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ABSTRACT

Low-cost sensors (LCS) provide opportunities for neighborhood-level air pollution data collection,
yet significant knowledge gaps remain regarding the accurate application and interpretation of
LCS. In this study, we present an in-field calibration of a network of 20 low-cost ambient particulate
matter sensors (LCS) in greater Kolkata, India, operating between October 2018—April 2019. In
order to understand LCS performance in relation to local reference-grade PMz.s monitors (RGMs),
three of these LCS were co-located with RGMs operated by the West Bengal Pollution Control
Board at Rabindra Bharati University (RBU), Victoria Memorial (VICTORIA), and Padmapukur
(Howrah, PDM). Data from the co-locations were used to calibrate the LCS network using random
forest regression and multiple linear regression approaches. Measured relative humidity and
temperature were significant model features. Agreement between the LCS and RGM for 24-h
averaged PMa2s measurements was strongest at RBU, with an uncalibrated root mean squared
error (RMSE) of 27.1 pg m~3, followed by PDM (32.6 ug m~3) and VICTORIA (50.7 pg m=3). Multiple
linear regression was used to derive calibration models. Cross-calibration between co-located
LCS-RGM pairs was tested. The LCS data after cross-calibration correctly identified days as being
in or out of attainment with the 24h National Ambient Air Quality Standard of 60 pg m= 91% of
the time. The corrected data accurately identifies days with an India scale Air Quality Index of
“poor” or worse 94% of the time. This suggests that LCS can be a useful supplement to RGM
networks for air quality management. Diurnal trends and a high level of correlation across the
hybrid LCS-RGM network suggest regional and secondary sources of PMzs are important in Kolkata.

Keywords: Air pollution, Air quality, Atmospheric aerosols, PMzs, Urban aerosols

1 INTRODUCTION

Ambient air pollution is a major environmental health issue. Atmospheric fine particulate matter,
or PMas (particles with aerodynamic diameters less than 2.5 micrometers), is one of the leading
causes of premature mortality and morbidity worldwide (Cohen et al., 2017). PMas exposure
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causes an estimated 1.56-year decrease in life expectancy in South Asia, more than in any other
region (Apte et al., 2018). Although the World Health Organization has set guideline values for
PMzs at 5 pg m™= annual mean and 15 pug m= 24-hour mean, pollutant levels remain many-fold
higher than this value in most places, particularly in low- and middle-income countries (LMICs)
(WHO, 2021). Continuous measurements of PMzs are needed in order to establish baseline
conditions, quantify the local negative impacts of pollution, identify pollution sources, plan
policies to comply with set air quality goals, and track air quality improvements (McNeill, 2019;
World Bank, 2017). While the density of ground-based reference-grade PMzs monitors across
India has increased since 2016 under the National Air Quality Monitoring Programme (CPCB,
2022; Sethuraman et al., 2021; McNeill and Nunes, 2017), data are not yet available at high spatial
resolution. Low-cost sensors (LCS) provide opportunities for neighborhood-level data collection,
enabling the identification of air pollution “hotspots” and the quantification of local health impacts
(Pinder et al., 2019). LCS are lower-fidelity sensors that generally operate on optical principles for
PM: s detection and require less power and maintenance than reference-grade monitors (RGMs).

Although the use of LCS for air pollution monitoring and air pollution research has proliferated
in the past decade, significant knowledge gaps and caveats remain regarding the accurate
application and interpretation of LCS (Malings et al., 2020; Giordano et al., 2021; Hagler et al.,
2018). LCS that measure ambient PMa.s often underperform under the environmental conditions
typical of air pollution events in India (high humidity, high pollution loadings, light-absorbing
particles) (Di Antonio et al., 2018; Jayaratne et al., 2018). Sensor performance may also degrade
in harsh environments (Amegah, 2018). The impact of environmental conditions and particle
characteristics such as size, shape, and composition on different LCS technology remains a
knowledge gap.

In-field calibration of LCS sensors has emerged as a solution for improving the accuracy of data
from LCS networks (Malings et al., 2020; Giordano et al., 2021). Including RGMs in an air quality
network provides a reference for LCS calibration. By co-locating LCS and RGMs, a calibration for
the LCS network may be developed. Several studies have focused on local calibrations of LCS
distributed in the U.S. (Malings et al., 2020; Zimmerman et al., 2018) and African cities (McFarlane
et al., 2021a, 2021b; Raheja et al., 2022) with machine learning approaches, but to date this
approach has had limited application in urban environments in India (Gupta et al., 2022).

In this manuscript, we describe a sensor network deployed by Enviome Research in collaboration
with The World Bank between October 2018 and January 2019 in central Kolkata, India, which
collected data until summer 2019. The network consisted of twenty low cost PM; 5 sensors (Clarity,
Inc.), and included three co-locations with reference grade PM2.s monitors under the operation
of the West Bengal Pollution Control Board (WBPCB). The design of this network allowed for the
analysis of the performance of these light scattering based LCS in the Indian urban environment.
Using the network, we were able to establish a baseline assessment of local air quality along two
major transportation corridors targeted for transition to electric vehicle public transportation
(World Bank, 2021) (Fig. 1). The multiple co-locations also enabled a robust test of the principle
of field calibration by allowing calibration and cross-check across co-location pairs.

2 NETWORK DESCRIPTION AND METHODOLOGY

In this section, we describe the sensors, the network design, and the analysis approach. Twenty
Clarity Node S air quality monitors were deployed in Kolkata and Howrah, India starting in Fall
2018 (Fig. 1). Table 1 provides a complete list of sensor locations. The sensor network was designed
to characterize baseline air pollution levels along the two busiest bus corridors in central Kolkata,
and to compare LCS performance to RGMs in three areas of the city. The bus corridors studied
were route S9 (Belgharia to Jadavpur) and S12 (Newtown to Howrah), which span across the city
from far North to South, and far East to West. Clarity Node S devices were placed at 2—3 km
intervals along these routes. Five more Clarity Node S devices were placed near existing PMzs
RGMs (WBPCB and U.S. Diplomatic Post). Out of the five devices, three were placed in sufficiently
close proximity to the RGMs (i.e., on the enclosures housing the RGMs) to be considered co-located
for calibration purposes. These three were PDM: Padmapukur, RBU: Rabindra Bharati University,
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Fig. 1. Sensor placement. Markers indicate the locations of Clarity Monitors. Red markers indicate
Clarity Monitors co-located with WBPCB reference grade PMzs monitors. S12 (purple) and S9
(green) bus routes are indicated. See text for details. Background map © Google, 2023.

and VICTORIA: Victoria Memorial. Sensors were installed 12—-18 feet from the ground. Each
Clarity Movement Node S monitor consisted of a Plantower PMS 6003 dual laser light scattering
PM sensor, an NO2 electrochemical cell sensor (110-508, SPEC Sensors), and a Bosche BME280
sensor to estimate pressure, relative humidity (RH), and temperature (T) inside the sensor
housing. The Node S reported measurements of PM2s, PM1o, NO2, RH, and T at a default frequency
of 15 minutes and uploaded the data via cellular signal to the Clarity cloud system. Data were
processed, including data cleaning, by Clarity prior to data storage in the Clarity Cloud. No additional
cleaning of Clarity data was performed in this study; data were used as received from the Clarity
Dashboard. The present analysis focuses on the PMa2s data. The Clarity sensors were co-located
as a group in a controlled environment in Kolkata (SDF building) and checked for consistent
performance prior to deployment.

WBPCB PM2.s monitors (RGMs) are Beta Attenuation Monitors (MP101M, Envea Global). These
instruments were housed in enclosures roughly 4.2 m x 3.5 m x 2.5 m high (WBPCB, 2018).
Co-located LCS were installed on poles extending 3-4 feet from the roof of these enclosures. The
RGMs collected sample data every fifteen minutes and uploaded the data to the online data
collection and reporting web portal as hourly average. WBPCB instruments are certified on a 24-
hour basis. WBPCB performed data cleaning prior to storage, but we also screened for values of
0 and 999 pg m=from the WBPCB datasets (< 1% of data points). These values were discarded
before averaging and further analysis.

Calibration analysis was performed using the scikit-learn package in Python (Miller and Guido,
2017). Basic features of the datasets included PM2s measured by RGM and Clarity Monitor, as well
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Table 1. Sensor Network Details.

Code

Area

Lat (N), Lon (E)

Note

Victoria Memorial (VICTORIA)

Esplanade

Marble Palace
Camac Street

Park Street Crossing

Central, SO Route
Central, S12 Route
Central

Central

Central, S12 Route

Wellington Central, S12 Route
Beleghata East, S12 Route
SDF Building East, S12 Route
Sealdah Sales Tax East, S12 Route
Padmapukur (PDM) Howrah

Howrah Bus Depot Howrah, S12 Route
Ghusuri Howrah

Rabindra Bharati University (RBU) North

Belgharia Police Station

Shyambazar

Baranagar Police Station

Elgin & Lansdowne
Gariahat

Jadavpur (8B bus stand)

Rashbehari Crossing
Millenium Park

North, S9 Route
North, S9 Route
North, S9 Route
South, S9 Route
South, S9 Route
South, S9 Route
South, S9 Route
West, S12 Route

22.543529, 88.345144
22.560900, 88.354100
22.58206, 88.360217
22.546349,88.353041
22.555199, 88.349983
22.562954, 88.358787
22.561763, 88.408248
22.569032, 88.431324
22.566107, 88.378469
22.58898, 88.279613
22.585611, 88.343274
22.611539, 88.347443
22.627875, 88.3804
22.658795, 88.376852
22.601706, 88.373702
22.636537, 88.378087
22.537756, 88.354285
22.519741, 88.365247
22.495761, 88.368469
22.516881, 88.345842
22.571949, 88.344400

Installed Nov 30, 2018*
Installed Oct 9, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 6, 2018
Installed Oct 7, 2018
Installed Nov 30, 2018*
Installed Oct 9, 2018
Installed Oct 26, 2018
Installed Jan 1, 2019*
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018
Installed Oct 26, 2018
Installed Oct 7, 2018
Installed Oct 30, 2018
Installed Oct 30, 2018

* WBPCB Co-location.

as T and RH measured by the Clarity Monitor. Regression was performed for individual co-located
Clarity-RGM pairs using Clarity PM2s, T, and RH as explanatory variables. The 24-hr averaged
datasets consisted of 188 (i.e., 24-hr averages for 188 days) and 194 points for RBU and PDM,
respectively. A 75:25 train:test split implemented via random distribution was used. The
generalizability of the calibration was tested by cross-calibrating between Clarity-RGM pairs (i.e.,
train dataset from co-location pair 1, test data from co-location Clarity Monitor 2, compared result
to the location 2 RGM). Additional details are available in the Results section.

The algorithms tested for calibration were multiple linear regression and Random Forest
regression. Random Forest regression is attractive for this application because it is powerful while
making it possible to avoid overfitting. Multiple linear regression, if it provides enough accuracy,
is valuable in that it produces an analytical expression for the calibration as follows, simplifying
calibration of the wider network (Malings et al., 2020; McFarlane et al., 2021a):

PMo2.s, corrected = Po + B1 x Clarity PMas + B2 X T (°C) + B3 x RH (%) (2)

where the B are fitting parameters. The default settings in scikit_learn were applied for
linear_model.LinearRegression() (Miiller and Guido, 2017). For RandomForestRegressor(), we
used 100 estimators, a maximum tree depth of 10, 10 minimum samples required to be a leaf
node, and a fixed random state of 5.

The raw data and the regression results were evaluated based on their agreement with the
WBPCB reference data, as measured by the coefficients of determination (r?) and the root mean
squared error (RMSE), and the normalized RMSE (NRMSE). RMSE is calculated according to:
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where xiis the series of observed values, X; is the expected value, and N is the number points in
the series. NRMSE, a unitless metric, is calculated by normalizing the RMSE with the range of the
variable, i.e.,

RMISE
NRMSE = —IMSE (3)

Xhigh ~Xjow

The corrected data were also evaluated for their accuracy in diagnosing a day as in or out of
attainment with the Indian 24 h National Ambient Air Quality Standard (NAAQS) of 60 ug m=3, or
placing the day in the correct Indian Air Quality Index (AQl) category.

Spatial variability in the data was analyzed by calculating the Pearson correlation coefficient,
r, between datasets obtained at different sites. For datasets A and B,

1 N[ A=ty | B~ g
roo= i i 4
A8 N—l,zz:‘( O, j( Oy @

where N is the size of each dataset, u; is the mean, and g; is the standard deviation.

3 RESULTS

Data collection spanned the post-monsoon season 2018 (October—November), winter 2018/2019
(December—February), and spring/summer 2019 (March—July). Sensor installation took place
between November 2018-January 2019 (Table 1). Comparisons between the WBPCB RGM data
and the uncorrected Clarity data at the three co-location sites are shown in Fig. 2. We used 24-hour
averaged data since this is the basis upon which the RGM was certified. Typical of Plantower-based
instruments, the Clarity sensors showed qualitative agreement with the RGMs, with some high
bias for higher PM2 s loadings (> 100 ug m™3). Agreement between the LCS and RGM was strongest
at RBU, with an uncalibrated RMSE of 27.1 ug m= (NRMSE = 0.070), followed by PDM (RMSE =
32.6 pg m~3, NRMSE = 0.086) and VICTORIA (RMSE = 50.7 ug m~3, NRMSE = 0.122). The RBU site
is located inside the university campus, away from traffic and other sources (167 m away from
the nearest major roadway). PDM is in a primarily residential area near a pond, 15 m from a minor
roadway, 167 m from a major roadway, and 373 m from the Mumbai-Kolkata Highway. VICTORIA
isin a centrally located green zone near a pond, near a minor roadway, and 200-230 m from two
major roadways, so, humidity and local source effects are possible. PDM and VICTORIA showed
higher average RH than the rest of the network. Only the RBU and PDM datasets were used for
calibration analysis due to the lower Clarity-RGM agreement and higher variability in the Clarity
data at VICTORIA.

In order to investigate the sensitivity of the sensor performance to environmental factors, we
analyzed the Clarity:RGM agreement after splitting the dataset based on RH and/or PMzs levels
(Table 2). This analysis was done using hourly averaged data in order to capture diurnal variations
in RH. Performance of Plantower-based sensors has been reported to degrade for RH > 75%
(Jayaratne et al., 2018). We split the RBU, PDM, and VICTORIA datasets into RH > 75% and RH <75%
groups. The results varied by co-location site, with VICTORIA showing significant degradation in
sensor performance for RH > 75%. PDM also showed worse Clarity:RGM agreement for RH > 75%,
although the difference was not as great as observed at VICTORIA. No significant RH effect was
observed at RBU.

Splitting the dataset on PMas = 100 ug m= showed significantly better Clarity:RGM agreement
for lower PM2s loadings, and worse sensor performance for higher loadings, for all three co-location
sites (Table 2). Deterioration of sensor performance for high PM. s loadings > 100 ug m=3is consistent
with studies of low-cost optical particle counter performance in Delhi (Crilley et al., 2020) and
Plantower PMS3003 sensors in Kanpur (Zheng et al., 2018). Seasonal variation in PMz s in Kolkata
is strong enough that splitting the data at PMa.s = 100 pg m~3is effectively similar to segregating
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Fig. 2. 24-hr averaged PMzs data from WBPCB RGMs (orange) and uncorrected Clarity Monitor data (as received from Clarity
Cloud) (blue) for the RBU, PDM, and VICTORIA co-locations during the study period. 1:1 lines are shown on the right hand panels
as a guide to the eye. Refer to Table 2 and Table 3 for performance metrics.

the data by seasons, since loadings are generally < 100 ug m= outside the post-monsoon and winter
seasons (Fig. 2). There are many other reasons to characterize sensor performance with the changing
seasons, including varying meteorological conditions, varying sources, and possible degradation
of sensor performance with time. However, because of the timing of the sensor deployment in this
study (deployment beginning in post-monsoon, when PMa s is high, and ending in summer, when
PM2 s is lower), it is difficult to distinguish the effects of these influences on the sensor performance
from the strong effect of PM2.s loading.
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Table 2. Uncorrected Clarity node:RGM agreement for the three co-location sites. Shown are root mean squared error (RMSE
(ug m™3)) and normalized RMSE (NRMSE, unitless, in parentheses), on 24 hr or hourly averaging basis, and for the full dataset,
or segregated based on relative humidity level or fine particle mass loading.

Location RMSE24 RMSEhourIy RMSEhourIy RMSEhourIy RMSEhourIy RMSEhourIy
RH>75% RH <75% PM2.s > 100 ug m=3 PM2.5 < 100 ug m=3
RBU 27.1 44.7 40.0 46.8 70.0 315
(0.070) (0.091) (0.081) (0.136) (0.142) (0.350)
PDM 32.6 55.0 68.1 39.2 101 241
(0.086) (0.112) (0.139) (0.116) (0.207) (0.268)
VICTORIA 50.7 74.9 100 44.2 155 18.4
(0.123) (0.181) (0.242) (0.147) (0.375) (0.204)

Table 3. Calibration results for RBU and PDM co-located Clarity Monitor/WBPCB pairs on a 24 hr average basis. RMSE: root mean
squared error. RF: random forest regression. MLR: Multiple linear regression. PMys is in units of ug m=3, temperature is in
degrees Celsius and relative humidity is in percent.

Location Uncorrected Clarity-WBPCB RF MLR
RBU RMSE: 27.1 ng m™3 RMSE: 13.3 ug m™3 RMSE: 15.3 ug m™3
NRMSE: 0.070 NRMSE: 0.035 NRMSE: 0.040
R?=0.870 R?=0.962 R%=0.950
Feature importance Calibration model
PM2s: 0.989 PM2s, corr = 54.1 + 0.838 X PMa.s, clarity +
T:0.00447 0.182 x T—0.491 x RH
RH: 0.00642
PDM RMSE: 32.6 ug m= RMSE: 15.2 ug m™3 ) =
NRMSE: 0.086 NRMSE: 0.040 E'\R/'“S/E'El_%égf m
R?=0.876 R?=0.936 R2=0 9'71'
Feature importance o
PM,.c: 0.987 Calibration model
. PMZ.S, corr = 0.928 + 0.770 X PM245, Clarity
T:0.00599 +2.19xT-0.710 x RH
RH: 0.00676

Random Forest (RF) and Multiple Linear Regression (MLR) analyses were performed on the 24-hr
averaged RBU and PDM datasets, because the WBPCB monitors are certified on a 24 hour basis.
Factors tested were PMa.s, T, and RH (Table 3). PM2.swas the most significant explanatory variable
in the RF regression, followed by RH and T, consistent with the results of the data segregation
analysis (Table 2). The RF and MLR approaches yielded similar satisfactory agreement with the
reference data for both co-location sites, with R?>0.9 in each case. Since MLR yields an analytical
expression for the calibration model, which is straightforward to apply to the rest of the sensor
network, MLR was used in the remainder of the study.

Malings et al. (2020) used a piecewise MLR approach for Pittsburgh, USA data, splitting the
data at PM2s =20 ug m=. We tested this approach, splitting the data at PM2.5 = 100 ug m=. Using
24-hr averaged data the segregated datasets were not large enough for the calibration analysis
(N <50 for PM2s > 100 ug m™) so hourly averaged data were used. An alternative calibration was
developed using the hourly averaged PDM co-location data (PM2.s,corr = 111 + 0.596 X PM2.5, clarity
-0.861 x T—0.801 x RH, RMSE = 27.8 ug m~3, NRMSE = 0.0732 pg m3). The piecewise calibration
model showed improved performance for PM2s < 100 ug m=> (RMSE = 16.5 ug m=, NRMSE =
0.165) but performance was worse for PM2s> 100 pg m= (RMSE = 44.5 ug m=3, NRMSE = 0.091),
and both models underperformed compared to the MLR model developed with the full 24-hr
averaged PDM dataset (Table 3). Therefore, we opted not to use piecewise calibration.

In order to test the robustness of applying the calibrations developed at a single Clarity/RGM
co-location site to another distant site (11.3 km apart) in the network, the following cross-calibration
test was performed using the calibrations developed using the 24-hr averaged co-location data:
the MLR calibration developed for the RBU site (Table 3) was applied to the PDM dataset, and
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the output was compared to the PDM WBPCB reference data. Likewise, the MLR calibration
developed for PDM was applied to RBU and compared to the RBU WBPCB reference data. When
the PDM MLR calibration was applied to the RBU dataset, agreement for the corrected data with
the RBU WBPCB reference data improved (RMSE = 20.1 ug m~3) compared to the raw Clarity data
(RMSE = 27.1 pg m™3), but not as much as when the locally developed calibration was applied (RMSE
=15.3 pg m3). Similar results were observed when the RBU MLR model was applied to the PDM
dataset: RMSE was equal to 24.2 ug m™3, improved compared to the raw Clarity data (RMSE =
32.6 ug m=3), but not as much as when the locally developed MLR calibration was applied (RMSE
=10.2 ug m3). The cross-calibration corrected Clarity Monitor data for PDM and RBU accurately
diagnosed days as being in or out of attainment with the 24-hour mean Indian NAAQS of 60 ug m=3,
as compared to the WBPCB reference monitor data, 91% of the time. The corrected data identified
days with an India scale AQI of “poor” or worse (PM2.5 > 90 ug m=) in agreement with the reference
grade monitors 94% of the time.

Once the calibration method was established, the 24 hr average based MLR model derived
from the PDM dataset (Table 3) was applied to the entire sensor network to derive a corrected
dataset. Average corrected PMas values for the months of November 2018, January 2019, and
April 2019, as representative of the post-monsoon, winter, and spring/summer, are shown for
each Clarity Monitor in Table 4. Where data are not shown, no data are available for that month
for that sensor. Note that co-location data are not available for November 2018 and therefore the
calibration was not developed using data from that time period, however we expect the calibration

Table 4. Monthly average corrected Clarity PM2s data (ug m™) and standard deviation for
November 2018, January 2019, and April 2019, months representing the post-monsoon, winter,
and summer seasons in Kolkata. Data shown for each site, geographic zonal averages, and
citywide average.

Code Area Nov 2018 Jan 2019 April 2019
Victoria Memorial Central 189 41
Esplanade Central 196 203 32
Marble Palace Central 140 196 46
Camac Street Central 130 166 41
Park Street Crossing Central 142 192 42
Wellington Central 150 216 51
Beleghata East 149 201 52
SDF Building East 126 162 33
Sealdah Sales Tax East 176 257 58
Padmapukur (PDM) Howrah 247 48
Howrah Bus Depot Howrah 193 261 57
Ghusuri Howrah 126

Rabindra Bharati University (RBU) North 204 48
Belgharia Police Station North 162 203 57
Shyambazar North 159 216 57
Baranagar Police Station North 159

Elgin & Lansdowne South 141 188 48
Gariahat South 141 183 45
Jadavpur (8B bus stand) South 147 198 52
Rashbehari Crossing South 162 225

Millenium Park West 153 207 48
Howrah zone 160 254 52
North zone 146 184 47
West zone 141 188 48
East zone 126 204 43
South zone 173 221 45
Central zone 146 196 46
AVERAGE 153+ 21 205+ 27 47+ 8
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model performance for November to be similar to that for January since it is in the higher PMas
loading period. Averages for the 6 geographic zones and network-wide averages are also shown.
Consistent with regional trends for the Indo-Gangetic Plain (Guttikunda and Gurjar, 2012; Bhowmik,
et al., 2021), pollution is highest in January, when citywide average PMs is 205 + 27 ug m=>,
followed by November, with an average value of 153 & 21 ug m=. These values exceeded the
NAAQS and fell in the “Very Poor” category of the Indian AQIl. PMy s levels are significantly lower
in April, with an average of 47 = 8 ug m=. PMas levels were highest at Howrah Bus Depot and
lowest at Camac Street (U.S. Consulate area). Among the zones, Howrah had the highest average
PM2slevels, although data were somewhat limited for that zone. There were only 3 sensors in the
Howrah zone. Ghusuri had limited data due to loss of the sensor after November 2018, and PDM
was not installed until WBPCB approval for the co-location, which was obtained in January 2019.

In order to investigate diurnal patterns in PMzs across the network, the calibration developed
using the hourly averaged PDM co-location data (PMa.s,corr = 111 + 0.596 X PMa.s, clarity— 0.861 X T
—0.801 x RH, RMSE = 27.8 ug m=, NRMSE = 0.0732 ug m~3) was applied to hourly average data
for the network, as shown in Fig. 3. The diurnal trend varied seasonally. Generally, in November
and January, maximum PMazs was observed in the late-night hours (midnight-1 AM), with an
additional minor peak in the morning (7-10 AM), while in April, PM2s varied more smoothly
throughout the day, with a maximum in the afternoon (1-4 PM). This post-monsoon/wintertime
diurnal pattern was consistent with what had been observed earlier for other large cities in the
Indo-Gangetic plain (Guttikunda and Gurjar, 2012; Gani et al., 2020). The nocturnal maximum in
PM2 s could be attributed to low boundary layer height at night during post-monsoon and winter
seasons. Nighttime emissions such as residential burning for heating or cooking may also contribute.
The April pattern of an afternoon maximum with relatively little influence from morning and evening
traffic suggests regional non-traffic sources and/or secondary aerosol formation. We note this
trend observed in the corrected Clarity data, while unusual for cities in the IGP, is corroborated
by the WBPCB RGM data. Gani et al. (2020) reported that secondary components of PM1, consisting
of oxygenated organic aerosol, ammonium, nitrate, and sulfate, show a similar diurnal profile,
with a single peak in the afternoon, in Delhi during all seasons.

We further investigated the spatial variability in PM2s by calculating the Pearson correlation
coefficient (r) between the datasets shown in Fig. 3 (RBU, Howrah Depot, Beleghata, Camac Street,
and Jadavpur) for November, January, and April. The results are shown in Fig. 4. PMas is highly
linearly correlated among these sites for all seasons. This high level of correlation among these
sites with differing local sources underscores the importance of regional and secondary sources
of aerosol in Kolkata and Howrah. Although still highly correlated (r > 0.79) Howrah Depot showed
lower correlation with the other sites, consistent with strong local sources. Correlation was slightly
weaker in April as compared to November and January. The high degree of correlation of PDM
with the other sites lend additional confidence in the choice to calibrate the network using the
calibration developed based on the PDM co-location data.

4 DISCUSSION AND IMPLICATIONS

Air quality is a major public healthissue in Kolkata. Previously published studies have shown that
chronic exposure to ambient air pollution in Kolkata adversely affects pulmonary and cardiovascular
health of its residents (Lahiri et al., 2000; Roy et al., 2001; Dutta and Ray, 2013). It is important
to be empowered with low-cost tools and knowledge to assess local air pollution and the associated
health risks to advocate relevant policy measures in addressing environmental pollution issues
affecting local communities. Hence, we undertook this study to understand and validate the
performance of LCS in Kolkata, which could then be used to supplement existing RGM networks
for better air quality management.

During the study period, which covered the post-monsoon, winter, and spring/summer seasons
of 2018-2019, PM2:s levels exceeded the NAAQS 45% of the time (and nearly 100% of the time
during the post-monsoon and winter months). This observation is consistent with other analyses
of PM2s in the IGP region (see, e.g., Zheng et al., 2018; Gani et al., 2020; Gupta et al., 2022). The
highest average PM: values in the network were observed at Howrah Bus Depot, suggesting that
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Fig. 3. Hourly average corrected Clarity PMa2s data for representative locations, for months
representing the post-monsoon, winter, and summer seasons in Kolkata. Thin grey lines represent

+/- one standard deviation.
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NOVEMBER 2018 & o 5
~2~°§ c?éb @& & QO@
Jadavpur 0.92 0.96 0.96
PDM
RBU
Beleghata 0.89 0.96
Camac St. 0.90
ANUARY 2019 & & &
& o & & <z°@
Jadavpur 0.96 0.97 0.98 0.96 0.92
PDM 0.83 0.96 0.95 0.98
RBU 0.87 0.97 0.98
Beleghata 0.92 0.95
Camac St. 0.88
apRIL2019 & & &
& & & & Q°¢
Jadavpur 0.90 0.94 0.92 0.96| 0.95
PDM 0.81 0.95 0.98 0.99|
RBU 0.83 0.95 0.98
Beleghata 0.79 0.92
Camac St. 0.88

Fig. 4. Correlation between hourly average corrected PMys measurements at different
representative locations in the Clarity network, for months representing the post = monsoon,
winter, and summer seasons in Kolkata.

idling buses may be a significant local source of PM2s that could be reduced with the introduction
of electric buses. The diurnal trends and high correlation among sites in different zones suggest
that regional and secondary sources are also very important. Winds are mostly north-westerly during
post-monsoon and winter seasons (October—February), bringing airmasses from the Indo-Gangetic
Plain, transporting regional haze as well as pollution from regional thermal power plants, mining and
steel industries. Based on Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)
analysis, Mallik et al. (2014) showed that, during April, prevailing winds in Kolkata generally come
from the south (Bay of Bengal and coastal India) and transport occurs near surface level. A future
multi-season investigation involving aerosol composition and gas measurements would provide
necessary insight into the sources of PMz s in Kolkata.

Many of the Clarity Monitor sites in the network were near or on roadways or bus stands,
whereas the co-location sites, particularly RBU, were selected by WBPCB to be farther from roads
for security reasons and to characterize the urban background pollution. With the exception of
Howrah Depot, the difference in average PMas levels for the roadside vs. urban background sites
in each geographic zone is not consistently distinguishable within the error, even when filtering for
expected high traffic times (i.e., weekdays, 9-11 AM). However, some differences can be discerned
in the diurnal variation, e.g., the afternoon peak time during summer (Fig. 3). Sites located closer to
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pollution sources, such as Howrah Depot, also showed greater day to day variability in measured
PM3s.

We have demonstrated the potential utility for a field-calibrated LCS network with neighborhood-
level spatial resolution to support air quality management efforts in Kolkata. This study contributes
to the growing body of work showing the promise of LCS in the South Asian context (Zheng et al.,
2018; Hagan et al., 2019; Crilley et al., 2020; Gupta et al., 2022; Kushawaha et al., 2022). This study
was the first deployment of Clarity devices in the Indian subcontinent. Some practical limitations
of application of the Clarity devices in Kolkata included issues with charging and network
connectivity, which resulted in data loss, the cost per unit, and the data subscription charge.
Supplementing the existing reference grade monitoring network with these devices revealed
spatiotemporal trends and insight into sources, which were not available with the RGM network
alone. Reasonable agreement between Clarity Monitors and WBPCB reference grade monitors was
obtained with in-field calibration, as tested by cross-calibration with two co-located sensor/RGM
pairs: the calibrated network accurately diagnosed days as being in or out of attainment with the
24-hour mean Indian NAAQS of 60 ug m= with 91% accuracy, and correctly assigned days to a
category of the India scale Air Quality Index of “poor” or worse (PM2s > 90 ug m=3) with 94%
accuracy.
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