan & Y. A. Yang (2021) What are the health benefits of a constant water
23 supply? Evidence from London, 1860–1910. *Explorations in Economic History*, 81,
24 101402.
25
26 Truelove, Y. (2019). Gray zones: The everyday practices and governance of water beyond the
27 network. *Annals of the American Association of Geographers*, 109(6), 1758–1774.
28
29 United State Environmental Protection Agency Office of Water (1997) Response to Congress
30 On Use Of Decentralized Wastewater Treatment Systems. EPA 832-R-97-001b
31
32 Vandewalle, E. & W. Jepson (2015) Mediating water governance: point-of-use water filtration
33 devices for low-income communities along the US–Mexico border. *Geo: Geography
34 and Environment*, 2, 107–121.
35
36 Vázquez-Rowe, I., Kahhat, R., & Lorenzo-Toja, Y. (2017). Natural disasters and climate
37 change call for the urgent decentralization of urban water systems. *Science of the total
38 environment*, 605, 246–250.
39
40 Vedachalam, S., MacDonald, L. H., Omoluabi, E., OlaOlorun, F., Otupiri, E., & Schwab, K. J.
41 (2017). The role of packaged water in meeting global targets on improved water access.
42 *Journal of Water, Sanitation and Hygiene for Development*, 7(3), 369–377.
43
44 Vörösmarty, C. J., C. Pahl-Wostl, S. E. Bunn & R. Lawford (2013) Global water, the
45 anthropocene and the transformation of a science. *Current Opinion in Environmental
46 Sustainability*, 5, 539–550.
47
48 Voth-Gaeddert, L. E., Lemley, M., Brathwaite, K., Schranck, A., & Libbey, S. (2022). Design
49 and Evaluation of a Household Chlorination System for Treating Cistern Water in the
50 US Virgin Islands. *Journal of Environmental Engineering*, 148(11), 06022002.
51
52 Wade, S. (2018). Is water security just? Concepts, tools and missing links. *Water International*,
53 43(8), 1026–1039.
54
55 Wahby, N. M. (2021). Urban informality and the state: Repairing Cairo's waters through
56 Gehoud Zateya. *Environment and Planning E: Nature and Space*, 4(3), 696–717.
57 Water Environment Research Foundation (2010). Integration: A New Framework and Strategy
58 for Water Management in Towns and Cities, Meeting Summary Report, DEC3R08f.
59 Water Environment Research Foundation, www.werf.org
60 Wells, E. C., Vidmar, A. M., Webb, W. A., Ferguson, A. C., Verbyla, M. E., de los Reyes III,
61 F. L., Zhang, Q., & Mihelcic, J. R. (2022). Meeting the water and sanitation challenges
62 of underbounded communities in the US. *Environmental Science & Technology*,
63 56(16), 11180–11188.

1
2
3 Westerhoff, P., Wutich, A., & Carlson, C. (2021). Value propositions provide a roadmap for
4 convergent research on environmental topics. *Environmental Science & Technology*,
5 55(20), 13579-13582.

6 Whittington, D., Lauria, D. T., & Mu, X. (1991). A study of water vending and willingness to
7 pay for water in Onitsha, Nigeria. *World Development*, 19(2-3), 179-198.

8 Wichelns, D., Drechsel, P., & Qadir, M. (2015). Wastewater: Economic Asset in an Urbanizing
9 World. In P. Drechsel, M. Qadir, & D. Wichelns (Eds.), *Wastewater: Economic Asset*
10 in an Urbanizing World (pp. 3-14). Springer Netherlands. https://doi.org/10.1007/978-94-017-9545-6_1

11 Wilk, R. (2006). Bottled water: the pure commodity in the age of branding. *Journal of*
12 *Consumer Culture*, 6(3), 303-325.

13 Wilson, N. J., & Inkster, J. (2018). Respecting water: Indigenous water governance,
14 ontologies, and the politics of kinship on the ground. *Environment and Planning E: Nature and Space*, 1(4), 516-538.

15 Wilson, N. J., Montoya, T., Arseneault, R., & Curley, A. (2021). Governing water insecurity:
16 navigating indigenous water rights and regulatory politics in settler colonial states.
17 *Water International*, 46(6), 783-801.

18 Wolff, G. & P. H. Gleick. 2002. *The soft path for water*. Island Press Washington.

19 Workman, C. L., & Shah, S. H. (2022). Water infrastructure as intrusion: Race, exclusion, and
20 nostalgic futures in North Carolina. *Annals of the American Association of Geographers*, 1-13.

21 World Health Organization. (2019). Progress on household drinking water, sanitation and
22 hygiene 2000-2017: special focus on inequalities.

23 World Health Organization. (2021). Progress on household drinking water, sanitation and
24 hygiene 2000-2020: five years into the SDGs.

25 World Health Organization & UNICEF. (2017). WHO/UNICEF Joint Monitoring Program for
26 Water Supply, Sanitation and Hygiene (JMP)—2017 Update and SDG Baselines | UN-
27 Water. <http://www.unwater.org/publications/whounicef-joint-monitoring-program-water-supply-sanitation-hygiene-jmp-2017-update-sdg-baselines/>

28 Wutich, A., Beresford, M., & Carvajal, C. (2016). Can informal water vendors deliver on the
29 promise of a human right to water? Results from Cochabamba, Bolivia. *World*
30 *Development*, 79, 14-24.

31 Wutich, A., J. Budds, W. Jepson, L. M. Harris, E. Adams, A. Brewis, L. Cronk, C. DeMyers,
32 K. Maes & T. Marley (2018) Household water sharing: A review of water gifts,
33 exchanges, and transfers across cultures. *Wiley Interdisciplinary Reviews: Water*, 5,
34 e1309.

35 Wutich, A., A. Brewis & A. Tsai (2020) Water and mental health. *Wiley Interdisciplinary*
36 *Reviews: Water*, 7, e1461.

37 Wutich, A., W. E. Jepson, J. Stoler, P. Thomson, M. Kooy, A. Brewis, C. Staddon & K. Meehan
38 (2021) A global agenda for household water security: measurement, monitoring, and
39 management. *JAWRA Journal of the American Water Resources Association*, 57, 530-
40 538.

41 Wutich, A., A. Rosinger, A. Brewis, M. Beresford, S. Young & HWise RCN (2022) Water
42 sharing is a distressing form of reciprocity: Shame, upset, anger, and conflict over water
43 in twenty cross-cultural sites. *American Anthropologist*.

44 Yates, J. S., & Harris, L. M. (2018). Hybrid regulatory landscapes: The human right to water,
45 variegated neoliberal water governance, and policy transfer in Cape Town, South
46 Africa, and Accra, Ghana. *World Development*, 110, 75-87.

47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Yates, J. S., Harris, L. M., & Wilson, N. J. (2017). Multiple ontologies of water: Politics,
4 conflict and implications for governance. *Environment and Planning D: Society and*
5 *Space*, 35(5), 797-815.
6
7 Zeitoun, M., Lankford, B., Krueger, T., Forsyth, T., Carter, R., Hoekstra, A.Y., Taylor, R.,
8 Varis, O., Cleaver, F., Boelens, R. and Swatuk, L., 2016. Reductionist and integrative
9 research approaches to complex water security policy challenges. *Global*
10 *Environmental Change*, 39, pp.143-154.
11
12 Zodrow, K. R., Q. Li, R. M. Buono, W. Chen, G. Daigger, L. Dueñas-Osorio, M. Elimelech,
13 X. Huang, G. Jiang & J.-H. Kim. 2017. Advanced materials, technologies, and complex
14 systems analyses: emerging opportunities to enhance urban water security. ACS
15 Publications.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1
2
3
4
5
6
7 **TABLES**

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Table 1. Key Terms, Definitions & Examples for MAD (Modular, Adaptive, or Decentralized) Water Approaches

Term	Definition	MAD Water Example(s)	Counter-Example(s): NOT MAD
Modular	Fit-for-purpose, easily replicable, can be expanded or reduced according to need, and are often mobile or portable, i.e., do not rely on fixed, permanent infrastructure (Mobile systems that can be easily deployed as populations move & resettle are by nature modular and included in our definition.)	Point-of-use water filtration systems: can be expanded to process more water Onsite/Decentralized wastewater treatment and reuse system that can be expanded modularly to meet demand. Water vending trucks that move water from source to customers Mobile desalination or treatment systems for disaster response.	Conventional water & wastewater treatment plants designed for specific capacity (e.g., due to both site and permitting constraints)
Adaptive	Can be quickly and responsively modified to meet immediate needs	Household water sharing: norms-based system can be modified to encompass different water needs and relationships	Systems governed by Federal water legislation are often not adaptive because the change process is long and slow
Decentralized	Dispersed, distributed, and localized. Lack of central coordination in water distribution	Rainwater harvesting: Individual households collect & allocate water independently Onsite wastewater treatment and reuse to amend rainwater harvesting.	Municipal water & sewer utilities typically have centralized infrastructure & decision-making

1
2
3
4
5 **Table 2.** Examples with modular, adaptive, or decentralized characteristics for water harvesting, treatment, distribution, monitoring, or
6 governing.

7 8 9 10 Example	11 12 13 14 15 16 17 18 19 1 Harvesting			20 21 22 23 24 25 26 27 28 2 Treating			30 31 32 33 34 35 36 37 3 Distributing			40 41 42 43 44 45 46 47 48 4 Monitoring			49 50 51 52 53 54 55 56 57 58 5 Governing			50 51 52 53 54 55 56 57 58 59 5 Citation
	M	A	D	M	A	D	M	A	D	M	A	D	M	A	D	
Sand scoops in ephemeral rivers	✓	✓	✓	✓	✓	✓	✓	✓	✓				✓	✓		Quinn et al. 2019
Water truck vending in Bolivia	✓						✓	✓	✓				✓	✓	✓	Wutich et al. 2016
Remotely-monitored handpumps in Kenya	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	Thomson 2021
Rainwater harvesting in Brazil, Uganda, Mexico	✓	✓	✓				✓	✓	✓							Staddon et al 2018; Lindoso et al 2018; Adrich and Page-Tan 2020
Water sharing after Hurricane Maria, Caribbean							✓	✓	✓				✓	✓	✓	Roque et al. 2021
Sistema de Saneamento Rural (SISAR) communities in Brazil				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	Cooperman 2019; Dos Santos Rocha and Salvetti; Meleg 2012
Packaged water in West Africa	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓					Stoler 2017
Hauled water in U.S. colonias							✓	✓	✓							Garcia et al. 2016
Bottled water among unhoused people in London, U.K.	✓	✓	✓				✓	✓	✓							Meehan et al. 2022

In-home water treatment systems in Kathmandu Valley, Nepal	✓	✓	✓												Shrestha et al. 2018
Water kiosks in Delhi, India	✓	✓	✓	✓	✓	✓	✓	✓	✓						Sarkar & Choudhary 2020
Water ATMs in Delhi, India	✓	✓	✓	✓	✓	✓	✓	✓	✓						Sarkar 2019
“Luxury Techno-Libertarians” in Puerto Rico	✓	✓	✓	✓	✓	✓									Lloréns 2021

Table 3. Defining justice for MAD water approaches

Forms of Justice	Brief Description	Example
Distributive	Access to resources and outcomes are fair and equitable across social groups and classes (e.g. gender, sexuality, class, race/ethnicity, indigeneity)	No disparities in water quality between genders or racial-majority and racial-minority water users
Interpersonal	Individuals are treated fairly and equitably, no matter who they are	Low-income and high-income people are treated equally when buying water from private vendors
Procedural	Rules, norms, and decision-making processes are fair and equitable	All genders are equally represented in decision-making to change to water rules
Recognition	Different worldviews and values are fairly and equitably represented	Indigenous conceptions of the value of water are equally considered when determining water allocations and definitions of "use"
Transformative (or restorative)	Root causes of oppression in water systems are collaboratively addressed and communities are peacefully reconstructed	The root causes of oppressive water systems are identified and corrected in ways that address victims' needs, rehabilitate offenders, and reintegrate society

Table 4. Economic Considerations for MAD Water

Economic Factors	Brief definition	Example
Financing	Capital investment and O&M of systems must be paid for.	✓ Potentially lower up-front costs relative to replacing aging centralized infrastructure.

		<ul style="list-style-type: none"> ✗ Unclear the extent to which decentralized systems can generate economies of scale.
Affordability	Costs of water access do not place an undue burden on users relative to their household income	<ul style="list-style-type: none"> ✓ Users no longer pay high connection costs to large piped systems across large distances that are prone to high water leakage and corruption. ✗ Previously hidden cross-subsidies no longer possible, leading to higher prices for marginalized.
Workforce and business development	MAD systems provide opportunities for local skills development and employment.	<ul style="list-style-type: none"> ✓ Brazilian programs to implement rainwater harvesting targeted gender empowerment and training in cistern construction (De Moreas 2013) ✗ Proprietary treatment systems lock in the need for external support.

Table 5. Governance Considerations for MAD Water

Governance Factors	Brief definition	Example
Representation	Users participate and/or have their interests present in local government / higher level decision making	<ul style="list-style-type: none"> ✓ Users can more easily serve on decentralized water boards. ✗ Decentralized rural systems may cause governments to ignore rural constituents

Accountability	Service providers (utility/NGO/other) are accountable to users (depending on who/where service providers are)	<ul style="list-style-type: none"> ✓ Local providers are closer to users and better able to respond to requests; users can more easily communicate and protest ✗ Central governments may no longer respond to concerns or requests related to other public services from decentralized water system users who no longer rely on or pay into centralized water systems
Equity	Users have equal access to reliable, secure water sources	<ul style="list-style-type: none"> ✓ Users previously unserved or underserved by centralized systems have better access ✗ Wealthy residents are better able to self-provide off-grid solutions that poor residents cannot afford

Table 6. Human Health Outcomes for MAD Water

Human Health Outcomes	Brief definition	Example
Water-related diseases	MAD water systems reduce disease morbidity and reduce the overall burden of waterborne diseases.	<ul style="list-style-type: none"> ✓ Reliable supplies close to home reduce use of unsafe sources. ✗ Small scale treatment struggle with tricky contaminants.
Physical wellbeing	Physical burden, risk of injury and threat associated with water fetching is minimized.	<ul style="list-style-type: none"> ✓ Supplies close to home reduce risk of exposure to physical violence when collecting water. ✗ Non-piped systems necessitate water fetching.

Mental health	The transition to MAD water systems reduces or eliminates mental health impacts associated with water insecurity.	✓ Reliable supplies close to home reduce worry. ✗ Responsibility for O&M by non-professionals increases mental stress.
---------------	---	---

Table 7. Environmental Sustainability for MAD Water

Environmental Sustainability Components	Brief definition	Example
Ecosystems Services	System(s) or feature(s) that are compatible with existing services, or otherwise do not interfere with their function.	✓ Integration of high-tech MAD treatment systems with natural or constructed wetlands. ✗ Modular systems not designed for specific local environmental conditions.
Sustainability	System(s) or feature(s) that do not generate downstream ecosystem burdens or tradeoffs, such as creating problematic waste products, or reducing ecosystem services.	✓ Lower carbon footprint from initial construction. ✗ Difficulties with handling and disposal of brine or chemical waste accumulated during treatment.
Resilience	System(s) or feature(s) that enhance a community's ability to recover from extreme weather or other shocks.	✓ Infrastructure that is portable and can be rapidly expanded/scaled during an emergency. Supply chains for infrastructure parts are buffered from global financial risks, etc. ✗ Decentralized systems have less redundancy and may be more vulnerable to shocks such as operator errors and cyber-attacks.

Funding Acknowledgement

This work was partially funded by the National Science Foundation Household Water Insecurity Research Coordination Network (HWISE-RCN) (SBE-1759972), Nanosystems Engineering Research Center on Nanotechnology-Enabled Water Treatment (EEC-1449500), Action for Water Equity (GCR-2021147), and SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems (BCS-2121986 / BCS-2120829 / BCS-2121991), and the Arizona Water Innovation Initiative. Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES030990. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funding agencies.

For Peer Review

1
2
3 **Title: MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for**
4 **Water Security in the Climate Change Era**
5

6 First **& Corresponding** Author:
7

8 **Amber Wutich** [0000-0003-4164-1632](#)

9 School of Human Evolution & Social Change, Cady Mall, Tempe, AZ 85281

10 Arizona State University

11 awutich@asu.edu

12
13 Patrick Thomson [0000-0002-0697-1866](#)

14 University of Oxford

15 patrick.thomson@ouce.ox.ac.uk

16
17 **Corresponding Author:**

18 Wendy Jepson [0000-0002-7693-1376](#)

19 Texas A&M University

20 wjepson@tamu.edu

21 Justin Stoler [0000-0001-8435-7012](#)

22 University of Miami

23 stoler@miami.edu

24 Alicia D. Cooperman [0000-0002-1652-4488](#)

25 George Washington University

26 acooperman@email.gwu.edu

27 James Doss-Gollin [0000-0002-3428-2224](#)

28 Rice University

29 jdoss-gollin@rice.edu

30 Anish Jantrania [0000-0003-4335-3423](#)

31 Texas A&M University

32 ajantrania@tamu.edu

33 Alex Mayer [0000-0003-3226-2307](#)

34 University of Texas at El Paso

35 amayer2@utep.edu

36 Jami Nelson-Nuñez [0000-0002-2001-6494](#)

37 University of New Mexico

38 jaminunez@unm.edu

39 W. Shane Walker [0000-0002-4136-8499](#)

40 University of Texas at El Paso

41 wswalker2@utep.edu

42 Paul Westerhoff [0000-0002-9241-8759](#)

43 Arizona State University

44 p.westerhoff@asu.edu

Abstract

Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure^{ing}, is increasingly testing the limits of—and reversing gains made by—these large-scale water systems^{this approach}. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, but yet still meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community-based water management, small drinking water systems, point-of-use treatment, small-scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance.

1. Introduction

Centralized water infrastructure has, over the last century, secured safe and reliable drinking water for much of Global North and, to some extent, Global South (Meehan et al. 2021). But extreme weather events, combined with aging and underfunded water infrastructure, are increasingly testing the limits of these large-scale systems connecting pipes and water treatment centers (Stoler et al. 2022, Hasan and Foliente 2015, Baird 2010). Safe drinking water is becoming more expensive to produce (Teodoro 2020, Heyman et al. 2022), while local political constraints and complex processes to access infrastructure funds make it difficult to finance water infrastructure maintenance and the workforce to operate it (Kane and Tomer 2018). Many of those responsible for extending water provision and sanitation to previously underserved populations—both rural and urban—are grappling with the unsustainability of centralized 20th century service models given future climate and financial projections (Vorosmarty et al. 2013; Bogardi et al. 2013; Abel et al. 2019).

In the 19th and 20th centuries enormous gains in water security were made through the expansion of public utilities (Melosi 2008). In many cases these efforts involved the decommissioning of small-scale decentralized systems (e.g., local wells) in favor of centralized piped systems which were, and still are, considered the gold standard of water service delivery (Hardy, 1991, Malin, 2022). Piped, centralized water solutions, implicitly situated at the top of the WHO/UNICEF Joint Monitoring Program (or JMP) drinking water ladder (WHO 2019), are preferred and prioritized as the means of achieving “safely managed water” under the United Nations Sustainable Development Goal SDG 6.1. (WHO 2021). However, it is increasingly obvious that, despite Herculean efforts in monitoring and infrastructure investment, not all of the global population will reach the top of the ladder by 2030 (WHO 2021). Indeed, there will be backsliding in the water provision achievements made in some communities due to underfunding, climate change, and other disruptions (Nunes et al. 2018; Thomson et al., 2019; Spearing and Faust 2020; Odimayomi et al. 2021; Robinne et al. 2021; Hohner et al. 2019; Glazer et al. 2021; Norriss et al. 2021). Hundreds of millions of people—

many of them with some connection to piped water and sanitation in both the Global North and Global South—are facing “the end of water,” where “Day Zero” is an endemic condition (De Coss-Corzo 2022).

While acknowledging the transformative societal benefits achieved through centralized water systems (Salzman 2017; Troesken et al 2021; Anderson et al 2022, Beach 2022), we must also promote alternatives to centralized water provision and sanitation. The benefits of centralized water systems have been incomplete and uneven, whether for those living on the “last mile,” in small towns and remote areas, or in excluded or segregated communities across the globe (Jepson 2014; Jepson and Brown 2014; Cheng 2015; Vandewalle and Jepson 2015; Rodina and Harris 2016; Clark 2018; Deitz and Meehan 2019; Meehan et al. 2020a; Meehan et al. 2020b; Glade and Ray 2022; Wells et al. 2022). These systems have been increasingly prone to failure due to increasing growing climate risks (Vázquez-Rowe et al. 2017). These current gaps and future threats to water systems lead us to rethink our water paradigm; we believe it is imperative to re-examine non-centralized approaches to achieving household water security in the 21st century. Here, we set forth a research agenda that explores the advantages and limits of alternative water provisioning approaches.

New models of modular, adaptive, and decentralized (MAD) water systems are emerging, often with new opportunities for coordination that can expand their reach and scale (Stoler et al. 2022). In many cases, these are made possible by novel technologies, institutions, and practices that produce, transport, store, and treat safe water. Such technological systems can operate in the absence of—or integrated alongside—existing formal, centralized systems of water provision and sanitation (Arora et al. 2015). In other cases, previously overlooked

1
2
3 MAD water systems, such as water sharing (Wutich et al. 2018; Brewis et al. 2019; Stoler et
4 al. 2019; Harris et al. 2020; Jepson et al. 2021; Roque et al. 2021; Wutich et al. 2022) or
5 rainwater harvesting (de Melo Bronc et al. 2005; Gomes et al. 2014; Campisano et al. 2017;
6 Soler et al. 2018; Staddon et al. 2018; Crosson et al. 2021; Alim et al. 2020, Doss-Gollin et al.
7 2015), are receiving new attention from scholars and practitioners. Yet, piped water remains
8 the focus of mainstream policy debates, as exemplified by India's Jal Jeevan Mission to provide
9 every rural household with a tap connection by 2024 (Sarkar and Bharat 2021). As water system
10 performance declines, simpler systems may offer more resilience than the grander schemes
11 preferred by policy makers (Harvey and Drouin 2006; Kleemeier 2000). These MAD water
12 models may help provide access to safe, reliable, affordable water delivery and
13 sanitation supplies in a world of increasing uncertainty: a world characterized by ongoing
14 climate disruption, increased population mobility, and political volatility.
15

16 *Without a holistic framework to understand these responses and consider the wide-
17 ranging scope and implementation process, there is a serious risk of maladaptation that leads
18 to undesirable, unsustainable, and unjust outcomes* (Barnett and O'Neill 2010; Juhola et al
19 2016; Magnan et al 2016). We argue that theisa shift to decentralization is already happening,
21 but that the water community at large is doing little to reconceptualize this shift beyond singular
22 technical fixes and mechanistic responses. Without acknowledgement of this shift and a better
23 empirical basis for decision-making, MAD solutions could have inequitable and detrimental
24 implications for water in several water domains: provision, justice, sustainability, governance,
25 and economics. There is thus a fundamental need to integrate existing scholarship across social
26 and engineering sciences into a convergent approach that can mitigate negative outcomes of
27 this nearly-invisible and haphazard socio-technical transition. Our hope is to harness—
28 following successful integrative approaches in interdisciplinary water scholarship (e.g., Ostrom
29 1990, Pahl-Wostl 2009, Sivipalan et al. 2014, Budds et al. 2014, Jepson 2017)—valuable
30 insights from a wide range of existing perspectives, theories, and cases to form a new integrated
31 field. We suggest a series of frameworks for theorizing a shift to MAD water systems in ways
32 to that can guide the transition productively and avoid reproducing or reinforcing historical
33 WASH inequities.
34

35 2. A New MAD Paradigm: Beyond Centralized Piped Water (and Sewer) Systems

36 The water literature is rife with examples of systems that are neither centralized nor
37 networked, but still meet water needs of local communities in important ways. Examples are
38 documented in literatures including, but not limited to, water and informality (Kooy 2014,
39 Schwartz et al. 2015, Truelove 2019), community-based water management (Cox et al. 2010,
40 Mansuri and Rao 2004, Adams et al. 2020), small-scale water vendors (Whittington et al. 1991,
41 Solo 1999, Kariuki and Schwartz 2005), small drinking water systems (McFarlane and Harris
42 2018, Klasic et al. 2022), hybrid water systems and regimes (Yates and Harris 2018, Wahby
43 2021, Storey 2021), decentralized water provision (Arora et al. 2015), green infrastructures for
44 water and wastewater management (Sharma and Malaviya 2021, Green et al. 2021), and
45 packaged water (Wilk 2006, Gleick 2010, Stoler 2012, 2017, Morinville 2017, Pacheco-Vega
46 2019). Our work builds on this literature by proposing a framework that can bring these
47 contributions into closer, more integrated (and convergent) conversation. As we discuss, this
48 scholarship crucially illustrates the range of innovations in MAD water provision and
49 sanitation, often foregrounding important advances in engineering technology (Dongare et al
50 2017; Alvarez et al 2018). Yet, we argue the need to equally consider justice, institutional
51 design, and long-term environmental sustainability.
52

53 Political-economic dynamics move households and communities to hybrid and
54 decentralized systems in complex ways. For example, on the one hand, there are “shove out”
55 water systems, in which marginalized populations are forced into self-provision or self-
56

1
2
3 management of drinking water (e.g., Vandewalle and Jepson 2016, 2015). On the other hand,
4 there are “opt-out” water systems, in which elite or high-income residents disengage and divest
5 from collective water systems (e.g., Lloréns 2021, [Workman and Shah 2022](#)). As an example
6 of the rapid rate of growth of such hybrid systems in the absence of formal water policies,
7 personal preferences have created a \$20B/year market in point-of-use water treatment devices
8 that are growing at >10% annually; this is over five times larger and faster growing than the
9 global centralized desalination market (Chen et al. 2021). Yet, despite this market success,
10 achieving [water security for all](#) remains elusive.
11

12 This reconfiguration of waterscapes is happening in both the Global South and Global
13 North, with examples providing a rich foundation for theorizing a coherent framework for
14 assessing the outcomes of these non-centralized, non-piped, and sometimes small-scale water
15 and sewer systems on health and human wellbeing. The ethical and political concerns are
16 significant. “Shove out” MAD water scenarios may create heavy financial and labor burdens
17 for those excluded from centralized piped water systems, or merely shift water provision risks,
18 responsibilities, and costs to vulnerable populations least equipped to manage these (Hope et
19 al. 2020). Scholarship on water insecurity underscores this dynamic. For example, peri-urban
20 neighborhoods on the outskirts of Cochabamba, Bolivia, that were historically denied access
21 to the municipal water utility, were forced to rely on small-scale water vendors (Wutich et al.
22 2016). Residents in low-income rural subdivisions in South Texas faced a “no-win
23 waterscape,” forced to buy expensive water from vending machines as piped water did not
24 provide the quality of service or water to meet all their needs (Jepson 2014; Jepson and Lee
25 2014). By contrast, high-income Puerto Rico residents built fully independent off-grid water
26 and energy provision in luxury communities after Hurricane María (Lloréns 2021). MAD
27 water systems enabled such an “opt-out” by higher-income and politically powerful
28 populations, allowing them to abandon the costs and responsibilities of participation in solving
29 society-wide water challenges. This emerging, dynamic, socio-technological shift in water
30 infrastructure carries significant implications for water governance, system operation (and
31 more common maintenance), equity, and justice.
32

33 MAD water systems are neither inherently good nor inherently bad. Rather, recent
34 trends suggest that communities will increasingly be forced off, or choose to abandon,
35 centralized piped water systems as old models break down under the pressure of under-
36 investment and climate disruptions. We already see the efficacy of the centralized model
37 eroding under the current climatological, demographic, and financial trajectories, as evidenced
38 in the U.S., for example by the aftermath of California’s wildfires or the ongoing water quality
39 disaster in Flint, Michigan (Bosscher et al 2019). Such disruptions result in new moves to opt-
40 out of networked water, as well as the formation of communities that are shoved out of
41 centralized systems. As this phenomenon becomes more widespread and common, there is a
42 need for broader, more coordinated research on the benefits and challenges of different
43 configurations of MAD water. In this introduction to MAD water, we lay out key definitions,
44 case examples, and considerations for future research. Our work leverages interdisciplinary
45 contributions from across the social, engineering, finance, and health sciences to describe MAD
46 water systems and understand the future role they have in promoting global just water security.
47 We also outline critical challenges to the environmental, economic, and social sustainability of
48 these new socio-technical configurations. [Figure 1 presents a conceptual model of the feedback](#)
49 [loop between these components that we believe will be crucial for ensuring that the transition](#)
50 [to, and local development of, MAD water systems promotes positive societal and](#)
51 [environmental outcomes in a changing world.](#)
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
66310
66311
66312
66313
66314
66315
66316
66317
66318
66319
66320
66321
66322
66323
66324
66325
66326
66327
66328
66329
66330
66331
66332
66333
66334
66335
66336
66337
66338
66339
66340
66341
66342
66343
66344
66345
66346
66347
66348
66349
66350
66351
66352
66353
66354
66355
66356
66357
66358
66359
66360
66361
66362
66363
66364
66365
66366
66367
66368
66369
66370
66371
66372
66373
66374
66375
66376
66377
66378
66379
66380
66381
66382
66383
66384
66385
66386
66387
66388
66389
66390
66391
66392
66393
66394
66395
66396
66397
66398
66399
663100
663101
663102
663103
663104
663105
663106
663107
663108
663109
663110
663111
663112
663113
663114
663115
663116
663117
663118
663119
6631100
6631101
6631102
6631103
6631104
6631105
6631106
6631107
6631108
6631109
66311010
66311011
66311012
66311013
66311014
66311015
66311016
66311017
66311018
66311019
663110100
663110101
663110102
663110103
663110104
663110105
663110106
663110107
663110108
663110109
663110110
663110111
663110112
663110113
663110114
663110115
663110116
663110117
663110118
663110119
6631101100
6631101101
6631101102
6631101103
6631101104
6631101105
6631101106
6631101107
6631101108
6631101109
6631101110
6631101111
6631101112
6631101113
6631101114
6631101115
6631101116
6631101117
6631101118
6631101119
66311011100
66311011101
66311011102
66311011103
66311011104
66311011105
66311011106
66311011107
66311011108
66311011109
66311011110
66311011111
66311011112
66311011113
66311011114
66311011115
66311011116
66311011117
66311011118
66311011119
663110111100
663110111101
663110111102
663110111103
663110111104
663110111105
663110111106
663110111107
663110111108
663110111109
663110111110
663110111111
663110111112
663110111113
663110111114
663110111115
663110111116
663110111117
663110111118
663110111119
6631101111100
6631101111101
6631101111102
6631101111103
6631101111104
6631101111105
6631101111106
6631101111107
6631101111108
6631101111109
6631101111110
6631101111111
6631101111112
6631101111113
6631101111114
6631101111115
6631101111116
6631101111117
6631101111118
6631101111119
66311011111100
66311011111101
66311011111102
66311011111103
66311011111104
66311011111105
66311011111106
66311011111107
66311011111108
66311011111109
66311011111110
66311011111111
66311011111112
66311011111113
66311011111114
66311011111115
66311011111116
66311011111117
66311011111118
66311011111119
663110111111100
663110111111101
663110111111102
663110111111103
663110111111104
663110111111105
663110111111106
663110111111107
663110111111108
663110111111109
663110111111110
663110111111111
663110111111112
663110111111113
663110111111114
663110111111115
663110111111116
663110111111117
663110111111118
663110111111119
6631101111111100
6631101111111101
6631101111111102
6631101111111103
6631101111111104
6631101111111105
6631101111111106
6631101111111107
6631101111111108
6631101111111109
6631101111111110
6631101111111111
6631101111111112
6631101111111113
6631101111111114
6631101111111115
6631101111111116
6631101111111117
6631101111111118
6631101111111119
66311011111111100
66311011111111101
66311011111111102
66311011111111103
66311011111111104
66311011111111105
66311011111111106
66311011111111107
66311011111111108
66311011111111109
66311011111111110
66311011111111111
66311011111111112
66311011111111113
66311011111111114
66311011111111115
66311011111111116
66311011111111117
66311011111111118
66311011111111119
663110111111111100
663110111111111101
663110111111111102
663110111111111103
663110111111111104
663110111111111105
663110111111111106
663110111111111107
663110111111111108
663110111111111109
663110111111111110
663110111111111111
663110111111111112
663110111111111113
663110111111111114
663110111111111115
663110111111111116
663110111111111117
663110111111111118
663110111111111119
6631101111111111100
6631101111111111101
6631101111111111102
6631101111111111103
6631101111111111104
6631101111111111105
6631101111111111106
6631101111111111107
6631101111111111108
6631101111111111109
6631101111111111110
6631101111111111111
6631101111111111112
6631101111111111113
6631101111111111114
6631101111111111115
6631101111111111116
6631101111111111117
6631101111111111118
6631101111111111119
66311011111111111100
66311011111111111101
66311011111111111102
66311011111111111103
66311011111111111104
66311011111111111105
66311011111111111106
66311011111111111107
66311011111111111108
66311011111111111109
66311011111111111110
66311011111111111111
66311011111111111112
66311011111111111113
66311011111111111114
66311011111111111115
66311011111111111116
66311011111111111117
66311011111111111118
66311011111111111119
663110111111111111100
663110111111111111101
663110111111111111102
663110111111111111103
663110111111111111104
663110111111111111105
663110111111111111106
663110111111111111107
663110111111111111108
663110111111111111109
663110111111111111110
663110111111111111111
663110111111111111112
663110111111111111113
663110111111111111114
663110111111111111115
663110111111111111116
663110111111111111117
663110111111111111118
663110111111111111119
6631101111111111111100
6631101111111111111101
6631101111111111111102
6631101111111111111103
6631101111111111111104
6631101111111111111105
6631101111111111111106
6631101111111111111107
6631101111111111111108
6631101111111111111109
6631101111111111111110
6631101111111111111111
6631101111111111111112
6631101111111111111113
6631101111111111111114
6631101111111111111115
6631101111111111111116
6631101111111111111117
6631101111111111111118
6631101111111111111119
66311011111111111111100
66311011111111111111101
66311011111111111111102
66311011111111111111103
66311011111111111111104
66311011111111111111105
66311011111111111111106
66311011111111111111107
66311011111111111111108
66311011111111111111109
66311011111111111111110
66311011111111111111111
66311011111111111111112
66311011111111111111113
66311011111111111111114
66311011111111111111115
66311011111111111111116
66311011111111111111117
66311011111111111111118
66311011111111111111119
663110111111111111111100
663110111111111111111101
663110111111111111111102
663110111111111111111103
663110111111111111111104
663110111111111111111105
663110111111111111111106
663110111111111111111107
663110111111111111111108
663110111111111111111109
6631101111111111111111

1
2
3
4
5 **Figure 1. Conceptual model outlining examples of economic and governance considerations**
6 **for successful implementation MAD water systems; measurable benefits to justice, human**
7 **health, and the environment that can be used to demonstrate return on investment (ROI); and**
8 **the feedback loop that helps MAD water systems adapt to new contexts.**

9
10 Given the inherent interdisciplinary nature of MAD water, now is a particularly fruitful
11 time to develop alternatives to dominant water paradigms, given the push toward convergence
12 research (e.g., Westerhoff et al. 2021, Roque et al. 2021, Peek et al. 2020). Convergence
13 research challenges teams from across the sciences to cooperatively develop basic research that
14 can contribute to solving major global problems such as water insecurity and inadequate
15 sanitation. This convergence approach is necessary as we develop this new field of research
16 around MAD water systems, as its success or failure will be decided as much within the realms
17 of justice and environmental sustainability, as in those of hydrology and engineering.
18
19

20 21 **3. MAD Water Systems: Key Definitions**

22 Our work tracks the emergence of new models of **modular, adaptive, decentralized (MAD)**
23 water systems. In many cases, these systems are made possible by novel technologies,
24 institutions, and practices that produce, transport, and store safe water – as well as allow for
25 treating and safely reusing water to supplement safe water. These systems include, for example,
26 point-of-use water filtration technologies and onsite wastewater treatment and reuse
27 technologies (Chen et al. 2021; Zodrow et al. 2017). These systems can operate in the absence
28 of—or integrated alongside—existing formal, centralized systems of water or sewer provision.
29 In other cases, previously ignored MAD water systems, such as water sharing (Rosinger et al.
30 2020) and informal water markets (Garrick et al. 2023), are newly receiving attention from
31 scholars and practitioners. In other cases, we see a hybrid of old practices, such as rainwater
32 harvesting, with new technologies (e.g., Voth-Gaeddert et al. 2022).
33
34

35 Table 1 explains key terms for the MAD water framework. Modularity, adaptability,
36 and decentrality are the key characteristics observed in water systems, and we define these
37 terms in Table 1. In the next section, we provide a series of examples that illustrate how a MAD
38 approach can help us better understand large-scale shifts in the water sector. We do not seek to
39 rigidly define what is or is not MAD; rather, we observe that water systems and their
40 management, exist along gradients of increasing modularity, adaptability, and/or decentrality.
41 Finally, our definition of MAD water involves scalar implications. MAD water systems range
42 in connectivity and operational scale, from systems that include an array of household
43 technologies and relations that are fully decentralized to more distributed systems within
44 smaller, localized networks. Following Stoler and colleagues (2022), we conceptualize MAD
45 water across five key dimensions of water security: harvesting, treating, distributing,
46 monitoring, and governing. Table 2 lists some examples of **the** application of the MAD water
47 framework for a range of water systems. Several of these examples, including lower-tech ones,
48 are described in the following case studies.
49
50

51 <Table 1. Key Terms, Definitions & Examples for MAD (Modular, Adaptive, or
52 Decentralized) Water Approaches>
53
54

55 **4. MAD Water Case Studies**

56 **4.1 MAD Example: Sand Scoops in Ephemeral Rivers**

57 Sand scoops represent one of the oldest and simplest **technologytechnological** forms that fits
58 within, and illustrates, the MAD water framework. Water can be collected from ephemeral
59 streams **when drywhen dry** by digging scoop holes into the sand of a dry riverbed to form a
60

shallow well. Even when the river is not flowing, rivers can hold substantial volumes of water near the surface of the riverbed. Water just below the riverbed can be easily accessed using a simple hand tool, or even one's hands. This water can be conveyed to where it needs to be by a person carrying a gourd, by donkey, or by motor vehicle. When one scoop hole is dry or no longer usable, a similar scoop can be made elsewhere in the same river or river system or replicated nearby if demand is higher. Informal governance systems may dictate how close an existing scoop a new one can be dug. While this can—in principle—yield good quality water, it is often contaminated (Quinn et al. 2018). As with the method of conveyance, treatment can vary from low-tech, such as ~~basic~~ filtering through a piece of fabric, to high tech such as an advanced filtration membrane or bio-sand filter. The latter example illustrates how within a MAD water system at different stages in the chain can have starkly different technology levels, but how these can combine to produce potable water for final users.

4.2 MAD Example: Point-of-Use Drinking Water Systems

One example of a technology that can contribute to MAD water systems is engineered point-of-use (POU) drinking water treatment, where a treatment unit is used at individual locations in a household. POU treatment can take many forms, including media filtration (e.g., granular activated carbon block filtration in a pitcher or biosand filtration), membrane filtration (e.g., ~~under-sink~~ reverse osmosis), or disinfection (e.g., ultraviolet light, chlorination, boiling) (Pooi and Ng 2018). Many systems implement more than one of these technologies (Oyanedel-Craver and Smith 2008). POU treatment embodies the idea that not all water used within a household needs to be treated to drinking water standards (Wolff and Gleick 2002; Zodrow et al. 2017). Many POU treatment units are modular, and water treatment capacity (e.g., liters per day) can be increased with additional units. These units may be purchased (e.g., under-sink filters) or constructed using locally available materials (e.g., ceramic filters or biosand filters). POU drinking water treatment is used around the world, either as a primary form of treatment, to improve water aesthetics, or to remove the most recent class of emerging organic contaminants such as per- and poly-fluoroalkyl substances (PFAS) (Patterson et al., 2019). ~~Lower cost water quality monitoring using colorimetric and microfluidic technology (Phuangsaajai et al., 2021; Jaywant & Arif, 2019) may enable empower community or households level to independently test their water quality. When combined with real-time water quality monitoring using information and communication technology (ICT) and sensors in micro-networked households, POU treatment could substantially improve water quality (Stoler et al. 2021). However, Effective maintenance and monitoring of POU devices and sensors can pose a challenge to poor communities—if the burden of operation and maintenance are placed on poor communities rather than the centralized system—and may occur as a “shove out” technology that could subvert longer-term efficacy of water provision (Vandewalle and Jepson 2016).~~ A recent survey in the USA found that lower income households spend more of their income on POU devices and bottled water, compared with higher income households, suggesting a potential need for public funding of POU devices (Kidd et al. 2020).

4.3 MAD Example: Handpumps

Handpumps are used across the world to access shallow groundwater, most commonly in the Global South (Foster et al. 2019). They are used both in rural areas that may be hundreds of km from the nearest piped water system, and in informal urban settlements where household or even standpipe connection to the nearby centralized water system is blocked for institutional or politically reasons, the aforementioned “shove out” communities. The pumps themselves are off-the-shelf modular items, often bought in bulk by governments or development agencies (MacArthur 2015). Wells can be drilled or dug where needed and replicated if demand is high

1
2
3 or an initial well fails; in this way, they can be adaptive. Finally, they are off-grid and,
4 depending on the distance between them and aquifer properties, hydrologically decentralized
5 as well. They are situated technologically between shallow wells accessed by buckets, and
6 boreholes with motorized pumps, the latter also being a technology of choice for high-income
7 “opt out” communities (Fox et al., 2016; Hynds et al., 2013). Conceptualizing handpumps and
8 their management and monitoring as MAD water systems (Thomson et al., 2012; Thomson and
9 Koehler, 2016; Koehler et al., 2018) may serve us better—and the households that use them—
10 than viewing them as an interim step between untreated surface water and piped, treated
11 connection to the home.
12
13

14 **4.4 MAD Example: Onsite Systems for Wastewater Management**

15 The concept of clean sanitation originally started at a small, decentralized scale, focusing
16 mainly on disposal of human waste using systems such as privies. During the 19th and 20th Ceenturies, with the advent of piped water systems, the focus shifted to treatment of
17 wastewater from densely populated areas, prior to discharge into local surface, through using
18 large scale centralized treatment and surface water discharge systems in densely populated
19 areas While decentralized systems may have become less common in the Global North, at least
20 in urban areas, they remain ubiquitous in the Global South: only 7% of people in Sub-Saharan,
21 and 13% of people in Central and Southern Asia have a sewer connection, compared with 83%
22 in Europe and North America (World Health Organization & UNICEF, 2017).
23
24

25 As well asIn addition to higher tech systems such as the Gates Foundation toilet (Hiolski, 2019)
26 and containerized sanitation (Ferguson et al., 2022), there is revived interest in composting
27 systems (Mariwah et al., 2022; Anand & Apul, 2014) as a means of safely managing fecal
28 waste. These systems, by which we mean both the technology (Li et al., 2023; Geetha Varma
29 et al., 2022) and the management models and institutional environment in which they sit, can
30 be considered as MAD systems. These decentralized systems may not always be modular—
31 artisanal/bespoke septic tanks are common—but the management of fecal sludge is inherently
32 adaptive, with the conceptualization and monetization of fecal sludge as a resource opening up
33 new business models (Wichelns et al., 2015; Shukla et al., 2023).
34
35

36 ,with millions of septic systems in less dense rural areasIn the Global North, Use of septic
37 systems in an unsewered area waswere considered a temporary solution for wastewater
38 management, but millions in less dense rural areas in the Global North still use them. The at
39 least in Global North. But in late 1990, US EPA in its report to Congress (US EPA 832-97-
40 001b) recognized that not all the areas in the US are going to be sewered and some type of
41 onsite/decentralized systems will be used on a permanent basis. There have been unintended
42 consequences, as themass use of septic tanks has long been known to have detrimental effects
43 on groundwater in some regions (e.g., Bloetscher & Van Cott 1999). But in late 1990, US EPA
44 in its report to Congress (US EPA 832-97-001b) recognized that not all the areas in
45 the US are going to be sewered and some type of onsite/decentralized systems will be used on
46 a permanent basis. Moreover, advances in technologies for onsite treatment, disposal and reuse
47 have attracted attention of the centralized municipalities as a means to improve climate
48 resilience and water security for their customers (Water Environment Research Foundation
49 2010). The innovations in decentralized sanitation and fecal sludge management developed in
50 the Global South may be increasingly seen in the Global North as well.
51
52
53
54
55
56
57
58
59
60

1
2
3 But an onsite system when installed properly and managed professionally can offer a cost-
4 effective means to manage wastewater on a permanent basis in unsewered areas worldwide.
5 Advances in technologies for onsite treatment and disposal or reuse have also attracted
6 attention of the centralized municipalities to methodically integrate use of these technologies
7 to improve climate resilience and water security for their customers (Water Environment
8 Research Foundation 2010).
9
10

11 **4.5 MAD Example: Rainwater Cisterns**

12 For over a decade, the Brazilian government and NGOs executed several programs to construct
13 cisterns for domestic water, livestock, and crops in support of rural communities across the
14 semi-arid Northeast region ([Agua-Agua](#) Para Todos; Projeto São José; One Million Cisterns
15 Program; Program One Piece of Land and Two Types of Water) (Gomes et al. 2012; Gomes et
16 al. 2014; Gnadlinger et al. 2020; [Cirilo, 2008](#); [Enéas da Silva et al., 2013](#)). Rainwater cistern
17 programs in Brazil sought to increase water access for many rural households in the drought-
18 prone semi-arid zone (Gomes et al. 2012). The first version of the program involved cement
19 cisterns for individual households, where the government partnered with civil society to
20 distribute raw materials to rural residents via community associations. Community members
21 worked together to construct the cisterns for individual households—these were harvesting and
22 distribution systems with decentralized governance and service—and included programs for
23 gender empowerment (Morais and Rocha 2013). The materials were standardized and easily
24 replicable, making them modular forms of harvesting and distribution. Later versions of the
25 program involved plastic cisterns that are also replicable and more quickly distributed—
26 meaning that they were adaptive. Treatment and monitoring, if performed, is at the household
27 level (Silva et al. 2020). Rainwater cisterns can be vulnerable to extended drought (Doss-Gollin
28 et al. 2015), and water quality is highly variable, with *E. coli* detected in many cisterns (Da
29 Silva et al. 2020).
30
31

32 **4.6 MAD Example: Rural Water Management in Brazil**

33 Many rural communities in the Brazilian state of Ceará participate in a non-governmental
34 program called System for Rural Sanitation (*Sistema de Saneamento Rural – SISAR*) that
35 functions as a network of community associations (Meleg et al. 2012; Dos Santos Rocha and
36 Salvetti 2017). Similar programs exist in other Brazilian states and other countries as well
37 (Grillos et al 2021; Dupuits 2019). SISAR has eight regional offices that facilitate self-
38 management of water distribution systems for approximately 100-300 rural communities in
39 their region. SISAR operates in communities that are not connected to the primary municipal
40 piped water system, and it does not fund investment in new water system infrastructure. Rural
41 communities that participate in SISAR primarily harvest water through a pre-existing
42 community-scale well or local reservoir connected to a small, piped water network serving 30-
43 100 households. The SISAR regional office provides technical assistance and trains community
44 operators to treat water and maintain community-scale water distribution systems. SISAR
45 trains operators to monitor the status of the distribution system and household water use, though
46 operators do not monitor the status of the water resource such as water level in the well
47 (Cooperman et al. 2020). The SISAR regional office oversees household billing and provides
48 social support for localized governance through community associations. Each of these features
49 of the water system uses a similar model across all communities and can be [tweaked-modified](#)
50 to adapt to changes in local conditions, making them modular and adaptive.
51
52

53 **4.7 MAD Example: Packaged Water: Sachets, Bottles, and Bags**

54 We further acknowledge that increasing the [modular, adaptive, or decentralized \(MAD\)](#)
55 characteristics of a water service sometimes presents important tradeoffs. For example, the
56
57

many forms of vended and delivered water around the world include packaged water, most commonly bottled and bagged (or “sachet”) water (Vedachalam et al. 2017). In high-income settings, bottled water tends to be an optional luxury good, but in low-income settings—particularly water scarce communities—bottled or sachet water can effectively serve as a virtual extension of existing water infrastructure, whether centralized and decentralized (Stoler 2017). Packaged water harvesting, treatment, and distribution are all remarkably MAD as entrepreneurs can set up filling machines wherever there is a reliable groundwater or municipal water source, and nimbly supply communities who lack centralized water infrastructure. In many West African countries, for example, sachet water has become the *de facto* drinking water supply in communities not connected to municipal water grids. While federal governments have centralized monitoring and governance schemes for packaged water, the most effective governance has been decentralized, self-administered industry quality control as market forces shape leading producers’ desire to burnish their product’s reputation. Yet, while packaged water has temporarily bailed out many governments from their duty to provide constituents with safe water, ever growing streams of plastic waste and the lack of price controls to stabilize household drinking water expenses highlight the downsides and unsustainability of this form of MAD water (Stoler 2012, Pacheco-Vega 2019).

<TABLE 2>

5. Assessing MAD Water Systems: Considerations for Future Research

From our perspective, the concept of household water security is defined by the lived and relational experiences that contribute to human flourishing and well-being (Jepson et al., 2017; 2018). That is, access to safe water is necessary but not sufficient to achieve water security. The water and sanitation systems we have described above—to varying degrees—provide some level of household water security. Technical solutions alone will not create water security. Other critical dimensions, such as affordability, adequacy, and reliability for all water needs also should be part of a holistic understanding of water security achieved by MAD water (Bakker and Morinville 2013; Jepson, 2014; Jepson et al. 2017).

More than meeting basic needs, we also consider water security to be relational in the sense of enhancing the socio-cultural, economic, and governance capabilities of communities and households (Jepson et al. 2019; Sultana and Loftus 2019; Meehan et al. 2023)—as well as long-term environmental sustainability. Our view of MAD water is thus framed not only in terms of water as a material good to be distributed, but water as part of a larger set of social relations (Budds et al. 2014, Linton and Budds 2014) that has implications on many dimensions of social life. In this way, we recognize the profound relational shifts MAD water systems will have on hydro-social relations. Therefore, hydro-social relations—including cultural and psychosocial dimensions—must necessarily constitute water security, and thus, be part of how we conceptualize and assess MAD water systems moving forward.

Modern water systems attempt to convey treated water to as close to households as possible, ideally with access inside the household or compound. Such conveyance efforts therefore aim to minimize or eliminate fetching distance and time and create some degree of household autonomy through access to water using a private tap. Water governance structures generally aim to ensure that the water remains affordable for users, and to ensure ongoing financial viability of the system. One of the biggest challenges of MAD water systems is to make them easy for households to use in order to ensure user acceptance (Contzen, Killmann, and Mosler 2023), while allowing for appropriate levels of local engagement for system governance and the protection of human and environmental health. Here, we position justice as a primary goal and highlight issues in the key domains of economics, governance, human health, and environmental sustainability that must be approached differently under the MAD

1
2
3 water paradigm. ~~Figure 1 presents a conceptual model of the feedback loop between these~~
4 ~~components that we believe will be crucial for ensuring that the transition to, and local~~
5 ~~development of, MAD water systems promotes positive societal and environmental outcomes~~
6 ~~in a changing world.~~
7
8

9
10 **INSERT FIGURE 1**
11

12 ~~Figure 1. Conceptual model outlining examples of economic and governance~~
13 ~~considerations for successful implementation MAD water systems; measurable benefits to~~
14 ~~justice, human health, and the environment that can be used to demonstrate return on~~
15 ~~investment (ROI); and the feedback loop that helps MAD water systems adapt to new contexts.~~
16
17

18 **5.1 MAD Water & Justice**
19

20 Adaptive, decentralized systems allow for variation in how they are conceptualized,
21 managed, and used. By their nature they can be outside the established, albeit imperfect and
22 contested, paradigm of centralized water provision. As much as being an advantage, this also
23 poses risks, such as elite capture, predatory pricing, or neglect. Therefore, our approach to
24 MAD water and the efficacy of this paradigm to support water security necessarily includes a
25 fundamental consideration of water justice (Sultana and Loftus 2019, Boelens et al. 2018,
26 Wade 2018, Zeitoun et al. 2016).

27 We draw on the expansive scholarship on environmental justice to illustrate how the
28 MAD water paradigm intersects with considerations of water justice (Table 3). As mentioned
29 earlier, water security refers to access, affordability, adequacy, and reliability for all water
30 needs, including physical, cultural, social, and economic. These needs are broadly defined and
31 directly align with distributive definitions of water justice.
32

33 A challenge for MAD water is to ensure that these benefits of water security are
34 experienced equitably. A goal we propose is to assess MAD water's efficacy as a paradigm to
35 facilitate equitably distributed current and future water provision. Within *distributive justice*
36 frameworks, one also needs to consider "the community of justice" (who are the recipients of
37 these benefits?). For MAD water, we consider benefits to be accrued across individuals,
38 households, and communities whose risks may be differently determined by race/ethnicity,
39 indigeneity, class, gender, class, and race/ethnicity and sexuality (Brewis et al. in revision,
40 Leonard et al. 2023, Meehan et al. 2020). These dimensions are often difficult to balance, and
41 in tension, but they do need to be considered. Indeed, *interpersonal justice* (or *interactional*
42 *justice*) operates within the distributive paradigm in that as people navigate the waterscape,
43 individuals, regardless of social category, should experience equitable treatment and respect
44 (Beresford Wutich et al. 2016).

45 We also recognize the critical importance of *procedural justice*, understood in terms of
46 fair participatory processes and rules for decision making, for MAD water systems. This also
47 draws from the definition of water security, as referring to securing "the ability of individuals,
48 households, and communities to navigate hydro-social relations and secure safe and affordable
49 water particularly in ways that support the sustained development of human capabilities and
50 wellbeing in their full breadth and scope" (Jepson et al. 2017, 3). This is a central dimension
51 of justice, navigating hydro-social relations as necessarily participatory, but it is often missing
52 in transitions that are driven by technological change. Our argument is that MAD water
53 systems need to incorporate regulatory governance systems to ensure inclusion, informed
54 consent, and participatory efficacy, and to avoid elite capture~~s~~ (as described in Brewis et al.
55 2021). There are several principles of participatory governance, from shared decision-making
56 to access to information, and considering the diversity of MAD water, and these principles will
57
58
59
60

vary; however, inclusion of participatory approaches are critical for achieving just water security. We note a promising trend toward developing participatory convergence research to ensure that MAD Water interventions are co-designed (Hargrove and Heyman 2020, Hargrove et al. 2020, Roque et al. 2021, 2024) by communities and researchers, to make certain the community's needs and desires are centered in the design of MAD Water systems.

Water justice also incorporates another critical dimension that is salient for experiences with water provision and use: *recognition as justice*. The dominant paradigm of water provision considers modern water as an economic good that is commodified and transferable. Yet, that is only one water world view. Recently scholars have challenged the universality of water with different world views and values (Leonard et al. 2023, Yates et al. 2017, Wilson and Inkster 2018). The implications for calls to incorporate other water worlds and values hold wide-ranging consequences for MAD water systems. From a water justice perspective, MAD water systems should also be co-designed in ways that accommodate cultural values in ways that are respected.

Finally, and perhaps most powerfully, is the potential for MAD Water to address the need for *transformative justice* (Morris 2000), an approach similar to restorative justice (Nocella and Anthony 2011). Transformative justice seeks to redress past harms by addressing root causes of oppression, centering victims' need for justice, and reintegrating communities. Transformative and restorative justice are nascent fields in water research (Neal et al. 2014, Nikolakis and Quentin Grafton 2014, Corral-Verdugo and Frías-Armenta 2006), but research led by Indigenous scholars indicates that such approaches have the potential to powerfully reshape water systems and knowledge (Leonard et al. 2023, Wilson et al. 2021). The potential role of MAD water systems to contribute to transformative justice is currently unknown, but an important potential area for future research.

<Table 3. Defining justice for MAD water approaches>

5.2 Political Economy of MAD Water: Economics & Governance

Economies of scale tend to favor larger, centralized systems. This may be changing, even for large municipalities in the Global North, due to the cost challenges of maintaining or expanding aging infrastructure to meet capacity and sustainability goals of communities (Garrido-Baserba et al. 2022). The move to MAD systems may be driven by financial pressures in these cases, but it is an open question what the financial logic of MAD solutions may be across countries and contexts. On one hand, the development and maintenance of smaller scale systems may increase total spending on water systems in the short term, adding financial pressure to governments and households. Yet, MAD solutions may represent an investment in employment and skill transfer to currently underserved populations and more efficient water and energy use, leading to more sustainable long-term benefits. Safety, financing, affordability, and education and training are key. Table 4 lists economic considerations for factors and examples of how MAD water and conventional water systems (Table 4) fit into those factors.

The high fixed costs, low variable costs, and scale of centralized systems allow for high levels of subsidy and cross-subsidy. These can be progressive, such as lifeline tariffs or legal restrictions on cut-offs, or they can be regressive (Fuente et al., 2016; Morales-Novelo et al., 2018), such as in the United States where poor, urban communities must address deteriorating infrastructure after White flight to suburbs. Other examples of regressive costs include high connection fees or bulk discounts when the system is functioning correctly, or—when it is not—cutting off poorer and more marginalized communities or neighborhoods when underinvestment reduces system reach or performance (“shove out”). Those remaining on the

1
2
3 system continue to receive water at a cost that is lower than the long-term cost of production.
4 In either case, these subsidies are often hidden or implicit.
5

6 As they capitalized on economies of scale, centralized public utilities created
7 institutional structures that, along with policies, enabled ~~the progressive~~
8 contributions and cross-subsidy that led to more equitable access for users of the public system.
9 The move to MAD systems will change this. Being decentralized, the costs of supplying water
10 using MAD water systems could be more closely linked to the local cost of supply, making
11 cost differences overt and subsidies explicit. The regulatory and policy environment for water
12 supply has been built around the natural monopoly of centralized water systems. These
13 governance structures, and the discourse around subsidies, will have to adapt to the different
14 economic characteristics of MAD systems to ensure that water remains affordable, and
15 outcomes are sustainable and equitable. An important line of inquiry in the shift from
16 centralized systems to MAD approaches will be the economic implications in terms of
17 affordability and progressive (or regressive) distribution. The need to address this at both
18 national and local levels is not the only political consideration associated with MAD water.
19 Table 5 lists factors associated with water governance and example application of these factors
20 to MAD water.
21

22 The development of large, centralized public utilities also reshaped political landscapes,
23 with public good and natural monopoly arguments combining to create mandates for
24 government involvement in water and sanitation services. Yet, the political challenges created
25 by these centralized approaches have undermined their ability to deliver on promises of
26 universal access and financial efficiency. As governments managed public utilities, either as
27 direct service providers or as principals overseeing contracts with private providers, many
28 could not overlook the opportunities for corruption and patronage (Herrera 2017). Achieving
29 good governance of centralized systems entails a complex approach of creating avenues for
30 participation and representation while also insulating utilities from special interests and
31 parallels the principle of participatory justice outlined above. The political pressure to keep
32 tariffs low can undermine the ability of managers to maintain and expand infrastructure,
33 leaving an uneven patchwork of service and reifying the inequities centralized approaches
34 aimed to address. Those being left out of the maintenance are usually the same groups that are
35 excluded from politics and are economically vulnerable.
36

37 MAD water holds the potential to address these challenges, but this shift can have
38 divergent impacts on political representation, accountability, and equity (Table 5). Water
39 systems are managed at different scales with complex networks of overlapping jurisdictions,
40 including utilities, regulatory agencies, watershed or river basin management, and specialized
41 water districts. It is hard for citizens to know which actor to hold accountable for service
42 failures, and coordination across these actors is very challenging (Mullin 2009). In addition,
43 small scale community systems, especially privately-owned ones, may not be well integrated
44 into larger scale planning efforts, increasing risks during drought for already vulnerable
45 communities (Mullin 2020). “Temporary” shifts to MAD solutions, such as bottled water
46 distribution during contamination and natural hazards or POU water treatment for household
47 wells or hauled water, can overcome dangerous drinking water quality or quantity conditions.
48 MAD solutions provide flexibility in the timing and scale of emergency response since
49 different systems can be introduced at different times as local needs shift (e.g., Roque et al.
50 2021). However, they have high costs and place financial burdens and monitoring challenges
51 on already marginalized communities (Jepson and Brown 2014). Emergency relief is also
52 vulnerable to political pressures and electoral cycles (Cooperman 2022), and short-term shifts
53 to MAD systems can reduce the urgency of public investment and let officials off the hook for
54 fulfilling mandates to provide secure, reliable drinking water ~~or sanitation services~~ (e.g.,
55 Vandewalle and Jepson 2016²⁰¹⁵). Over time, MAD approaches may disincentivize public
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
| officials from expanding piped water and sanitation systems, leaving residents in an indefinite precarious situation. MAD approaches often require local collective action, and communities that are more likely to successfully engage in collective action, often due to long-time relationships of trust and reciprocity, are better able to harness the gains of MAD systems. Those communities that fail or lack the political connections for adequate distribution and maintenance are left even farther behind, leading to increased inequality between groups (Cooperman 2019, Dobbin and Lubell 2021).

12 <Table 4. Economic Considerations for MAD Water >
13
14
15
16

17 <Table 5. Governance Considerations for MAD Water >
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|

5.3 Human and Environmental Health

MAD water systems have the potential to improve human health and broader environmental health. The human health implications are broad, spanning communicable and non-communicable diseases, injuries, and mental health disorders (see Table 6). Improvements to water quantity and quality have long been associated with preventing a wide range of waterborne, water-washed, water-related, and water-based communicable diseases originally organized by the Bradley-Feachem classification (Bartram and Hunter 2015). Reducing water fetching and the need to store drinking water by having a nearby, reliable system will drive down these communicable disease risks. The non-linear relationship between water quality and diarrheal disease (Thomson et al., 2022) by which even short periods of drinking contaminated water have disproportionate health impacts (Hunter, Zmirou-Navier and Hartemann, 2009; Brown and Clasen 2012) makes addressing water-related health risks all the more important. Minimizing fetching needs and increasing autonomy is also theorized to reduce other non-communicable health risks including dehydration and carriage-associated injuries (Geere et al. 2018; Rosinger & Young 2020). Finally, more recent scholarship has shown that further health gains associated with improving water services provision are related to improved mental health (Wutich et al. 2020). All of these can be addressed through *properly designed, implemented, and managed* MAD water systems.

Water quality improvements, in particular, also reduce non-communicable disease risk factors associated with natural and anthropogenic water pollutants ranging from arsenic to old industrial pollutants like benzene or lead and emerging organic chemical pollutants like PFAS and phthalates (Wutich et al. 2021). MAD water systems are particularly well-positioned to help with emerging contaminants because they can be tailored to local water needs. However, the monitoring, management, and disposal of difficult toxicants such as PFAS or disinfection by-products, and pathogens such as *Cryptosporidium*, may challenge MAD water systems. MAD water systems may be able to respond more quickly than large, centralized systems to changing water quality and treatment needs. For example, products like PFAS can be readily absorbed, and removed from, water on activated carbon blocks or separated from water by reverse osmosis in commercially available POU systems (Herkert et al. 2020). However, these updates can be narrow, including only the users with the knowledge, salience, and resources, or short-lived compared to upgrading treatment at centralized facilities. Moreover, MAD system managers may not be well-suited to properly dispose of the forever chemicals.

MAD water approaches should also prioritize environmental sustainability and ideally promote ecosystem services, sustainability, and resilience for local communities (Table 7). For example, wastewater reuse systems can discharge water into appropriate green infrastructure, providing benefits to the community and the environment. MAD water systems can also be compatible with ecosystem services, such as locating rainwater collection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

infrastructure in a drainage basin that already needs to absorb floodwaters. At the very least, MAD water systems must not undermine ecosystem services provided by wildlife or natural landscapes. MAD water systems should be sustainable and not impose any downstream burdens, such as new waste streams, which are likely to affect water supplies or compromise ecosystem services elsewhere. This implies the adoption of recyclable treatment media, protocols for safely handling any dangerous waste products that accumulate during treatment and filtration or using sustainably sourced or renewable consumables.

Finally, MAD water systems could enhance community abilities to recover and thrive from extreme events such as floods and droughts, rapid socio-demographic changes such as a mass migration event, or economic shocks such as a depression or sudden currency devaluation. In such high-risk contexts, MAD water infrastructure should ideally be quickly scalable to a sudden increase in usage, potentially physically mobile to help relocate away from danger, and require maintenance sustained through reliable supply chains that are relatively insulated from global institutions and politics. However, small water systems often struggle to provide water security during drought shocks due to economic, infrastructural, planning, and enforcement challenges (Mullin 2020). A shift toward MAD water systems could enhance human and ecosystem resilience, depending on the political, economic, and justice perspectives described above.

<Table 6. Human Health Outcomes for MAD Water >

<Table 7. Environmental Sustainability for MAD Water >

6. Conclusions and Next Steps

MAD water systems may have the capacity to provide better water and sanitation services for communities and households currently relying on poor water supplies, and for whom piped water to the home is a pipe dream rather than a realistic policy goal. It will be important for MAD water to be built, as a field, on empirical assessments of how specific MAD configurations perform in terms of key outcomes like justice, environmental sustainability, human health, governance, and economic wellbeing. We suggest a simple framework (Figure 1) as a place to start. We invite scholars to join us in this effort. Many scholars are already working on crucial components of this research agenda, but not yet in conversation with each other as part of an integrated field. Others are beginning convergence efforts, working with interdisciplinary teams to solve intractable water or sanitation problems. Still others are developing ways to work ethically, equitably, and respectfully with water-insecure communities, contributing new methods for research, communication, and collaboration. And many practitioners have erucial important practical insights that are not yet well-understood in the academic literature. All of these perspectives will be crucial as we move beyond the 20th century water provision paradigm. MAD water systems are poised to make substantial contributions to confronting the global challenges of climate change, population displacement, and financial upheaval expected later this century.

1
2
3
4

References

5 Abel, G. J., M. Brottrager, J. C. Cuaresma & R. Muttarak (2019) Climate, conflict and forced
6 migration. *Global environmental change*, 54, 239-249.

7 Adams, E. A., Zulu, L., & Ouellette-Kray, Q. (2020). Community water governance for urban
8 water security in the Global South: Status, lessons, and prospects. *Wiley
9 Interdisciplinary Reviews: Water*, 7(5), e1466.

10 Alim, M. A., A. Rahman, Z. Tao, B. Samali, M. M. Khan & S. Shirin (2020) Suitability of roof
11 harvested rainwater for potential potable water production: A scoping review. *Journal
12 of cleaner production*, 248, 119226.

13 Anand, C. K., & Apul, D. S. (2014). Composting toilets as a sustainable alternative to urban
14 sanitation – A review. *Waste Management*, 34(2), 329–343.
15 <https://doi.org/10.1016/j.wasman.2013.10.006>

16 Arora, M., Malano, H., Davidson, B., Nelson, R., & George, B. (2015). Interactions between
17 centralized and decentralized water systems in urban context: A review. *Wiley
18 Interdisciplinary Reviews: Water*, 2(6), 623-634.

19 Anderson, D. M., K. K. Charles & D. I. Rees (2022) Reexamining the contribution of public
20 health efforts to the decline in urban mortality. *American Economic Journal: Applied
21 Economics*, 14, 126-57.

22 Arora, M., H. Malano, B. Davidson, R. Nelson & B. George (2015) Interactions between
23 centralized and decentralized water systems in urban context: A review. *Wiley
24 Interdisciplinary Reviews: Water*, 2, 623-634.

25 Baird, G. M. (2010). A game plan for aging water infrastructure. *Journal-American Water
26 Works Association*, 102(4), 74-82.

27 Bakker, K., & Morinville, C. (2013). The governance dimensions of water security: a review.
28 *Philosophical Transactions of the Royal Society A: Mathematical, Physical and
29 Engineering Sciences*, 371(2002), 20130116.

30 Barnett, J. & S. O'Neill. 2010. maladaptation. 211-213. Pergamon.

31 Bartram, J. & P. Hunter. 2015. Bradley Classification of disease transmission routes for water-
32 related hazards. In *Routledge handbook of water and health*, 38-55. Routledge.

33 Beach, B. (2022) Water infrastructure and health in US cities. *Regional Science and Urban
34 Economics*, 94, 103674.

35 Beach, B., J. Parman & M. Saavedra. 2022. Segregation and the Initial Provision of Water in
36 the United States. In *AEA Papers and Proceedings*, 193-98.

37 Bloetscher, F., & Van Cott, W. R. (1999). Impact of septic tanks on wellhead protection
38 efforts. *Florida Water Resources Journal*, 51(2), 38-41.

39 Boelens, R., Perreault, T., & Vos, J. (Eds.). (2018). *Water justice*. Cambridge University Press.

40 Bogardi, J. J., B. M. Fekete & C. J. Vörösmarty (2013) Planetary boundaries revisited: a view
41 through the ‘water lens’. *Current Opinion in Environmental Sustainability*, 5, 581-589.

42 Bosscher, V., D. A. Lytle, M. R. Schock, A. Porter & M. Del Toral (2019) POU water filters
43 effectively reduce lead in drinking water: a demonstration field study in flint, Michigan.
44 *Journal of Environmental Science and Health, Part A*, 54, 484-493.

45 Boutroue, B., M. Bourblanc, P.-L. Mayaux, S. Ghiotti & M. Hrabanski (2021) The politics of
46 defining maladaptation: enduring contestations over three (mal) adaptive water projects
47 in France, Spain and South Africa. *International Journal of Agricultural Sustainability*,
48 1-19.

49 Brewis, A., K. Meehan, M. Beresford, A. Wutich. (2021) Anticipating Elite Capture: The
50 Social Devaluation of Municipal Tap Water Users in the Phoenix Metropolitan Area.
51 *Water International*. 46(6).

52

Brewis, A., A. Rosinger, A. Wutich, E. Adams, L. Cronk, A. Pearson, C. Workman, S. Young & HWISE RCN (2019) Water sharing, reciprocity, and need: A comparative study of interhousehold water transfers in sub-Saharan Africa. *Economic Anthropology*, 6, 208-221.

Brewis, A., Z. Dubois, A. Wutich, E. Adams, S. Dickins, S. Elliott, V. Empinotti, L. Harris, E. Ilboudo Nébié, M. Korzenewica-Proud (in revision). Gender and water insecurity harm: Re-theorizing risks for cisgender men and transgender, non-binary, and gender diverse people. WIREs Water.

Brown, J. & T. Clasen (2012) High adherence is necessary to realize health gains from water quality interventions. *PloS one*, 7, e36735.

Budds, J., Linton, J., & McDonnell, R. (2014). The hydrosocial cycle. *Geoforum*, 57, 167-169.

Campisano, A., D. Butler, S. Ward, M. J. Burns, E. Friedler, K. DeBusk, L. N. Fisher-Jeffes, E. Ghisi, A. Rahman & H. Furumai (2017) Urban rainwater harvesting systems: Research, implementation and future perspectives. *Water research*, 115, 195-209.

Chen, B., J. Jiang, X. Yang, X. Zhang & P. Westerhoff (2021) Roles and knowledge gaps of point-of-use technologies for mitigating health risks from disinfection byproducts in tap water: a critical review. *Water Research*, 200, 117265.

Cheng, D. (2015) Contestations at the last mile: The corporate–community delivery of water in Manila. *Geoforum*, 59, 240-247.

Cirilo, J. A. (2008). Políticas públicas de recursos hídricos para o semi-árido. Estudos Avançados, 22, 61–82. <https://doi.org/10.1590/S0103-40142008000200005>

Clark, A. 2018. *The poisoned city: Flint's water and the American urban tragedy*. Metropolitan Books.

Contzen, N., Kollmann, J., & Mosler, H. J. (2023). The importance of user acceptance, support, and behaviour change for the implementation of decentralised water technologies. *Nature Water*, 1-13. <https://doi.org/10.1038/s44221-022-00015-y>

Cooperman, A., A. R. McLarty & B. Seim (2021) Understanding uptake of community groundwater monitoring in rural Brazil. *Proceedings of the National Academy of Sciences*, 118, e2015174118.

Cooperman, A. D. 2019. Trading favors: Local politics and development in Brazil. Columbia University.

Cooperman, A. (2022). (Un)Natural Disasters: Electoral Cycles in Disaster Relief. *Comparative Political Studies* 55(7): 1158-1197.

Corral-Verdugo, V., & Frías-Armenta, M. (2006). Personal normative beliefs, antisocial behavior, and residential water conservation. *Environment and Behavior*, 38(3), 406-421.

Cox, M., Arnold, G., & Tomás, S. V. (2010). A review of design principles for community-based natural resource management. *Ecology and Society*, 15(4).

Crosson, C., D. Tong, Y. Zhang & Q. Zhong (2021) Rainwater as a renewable resource to achieve net zero urban water in water stressed cities. *Resources, Conservation and Recycling*, 164, 105203.

Da Silva, J., C. Bezerra & A. d. A. Ribeiro (2020) Avaliação da qualidade da água armazenada em cisternas no Semiárido Cearense. *Revista Brasileira de Engenharia de Biossistemas*, 14, 27-35.

De Coss-Corzo, A. (2022) Working with the end of water: Infrastructure, labour, and everyday futures of socio-environmental collapse in Mexico city. *Environment and Planning E: Nature and Space*, 25148486221100391.

De Melo Branco, A., J. Suassuna & S. A. Vainsencher (2005) Improving access to water resources through rainwater harvesting as a mitigation measure: The case of the

1
2
3 Brazilian semi-arid region. *Mitigation and Adaptation Strategies for Global Change*,
4 10, 393-409.

5 de Moraes, A. F. J. & C. Rocha (2013) Gendered waters: the participation of women in the
6 'One Million Cisterns' rainwater harvesting program in the Brazilian Semi-Arid region.
7 *Journal of cleaner production*, 60, 163-169.

8 Deitz, S. & K. Meehan (2019) Plumbing poverty: mapping hot spots of racial and geographic
9 inequality in US household water insecurity. *Annals of the American Association of
10 Geographers*, 109, 1092-1109.

11 Dobbin, K. B., & Lubell, M. (2021). Collaborative governance and environmental justice:
12 Disadvantaged community representation in California sustainable groundwater
13 management. *Policy Studies Journal*, 49(2), 562-590.

14 Dos Santos Rocha, Wilson; Salvetti, Maria. 2017. Case Study—SISAR Ceará, Brazil. World
15 Bank, Washington DC. World Bank.
16 https://openknowledge.worldbank.org/handle/10986/28382 License: CC BY 3.0 IGO

17 Doss-Gollin, J., de Souza Filho, F. de A., & da Silva, F.O.E. (2015). Analytic modeling of
18 rainwater harvesting in the Brazilian Semiarid Northeast. *Journal of the American
19 Water Resources Association*, 52(1), 129–137. <https://doi.org/10.1111/1752-1688.12376>

20 Dupuits, E. (2019). Water community networks and the appropriation of neoliberal practices:
21 Social technology, depoliticization, and resistance. *Ecology and Society*, 24(2).

22 Enéas da Silva, F. O., Heikkila, T., de Souza Filho, F. de A., & Costa da Silva, D. (2013).
23 Developing sustainable and replicable water supply systems in rural communities in
24 Brazil. International Journal of Water Resources Development, 29(4), 622–635.
25 <https://doi.org/10.1080/07900627.2012.722027>

26 Ferguson, C., Mallory, A., Anciano, F., Russell, K., Valladares, H. del R. L., Riungu, J., &
27 Parker, A. (2022). A qualitative study on resource barriers facing scaled container-
28 based sanitation service chains. Journal of Water, Sanitation and Hygiene for
29 Development, 12(3), 318–328. <https://doi.org/10.2166/washdev.2022.218>

30 Foster, Tim, Sean Furey, Brian Banks, and Juliet Willets. "Functionality of Handpump
31 Water Supplies: A Review of Data from Sub-Saharan Africa and the Asia-Pacific
32 Region." *International Journal of Water Resources Development*, 2019, 1–15.
33 https://doi.org/10.1080/07900627.2018.1543117

34 Fox, Mary A., Keeve E. Nachman, Breeana Anderson, Juleen Lam, and Beth Resnick.
35 "Meeting the Public Health Challenge of Protecting Private Wells: Proceedings and
36 Recommendations from an Expert Panel Workshop." *Science of The Total
37 Environment* 554–555 (June 1, 2016): 113–18.
38 <https://doi.org/10.1016/j.scitotenv.2016.02.128>.

39 Fuente, David, Josephine Gakii Gatua, Moses Ikiara, Jane Kabubo-Mariara, Mbutu Mwaura,
40 and Dale Whittington. "Water and Sanitation Service Delivery, Pricing, and the Poor:
41 An Empirical Estimate of Subsidy Incidence in Nairobi, Kenya." *Water Resources
42 Research* 52, no. 6 (2016): 4845–62. <https://doi.org/10.1002/2015WR018375>.

43 Garcia, L. B., Sabin, C., Tomaka, J., Santiago, I., Palacios, R., & Walker, W. S. (2016). A
44 comparison of water-related perceptions and practices among West Texas and South
45 New Mexico Colonia residents using hauled-stored and private well water. *Journal of
46 Environmental Health*, 79(2), 14-21.

47 Garrick, D., Balasubramanya, S., Beresford, M., Wutich, A., Gilson, G.G., Jorgensen, I.,
48 Brozović, N., Cox, M., Dai, X., Erfurth, S. and Rimšaitė, R., (2023). A systems
49 perspective on water markets: barriers, bright spots, and building blocks for the next
50 generation. *Environmental Research Letters*, 18(3), p.031001.

51
52
53
54
55
56
57
58
59
60

Garrido-Baserba, M., Barnosell, I., Molinos-Senante, M., Sedlak, D. L., Rabaey, K., Schraa, O., Verdaguer, M., Rosso, D., & Poch, M. (2022). The third route: A techno-economic evaluation of extreme water and wastewater decentralization. *Water Research*, 218, 118408.

Geere, J.-A., J. Bartram, L. Bates, L. Danquah, B. Evans, M. B. Fisher, N. Groce, B. Majuru, M. M. Mokoena & M. S. Mukhola (2018) Carrying water may be a major contributor to disability from musculoskeletal disorders in low income countries: a cross-sectional survey in South Africa, Ghana and Vietnam. *Journal of global health*, 8.

Geere, J.-A. L., M. Cortobius, J. H. Geere, C. C. Hammer & P. R. Hunter (2018) Is water carriage associated with the water carrier's health? A systematic review of quantitative and qualitative evidence. *BMJ Global Health*, 3, e000764.

Geetha Varma, V., Jha, S., Himesh Karthik Raju, L., Lalith Kishore, R., & Ranjith, V. (2022). A review on decentralized wastewater treatment systems in India. *Chemosphere*, 300, 134462. <https://doi.org/10.1016/j.chemosphere.2022.134462>

Glade, S. & I. Ray (2022) Safe drinking water for small low-income communities: the long road from violation to remediation. *Environmental Research Letters*, 17, 044008.

Glazer, Y. R., D. M. Tremaine, J. L. Banner, M. Cook, R. E. Mace, J. Nielsen-Gammon, E. Grubert, K. Kramer, A. M. Stoner & B. M. Wyatt (2021) Winter Storm Uri: A Test of Texas' Water Infrastructure and Water Resource Resilience to Extreme Winter Weather Events. *Journal of Extreme Events*, 2150022.

Gleick, P. H. (2010). *Bottled and sold: The story behind our obsession with bottled water*. Island Press.

Gnadlinger, J. (2020) Smart rainwater management and its impacts on drought resilience by Rural Semi-Arid communities: a case study of Northeast Brazil. *International rainwater catchment systems experiences*, 207-219.

Gomes, U. A., L. Heller, S. Cairncross, L. Domenèch & J. L. Pena (2014) Subsidizing the sustainability of rural water supply: the experience of the Brazilian rural rainwater-harvesting programme. *Water International*, 39, 606-619.

Gomes, U. A., L. Heller & J. L. Pena (2012) A national program for large scale rainwater harvesting: an individual or public responsibility? *Water resources management*, 26, 2703-2714.

Green, D., O'Donnell, E., Johnson, M., Slater, L., Thorne, C., Zheng, S., Stirling, R., Chan, F.K., Li, L. and Boothroyd, R.J., 2021. Green infrastructure: The future of urban flood risk management?. *Wiley Interdisciplinary Reviews: Water*, 8(6), p.e1560.

Grillos, T., Zarychta, A., & Nelson Nuñez, J. (2021). Water scarcity & procedural justice in Honduras: Community-based management meets market-based policy. *World Development*, 142, 105451.

Hardy, A. (1991). Parish pump to private pipes: London's water supply in the nineteenth century. *Medical History*, 35(S11), 76-93. <https://doi.org/10.1017/S002572730007112X>

Hargrove, W. L., & Heyman, J. M. (2020). A comprehensive process for stakeholder identification and engagement in addressing wicked water resources problems. *Land*, 9(4), 119.

Hargrove, W. L., Holguin, N., Tippin, C. L., & Heyman, J. H. (2020). The soft path to water: A conservation-based approach to improved water access and sanitation for rural communities. *Journal of Soil and Water Conservation*, 75(2), 38A-44A.

Harvey, P. A., & Drouin, T. (2006). The case for the rope-pump in Africa: A comparative performance analysis. *Journal of Water and Health*, 4(4), 499-510. <https://doi.org/10.2166/wh.2006.0033>

1
2
3 Hasan, S., & Foliente, G. (2015). Modeling infrastructure system interdependencies and
4 socioeconomic impacts of failure in extreme events: emerging R&D challenges.
5 *Natural Hazards*, 78(3), 2143-2168.

6
7 Herkert, N. J., Merrill, J., Peters, C., Bollinger, D., Zhang, S., Hoffman, K., Ferguson, P. L.,
8 Knappe, D. R. U., & Stapleton, H. M. (2020). Assessing the Effectiveness of Point-of-
9 Use Residential Drinking Water Filters for Perfluoroalkyl Substances (PFASs).
10 Environmental Science & Technology Letters, 7(3), 178-184.
11 <https://doi.org/10.1021/acs.estlett.0c00004>

12 Herrera, V. 2017. *Water and politics: Clientelism and reform in urban Mexico*. University of
13 Michigan Press.

14 Heyman, J., Mayer, A., Alger, J. (2022). Predictions of household water affordability under
15 conditions of climate change, demographic growth, and fresh groundwater depletion in
16 a southwest US city indicate increasing burdens on the poor, *PLoS ONE* 17(11):
17 e0277268. <https://doi.org/10.1371/journal.pone.0277268>

18
19 Hiolski, E. (2019). The Toilet Gets a Makeover. *ACS Central Science*, 5(8), 1303–1306.
20 <https://doi.org/10.1021/acscentsci.9b00769>

21
22 Hohner, A. K., C. C. Rhoades, P. Wilkerson & F. L. Rosario-Ortiz (2019) Wildfires alter forest
23 watersheds and threaten drinking water quality. *Accounts of Chemical Research*, 52,
24 1234-1244.

25 Hope, R., Thomson, P., Koehler, J., & Foster, T. (2020). Rethinking the economics of rural
26 water in Africa. *Oxford Review of Economic Policy*, 36(1), 171–190.ba

27 Hunter, P. R., D. Zmirou-Navier & P. Hartemann (2009) Estimating the impact on health of
28 poor reliability of drinking water interventions in developing countries. *Science of the
29 total environment*, 407, 2621-2624.

30 Hynds, Paul D., Bruce D. Misstear, and Laurence W. Gill. "Unregulated Private Wells in the
31 Republic of Ireland: Consumer Awareness, Source Susceptibility and Protective
32 Actions." *Journal of Environmental Management* 127 (September 30, 2013): 278–88.
33 <https://doi.org/10.1016/j.jenvman.2013.05.025>

34
35 Jaywant, S. A., & Arif, K. M. (2019). A Comprehensive Review of Microfluidic Water Quality
36 Monitoring Sensors. *Sensors* 19(21): Article 21. <https://doi.org/10.3390/s19214781>

37
38 Jepson, W. (2014) Measuring 'no-win' waterscapes: Experience-based scales and classification
39 approaches to assess household water security in colonias on the US–Mexico border.
40 *Geoforum*, 51, 107-120.

41 Jepson, W. & H. L. Brown (2014) 'If no gasoline, no water': privatizing drinking water quality
42 in South Texas colonias. *Environment and Planning A*, 46, 1032-1048.

43 Jepson, W., J. Budds, L. Eichelberger, L. Harris, E. Norman, K. O'Reilly, A. Pearson, S. Shah,
44 J. Shinn & C. Staddon (2017) Advancing human capabilities for water security: A
45 relational approach. *Water Security*, 1, 46-52.

46
47 Jepson, W., P. Tomaz, J. O. Santos & J. Baek (2021) A comparative analysis of urban and rural
48 household water insecurity experiences during the 2011–17 drought in Ceará, Brazil.
49 *Water International*, 46, 697-722.

50 Jepson, W., Wutich, A., & Harris, L. M. (2019). Water-security capabilities and the human
51 right to water. In *Water politics* (pp. 84-98). Routledge.

52 Juhola, S., E. Glaas, B.-O. Linnér & T.-S. Neset (2016) Redefining maladaptation.
53 *Environmental Science & Policy*, 55, 135-140.

54
55 Kane, J. & A. Tomer (2018) Renewing the water workforce. *London: Brookings Metropolitan
56 Policy Program*.

57 Kariuki, M., & Schwartz, J. (2005). Small-scale private service providers of water supply and
58 electricity: a review of incidence, structure, pricing, and operating characteristics.
59 *Policy Research Working Paper Series*, (3727), DC: World Bank.

60

1
2
3 Kidd, J., P. Westerhoff & A. D. Maynard (2020) Public perceptions for the use of nanomaterials
4 for in-home drinking water purification devices. *NanoImpact*, 18, 100220.
5
6 Klasic, M., Fencl, A., Ekstrom, J. A., & Ford, A. (2022). Adapting to extreme events: small
7 drinking water system manager perspectives on the 2012–2016 California Drought.
8 *Climatic Change*, 170(3), 1-25.
9
10 Kleemeier, E. (2000). The Impact of Participation on Sustainability: An Analysis of the Malawi
11 Rural Piped Scheme Program. *World Development*, 28(5), 929–944.
12 [https://doi.org/10.1016/S0305-750X\(99\)00155-2](https://doi.org/10.1016/S0305-750X(99)00155-2)
13
14 Koehler, J., Rayner, S., Katuva, J., Thomson, P., & Hope, R. (2018). A cultural theory of
15 drinking water risks, values and institutional change. *Global Environmental Change*,
50, 268–277.
16 Kooy, M. (2014). Developing Informality: The Production of Jakarta's Urban Waterscape.
17 *Water Alternatives*, 7(1).
18 Leonard, K., David-Chavez, D., Smiles, D., Jennings, L., 'Anolani Alegado, R., Tsinnajinnie,
19 L., Manitowabi, J., Arsenault, R. and Begay, R.L., 2023. Water Back: A Review
20 Centering Rematriation and Indigenous Water Research Sovereignty. *Water
21 Alternatives*, 16(2), p.2.
22
23 Li, Z., Zheng, L., Koottatep, T., & Vinnerås, B. (2023). Editorial: Decentralized wastewater
24 treatment technologies. *Frontiers in Environmental Science*, 11.
25 <https://www.frontiersin.org/articles/10.3389/fenvs.2023.1199552>
26 Linton, J., & Budds, J. (2014). The hydrosocial cycle: Defining and mobilizing a relational-
27 dialectical approach to water. *Geoforum*, 57, 170-180.
28 MacArthur, J. (2005) *Handpump Standardisation in Sub-Saharan Africa*. Rural Water Supply
29 Network. Publication 2015-1. <https://www.ircwash.org/sites/default/files/1-652-2-1421834932.pdf>
30
31 Magnan, A. K., E. L. F. Schipper, M. Burkett, S. Bharwani, I. Burton, S. Eriksen, F. Gemenne,
32 J. Schaar & G. Zervogel (2016) Addressing the risk of maladaptation to climate
33 change. *Wiley Interdisciplinary Reviews: Climate Change*, 7, 646-665.
34
35 Malin, G. C. (2022, May 18). What Is Public and What Is Private in Water Provision: Insights
36 from 19th-Century Philadelphia, Boston, and New York. *Oxford Research
37 Encyclopedia of Environmental Science*.
38 <https://doi.org/10.1093/acrefore/9780199389414.013.683> Mansuri, G., & Rao, V.
39 (2004). Community-based and-driven development: A critical review.
40 *The World Bank Research Observer*, 19(1), 1-39.
41
42 Mariwah, S., Drangert, J.-O., & Adams, E. A. (2022). The potential of composting toilets in
43 addressing the challenges of faecal sludge management in community-led total
44 sanitation (CLTS). *Global Public Health*, 17(12), 3802–3814.
45 <https://doi.org/10.1080/17441692.2022.2111453>
46
47 McFarlane, K., & Harris, L. M. (2018). Small systems, big challenges: Review of small
48 drinking water system governance. *Environmental Reviews*, 26(4), 378-395.
49
50 Meehan, K., W. Jepson, L. M. Harris, A. Wutich, M. Beresford, A. Fencl, J. London, G. Pierce,
51 L. Radonic & C. Wells (2020) Exposing the myths of household water insecurity in the
52 global north: a critical review. *Wiley Interdisciplinary Reviews: Water*, 7, e1486.
53
54 Meehan, K., W. Jepson, L. M. Harris, A. Wutich, M. Beresford, A. Fencl, J. London, G. Pierce,
55 L. Radonic, C. Wells & others (2020) Exposing the myths of household water insecurity
56 in the global North: A critical review. *Wiley Interdisciplinary Reviews: Water*, e1486.
57
58 Meehan, K., J. R. Jurjevich, N. M. Chun & J. Sherrill (2020) Geographies of insecure water
59 access and the housing–water nexus in US cities. *Proceedings of the National Academy
of Sciences*, 117, 28700-28707.
60

Meehan, K., Odetola, M., & Griswold, A. (2022). Homelessness, Water Insecurity, and the Human Rights to Water and Sanitation. King's College London.
<https://doi.org/10.18742/pub01-085>

Meehan, K., Mirumachi, N., Loftus, A., & Akhter, M. (2023). Water: A Critical Introduction. John Wiley & Sons.

Meleg, A. (2012) SISAR: a sustainable management model for small rural decentralized water and wastewater systems in developing countries. *Journal of Water, Sanitation and Hygiene for Development*, 2, 291-300.

Melosi, M. V. 2008. *The sanitary city: Environmental services in urban America from colonial times to the present*. University of Pittsburgh Pre.

Morales-Novelo, Jorge A., Lilia Rodríguez-Tapia, and Daniel A. Revollo-Fernández. "Inequality in Access to Drinking Water and Subsidies between Low and High Income Households in Mexico City." *Water* 10, no. 8 (August 2018): 1023. <https://doi.org/10.3390/w10081023>.

Morinville, C. (2017). Sachet water: Regulation and implications for access and equity in Accra, Ghana. *Wiley Interdisciplinary Reviews: Water*, 4(6), e1244.

Morris, R. (2000). *Stories of transformative justice*. Canadian Scholars' Press.

Mullin, M. (2009). *Governing the tap: Special district governance and the new local politics of water*. MIT Press.

Mullin, M. (2020). The effects of drinking water service fragmentation on drought-related water security. *Science*, 368(6488), 274-277.

Neal, M. J., Lukasiewicz, A., & Syme, G. J. (2014). Why justice matters in water governance: some ideas for a 'water justice framework'. *Water policy*, 16(S2), 1-18.

Nocella, A. J., & Anthony, J. (2011). An overview of the history and theory of transformative justice. *Peace & conflict review*, 6(1), 1-10.

Norriess, J., M. Cunningham, A. R. DeRosa & S. Vedachalam (2021) Too Small to Succeed: State-Level Consolidation of Water Systems. *Journal-American Water Works Association*, 113, 8-15.

Nunes, J. P., S. H. Doerr, G. Sheridan, J. Neris, C. Santín, M. B. Emelko, U. Silins, P. R. Robichaud, W. J. Elliot & J. Keizer (2018) Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. *Hydrological Processes*, 32, 687-694.

Odumayomi, T. O., C. R. Proctor, Q. E. Wang, A. Sabbaghi, K. S. Peterson, D. J. Yu, J. Lee, A. D. Shah, C. J. Ley & Y. Noh (2021) Water safety attitudes, risk perception, experiences, and education for households impacted by the 2018 Camp Fire, California. *Natural Hazards*, 108, 947-975.

Organization, W. H. (2021) Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs.

Ostrom, E. (1990). *Governing the commons: The evolution of institutions for collective action*. Cambridge University Press.

Oyanedel-Craver, V. A. & J. A. Smith (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. *Environmental science & technology*, 42, 927-933.

Pacheco-Vega, R. (2019). Human right to water and bottled water consumption: Governing at the intersection of water justice, rights and ethics. In *Water politics* (pp. 113-128). Routledge.

Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. *Global environmental change*, 19(3), 354-365.

Patterson, C., Burkhardt, J., Schupp, D., Krishnan, E. R., Dyment, S., Merritt, S., Zintek, L., & Kleinmaier, D. (2019). Effectiveness of point-of-use/point-of-entry systems to remove per- and polyfluoroalkyl substances from drinking water. *AWWA Water Science*, 1(2), e1131.

Peek, L., Tobin, J., Adams, R. M., Wu, H., & Mathews, M. C. (2020). A framework for convergence research in the hazards and disaster field: The natural hazards engineering research infrastructure CONVERGE facility. *Frontiers in Built Environment*, 6, 110.

Phuangsajai, N., Jakmunee, J., & Kittiwachana, S. (2021). Investigation into the predictive performance of colorimetric sensor strips using RGB, CMYK, HSV, and CIELAB coupled with various data preprocessing methods: A case study on an analysis of water quality parameters. *Journal of Analytical Science and Technology*, 12(1), 19. <https://doi.org/10.1186/s40543-021-00271-9>

Pooi, C. K. & H. Y. Ng (2018) Review of low-cost point-of-use water treatment systems for developing communities. *NPJ Clean Water*, 1, 1-8.

Quinn, R., O. Avis, M. Decker, A. Parker & S. Cairncross (2018) An assessment of the microbiological water quality of sand dams in Southeastern Kenya. *Water*, 10, 708.

Robinne, F.-N., D. W. Hallema, K. D. Bladon, M. D. Flannigan, G. Boisramé, C. M. Bréthaut, S. H. Doerr, G. Di Baldassarre, L. A. Gallagher & A. K. Hohner (2021) Scientists' warning on extreme wildfire risks to water supply. *Hydrological processes*, 35, e14086.

Rodina, L. & L. M. Harris (2016) Water Services, Lived Citizenship, and Notions of the State in Marginalised Urban Spaces: The case of Khayelitsha, South Africa. *Water Alternatives*, 9.

Roque, A., Wutich, A., Brewis, A., Beresford, M., García-Quijano, C., Lloréns, H., & Jepson, W. (2021). Autogestión and water sharing networks in Puerto Rico after Hurricane María. *Water International*, 46(6), 938-955.

Roque, A., Wutich, A., Quimby, B., Porter, S., Zheng, M., Hossain, M. J., & Brewis, A. (2022). Participatory approaches in water research: A review. *Wiley Interdisciplinary Reviews: Water*, 9(2), e1577.

Roque, A., A. Wutich, A. Brewis, M. Beresford, L. Landes, O. Morales, R. Lucero, W. Jepson, Y. Tsai, M. Hanemann, Action for Water Equity Consortium. (2024) Community-based participant-observation (CBPO): A participatory method for ethnographic research. *Field Methods*. 36(2).

Rosinger, A.Y., Brewis, A., Wutich, A., Jepson, W., Staddon, C., Stoler, J., Young, S.L. and Coordination, HWISe RCN, 2020. Water borrowing is consistently practiced globally and is associated with water-related system failures across diverse environments. *Global Environmental Change*, 64, p.102148.

Rosinger, A. Y. & S. L. Young (2020) The toll of household water insecurity on health and human biology: current understandings and future directions. *Wiley Interdisciplinary Reviews: Water*, 7, e1468.

Sadler, R. C., & Highsmith, A. R. (2016). Rethinking Tiebout: The Contribution of Political Fragmentation and Racial/Economic Segregation to the Flint Water Crisis. *Environmental Justice*, 9(5), 143–151.

Sarkar, A. (2019). The role of new 'Smart technology' to provide water to the urban poor: a case study of water ATMs in Delhi, India. *Energy, Ecology and Environment*, 4(4), 166-174.

Sarkar, S. K., & Bharat, G. K. (2021). Achieving Sustainable Development Goals in water and sanitation sectors in India. *Journal of Water, Sanitation and Hygiene for Development*, 11(5), 693–705. <https://doi.org/10.2166/washdev.2021.002>

Sarkar, U. D., & Choudhary, B. K. (2020). Reconfiguring urban waterscape: water Kiosks in Delhi as a new governance model. *Journal of Water, Sanitation and Hygiene for Development*, 10(4), 996-1011.

Schwartz, K., Tutasaus Luque, M., Rusca, M., & Ahlers, R. (2015). (In) formality: the meshwork of water service provisioning. *Wiley Interdisciplinary Reviews: Water*, 2(1), 31-36.

Scruggs, C. E., & Heyne, C. M. (2021). Extending traditional water supplies in inland communities with nontraditional solutions to water scarcity. *Wiley Interdisciplinary Reviews: Water*, 8(5), e1543.

Sharma, R., & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. *Wiley Interdisciplinary Reviews: Water*, 8(2), e1507.

Shrestha, K.B., Thapa, B.R., Aihara, Y., Shrestha, S., Bhattarai, A.P., Bista, N., Kazama, F. and Shindo, J., 2018. Hidden cost of drinking water treatment and its relation with socioeconomic status in Nepalese urban context. *Water*, 10(5), p.607.

Shukla, A., Patwa, A., Parde, D., & Vijay, R. (2023). A review on generation, characterization, containment, transport and treatment of fecal sludge and septage with resource recovery-oriented sanitation. *Environmental Research*, 216, 114389. <https://doi.org/10.1016/j.envres.2022.114389>

Silva, M. E. D., J. C. A. Alcócer, O. R. de Oliveira Pinto, C. de Miranda Pinto & A. M. da Fonseca (2020) Percepção de beneficiários do Programa Cisternas: manuseio de águas em Ibaretama, Ceará. *Brazilian Journal of Development*, 6, 37847-37867.

Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C.A., Wescoat, J.L. and Rodríguez-Iturbe, I., 2014. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. *Earth's Future*, 2(4), pp.225-230.

Soler, N. G., T. Moss & O. Papasozomenou (2018) Rain and the city: Pathways to mainstreaming rainwater harvesting in Berlin. *Geoforum*, 89, 96-106.

Solo, T. M. (1999). Small-scale entrepreneurs in the urban water and sanitation market. *Environment and urbanization*, 11(1), 117-132.

Spearing, L. A. & K. M. Faust (2020) Cascading system impacts of the 2018 Camp Fire in California: The interdependent provision of infrastructure services to displaced populations. *International Journal of Disaster Risk Reduction*, 50, 101822.

Staddon, C., J. Rogers, C. Warriner, S. Ward & W. Powell (2018) Why doesn't every family practice rainwater harvesting? Factors that affect the decision to adopt rainwater harvesting as a household water security strategy in central Uganda. *Water international*, 43, 1114-1135.

Stoler, J. (2012) Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water. *Tropical Medicine & International Health*, 17, 1506-1508.

Stoler, J. (2017) From curiosity to commodity: a review of the evolution of sachet drinking water in West Africa. *Wiley Interdisciplinary Reviews: Water*, 4, e1206.

Stoler, J., A. Brewis, L. M. Harris, A. Wutich, A. L. Pearson, A. Y. Rosinger, R. C. Schuster & S. L. Young (2019) Household water sharing: a missing link in international health. *International health*, 11, 163-165.

Stoler, J., W. Jepson, A. Wutich, C. A. Velasco, P. Thomson, C. Staddon & P. Westerhoff (2022) Modular, adaptive, and decentralised water infrastructure: promises and perils for water justice. *Current Opinion in Environmental Sustainability*, 57, 101202.

Storey, A. D. (2021). Implicit or illicit? Self-made infrastructure, household waters, and the materiality of belonging in Cape Town. *Water Alternatives*, 14(1), 79-96.

Sultana, F., & Loftus, A. (Eds.). (2019). *Water politics: Governance, justice and the right to water*. Routledge.

1
2
3 Teodoro, M. P. & R. R. Saywitz (2020) Water and sewer affordability in the United States: a
4 2019 update. *AWWA Water Science*, 2, e1176.
5 Thomson, P. (2021) Remote monitoring of rural water systems: A pathway to improved
6 performance and sustainability? *Wiley Interdisciplinary Reviews: Water*, 8, e1502.
7 Thomson, P., Hope, R., & Foster, T. (2012). Is silence golden? Of mobiles, monitoring, and
8 rural water supplies. *Waterlines*, 31(4), 280–292. <https://doi.org/10.3362/1756-3488.2012.031>
9
10 Thomson, P., & Koehler, J. (2016). Performance-oriented Monitoring for the Water SDG –
11 Challenges, Tensions and Opportunities. *Aquatic Procedia*, 6, 87–95.
12 <https://doi.org/10.1016/j.aqpro.2016.06.010>
13
14 Thomson, P., Bradley, D., Katilu, A., Katuva, J., Lanzoni, M., Koehler, J., & Hope, R. (2019).
15 Rainfall and groundwater use in rural Kenya. *Science of The Total Environment*, 649,
16 722–730.
17
18 Thomson, P., Stoler, J., Byford, M., Bradley, D. (2022) The Impact of Rapid Handpump
19 Repairs on Diarrhoea Morbidity in Children: A Cross-Sectional Study. *JMIR Preprints*.
20 08/09/2022:42462
21
22 Troesken, W., N. Tynan & Y. A. Yang (2021) What are the health benefits of a constant water
23 supply? Evidence from London, 1860–1910. *Explorations in Economic History*, 81,
24 101402.
25
26 Truelove, Y. (2019). Gray zones: The everyday practices and governance of water beyond the
27 network. *Annals of the American Association of Geographers*, 109(6), 1758–1774.
28
29 United State Environmental Protection Agency Office of Water (1997) Response to Congress
30 On Use Of Decentralized Wastewater Treatment Systems. EPA 832-R-97-001b
31
32 Vandewalle, E. & W. Jepson (2015) Mediating water governance: point-of-use water filtration
33 devices for low-income communities along the US–Mexico border. *Geo: Geography
34 and Environment*, 2, 107–121.
35
36 Vázquez-Rowe, I., Kahhat, R., & Lorenzo-Toja, Y. (2017). Natural disasters and climate
37 change call for the urgent decentralization of urban water systems. *Science of the total
38 environment*, 605, 246–250.
39
40 Vedachalam, S., MacDonald, L. H., Omoluabi, E., OlaOlorun, F., Otupiri, E., & Schwab, K. J.
41 (2017). The role of packaged water in meeting global targets on improved water access.
42 *Journal of Water, Sanitation and Hygiene for Development*, 7(3), 369–377.
43
44 Vörösmarty, C. J., C. Pahl-Wostl, S. E. Bunn & R. Lawford (2013) Global water, the
45 anthropocene and the transformation of a science. *Current Opinion in Environmental
46 Sustainability*, 5, 539–550.
47
48 Voth-Gaeddert, L. E., Lemley, M., Brathwaite, K., Schranck, A., & Libbey, S. (2022). Design
49 and Evaluation of a Household Chlorination System for Treating Cistern Water in the
50 US Virgin Islands. *Journal of Environmental Engineering*, 148(11), 06022002.
51
52 Wade, S. (2018). Is water security just? Concepts, tools and missing links. *Water International*,
53 43(8), 1026–1039.
54
55 Wahby, N. M. (2021). Urban informality and the state: Repairing Cairo's waters through
56 Gehoud Zateya. *Environment and Planning E: Nature and Space*, 4(3), 696–717.
57 Water Environment Research Foundation (2010). Integration: A New Framework and Strategy
58 for Water Management in Towns and Cities, Meeting Summary Report, DEC3R08f.
59 Water Environment Research Foundation, www.werf.org
60 Wells, E. C., Vidmar, A. M., Webb, W. A., Ferguson, A. C., Verbyla, M. E., de los Reyes III,
F. L., Zhang, Q., & Mihelcic, J. R. (2022). Meeting the water and sanitation challenges
of underbounded communities in the US. *Environmental Science & Technology*,
56(16), 11180–11188.

1
2
3 Westerhoff, P., Wutich, A., & Carlson, C. (2021). Value propositions provide a roadmap for
4 convergent research on environmental topics. *Environmental Science & Technology*,
5 55(20), 13579-13582.

6 Whittington, D., Lauria, D. T., & Mu, X. (1991). A study of water vending and willingness to
7 pay for water in Onitsha, Nigeria. *World Development*, 19(2-3), 179-198.

8 9 Wichelns, D., Drechsel, P., & Qadir, M. (2015). Wastewater: Economic Asset in an Urbanizing
10 World. In P. Drechsel, M. Qadir, & D. Wichelns (Eds.), Wastewater: Economic Asset
11 in an Urbanizing World (pp. 3-14). Springer Netherlands. https://doi.org/10.1007/978-94-017-9545-6_1

12
13 Wilk, R. (2006). Bottled water: the pure commodity in the age of branding. *Journal of*
14 *Consumer Culture*, 6(3), 303-325.

15 Wilson, N. J., & Inkster, J. (2018). Respecting water: Indigenous water governance,
16 ontologies, and the politics of kinship on the ground. *Environment and Planning E: Nature and Space*, 1(4), 516-538.

17 18 Wilson, N. J., Montoya, T., Arseneault, R., & Curley, A. (2021). Governing water insecurity: navigating indigenous water rights and regulatory politics in settler colonial states. Water International, 46(6), 783-801.

19
20 Wolff, G. & P. H. Gleick. 2002. *The soft path for water*. Island Press Washington.

21 22 Workman, C. L., & Shah, S. H. (2022). Water infrastructure as intrusion: Race, exclusion, and nostalgic futures in North Carolina. Annals of the American Association of Geographers, 1-13.

23 World Health Organization. (2019). Progress on household drinking water, sanitation and hygiene 2000-2017: special focus on inequalities.

24 World Health Organization. (2021). Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs.

25 26 World Health Organization & UNICEF. (2017). WHO/UNICEF Joint Monitoring Program for Water Supply, Sanitation and Hygiene (JMP)—2017 Update and SDG Baselines | UN-Water. <http://www.unwater.org/publications/whounicef-joint-monitoring-program-water-supply-sanitation-hygiene-jmp-2017-update-sdg-baselines/>

27 Wutich, A., Beresford, M., & Carvajal, C. (2016). Can informal water vendors deliver on the promise of a human right to water? Results from Cochabamba, Bolivia. *World Development*, 79, 14-24.

28 Wutich, A., J. Budds, W. Jepson, L. M. Harris, E. Adams, A. Brewis, L. Cronk, C. DeMyers, K. Maes & T. Marley (2018) Household water sharing: A review of water gifts, exchanges, and transfers across cultures. *Wiley Interdisciplinary Reviews: Water*, 5, e1309.

29 Wutich, A., A. Brewis & A. Tsai (2020) Water and mental health. *Wiley Interdisciplinary Reviews: Water*, 7, e1461.

30 Wutich, A., W. E. Jepson, J. Stoler, P. Thomson, M. Kooy, A. Brewis, C. Staddon & K. Meehan (2021) A global agenda for household water security: measurement, monitoring, and management. *JAWRA Journal of the American Water Resources Association*, 57, 530-538.

31 Wutich, A., A. Rosinger, A. Brewis, M. Beresford, S. Young & HWise RCN (2022) Water sharing is a distressing form of reciprocity: Shame, upset, anger, and conflict over water in twenty cross-cultural sites. *American Anthropologist*.

32 Yates, J. S., & Harris, L. M. (2018). Hybrid regulatory landscapes: The human right to water, variegated neoliberal water governance, and policy transfer in Cape Town, South Africa, and Accra, Ghana. *World Development*, 110, 75-87.

1
2
3 Yates, J. S., Harris, L. M., & Wilson, N. J. (2017). Multiple ontologies of water: Politics,
4 conflict and implications for governance. *Environment and Planning D: Society and*
5 *Space*, 35(5), 797-815.
6
7 Zeitoun, M., Lankford, B., Krueger, T., Forsyth, T., Carter, R., Hoekstra, A.Y., Taylor, R.,
8 Varis, O., Cleaver, F., Boelens, R. and Swatuk, L., 2016. Reductionist and integrative
9 research approaches to complex water security policy challenges. *Global*
10 *Environmental Change*, 39, pp.143-154.
11
12 Zodrow, K. R., Q. Li, R. M. Buono, W. Chen, G. Daigger, L. Dueñas-Osorio, M. Elimelech,
13 X. Huang, G. Jiang & J.-H. Kim. 2017. Advanced materials, technologies, and complex
14 systems analyses: emerging opportunities to enhance urban water security. ACS
15 Publications.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1
2
3
4
5
6
7
TABLES8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Table 1. Key Terms, Definitions & Examples for MAD (Modular, **Mobile**, Adaptive, or Decentralized) Water Approaches

Term	Definition	MAD Water Example(s)	Counter-Example(s): NOT MAD
Modular (and Mobile)	<p>Fit-for-purpose, easily replicable, can be expanded or reduced according to need, and are often mobile or portable, i.e., do not rely on fixed, permanent infrastructure</p> <p>(Mobile systems that can be easily deployed as populations move & resettle are by nature modular and included in our definition.)</p>	<p>Point-of-use water filtration systems: can be expanded to process more water</p> <p>Onsite/Decentralized wastewater treatment and reuse system that can be expanded modularly to meet demand.</p> <p>Water vending trucks that move water from source to customers</p> <p>Mobile desalination or treatment systems for disaster response.</p>	<p>Conventional water & wastewater treatment plants designed for specific capacity (e.g., due to both site and permitting constraints)</p>
Adaptive	Can be quickly and responsively modified to meet immediate needs	Household water sharing: norms-based system can be modified to encompass different water needs and relationships	Systems governed by Federal water legislation are often not adaptive because the change process is long and slow
Decentralized	<p>Dispersed, distributed, and localized.</p> <p>Lack of central coordination in water distribution</p>	<p>Rainwater harvesting: Individual households collect & allocate water independently</p> <p>Onsite wastewater treatment and reuse to amend rainwater harvesting.</p>	<p>Municipal water & sewer utilities typically have centralized infrastructure & decision-making</p>

1
2
3
4 | **Table 2.** Examples with modular/mobile, adaptive, or decentralized characteristics for water harvesting, treatment, distribution, monitoring, or
5 governing.
6

Example	Harvesting			Treating			Distributing			Monitoring			Governing			Citation
	M	A	D	M	A	D	M	A	D	M	A	D	M	A	D	
Sand scoops in ephemeral rivers	✓	✓	✓	✓	✓	✓	✓	✓	✓				✓	✓		Quinn et al. 2019
Water truck vending in Bolivia	✓						✓	✓	✓				✓	✓	✓	Wutich et al. 2016
Remotely-monitored handpumps in Kenya	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	Thomson 2021
Rainwater harvesting in Brazil, Uganda, Mexico	✓	✓	✓				✓	✓	✓							Staddon et al 2018; Lindoso et al 2018; Adrich and Page-Tan 2020
Water sharing after Hurricane Maria, Caribbean							✓	✓	✓				✓	✓	✓	Roque et al. 2021
Sistema de Saneamento Rural (SISAR) communities in Brazil				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	Cooperman 2019; Dos Santos Rocha and Salvetti; Meleg 2012
Packaged water in West Africa	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓					Stoler 2017
Hauled water in U.S. colonias							✓	✓	✓							Garcia et al. 2016
Bottled water among unhoused people in London, U.K.	✓	✓	✓				✓	✓	✓							Meehan et al. 2022

In-home water treatment systems in Kathmandu Valley, Nepal	✓	✓	✓												Shrestha et al. 2018
Water kiosks in Delhi, India		✓	✓	✓	✓	✓	✓	✓	✓						Sarkar & Choudhary 2020
Water ATMs in Delhi, India		✓	✓	✓	✓	✓	✓	✓	✓						Sarkar 2019
“Luxury Techno-Libertarians” in Puerto Rico	✓	✓	✓	✓	✓	✓									Lloréns 2021

Table 3. Defining justice for MAD water approaches

Forms of Justice	Brief Description	Example
Distributive	Access to resources and outcomes are fair and equitable across social groups and classes (e.g. gender, sexuality, class, race/ethnicity, region indigeneity)	No disparities in water quality between genders or racial-majority and racial-minority water users
Interpersonal	Individuals are treated fairly and equitably, no matter who they are	Low-income and high-income people are treated equally when buying water from private vendors
Procedural	Rules, norms, and decision-making processes are fair and equitable	All genders are equally represented in decision-making to change to water rules
Recognition	Different worldviews and values are fairly and equitably represented	Indigenous conceptions of the value of water are equally considered when determining water allocations and definitions of "use"
Transformative (or restorative)	Root causes of oppression in water systems are collaboratively addressed and communities are peacefully reconstructed	The root causes of oppressive water systems are identified and corrected in ways that address victims' needs, rehabilitate offenders, and reintegrate society

Table 4. Economic Considerations for MAD Water

Economic Factors	Brief definition	Example
Financing	Capital investment and O&M of systems must be paid for.	✓ Potentially lower up-front costs relative to replacing aging centralized infrastructure.

		<ul style="list-style-type: none"> ✗ Unclear the extent to which decentralized systems can generate economies of scale.
Affordability	Costs of water access do not place an undue burden on users relative to their household income	<ul style="list-style-type: none"> ✓ Users no longer pay high connection costs to large piped systems across large distances that are prone to high water leakage and corruption. ✗ Previously hidden cross-subsidies no longer possible, leading to higher prices for marginalized.
Workforce and business development	MAD systems provide opportunities for local skills development and employment.	<ul style="list-style-type: none"> ✓ Brazilian programs to implement rainwater harvesting targeted gender empowerment and training in cistern construction (De Moreas 2013) ✗ Proprietary treatment systems lock in the need for external support.

Table 5. Governance Considerations for MAD Water

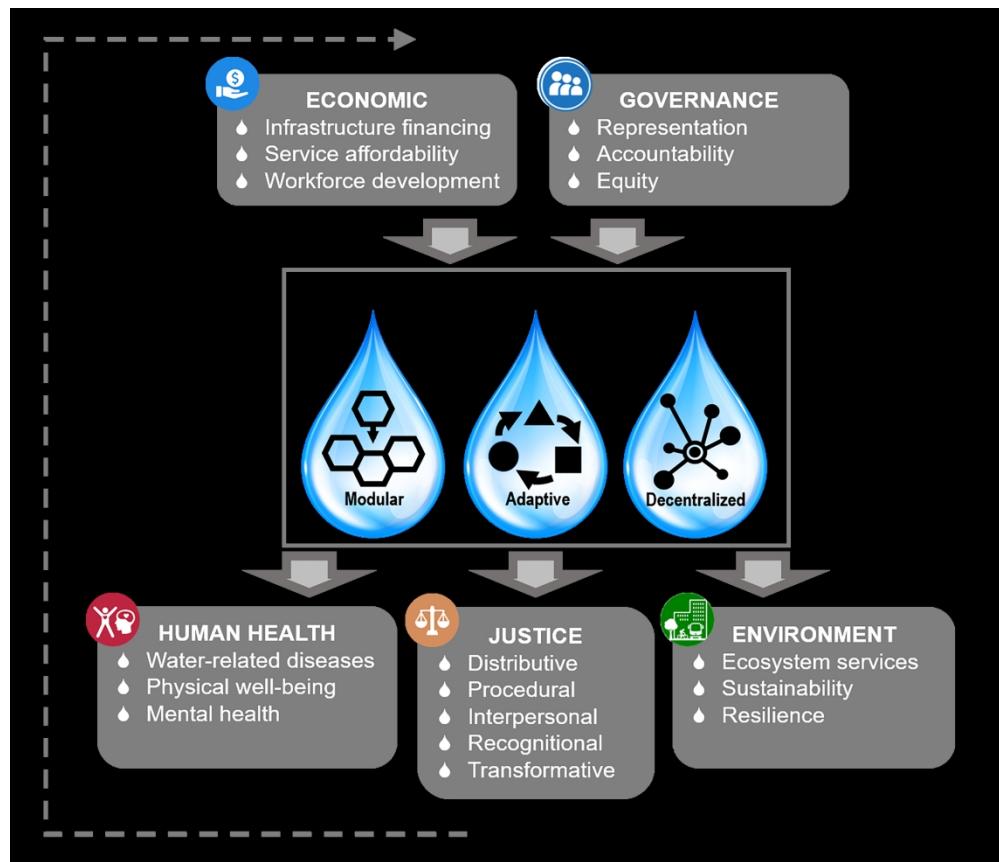
Governance Factors	Brief definition	Example
Representation	Users participate and/or have their interests present in local government / higher level decision making	<ul style="list-style-type: none"> ✓ Users can more easily serve on decentralized water boards. ✗ Decentralized rural systems may cause governments to ignore rural constituents

Accountability	Service providers (utility/NGO/other) are accountable to users (depending on who/where service providers are)	<ul style="list-style-type: none"> ✓ Local providers are closer to users and better able to respond to requests; users can more easily communicate and protest ✗ Central governments may no longer respond to concerns or requests related to other public services from decentralized water system users who no longer rely on or pay into centralized water systems
Equity	Users have equal access to reliable, secure water sources	<ul style="list-style-type: none"> ✓ Users previously unserved or underserved by centralized systems have better access ✗ Wealthy residents are better able to self-provide off-grid solutions that poor residents cannot afford

Table 6. Human Health Outcomes for MAD Water

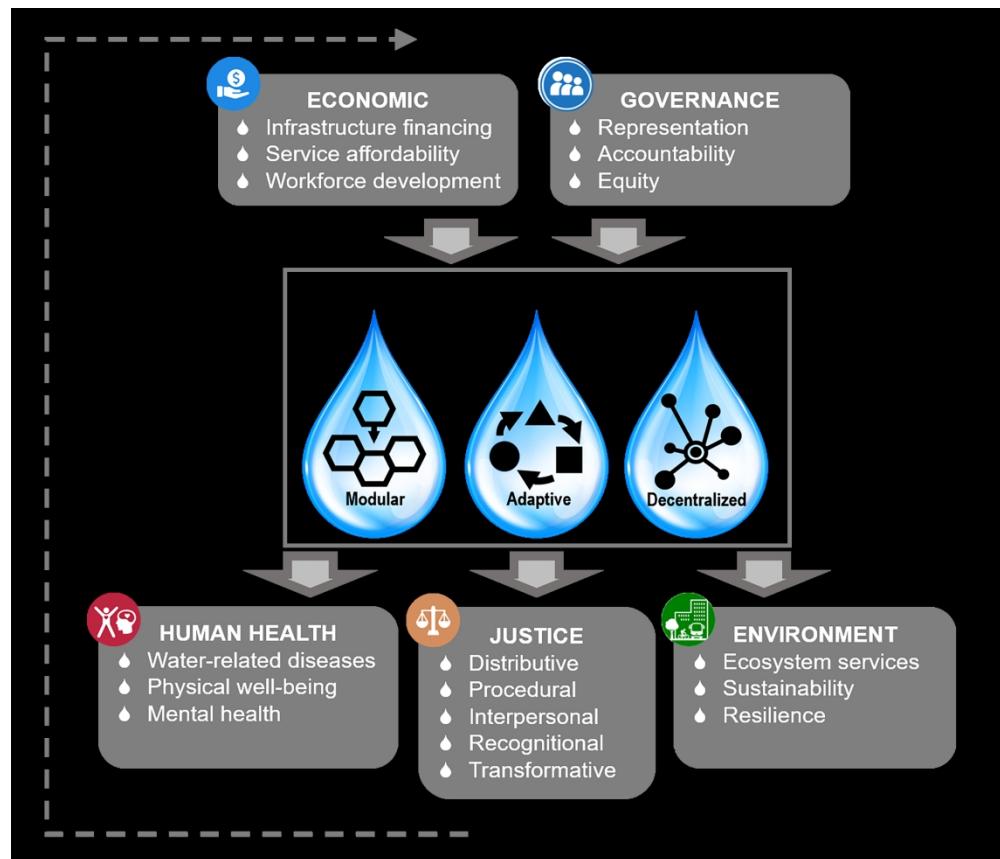
Human Health Outcomes	Brief definition	Example
Water-related diseases	MAD water systems reduce disease morbidity and reduce the overall burden of waterborne diseases.	<ul style="list-style-type: none"> ✓ Reliable supplies close to home reduce use of unsafe sources. ✗ Small scale treatment struggle with tricky contaminants.
Physical wellbeing	Physical burden, risk of injury and threat associated with water fetching is minimized.	<ul style="list-style-type: none"> ✓ Supplies close to home reduce risk of exposure to physical violence when collecting water. ✗ Non-piped systems necessitate water fetching.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Mental health		The transition to MAD water systems reduces or eliminates mental health impacts associated with water insecurity.		<ul style="list-style-type: none"> ✓ Reliable supplies close to home reduce worry. ✗ Responsibility for O&M by non-professionals increases mental stress. 																																																							


Table 7. Environmental Sustainability for MAD Water

Environmental Sustainability Components	Brief definition	Example
Ecosystems Services	System(s) or feature(s) that are compatible with existing services, or otherwise do not interfere with their function.	<ul style="list-style-type: none"> ✓ Integration of high-tech MAD treatment systems with natural or constructed wetlands. ✗ Modular systems not designed for specific local environmental conditions.
Sustainability	System(s) or feature(s) that do not generate downstream ecosystem burdens or tradeoffs, such as creating problematic waste products, or reducing ecosystem services.	<ul style="list-style-type: none"> ✓ Lower carbon footprint from initial construction. ✗ Difficulties with handling and disposal of brine or chemical waste accumulated during treatment.
Resilience	System(s) or feature(s) that enhance a community's ability to recover from extreme weather or other shocks.	<ul style="list-style-type: none"> ✓ Infrastructure that is portable and can be rapidly expanded/scaled during an emergency. Supply chains for infrastructure parts is buffered from global financial risks, etc. ✗ Decentralized systems have less redundancy and may be more vulnerable to shocks such as operator errors and cyber-attacks.

Funding Acknowledgement


This work was partially funded by the National Science Foundation Household Water Insecurity Research Coordination Network (HWISE-RCN) (SBE-1759972), Nanosystems Engineering Research Center on Nanotechnology-Enabled Water Treatment (EEC-1449500), Action for Water Equity (GCR-2021147), and SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems (BCS-2121986 / BCS-2120829 / BCS-2121991), and the Arizona Water Innovation Initiative. Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES030990. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funding agencies.

For Peer Review

Conceptual model outlining examples of economic and governance considerations for successful implementation MAD water systems; measurable benefits to justice, human health, and the environment; and the feedback loop that helps MAD water systems adapt to new contexts.

237x203mm (300 x 300 DPI)

237x203mm (300 x 300 DPI)