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Abstract

Smoke particulate matter emitted by fires in the Amazon Basin poses a threat to human health.
Past research on this threat has mainly focused on the health impacts on countries as a whole or
has relied on hospital admission data to quantify the health response. Such analyses do not capture
the impact on people living in Indigenous territories close to the fires and who often lack access to
medical care and may not show up at hospitals. Here we quantify the premature mortality due to
smoke exposure of people living in Indigenous territories across the Amazon Basin. We use the
atmospheric chemistry transport model GEOS-Chem to simulate PM, 5 from fires and other
sources, and we apply a recently updated concentration dose-response function. We estimate that
smoke from fires in South America accounted for ~12 000 premature deaths each year from
2014-2019 across the continent, with about ~230 of these deaths occurring in Indigenous lands.
Put another way, smoke exposure accounts for 2 premature deaths per 100 000 people per year
across South America, but 4 premature deaths per 100 000 people in the Indigenous territories.
Bolivia and Brazil represent hotspots of smoke exposure and deaths in Indigenous territories in
these countries are 9 and 12 per 100 000 people, respectively. Our analysis shows that smoke PM, 5
from fires has a detrimental effect on human health across South America, with a disproportionate
impact on people living in Indigenous territories.

1. Introduction

Air pollution from fires is detrimental to public health. Smoke particulate matter from biomass burning in
the Amazon Basin can travel great distances, affecting air quality across several countries in South America
(Bourgeois ef al 2015, Bencherif et al 2020). Many studies examining the impact of smoke on public health
have tended to focus on one season or have relied on hospital admission data (Butt et al 2020, 2021, de Souza
et al 2020, Nawaz and Henze 2020, Ye et al 2021). These approaches may miss the impact of smoke on
populations without access to hospitals and neglect the changes in premature mortality due to long-term
smoke exposure. Here we use the chemical transport model GEOS-Chem and an updated concentration
response function (CRF) to calculate the excess mortality due to exposure to smoke fine particulate matter

© 2023 The Author(s). Published by IOP Publishing Ltd
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Fire counts per year in South America
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Figure 1. Fire counts in thousands per year in South America, as observed by the Moderate Resolution Imaging Spectroradiometer
(MODIS) on board the Aqua satellite for 2002—-2021. The contributions of fire counts in Brazil are shown in purple.

(PM, 5) in South America for 2014-2019, with a particular focus on people living in Indigenous territories in
the Amazon Basin. Our study has significance given that these populations live in close proximity to fires and
that rates of biomass burning in the Amazon has recently surged (Barlow et al 2019, de Souza et al 2020,
Human Rights Watch et al, 2020, da Silva er al 2021).

Fire activity in the Amazon Basin is driven largely by human activity and variations in climate (Nepstad
et al 2014, Aragao et al 2018, Barlow et al 2019, Dos Reis et al 2021). Charcoal records show that small fires
were introduced to the tropical rainforest roughly 4500 years ago as a crop management tool, changing the
composition and structure of the natural forest (Maezumi et al 2018a, 2018b). In recent decades, human
intervention—e.g. mining, logging, and agricultural land use—has significantly degraded the Amazon forest,
amplifying fire risk (Pivello et al 2021). Fires have also been deliberately set to clear land or manage crops.
Using visibility observations as a proxy for fire activity, van Marle et al (2017) found that fire emissions
across the Amazon Basin were relatively low from the mid-1970s to the late 1980s, but increased rapidly over
the 1990s. In 2004, the Brazilian government implemented new regulations to reduce illegal deforestation in
an effort to sustainably develop the region (Garrett et al 2021). From 2005 to 2013, deforestation rates in the
Amazon region declined by 70% in response to these regulations, and fire counts decreased by ~60%
(Aragao et al 2018, Barlow et al 2019, Nepstad et al 2014; https://queimadas.dgi.inpe.br/queimadas/portal-
static/estatisticas_paises/). However, these trends have reversed. The National Institute of Space Research
(INPE) estimated that roughly 10 000 sq km of the Brazilian Amazon were cleared from July 2018 to August
2019, a 34% increase from the previous year (Garrett et al 2021, INPE, 2022). In 2020, fire activity increased
by ~74% from the 2013 low (figure 1), and in 2021, deforestation in this region increased to ~13 000 km?
per year, almost double the rate in 2012 (INPE, (Inst. Nac. Pesqui. Espac.) 2022).

Climate variability can also influence fire activity in the Amazon region. Observations suggest that the
dry season has lengthened by about a month since the 1970s (Debortoli et al 2015, Espinoza et al 2016,
2019), and this trend, compounded by relatively frequent drought years (2005, 2010, 2015), has increased the
incidence of fires (Aragao et al 2014, Aragao et al 2018, Marengo et al 2017, Brando et al 2019, Silveira et al
2020). The forest fragmentation resulting from years of human intervention in the region means that
agriculture fires and other deliberately set fires can more easily ‘escape, increasing the area burned, especially
during drought years (Fernandes et al 2017).

The continued burning in the Amazon Basin poses a threat to public health (Molina et al 2015,
Reddington et al 2018). Observations of aerosol optical depth (AOD) from the Moderate Resolution Imaging
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Spectroradiometer (MODIS) suggest that smoke PM, 5 from fires in the Amazon Basin contributes
significantly to aerosol loading across the continent (Castro Videla et al 2013, Della Ceca et al 2018), and
previous studies have shown that exposure to smoke PM, 5 can lead to premature mortality and respiratory
disease (Johnson et al 2012, Liu et al 2015, Reid et al 2016). Recent reviews have found that PM, 5 from
wildfires can also impact other health outcomes such as cardiovascular disease, cancer, neuropsychological
diseases, metabolic dysfunction, birth outcomes, mental health, loss of work days, and increase in medical
costs (Grant and Runkle 2022, Yu et al 2022). In particular, smoke pollution may have a disproportionate
impact on Indigenous populations, given their proximity to the fires and their limited access to healthcare,
medicine, basic hygiene materials, and clean water. Food insecurity and a relative lack of immunity
compared to other populations may also contribute to a greater susceptibility among Indigenous people to
complications from respiratory diseases, as was documented during the COVID-19 pandemic (Human
Rights Watch (HRW) 2020, da Silva et al 2021). For August 2019, municipal data suggest that hospital
admissions of people living in Indigenous territories in the Legal Brazilian Amazon over the age of 50
increased by 25% for respiratory problems compared to July, possibly because greater smoke exposure
coincided with an increase of fires in the region (de Souza et al 2020). However, the health impacts of smoke
on Indigenous people in the region may not be well documented due to the lack of healthcare infrastructure.

Most previous studies examining the health impacts of smoke exposure in South America have focused
on the years before 2015, examined just 1-2 years of fire seasons (typically July to November), or relied on
hospital data. For example, Reddington er al (2015) found that the 2001-2012 decrease in fire activity
accounted for 400-1700 fewer premature deaths each year across South America. Butt et al (2020) estimated
that the 2012 fires led to 16 800 premature deaths across the continent, while Butt et al (2021) further found
that the enhancement in fire activity in 2019 accounted for 3400 additional deaths, compared to 2012. Ye et al
(2021) determined that a 10 zg m~ incremental increase in smoke PM, 5 in South America was associated
with a 1.6% increase in all-cause hospital admissions during 2000-2015. Extending these earlier studies,
Nawaz and Hanze (2020) estimated smoke-related deaths across four fire seasons, from 2016-2019, but that
study focused just on Brazil.

For this study, we use the chemical transport model GEOS-Chem to quantify the distribution of smoke
across the continent and its impact on public health from 2014 to 2019. We build on previous studies by
examining the impact of smoke PM; 5 on public health for a six-year time period across all of South America
as well as in the Amazonian Indigenous territories. We also use an updated CRF from the meta-analysis of
Vodonos et al (2018), which has been used in studies examining excess mortality due to PM, 5 worldwide
and regionally (Marais ef al 2019, Vodonos and Schwartz 2021, Vohra et al 2021). InfoAmazonia estimated
that most Indigenous villages are between 200 km to 700 km away from intensive care units (Geraque 2020).
The application of a CRF allows us to estimate the health impact of smoke exposure without having to rely
on hospital admission data, which may not be accurate for Indigenous populations due to the lack of medical
facilities near Indigenous territories.

2. Data and methods

2.1. In-situ and satellite observations
We use surface and satellite observations to validate simulated PM, 5 from GEOS-Chem. Information on the
observations used and steps taken for the validation can be found in the supplement (S1).

2.2. GEOS-Chem
We use GEOS-Chem v.12.8.1 (DOI: 10.5281/zenod0.3837666), a 3D global atmospheric chemical transport
model, driven by assimilated meteorological fields from the Modern-Era Retrospective analysis for Research
and Applications, version 2 (MERRA-2; Gelaro et al 2017, https://gmao.gsfc.nasa.gov/reanalysis/ MERRA-2/).
We perform two sets of six-year nested grid simulations, with and without fire emissions, at 0.5° x 0.625°
spatial resolution for 2014-2019. We define smoke PM, 5 as the difference between the two simulations with
and without fire emissions. More details on the GEOS-Chem simulations are in the supplement (S2).
GEOS-Chem has been previously used to estimate premature mortality from surface PM, 5 at both global
and regional levels (Eastham and Barrett 2016, Koplitz et al 2016, Marais et al 2019, Vohra et al 2021). These
past studies have examined excess mortality due to PM, 5 exposure from a range of sources, including fossil
fuel combustion (Marais et al 2019, Vohra et al 2021), aviation (Eastham and Barrett 2016), and biomass
burning (Koplitz et al 2016).

2.3. Datasets and premature mortality analysis
For population data, we rely on the Gridded Population of the World, version 4, revision 11 (GPWv4.11;
Center for International Earth Science Information Network—CIESIN, 2018). This dataset has a
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spatial resolution of 2.5 arc-minute, about 4.6 km at the equator. To estimate the population in
Indigenous territories in the Amazon Basin, we mask the GPWv4.11 gridded population using
shapefiles from the Amazonian Network of Georeferenced Socio-Environmental Information (RAISG; www.
amazoniasocioambiental.org/). The RAISG shapefiles of Indigenous territories are those recognized by each
country (www3.socioambiental.org/raisg2015/metadados/raisg_tis_territorios_indigenas.html). For all our
analyses, we use 2015 estimates for population, which yields ~5.8 million people living in Indigenous
territories, or ~1.4% of the total population in South America. We estimate the total population of each
country by masking the GPWv4.11 gridded population with country shapefiles; these total populations
include the people living in Indigenous territories in the Amazon Basin. For the baseline mortality, we use
the 2016 global burden of disease estimates from the World Health Organization (WHO 2018).

To calculate excess mortality due to smoke exposure, we apply the updated CRF from Vodonos et al
(2018). Further details can be found in the supplement (S3).

3. Results

Figure 1 shows the time series of fire counts in South America from MODIS from 2002 to 2021. Since 2002,
annual fire counts have risen above 600 000 twice, in 2004 and 2007. Fire counts generally decreased from
2004-2013, to a low of 264 000 in 2013. Then from 2013 to 2020, fire activity increased rapidly, with fire
counts reaching ~459 000 in 2020, the highest value since 2010. About 56% of all fires in South America
from 20142021 occurred in Brazil.

We focus here on fire activity and smoke exposure during the years 2014-2019. We find that
GEOS-Chem can adequately capture the seasonality of AOD at 500 nm as observed at the AERONET sites
(figure S1), with AOD values over the Amazon Basin as much as 0.3 greater during the dry season there,
compared to the wet season. The normalized mean biases of GEOS-Chem compared to AERONET are
—36% during January—May and —34% during July-November. Validation of model results outside the
Amazonian wet and dry seasons yields similar results (not shown). In particular, GEOS-Chem
underestimates AOD by 0.1-0.4 at five sites in Colombia during January-May, perhaps because the model
cannot accurately capture the anthropogenic emissions from nearby cities or because it underestimates
smoke from fires occurring in this region at this time of year. Figure S2 shows that AOD from GEOS-Chem
correlates with the seasonal values at the AERONET sites with an 7 of 0.81 during the dry season but only
0.54 during the wet season. Consistent with the comparison with AERONET, we find that GEOS-Chem also
underestimates AOD at 550 nm as observed by MODIS (figure S3), especially in fire-prone regions. During
January-May, the underestimates are greatest in Colombia, Venezuela, and northern Brazil, and during
July-November they are greatest in western Brazil, Paraguay, eastern Peru, and Bolivia.

We also validate our model results with the few available in-situ concentrations of PM, 5 outside of Sao
Paulo (figure S4). We find that the GEOS-Chem values during the Amazonian dry season correlate with
observed PM, 5 with an r of 0.57 and a normalized mean bias of —25%. Compared to the site data,
GEOS-Chem appears to underestimate PM; 5 during the wet season, with a normalized mean bias of —65%,
but this mismatch between observed and modeled PM,; 5 could be due to high humidity affecting the sensors
(Ardon-Dryer et al 2020, Stavroulas et al 2020). The mismatch could also arise from the challenge of
comparing point measurements with modeled values in coarse grid cells.

We find that transport processes can carry smoke PM, 5 across a wide region of South America.
GEOS-Chem yields enhancements in total PM, 5 of 570 pg m~ in the Amazon during the dry season there,
compared to the wet season (figure 2), with smaller enhancements of 5-30 pig m~> across large areas of Peru,
Bolivia, northern Brazil, Paraguay, and Argentina. These seasonal differences in PM; 5 concentrations are
more pronounced during the drought years of 2015 and 2016 compared to non-drought years (2014,
2017-2019) (figure 2). Fires account for 5%—40% of increase in PM, 5 during the wet season and 5%-90%
during the dry season. From January to May, fire activity shifts north to Colombia and Venezuela, with
modest increases in smoke PM, 5 of ~15 ug m™>. Surface PM, 5 is also enhanced at that time of year over the
Atlantic Ocean north of Brazil, due to the transport of dust and smoke from Africa (Ansmann et al 2009).
Figure S5 isolates the contribution of smoke to the seasonal differences of PM, 5 seen in figure 2, revealing
smoke concentrations of 30-50 ;1g m~ in the Amazon Basin (figure S5).

Figure 3 shows that Indigenous territories in the Amazon Basin are particularly affected by the smoke
enhancement in surface PM,; 5 during the dry season. Many small territories are scattered throughout the
Brazilian Amazon and Bolivia, suggesting that populations living in these areas experience
disproportionately large smoke exposures. We estimate monthly mean smoke exposures in three Brazilian
cities—Sao Paulo in eastern Brazil and Porto Velho and Rio Branco in western Brazil—as well as in
Karipuna, an Indigenous territory in western Brazil (figures S5 and S6). In Sao Paulo, monthly mean PM; 5
ranges between 30 and 70 g m >, mainly driven by anthropogenic emissions such as industrial and
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Seasonal averages of PMs 5 in South America
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Figure 2. Simulated PM, 5 concentrations, in units of g m =2, from GEOS-Chem, averaged over four non-drought years (2014,
2017-2019, top row) and over two drought years (2015 and 2016, bottom row). Values for the Amazonian wet season (15 January
to 15 May) are shown at left, and for the dry season (15 July to 15 November) in the center column. Right hand panels show the
seasonal differences.

transportation sources and not by fire emissions. In contrast, surface PM; 5 concentrations in Porto Velho
and Rio Branco, two cities located much closer to the fires, exhibit a seasonality that matches that of the fires
in the Amazon, with monthly mean concentrations ranging from 30 to 80 pg m~> during the dry season. In
Karipuna, monthly mean concentrations are quite high, ranging between 80 and 100 ;zg m > during the dry
season and reaching nearly 200 g m ™2 in 2019, when fire activity near this territory was particularly intense.
Given that the WHO guidelines for daily PM, 5 exposure are set to 15 g m~> (World Health Organization
2021), these large monthly mean concentrations suggest significant health effects from smoke exposure in
Porto Velho, Rio Branco, and Karipuna.

On average, the Indigenous territories in the Amazon experience 1.1 4 0.4 1g m~? greater
concentrations of annual mean total PM, 5 compared to the whole of South America during 2014-2019, and
0.64 £ 0.21 ug m~? greater smoke PM; 5 (figure S7). The distribution of annual mean concentrations of
total PM, 5 in all gridcells across South America reveals that 90% of these averages fall below 15 g m™? in
both South America and the Indigenous territories (figure S8). However, outliers can reach annual mean
values as high as 50 g m ™2 in some years and gridcells when taking all of South America into account, and
as high as 30 ug m— in the Indigenous territories. We find that the population-weighted, annual mean
smoke exposure is greatest in Bolivia and Paraguay, at 2.2 4= 0.75 g m > and 2.09 + 0.44 ug m > (not
shown). In addition, population-weighted smoke concentrations are greater for people living in Amazonian
Indigenous territories, particularly in Bolivia and Brazil where concentrations of smoke experienced in these
territories are ~1.5-1.75 ug m > greater than the country averages (figure S9).

Figure 4 presents a time series of the annual number of premature deaths attributable to smoke exposure
in South America and in the Amazonian Indigenous territories. For South America we find that ~12 000
deaths per year are attributable to smoke PM, 5 exposure for 2014-2019, with a 95% confidence interval (CI)
of 3100-20 700; in Indigenous territories, the number of deaths per year is ~230 (CI: 60-390). Using
alternative CRFs from Krewski et al (2009) and the US Environmental Protection Agency (2010), excess
mortality can reach as high as ~22 600 deaths per year in South America and ~500 for Indigenous territories
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Figure 3. Simulated surface smoke PM, 5 concentration, in units of g m =3, averaged over 20142019 for the Amazonian dry
season (July 15 to November 15). PM; 5 is shown in shades of orange and red; Indigenous territories within the Amazon Basin are
shaded green. Boundaries for these territories are from the Amazonian Network of Georeferenced Socio-Environmental
Information (RAISG; www.amazoniasocioambiental.org/).
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Figure 4. Time series of annual excess mortality due to smoke PM, 5 exposure for 2014-2019. Top panel shows the excess deaths
in the Amazonian Indigenous territories, and middle panel shows the excess deaths across all of South America. Gray contours in
top and middle panels represent the 95% confidence intervals. Bottom panel shows the percentage of all PM, 5-related deaths
that can be traced to smoke exposure. Purple lines denote the percentage in Indigenous territories and red lines the percentage
across all of South America. Mortality estimates are calculated using the concentration response function of .Vodonos et al
(2018)
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(figure S10). Figure 4 also shows the contribution of smoke exposure to all PM, 5s-related premature deaths.
We find that of these premature deaths, 6.7% across South America can be attributed to smoke exposure,
while 15.3% of PM, 5-related deaths in Indigenous territories are from smoke. These values suggest an
outsized influence of smoke exposure on Indigenous people compared to other populations.

We find that smoke exposure leads to the greatest excess mortality for the general population in Brazil,
Argentina, and Colombia; for populations living in Indigenous territories, Peru and Bolivia lead with the
most excess deaths (figure S11). For example, summed over the 2014-2019 time period, exposure to smoke
PM, 5 from fires accounts for ~39 000 deaths in Brazil and ~500 deaths in Indigenous territories in Peru
(figure S11). Of the five countries with the largest Indigenous populations, the rate of mortality due to smoke
PM, 5 exposure is greater for the Indigenous population in all but one (Venezuela). On average the percent
population at risk of premature death due to smoke across South America is 0.002%, and for people in
Indigenous territories is 0.004% (figure S12). This translates to two smoke-related deaths per 100 000 people
per year across South America as a whole, but double that rate—four premature deaths per 100 000 people
per year—in Indigenous lands (table S1).

4, Discussion and conclusions

We use a combination of the chemical transport model GEOS-Chem and an updated CRF from Vodonos

et al (2018) to estimate premature mortality from smoke exposure from fires in South America, which occur
mainly in the Amazon Basin. We find smoke enhances seasonal mean PM, 5 concentrations by up to

40 g m~ during the Amazonian dry season between 2014-2019 (figure 3). Monthly mean concentrations
in Indigenous territories can reach much higher values. For example, in 2019, the September mean
concentration at Karipuna, an Indigenous territory in western Brazil, reached nearly 200 g m—>. On an
annual average, the Amazonian Indigenous territories experience 1.1 & 0.4 ;ug m ™~ greater total PM, 5 and
0.64 4 0.21 ug m~? greater smoke PM, 5 than the whole of South America (figure S7). The greatest excess
mortality at the country-level is in Brazil, Argentina, and Colombia, probably because these countries have
the largest total populations in South America. For people living in Indigenous territories, those in Peru and
Bolivia experience the most excess deaths due to their close proximity to smoke (figure S11). We further
estimate that ~12 000 premature deaths occur annually in South America due to exposure to smoke PM; 5,
including ~230 deaths in the Amazonian Indigenous territories. Our results suggest that people living in
these Indigenous territories are twice as likely to die prematurely from smoke exposure, compared to the
population across South America.

Our results are well within the range of past estimates of smoke-related deaths in South America, which
range from 5000 to 17 000 premature deaths per year (Johnston et al 2012, Reddington et al 2015, Butt et al
2020, Nawaz and Henze 2020). These studies relied on older CRFs and did not analyze the impacts on the
Indigenous communities. For Butt et al (2020, 2021) used a similar exposure-outcome approach as we do
here, but they relied on the Global Exposure Mortality Model (GEMM) from Burnett et al (2018) to estimate
relative risk. The GEMM model includes data from 41 studies and focuses on five causes of death in people
aged 25 years and older. In contrast, the meta-analysis from Vodonos ef al (2018) considered 53 studies, has
higher sensitivity of mortality to a unit change of PM; 5 than does GEMM, and accounts for all-cause
mortality in people aged 15 years and older.

Our estimates for premature mortality from smoke exposure for different populations in South America
could be improved in future work. Our PM, 5 concentration estimates are limited by the spatial resolution
(0.5° x 0.625°), and future work should consider having a finer resolution when looking at specific
locations. Also, our analysis does not represent a full accounting of the health burden of the Indigenous
community, since we do not consider people identifying as Indigenous living outside the Amazonian
territories. For this study we estimate the health impact on the people living in Indigenous territories in the
Amazon Basin, and we do not differentiate between people based on identifying as Indigenous or
non-Indigenous. We also do not incorporate differences in populations such as ethnicity, socioeconomic
status, income, education, and underlying comorbidities, which could increase vulnerability to adverse
health outcomes related to air pollution. Also, the methods we use to estimate people living in the
Amazonian Indigenous territories yield a total population of ~5.8 million people, which may be an
underestimate (Butler 2019). In Brazil, however, we calculate that 443 000 people live in these territories,
consistent with government estimates of 464 000 for 2019 (Souza, Oviedo, and dos Santos, 2020). We also do
not have base mortality estimates for individual Indigenous territories as we do for each country. Neither
Vodonos et al (2018) nor Burnett et al (2018) included cohort studies from South America when developing
their CRFs, indicating the need for a detailed analysis of the association between PM, 5 and health on this
continent. The CRFs here also do not take into account the possibility that PM, 5 from wildfires may incur a
different degree of harm than PM, 5 from other sources, or how this might be affected by changes in chemical
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composition as the wildfire plume ages (Atwi et al 2022). For this work, we focused on the health impacts
from annual mean smoke exposures; the acute health consequences of short-term smoke exposures may also
be significant. Additionally, discussion of health impacts could be broadened from purely mortality estimates
to examination of morbidity, missed days of school/work, and burdens of health costs. Finally, to gain a
greater understanding of the ways that fire activity affects public health and welfare, future work should more
closely involve the people living in the Amazonian Indigenous territories. We recommend that governments
provide financial assistance to monitor air quality, such as deploying reference monitors and well-calibrated,
low-cost sensors in Indigenous territories to study the impact of short- and long-term exposure of smoke.

In response to deforestation regulations, fire counts in Brazil decreased by ~70% from 2004 to 2011
(Aragao et al 2018, Barlow et al 2019). Since 2013, however, this downward trend in fire activity has reversed.
Given these recent increases in fire activity in the Amazon Basin, our results imply significant and
disproportionate consequences for Indigenous people. Fire not only affects air quality, however, but also
impacts food security in these communities through the destruction of tropical vegetation. By exacerbating
erosion, fire can also contaminate waterways, distributing debris, toxins, and harmful nutrients throughout
the watershed (Human Rights Watch, 2020). Since 2000, deforestation, fires, road construction, and land use
changes have led to a drier, less fire-resistant Amazon Basin, a trend that will persist if deforestation continues
increasing (Boulton et al 2022). Previous research has suggested substantial benefits when Indigenous
communities are granted ‘treatment as a state’ provisions to create environmental policy and regulate natural
resources separately from state governments (Diver ef al 2019, Hart-Fredeluces et al 2021). For example, such
communities have limited deforestation and the spread of escaped fires, and they have acted as stewards for
biodiversity, water quality and other environmental assets (Nepstad et al 2006, Diver et al 2019, Dos Santos
et al 2021, Hart-Fredeluces et al 2021). While Indigenous territories account for relatively few fires in the
Amazon Basin (Dos Reis ef al 2021), our work indicates that the people living in these territories experience
significantly greater health risks from smoke-related PM, 5, compared to the general population.
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