
Abstract India is largely devoid of high-quality and reliable on-the-ground measurements of fine 

particulate matter (PM2.5). Ground-level PM2.5 concentrations are estimated from publicly available satellite 

Aerosol Optical Depth (AOD) products combined with other information. Prior research has largely overlooked 

the possibility of gaining additional accuracy and insights into the sources of PM using satellite retrievals 

of tropospheric trace gas columns. We evaluate the information content of tropospheric trace gas columns 

for PM2.5 estimates over India within a modeling testbed using an Automated Machine Learning (AutoML) 

approach, which selects from a menu of different machine learning tools based on the data set. We then quantify 

the relative information content of tropospheric trace gas columns, AOD, meteorological fields, and emissions 

for estimating PM2.5 over four Indian sub-regions on daily and monthly time scales. Our findings suggest that, 

regardless of the specific machine learning model assumptions, incorporating trace gas modeled columns 

improves PM2.5 estimates. We use the ranking scores produced from the AutoML algorithm and Spearman’s 

rank correlation to infer or link the possible relative importance of primary versus secondary sources of PM2.5 

as a first step toward estimating particle composition. Our comparison of AutoML-derived models to selected 

baseline machine learning models demonstrates that AutoML is at least as good as user-chosen models. The 

idealized pseudo-observations (chemical-transport model simulations) used in this work lay the groundwork 

for applying satellite retrievals of tropospheric trace gases to estimate fine particle concentrations in India and 

serve to illustrate the promise of AutoML applications in atmospheric and environmental research.

Plain Language Summary Ground-level fine particle (PM2.5) concentrations are frequently 

estimated with freely available satellite Aerosol Optical Depth (AOD) products. We focus on India where 

sparse ground-based monitoring leaves gaps in our understanding of particle concentrations and the relative 

importance of different sources. We use an atmospheric chemistry model to test whether satellite retrievals of 

tropospheric trace gas columns can provide information on the origins of PM2.5 and improve satellite-derived 

PM2.5. We created an Automated Machine Learning workflow to evaluate the utility of incorporating multiple 

trace gas columns in PM2.5 estimates, which represents nonlinear relationships between predictands and 

predictors while freeing users from selecting and tuning a specific machine learning model. On daily and 

monthly time scales, we quantify the relative information content of trace gas columns, AOD, meteorological 

fields, and emissions. We find that incorporating trace gas columns improves PM2.5 estimates and may also 

enable inference of broad characteristics of particle composition.
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1. Introduction
High levels of ambient fine particles (known as PM2.5, particles 2.5 μm in diameter or smaller) pose a major envi-

ronmental issue in India. As estimated by Chowdhury et al. (2019), nearly the entire population (99.9%) in India 

is exposed to annual PM2.5 exceeding the previous World Health Organization (WHO) guideline of 10 μg/m 3. The 

latest WHO Global Air Quality Guidelines (AQG) announced on 22 September 2021, lowered the annual AQG 

level of PM2.5 to 5 μg/m 3 (World Health Organization, 2021). To tackle the issue of air pollution, the Govern-

ment of India launched the National Clean Air Program in January 2019, aimed at reducing particulate pollu-

tion by 20%–30% relative to 2017 levels by 2024. Monitoring air quality and understanding pollutant sources 

are critical to implementing effective air quality management plans, but India mostly lacks long-term, publicly 

accessible, reliable (i.e., quality controlled) measurements of particle composition that enable source attribution 

(Bali et al., 2021; Brauer et al., 2019). Although the Central Pollution Control Board (CPCB) has maintained 

a routine monitoring network for total PM2.5 mass (composition unknown) and certain gas-phase species since 

2008, the density of India's monitoring network (∼0.14 monitors/million persons) is lower than other developing 

countries such as China (1.2 monitors/million persons) and developed countries such as USA (3.4 monitors/

million persons), and leaves the majority of rural India entirely unmonitored (Bali et al., 2021; Brauer et al., 2019; 

Karambelas et al., 2018; Ravishankara et al., 2020).

Publicly available satellite products offer the opportunity to overcome limitations in spatiotemporal coverage and 

estimate PM2.5 across India by combining satellite data with other information. Satellite aerosol optical depth 

(AOD) is often used to estimate PM2.5 (Hoff & Christopher, 2009; van Donkelaar et al., 2006). Columnar AOD is 

combined with geophysical or statistical models that ingest additional meteorological data, emission inventories, 

chemical transport model simulations, and/or land use to estimate PM2.5 and achieve better performance (Brauer 

et al., 2016; Xu et al., 2015). Typically, these approaches require high-quality ground-based measurements for 

model training and validation, which is particularly challenging in India due to the country’s low monitor density 

relative to other world regions (e.g., U.S. and China).

Importantly, the possibility of gleaning additional insights into sources of PM from satellite retrievals of tropo-

spheric trace gases has generally been overlooked. Trace gases including sulfur dioxide, nitrogen dioxide, and 

ammonia are precursors to fine particles that form via chemical reactions and thus should indicate the potential 

to form secondary PM. Other trace gases such as carbon monoxide (a product of incomplete combustion) and 

formaldehyde (produced during the oxidation of numerous organic gases) may correlate with emissions of aero-

sols or their precursor gases and may thus indicate primary (directly emitted) PM, as well as transported pollution 

of particles emitted or produced upwind. We evaluate here the potential for increased accuracy of ground-level 

PM2.5 estimates in India by incorporating trace gas tropospheric columns in statistical approaches relating colum-

nar AOD to surface PM2.5. In this study, we use a chemical transport model as a testbed to assess the potential 

information content in tropospheric trace gas columns retrieved from satellite instruments.

Artificial intelligence (AI) and data science methods, and machine learning (ML) methods in particular, have 

been developed and used in atmospheric and environmental studies over the last few years. This trend is likely 

to persist into the foreseeable future enabled by the rapid advances and tremendous needs in many areas, such 

as weather forecasting and predictions (Agrawal et al., 2019; Lagerquist et al., 2019; McGovern et al., 2017), 

Earth system modeling (Gentine et al., 2021; Irrgang et al., 2021; Reichstein et al., 2019), and climate analysis 

(Labe & Barnes, 2021; Toms et al., 2020). As an alternative to simple geophysical or statistical approaches, ML 

approaches such as Random Forest (RF) and Gradient Boosting have been applied to meld satellite estimates of 

AOD with weather and land use data to produce highly spatially and temporally resolved data sets of surface 

PM2.5 concentration (Di et al., 2019; Geng et al., 2020; Rybarczyk & Zalakeviciute, 2018; Xiao et al., 2018). 

According to the “No Free Lunch” theorem (Wolpert, 1996), no one ML algorithm can be universally good for 

all data and problems. Instead, the nature of the problem, the data, and the purpose synergistically determine the 

appropriate learning algorithm for a problem. For example, a deep-learning-based model architecture trained to 

predict severe weather might not successfully predict an extreme air pollution episode. In some cases, given the 

sensitivity of the data-driven models, incorporating new predictors could shift the “ideal” learning algorithm 

from one to another (e.g., from linear to nonlinear). Even if the “best” learning algorithm is predefined (e.g., a 

neural network or a gradient boosting model), searching and tuning the hyperparameters (e.g., number of hidden 

layers in a neural network, or the learning rate of a gradient boosting model) usually depends on human knowl-

edge and decisions. Furthermore, ML model development (training and selection) generally requires significant 
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computational resources. However, a model’s performance is a reflection of how accurately it captures the impor-

tance of each feature and, accordingly, is able to extract information from them. It is thus essential to employ a 

tailored “best model” for each problem, since a model with better performance is more likely to provide a more 

accurate feature importance.

Concerns with machine learning computational efficiency have given rise to fast and economical software frame-

works, known as Automated Machine Learning (AutoML) (Wang et al., 2021), in which “the user simply provides 

data, and the AutoML system automatically determines the approach that performs best for this particular appli-

cation” (Hutter et al., 2019). AutoML frees domain scientists from selecting learners and hyperparameters and 

can potentially prevent suboptimal choices due to idiosyncrasies or ad-hocness. For example, Adams et al. (2020) 

have successfully employed AutoML (an R package “H2O”) for an optimal solution to correct low-cost air quality 

sensors.

In this study, we leverage the power of AutoML to evaluate the added benefit of including satellite retrievals of 

tropospheric trace gases in statistical models used to derive PM2.5 estimates over India. We use a chemical trans-

port model as a synthetic testbed for developing methods under spatially and temporally continuous (“perfect”) 

data sets and use the AutoML as a tool to fit the regression of surface PM2.5 given the meteorological fields, emis-

sion inventories, and satellite-like pseudo-data sets sampled from the model. Data-driven models can be derived 

from real world data or highly detailed geophysical (in our case, atmospheric chemistry) simulations. Here, we 

focus on data-driven models derived from a chemical transport model, which is driven by meteorology and emis-

sions, without chemical data assimilation; consequently, the PM2.5 fields over India simulated by the chemical 

transport model are considered “ground truth” (or “label” in Machine Learning) and “performance upper bound” 

in this paper. Data-driven models, like the ones we explore below, offer the chance to overcome computing limi-

tations as a low-cost alternative to expensive high-resolution simulations with chemical transport models, and 

can provide new insights by revealing underlying relationships between the predictor variables and PM2.5. Note 

the overarching goal of this study is not to provide regression models or PM2.5 products. Instead, we aim to assess 

the improved accuracy that may be possible by incorporating satellite retrievals of tropospheric trace gases in 

combination with AOD and meteorological variables currently used to derive PM2.5 from satellite products. The 

information obtained by blending together multiple data sets can provide guidance for developing future PM2.5 

products, especially over regions lacking widespread networks of particle mass and composition measurements.

2. Methods
2.1. GEOS-CHEM Simulations

We use simulations from the GEOS-Chem version 12.0.2 (The International GEOS-Chem User Community, 2018) 

chemical transport model as idealized pseudo-observations continuously available from ground-based and 

space-based platforms. The simulations were conducted for the year 2015 with a global 2° latitude × 2.5° longitude 

domain providing boundary conditions to a nested grid (0.25° latitude × 0.3125° longitude, ∼25 × 30 km) and 47 

non-uniform vertical layers over India (0–40°N and 60–100°E) as described in Karambelas et al. (2022). This nested 

grid configuration was loosely based on (Chaliyakunnel et al., 2019), which used the MERRA-2 reanalysis mete-

orology. Instead, we use GEOS-FP fields to achieve higher spatial resolution (Karambelas et al., 2022). We use the 

standard tropospheric and stratospheric chemistry (e.g., NOX-OX-HC-aerosol-Br with a simple secondary organic 

aerosol representation) and physics (Pai et al., 2020; Prashanth et al., 2021), and natural and biogenic emissions. 

Anthropogenic emissions are from the ECLIPSE anthropogenic emission inventory (Stohl et al., 2015) processed 

through the Harvard-NASA Emissions Component (Keller et  al.,  2014). Modeled surface PM2.5 concentrations 

were previously evaluated against observations from India's Central Pollution Control Board (https://app.cpcbccr.

com/ccr/#/caaqm-dashboard-all/caaqm-landing/data) with findings presented in Karambelas et al. (2022). Briefly, 

GEOS-Chem underestimates annual average concentrations (Normalized Mean Bias (NMB)  =  −49%). Model 

performance improves during periods of higher concentrations such as pollution episodes (NMB = −33%) The 

model is able to reproduce spatial variations in concentrations across the country (r 2 = 0.55), again improving during 

periods of high pollution (r 2 = 0.69). More information on the simulations can be found in Karambelas et al. (2022).

2.2. Data Processing

The machine learning models can be expressed as

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
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Y(𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑡) = f(X(𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑡)) (1)

where Y (predictand) is the daily surface PM2.5 concentration at location (lat, lon) at time t, and f denotes the 

function (machine learning model) for calculating Y. The variable X (predictor) could represent a single feature 

(e.g., “2-m air temperature”) or a combination of features (e.g., “2-m air temperature” and “tropospheric vertical 

column of CO”). Note that “feature” and “field” are interchangeable when referring to “predictor.” We construct 

surface PM2.5 concentrations from the individual simulated chemical components (ammonium, nitrate, sulfate, 

black carbon, organic carbon, secondary organic aerosols, dust, and sea salt), and assume a relative humidity of 

50%. Table 1 lists the features (“predictors”) used in our analyses. We develop “pseudo-data sets” by sampling 

modeled fields at satellite overpass time. These data sets are “perfect” in the sense that no instrument noise or 

missed retrievals are introduced (e.g., due to clouds, etc.). Specifically, we use the Flexible Aerosol Optical Depth 

post-processing tool (Curci et al., 2015) to estimate AOD at 550 nm and dust AOD. These fields are sampled 

at 5:00 a.m. UTC to coincide with Terra's local 10:30 a.m. overpass. The tropospheric vertical columns (trop-

osphere is defined as from the surface layer to model level 38 or about 48 hPa) of trace gases (CO, SO2, NO2, 

CH2O, and NH3) are sampled at 8:00 a.m. UTC to match satellite instruments (SO2, NO2, and CH2O from Aura/

OMI, and CO and NH3 from Aqua/AIRS) with a local 1:30 p.m. overpass. Meteorological fields were averaged 

on a daily and a monthly basis for further analysis. The emission fields without daily variation were only used 

for monthly analyses. In other words, only the features with daily variance are utilized in daily machine learning 

models. Note that the “moderate PM2.5” months of April and August (Figure S1 in Supporting Information S1) 

were used as the hold-out samples (testing data) for validation purposes, and the remaining 10 months were used 

for the regionalization (see Section 2.3) and training in the AutoML workflow. The values on the ends of the 

PM2.5 distribution, such as PM episodes that happened in December, are included in the training data to ensure 

that the training data is as representative of the full data distribution as feasible. To test model skill in estimating 

higher PM2.5, we also examine the sensitivity to moving October data from training to testing, as higher PM2.5 

concentrations occur in October than in April or August (Figure S1 in Supporting Information S1). Our analysis 

is restricted to land grid cells (defined as land covering a fraction greater than 0.5 of any individual cell).

2.3. Delineating Geographical Regions

We perform regional analysis to facilitate comprehension of spatial patterns. Rather than define regions for our 

analysis based on prior studies, for example, based on climate regions (Hu et al., 2017) or PM2.5 concentrations 

(Greenstone et al., 2015), we propose a simple data-driven unsupervised learning approach for regionalization 

(Figure 1). Our approach groups grid cells into a few regions (clusters) based on their spatiotemporal similarity. 

The regionalization consists of two steps: (a) Empirical Orthogonal Functions (EOFs) and Varimax Rotated 

EOFs (REOFs) analysis to reduce the dimensionality of the data set and capture the spatiotemporal patterns, and 

(b) k-means clustering to identify common regional patterns of variability across the EOFs.

2.3.1. EOF and REOF Analysis

Compared to supervised learning, where model performance is evaluated by a set of metrics (e.g., root-mean-square 

error) against validation data sets, unsupervised learning does not lend itself to quantitative evaluation. The prin-

cipal component analysis (PCA) and its variant “varimax rotated PCA” have been widely applied in atmospheric 

and climate research, such as decomposing sea surface temperature (Lian & Chen, 2012) into REOFs to determine 

modes of variability. Motivated by a previous application of REOFs on the observed patterns of surface ozone (O3) 

in the eastern United States (Fiore et al., 2003, 2022), we first applied PCA to derive the EOFs. The first four EOFs 

capture 55% of the variance in daily PM2.5 (Figure 1a). As the 5th EOF explains <5% additional variance, we select 

the first four EOFs and apply a varimax rotation which re-distributes the explained variance among the retained 

EOFs (Figure 1b). This approach should better identify regions where day-to-day variations are occurring coher-

ently, as we might expect to occur on regional scales under the influence of common large-scale weather patterns.

2.3.2. k-Means Clustering

The k-means clustering is an unsupervised learning approach and has been applied for ecoregion delineation 

(Kumar et al., 2011), environmental risk zoning (Shi & Zeng, 2014), and aerosol mixing state regionalization 

(Zheng et  al.,  2020). Qualitatively, we gauge successful implementations of clustering by the emergence of 

spatially contiguous regions without the direct guidance of spatial information (e.g., providing the algorithm 



Journal of Advances in Modeling Earth Systems

ZHENG ET AL.

10.1029/2022MS003099

5 of 17

Table 1 
Features (Fields) Definitions

Type Feature (fields) Description

Temporal 

resolution

Meteorological T2M 2-m air temperature Daily and 

monthly
RH 2-m relative humidity

PBLH Planetary boundary layer height

U10M 10-m eastward wind

V10M 10-m northward wind

PRECTOT Total precipitation

Satellite (aerosol) AOT_C Aerosol optical thickness (or AOD) at 550 nm

AOT_DUST_C Aerosol optical thickness (or AOD) of dust at 550 nm

Satellite (trace gases) CO_trop tropospheric vertical column of CO

SO2_trop tropospheric vertical column of SO2

NO2_trop tropospheric vertical column of NO2

CH2O_trop tropospheric vertical column of CH2O

NH3_trop tropospheric vertical column of NH3

Emission EmisDST_Natural Dust emissions from natural sources (EmisDST1_Natural + EmisDST2_Natural + EmisDST3_

Natural + EmisDST4_Natural), number indicates GEOS-Chem size bin

EmisNO_Fert NO emissions from fertilizer

EmisNO_Lightning NO emissions from lightning

EmisNO_Ship NO emissions from ships

EmisNO_Soil NO emissions from soil

EmisBC_Anthro Black carbon aerosol emissions from anthropogenic sources (EmisBCPI_Anthro + EmisBCPO_

Anthro), “PI” refers to “hydrophilic” and “PO” refers to “hydrophobic”

Monthly

EmisBC_BioBurn Black carbon aerosol emissions from biomass burning 

(EmisBCPI_BioBurn + EmisBCPO_BioBurn)

EmisOC_Anthro Organic carbon aerosol emissions from anthropogenic sources 

(EmisOCPI_Anthro + EmisOCPO_Anthro)

EmisOC_BioBurn Black carbon aerosol emissions from biomass burning 

(EmisOCPI_BioBurn + EmisOCPO_BioBurn)

EmisCH2O_Anthro Formaldehyde (CH2O) emissions from anthropogenic sources

EmisCH2O_BioBurn CH2O emissions from biomass burning

EmisCO_Anthro CO emissions from anthropogenic sources

EmisCO_BioBurn CO emissions from biomass burning

EmisCO_Ship CO emissions from ships

EmisNH3_Anthro NH3 emissions from anthropogenic sources

EmisNH3_BioBurn NH3 emissions from biomass burning

EmisNH3_Natural NH3 emissions from natural sources

EmisNO_Aircraft NO emissions from aircraft

EmisNO_Anthro NO emissions from anthropogenic sources

EmisNO_BioBurn NO emissions from biomass burning

EmisSO2_Aircraft SO2 emissions from aircraft

EmisSO2_Anthro SO2 emissions from anthropogenic sources

EmisSO2_BioBurn SO2 emissions from biomass burning

EmisSO4_Anthro SO4 emissions from anthropogenic sources

Note. All fields are taken from the GEOS-Chem simulation; meteorological data and emissions fields are input to the chemical transport model simulations whereas 

the column concentrations are simulated output.
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with latitude and longitude). We then multiply the EOF loadings by the corresponding explained variance to 

produce “weighted REOFs” (Figure 1c) as the input for the k-means clustering so that Euclidean distances among 

them correctly capture the relationships with respect to the original feature space. We use the “elbow method” 

(Figure 1d) to identify an optimal trade-off point and select six clusters (Hastie et al., 2009). Then we select four 

regions that intersect with India's land pixels as our study areas. Note that the four regions (Figure 1e) contain 

not only India but also nearby countries, such as Bangladesh, Nepal, and Myanmar. Additionally, Region C (the 

union of four regions) and Region A (India and its neighbors, including all land grid cells within the nested grid 

of the simulations) are considered in this study to examine patterns at various spatial scales (see Section 2.4).

2.4. Automated Machine Learning (AutoML)

Rather than using a specific machine learning approach (e.g., RF) to build regression models and quantify the 

importance of various features (fields), here we use a lightweight Python library “FLAML” (a Fast and Light-

weight AutoML library) (Wang et al., 2021) as the tool for the AutoML task. This library chooses a search order 

optimized for both computational cost and model error, and selects the learner, hyperparameters, sample size, and 

resampling strategy iteratively. When tested on a large open-source AutoML benchmark, FLAML has superior 

performance compared to the top-ranked AutoML libraries, but with much smaller computational and time budg-

ets (Wang et al., 2021). Given our modeling formulation, we configured the AutoML for a regression task with 

“auto” for the estimator list, optimizing the R 2 metric, and assigned a time budget of “5,400 s” (1.5 hr) for each 

AutoML experiment. The “auto” scheme of ML estimator models consists in this library of tree-based approaches, 

namely, LightGBM (Light Gradient Boosting Machine, Ke et al., 2017), XGBoost (eXtreme Gradient Boosting, 

Chen & Guestrin, 2016), CatBoost (categorical boosting, Prokhorenkova et al., 2018), RF (Breiman, 2001), and 

Extra-Trees (Extremely randomized trees, Geurts et al., 2006). We then compare the best estimator (the specific 

learning algorithm/model with optimized hyperparameters) from AutoML with two baseline models: the default 

configurations of XGBoost (xgboost.XGBRegressor) and RF (sklearn.ensemble.RandomForestRegressor).

Figure 1. The workflow of delineating geographical regions. (a) Principal component analysis to derive the Empirical Orthogonal Functions (EOFs) that capture over 

50% of the variance (first four EOFs); (b) varimax-rotated loadings for the selected EOFs; (c) weighted averaged loadings for the selected REOFs; (d) “Elbow method” 

to determine the number of regions (clusters); (e) regions based on k = 6 from k-means clustering; (f) four regions that intersect with India's land pixels.
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2.5. Experimental Design

We conduct a series of comparisons and answer three core questions by using the best estimators trained from 

AutoML (Table 2). First, the maximum benefit of tropospheric trace gas columns (using modeled proxies as 

described in Section 2.2) for surface PM2.5 estimates can be determined by assessing the improvement in estima-

tor performance when trace gas columns are used as features, in addition to meteorological variables, emissions, 

and AOD. We also test the model performance in the absence of AOD (removing total and dust AOD) when trace 

gases, meteorological variables, and emissions are available. Second, the same feature combination but different 

data (monthly vs. daily) can be used to estimate the maximum information content possible from tropospheric 

trace gas columns and other input variables (using “perfect” model data sets) at different time scales. Monthly 

estimates, in comparison to daily estimates, attempt to capture spatial patterns and seasonal cycles but are unable 

to incorporate daily weather data. Third, the best estimators trained on data at different-sized regions ingested on 

different temporal averaging periods (monthly vs. daily) provide insights on whether any benefit from including 

tropospheric trace gas columns is spatially equivalent. Table 3 provides an overview of the training sample size 

for each experiment.

2.6. Feature Importance Attribution

In Data Science, “feature importance” refers to a score that represents how useful the feature is at predicting 

the target variable. However, the type of feature importance score differs for different learning algorithms and 

results in values with varying orders of magnitude. For example, the feature importance of Extra-Trees is based 

on “impurity” (the normalized total reduction of the mean squared error brought by that feature), LightBGM's 

feature importance is by default based on “split” (the numbers of times the feature is used in a tree node in the 

model), and XGBoost usually uses “gain” (the average Gini impurity/information gain across all splits the feature 

is used in). However, the interpretability of machine learning models is still a challenging issue, and there is no 

consensus over which technique for determining feature importance is superior. For instance, although Shap-

ley Additive exPlanations (Lundberg & Lee, 2017) is a unified approach to interpreting model predictions, the 

assumption that an ML prediction can be represented by a sum of contributions from each feature may not hold 

for highly nonlinear models (Gosiewska & Biecek, 2019). Therefore, we employ the default “feature importance” 

attribute of the approach selected by AutoML, as it is most frequently employed by domain-specific researchers.

Then, we derive a “ranking score” metric to unify the comparison of feature importance from different learning 

algorithms (e.g., Extra-Trees, LightGBM, and XGB). For each estimator, we rank the feature importance values 

from lowest to highest and assign a “ranking score” to each feature based on the rank order of the corresponding 

Table 2 
Experimental Design and Core Questions

Feature Time scale Region

Core questions Do tropospheric trace gases improve 

PM2.5 estimates?

How does the ranking of features vary at 

different time scales?

How does the ranking of features vary in different 

regions?

Experiments Data from the collection of all the grid 

cells falling into a certain region:

- daily - E/S/W/N: individual region from Figure 1f

- Monthly

- with trace gas columns - C: the union of four regions (E + S + W + N)

- without trace gas columns but with 

AODs

- without trace gas columns and without 

AODs

- A: India and the neighboring countries (all land grid 

cells from the simulations, including Region C)

Table 3 
Training Sample Size (10 Months in the Year 2015)

Time scale Region E Region S Region W Region N Region C Region A

Daily 230,128 113,392 274,816 574,256 1,192,592 2,174,512

Monthly 7,570 3,730 9,040 18,890 39,230 71,530
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feature importance value. That is, the least important feature has a score of 1, the second to least important feature 

has a score of 2, and so on. As a result, ranking scores are bounded between 1 (least important) and the number 

of features (most important), which converts the feature importance of different estimators to the same scale for 

comparison. We also group features within the same type (Table 1) and compute the mean ranking score and the 

standard deviation within each type.

3. Results and Discussion
3.1. Including Multiple Trace Gas Modeled Columns Generally Improves PM2.5 Estimates

We first evaluate whether PM2.5 estimates improve in accuracy when we add trace gas tropospheric columns 

simulated by the GEOS-Chem model to the simulated meteorological variables, AOD, and emissions. We apply 

AutoML-derived nonlinear models and linear regression (LR). The coefficient of determination (R 2, based on an 

ordinary least-squares regression) between PM2.5 simulated by GEOS-Chem versus that predicted with machine 

learning approaches is used as a metric for accuracy. These regressions provide average estimates, across the 

study area and time scales, of the association between trace gas columns and PM2.5. As a comparison, we also 

apply the same approach to AODs.

While the “best estimator” from AutoML varies in space and time, we observe an increase in R 2 when simulated 

columnar trace gases are included in nonlinear and LR models (Figure 2), implying that trace gases contain 

signatures useful for PM2.5 estimation. However, including AODs as features in the presence of trace gas columns 

does not guarantee improved performance, and sometimes impairs the model performance (e.g., the difference 

between “GA” (both trace gas columns and AODs are available) and “G” (trace gas columns are available but 

AODs are not available) in monthly Region N). Given that the models with nonlinear relationships exhibit higher 

R 2 compared to the linear model, here we focus on the results from AutoML. The comparisons between “GA” 

and “A” with different ML model assumptions are discussed in Section 3.4. Some emission inventories in the 

Figure 2. Improved predictive capability of PM2.5 estimates when adding trace gas columns to other feature types in Table 1. Estimators are trained based on (a) 

Automated Machine Learning and (b) linear regression. The left and middle panels differ in time scale (daily vs. monthly), and the middle and right panels differ in 

feature numbers (see Section 2.2 and Table 1). GA: both trace gas columns and Aerosol Optical Depths (AODs) are available; A: AODs are available but trace gas 

columns are not available; G: trace gas columns are available but AODs are not available. Note the bars with the coefficient of determination lower than 0 are not 

shown, and results are based on testing data.
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model are only available at the monthly resolution, while others vary day-by-day. By comparing the results of 

monthly PM2.5 estimates using only the emissions available at daily time scales (“Monthly (same features as 

Daily)”) versus all emission inventories (“Monthly”), we find that using “all emission inventories” yields higher 

R 2 (e.g., 0.02 to 0.15 improvement in R 2 for “GA”) at monthly time scales, implying that more accurate emission 

inventories (captured by the monthly emission features) will improve PM2.5 estimates. In the following sections, 

we will keep the “Monthly” results that utilized emission data available at both monthly and daily time scales for 

analysis, since they yielded the best overall estimates of PM2.5 in this study.

The improvements in R 2 vary spatially and temporally at the regional scale. In Region E, adding trace gas columns 

alongside AOD (GA) boosted daily R 2 from 0.59 to 0.74, and monthly from 0.76 to 0.93 compared to AOD alone 

(A). But in Region W, the increases in R 2 are moderate (+0.07 for daily and +0.01 for monthly). Given that other 

features already account for 86% of the variance in Region W on the monthly scale, adding trace gases only results 

in marginal increases in R 2 (note the improvement is not a linear addition, it reconstructs the interactions among all 

features, not only the interactions between other features and trace gases). Marginal increases in R 2 also occur for 

Region N, where the daily and monthly increases are 0.06 and 0.04, respectively. The increases in R 2 are not propor-

tional to the baseline (without trace gases; A). For example, although the baseline monthly R 2 in Region S is rela-

tively low, its increase is similar to other regions. The lower R 2 values for monthly PM2.5 estimates in Region S may 

be due to insufficient samples, as this region's sample size is approximately one-fifth to half that of the other regions.

When training on data from the union of our four individual regions (Region C) or all the land grid cells as a 

whole (Region A), the inclusion of trace gases always contributes to a higher R 2. Especially, trace gases in Region 

C increased R 2 from 0.74 to 0.82 at the daily scale. At a larger geospatial scale (Region A), although the baseline 

R 2 values on the daily scale (0.86) and monthly scale (0.94) are well explained by meteorological fields, emission 

inventory, and AODs, the presence of trace gas columns can further explain variance (0.02 for both) in PM2.5 and 

improve the estimates. However, a cost may be associated with the minor improvement, depending on the effort 

required to acquire additional data. As such, it is necessary to weigh the trade-offs.

3.2. The Relative Importance of Trace Gas Columns to Accurate PM2.5 Estimates Varies Spatially and 
Temporally

We compare ranking scores among the types (Figure 3) and features (Figures 4 and 5), defined in Table 1, to study 

the relative importance of trace gas columns for improving PM2.5 estimates over India, where a type or feature 

with a higher ranking score indicates its higher importance compared to other types or features in the regression. 

The ranking scores shown in Figures 3–5 suggest that the important features and feature interactions differ in 

space and time, which may be explained by regional and temporal differences in the dominant sources and the 

interactions with meteorological conditions.

On a daily scale, trace gas columns from GEOS-Chem (NO2, SO2, and CH2O) are the most important factors 

that boost the performance of PM2.5 estimates in Region E (Figure 4). The order of other types remains similar 

(Figure 3) when trace gas columns or AODs are not included as features in this region. Region S, however, shows 

that the inclusion of the trace gas columns rearranges the order of feature importance among types for daily PM2.5 

estimates (Figure 3). Without the use of trace gas columns to estimate daily PM2.5 levels, the most significant 

feature type is AOD, followed by meteorological fields and emissions. When trace gas columns are considered, 

the relative importance of AOD decreases, and meteorological fields (e.g., V10M and planetary boundary layer) 

take precedence, implying that AOD and trace gas columns may contain redundant information over Region S. 

Meteorological fields and AODs are the most important factors for PM2.5 estimates in Region W and Region N 

when trace gas columns are not available. But the trace gas columns (SO2, NH3, NO2) are as important as the 

meteorological fields (V10M, U10M, PBLH) when they are included, implying that both secondary aerosol 

production via chemical reactions (e.g., formation of ammonium sulfate and nitrate) and physical processes (e.g., 

transport and dispersion) determine PM2.5 distributions within these regions. The model trained from Region C 

(four regions as a whole) shows that AODs can explain a large fraction of the variance of PM2.5 when trace gas 

columns are missing. However, with the presence of trace gas columns, meteorological fields are the most impor-

tant factors that modulate PM2.5 estimates. This discrepancy may also indicate redundant information in AODs 

and trace gas columns. In a larger area (Region A), regardless of the presence of trace gas columns, meteorolog-

ical fields are the dominant features. The lower overall ranking score for either feature type when both AOD and 

trace gas columns are included may be explained by the high correlation between AODs and all trace gas columns 
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(Figure S2 in Supporting Information S1), which leads to features to be selected from either type as they contain 

similar information. Notably, while daily estimates indicate that emissions are the least important features in all 

cases, this could be because much of the predictive information can be inferred from the other features, due to a 

scarcity of varying emission data, or because the source at daily time scales does not change spatially as much 

in the model.

For monthly PM2.5 estimates, although the patterns of the relative importance of different feature types remain 

similar among the four regions and Region C, the specific ranking order of features varies in different regions. 

Figure 4. Ranking scores of features from Aerosol Optical Depths (AODs), meteorological fields, and trace gas columns in estimating daily PM2.5. The ranking scores 

are derived from Automated Machine Learning-trained “best estimators” that incorporate both trace gas columns and AOD, as well as meteorological fields and an 

emission inventory. Ranking scores of emissions are not presented, but not all emissions have low ranking scores. For example, “EmisNO_Lightning” and “EmisNO_

Soil” lie between “RH” and “U10M” in Region E, and “EmisNO_Fert” is between “U10M” and “SO2_trop” in Region N.

Figure 3. Ranking scores of Aerosol Optical Depth (AODs), meteorological fields, emission inventory, and trace gas column simulated by the GEOS-Chem model in 

estimating modeled PM2.5. (a) Both trace gas columns and AODs are available; (b) AODs are available but trace gas columns are not available; (c) trace gas columns 

are available but AODs are not available. Means and standard deviations of the ranking scores are derived from Automated Machine Learning-trained “best estimators” 

within the same type.



Journal of Advances in Modeling Earth Systems

ZHENG ET AL.

10.1029/2022MS003099

11 of 17

The results can be partially related to the dominant sources. For example, a slightly lower mass fraction of sulfate 

in Region W (∼13% of total PM2.5) compared to other regions (14%–17%) corresponds to a lower ranking score 

of “SO2_trop.” When building a model for a larger geospatial extent (Region A), the ranking score of meteoro-

logical fields declines (Figure 5). A possible reason is that the ML model for Region A assumes the same inter-

actions among features for all regions and gives lower importance to meteorological variables compared to other 

types. But in reality, meteorology varies across the country and different meteorological factors may play differ-

ent roles in different regions. On the other hand, monthly averaged precipitation and relative humidity in Region 

A are less correlated with PM2.5 (Figure S3 in Supporting Information S1) than in other regions on monthly or 

daily scales, implying that information about processes (e.g., wet deposition) is diluted.

3.3. Implications for PM2.5 Speciation

Along with the feature importance generated by AutoML, we use Spearman's rank correlation coefficient to 

infer the chemical composition of PM2.5. Note that feature importance (or ranking score) and Spearman’s rank 

correlation coefficient address different aspects of our analysis. Feature importance concerns the interactions 

among features and features' contribution to the predictive capability, but it does not reveal the individual rela-

tionship between target variable and each feature. On the other hand, Spearman’s rank measures the monotonic 

relationship (whether linear or not) between two variables but does not necessarily inform on its significance in 

a predictive model with other features. Here we show that, in the regions where trace gas columns are associated 

with higher ranking scores, the correlation between trace gas columns and PM2.5 are also high. We find that 

tropospheric columns of SO2 and NO2 contribute most to the variation of daily and monthly PM2.5 estimates 

in Region E based on ranking scores, along with the highest Spearman’s rank correlation coefficients. The 

agreement between AutoML and Spearman’s rank correlation suggests secondary inorganic PM (sulfate and 

nitrate) are critical species modulating the PM2.5 concentrations in Region E. The results are consistent with 

the identification of the source of PM2.5 in North-Eastern India, where multivariate analysis of the collected 

samples indicates that sulfate and nitrate contribute the most to the variations (Khare & Baruah, 2010). Another 

study utilizing the MERRA-2 database indicates that SO4 contributed to 45% of AOD over the northeastern 

region of India (Pathak & Bhuyan, 2022). Thus, the agreement between the ranking scores and the Spearman's 

correlations provide evidence for chemical speciation of PM2.5 and thus potential to infer source attribution in 

the subregions. Figure 6 also suggests that SO2 (Region S) and CO (Region W and Region N) have higher corre-

lation coefficients with PM2.5 compared to other trace gas columns, consistent with the monthly ranking scores 

(Figure 5). The findings suggest that sulfate may modulate monthly PM2.5 variability in Region S, whereas the 

co-variation of the primary pollutant CO with monthly PM2.5 may indicate co-emission or co-production with 

PM2.5 in Regions W and N.

Figure 5. Ranking scores of features from Aerosol Optical Depths (AODs), meteorological fields, and trace gas columns in estimating monthly PM2.5. The ranking 

scores are derived from Automated Machine Learning-trained “best estimators” that incorporate both trace gas columns and AOD, as well as meteorological fields and 

an emission inventory. Ranking scores of emissions are not presented, but not all emissions have low ranking scores.
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3.4. AutoML Consistently Outperforms Baseline Machine Learning Models

We use the independent testing data to evaluate the advantage of using AutoML by comparing the “best esti-

mator” from AutoML with LR and two commonly used nonlinear ML models: RF and XGBoost (XGB). As 

expected, the performance of ML models varies case by case (Figure 7a). For example, although the performance 

of RF is generally worse than XGBoost, it outperforms XGBoost when estimating monthly PM2.5 in Region N. 

Therefore, it is not the best practice to implement the same machine learning algorithm for every region. Instead, 

the best estimators trained by AutoML outperform RF, XGBoost, and LR, especially at the regional scale. As 

shown in Figure 2, XGBoost (with improved hyperparameter configurations) is selected as the best estimator for 

Region E on a daily scale, while LightGBM estimators are selected for other regions. On the monthly scale, the 

best estimators for the same region differ. For instance, Catboost estimators, which are not chosen on a daily scale, 

are selected as the best estimators for Regions E, W, N, and C. Because AutoML consists of a set of different 

learning algorithms and explores several possible hyperparameter combinations of each algorithm when training 

the estimators, it is at least no worse than user-chosen models. We also show that an increase in data volume (e.g., 

daily compared to monthly) is likely to narrow the gap in R 2, highlighting the importance of attaining a large 

quantity of high-quality data for data-driven model development.

To assess whether trace gas columns can improve the PM2.5 estimates, we repeat the regressions by implementing 

the above learning algorithms on a daily and monthly scale without trace gas columns, and calculate the difference 

in R 2 (Figure 7b). We show that no matter the choice of learning algorithms, including trace gas columns consistently 

results in a higher R 2. Although the most obvious improvements come from LR, the best estimators from LR are in 

general worse than the nonlinear models, confirming that the assumption of a nonlinear relationship between features 

and PM2.5 is more appropriate. In accordance with the present results, previous studies (e.g., Porter & Heald, 2019; 

Tai et al., 2010) have demonstrated that the correlations between PM and meteorological conditions are complex.

3.5. Is “Big Data” Always Better?

The above analysis has shown that a larger volume of data at the same time scale (e.g., Region A) results in a 

better predictive capability compared to separate models for each of its subregions. However, such comparisons 

are potentially misleading, because the testing data sets are different and model performance is “averaged” across 

regions. Two questions are raised here: (a) How well does a “generalized model” trained on the larger region 

perform when applied to the sub-regions it encompasses (“spatial mismatch”)? (b) What role do trace gas prod-

ucts play in the application of a “spatially mismatched” model? Both questions are in line with the emphasis of 

Data-Centric AI, as a generalized model attempts to make use of the additional available samples to more robustly 

infer the predictive relationships, but it is possible that only a part of the data is indeed useful. On the other hand, 

while the first principles (e.g., chemical reactions) should be universal, due to incomplete features such as human 

Figure 6. Spearman’s rank correlation coefficient between PM2.5 and AODs, meteorological fields, and trace gas columns.
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activities, the underlying physical and chemical processes embedded in different places are distinct. For example, 

the models are unaware of prior knowledge such as the number of vehicles and power plants, and the complex 

regional meteorological processes, which would suggest using a model tailored to each region.

Here we assess the applicability of the “best estimators” trained from larger areas (Region A and Region C) by 

applying them back to the sub-regions (E, S, W, N). The results (Figure 8a), however, suggest that the general-

ized model (which includes every grid cell in the sub-regions) is not universally the best solution. For example, 

incorporating data from other regions (Region C) can improve the monthly PM2.5 estimates in Region S, but the 

estimates suffer as a result of gaining more irrelevant data (Region A), implying that fundamentally different 

governing processes control PM2.5 variability in that region. Such noise has the potential to mislead machine 

learning algorithms. On the contrary, the monthly PM2.5 estimates in Region N benefit from more information. 

As a result, models that perform well at larger geographic scales may ensure generally good performance overall, 

but fail to capture the specificity in pollutant sources and meteorological processes for each of their subregions, 

because tailored models may be necessary if pollutant sources and meteorological processes vary from region 

to region. Even if we “mistakenly” apply the model across spatial scales, we find that the presence of trace gas 

columns benefits models (Figure  8b). In our cases, including trace gas columns as features does not impair 

predictive capability.

4. Conclusions
We use an Automated Machine Learning (AutoML) approach on a modeling testbed to evaluate the information 

content of tropospheric trace gas columns for fine particle estimates in India. We quantify the relative information 

Figure 7. Performance of different estimators in estimating daily and monthly PM2.5. (a) Estimators trained from the data with trace gas columns; (b) Increases in R 2 

from (a) compared to the estimators without considering trace gas columns as features. Estimators are trained from Automated Machine Learning (AutoML), linear 

regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGB).
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content of trace gas columns, AODs, meteorological fields, and emissions for four sub-regions within India, and 

on daily versus monthly time scales. As a byproduct, an unsupervised-learning-based regionalization strategy is 

developed to delineate geographical regions with similar daily patterns of variability for analysis.

Our results suggest that incorporating trace gas modeled columns enhances PM2.5 estimates in general, regardless 

of model assumptions. The enhancements in predictive capability differ in both space and time. Using the ranking 

scores and Spearman’s rank correlation, we can infer the possible particle composition, and thus a broad charac-

terization of PM2.5 sources. For example, we infer that PM2.5 variability in Region E (see Figure 6) is modulated 

by secondary PM (sulfate and nitrate). However, in Region W and Region N, primary pollutants—as indicated 

by a strong correlation with CO—may modulate monthly PM2.5 variability, whereas meteorological processes 

influence the daily PM2.5 variability.

Our comparison of AutoML-derived models against selected baseline ML models demonstrates that AutoML 

is at least as good as user-chosen models. We ask the question “Is Big Data always better?” and find a nuanced 

answer that is regionally dependent. Even in these “spatially mismatched” models, however, we show that incor-

porating trace gas products can still improve PM2.5 estimates across India.

Additional analysis using AOD data from the local 1:30 p.m. overpass and the mean of the 10:30 a.m. and 

1:30 p.m. overpasses demonstrates that our results are consistent regardless of the local overpass time of AOD 

employed. Figures S4–S9 and Table S1 in Supporting Information S1 illustrate for all of these combinations that 

estimator performance improves when trace gas columns are utilized as features and AutoML is implemented, 

Figure 8. Performance of estimators in estimating daily and monthly PM2.5 across spatial scales. (a) Estimators trained from the data with trace gas columns; (b) 

Increases in R 2 from (a) compared to the estimators without considering trace gas columns as features. Estimators are trained from the region (R), the group of regions 

(C), and all land grid cells (A) and applied back to each region. The differences between the predictions with and without trace gas columns as features are significant, 

based on Wilcoxon signed-rank test.
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for all three AOD overpass temporal sampling approaches. When a month (October) is shifted from training to 

testing data, our conclusions remain unchanged (Figures S10–S11 in Supporting Information S1). The modeling 

testbed, like any other modeling-based study, is necessarily hampered by simulation accuracy. Considering the 

biases in chemical transport models, there may be a discrepancy when applying the models developed from our 

pseudo-data sets (model simulations) to actual satellite retrievals. The variable importance identified in this study 

is limited by the physical and chemical representations and their uncertainties in the chemical transport model. 

Real satellite observations and ground measurements are needed to evaluate and improve such “simulation 

data-driven” models, as well as to compare our PM2.5 estimations with those of other PM2.5 products. However, 

the idealized pseudo-observations used in this work demonstrate potential for satellite retrievals of tropospheric 

trace gases to improve fine particle estimates in India and may contain information to interpret their origin. Our 

analysis also highlights the promising application of AutoML in atmospheric and environmental research. Future 

PM2.5 estimates, for example, may benefit from the trace gas columns acquired by high-resolution geostationary 

satellites.

Data Availability Statement
Scripts and data to reproduce the results and figures are preserved at https://doi.org/10.5281/zenodo.6363824 

(Zheng, 2022) or https://github.com/zzheng93/code_DSI_India_AutoML. The raw data from GEOS-Chem simu-

lations used for Automated Machine Learning and analysis in this study are available at https://doi.org/10.7916/

nwx1-jt94 (Zheng et al., 2022).

References
Adams, M. D., Massey, F., Chastko, K., & Cupini, C. (2020). Spatial modelling of particulate matter air pollution sensor measurements collected 

by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correc-

tion. Atmospheric Environment, 230, 117479. https://doi.org/10.1016/j.atmosenv.2020.117479

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., & Hickey, J. (2019). Machine learning for precipitation nowcasting from radar 

images. ArXiv:1912.12132 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1912.12132

Bali, K., Dey, S., & Ganguly, D. (2021). Diurnal patterns in ambient PM2.5 exposure over India using MERRA-2 reanalysis data. Atmospheric 
Environment, 248, 118180. https://doi.org/10.1016/j.atmosenv.2020.118180

Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F., et al. (2016). Ambient air pollution exposure estimation for 

the global burden of disease 2013. Environmental Science & Technology, 50(1), 79–88. https://doi.org/10.1021/acs.est.5b03709

Brauer, M., Guttikunda, S. K., Dey, S., Tripathi, S. N., Weagle, C., & Martin, R. V. (2019). Examination of monitoring approaches for ambient air 

pollution: A case study for India. Atmospheric Environment, 216, 116940. https://doi.org/10.1016/j.atmosenv.2019.116940

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Chaliyakunnel, S., Millet, D. B., & Chen, X. (2019). Constraining emissions of volatile organic compounds over the Indian subcontinent 

using space-based formaldehyde measurements. Journal of Geophysical Research: Atmospheres, 124(19), 10525–10545. https://doi.

org/10.1029/2019JD031262

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference 
on knowledge discovery and data mining (pp. 785–794). ACM Press. https://doi.org/10.1145/2939672.2939785

Chowdhury, S., Dey, S., Guttikunda, S., Pillarisetti, A., Smith, K. R., & Di Girolamo, L. (2019). Indian annual ambient air quality standard is 

achievable by completely mitigating emissions from household sources. Proceedings of the National Academy of Sciences of the Unites States 
of America, 116(22), 10711–10716. https://doi.org/10.1073/pnas.1900888116

Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R., et al. (2015). Uncertainties of simulated aerosol optical properties induced 

by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective. Atmospheric Environment, 115, 541–552. https://doi.

org/10.1016/j.atmosenv.2014.09.009

Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al. (2019). An ensemble-based model of PM2.5 concentration across the contigu-

ous United States with high spatiotemporal resolution. Environment International, 130, 104909. https://doi.org/10.1016/j.envint.2019.104909

Fiore, A. M., Jacob, D. J., Mathur, R., & Martin, R. V. (2003). Application of empirical orthogonal functions to evaluate ozone simulations with 

regional and global models. Journal of Geophysical Research, 108(D14), 4431. https://doi.org/10.1029/2002JD003151

Fiore, A. M., Milly, G. P., Hancock, S. E., Quiñones, L., Bowden, J. H., Helstrom, E., et al. (2022). Characterizing changes in eastern U.S. Pollution 

events in a warming world. Journal of Geophysical Research: Atmospheres, 127(9), e2021JD035985. https://doi.org/10.1029/2021JD035985

Geng, G., Meng, X., He, K., & Liu, Y. (2020). Random forest models for PM2.5 speciation concentrations using {MISR} fractional AODs. 

Environmental Research Letters, 15(3), 034056. https://doi.org/10.1088/1748-9326/ab76df

Gentine, P., Eyring, V., & Beucler, T. (2021). Deep learning for the parametrization of subgrid processes in climate models. In G. 

Camps-Valls, D. Tuia, X. X. Zhu, & M. Reichstein (Eds.), Deep learning for the Earth sciences (1st ed., pp. 307–314). Wiley. https://doi.

org/10.1002/9781119646181.ch21

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1

Gosiewska, A., & Biecek, P. (2019). Do not trust additive explanations. arXiv preprint arXiv:1903.11420.

Greenstone, M., Nilekani, J., Pande, R., Ryan, N., Sudarshan, A., & Sugathan, A. (2015). Lower pollution, longer lives: Life expectancy gains if 

India reduced particulate matter pollution. Economic and Political Weekly, 40–46.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer. https://doi.org/10.1007/978-0-387-84858-7

Hoff, R. M., & Christopher, S. A. (2009). Remote sensing of particulate pollution from space: Have we reached the promised land? Journal of the 
Air & Waste Management Association, 59(6), 645–675. https://doi.org/10.3155/1047-3289.59.6.645

Acknowledgments
We acknowledge ExxonMobil Tech-

nology and Engineering Company and 

Columbia Data Science Institute Seed 

Funds for supporting this work. We are 

grateful for helpful discussions with 

Dr. Ruth S. DeFries and Dr. Marian-

thi-Anna Kioumourtzoglou. We would 

like to acknowledge high-performance 

computing support from Cheyenne 

(https://doi.org/10.5065/D6RX99HX) 

provided by NCAR’s Computational 

and Information Systems Laboratory, 

sponsored by the National Science 

Foundation. This material is based upon 

work supported by the National Center for 

Atmospheric Research, which is a major 

facility sponsored by the National Science 

Foundation under Cooperative Agreement 

No. 1755088. ZZ acknowledges support 

from NCAR Advanced Study Program 

Postdoctoral Fellowship. SD acknowl-

edges support from IIT Delhi for Chair 

Professor Fellowship. We appreciate the 

careful reading of our manuscript and the 

many insightful comments and sugges-

tions from three anonymous reviewers.

https://doi.org/10.5281/zenodo.6363824
https://github.com/zzheng93/code_DSI_India_AutoML
https://doi.org/10.7916/nwx1-jt94
https://doi.org/10.7916/nwx1-jt94
https://doi.org/10.1016/j.atmosenv.2020.117479
http://arxiv.org/abs/1912.12132
https://doi.org/10.1016/j.atmosenv.2020.118180
https://doi.org/10.1021/acs.est.5b03709
https://doi.org/10.1016/j.atmosenv.2019.116940
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1029/2019JD031262
https://doi.org/10.1029/2019JD031262
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1073/pnas.1900888116
https://doi.org/10.1016/j.atmosenv.2014.09.009
https://doi.org/10.1016/j.atmosenv.2014.09.009
https://doi.org/10.1016/j.envint.2019.104909
https://doi.org/10.1029/2002JD003151
https://doi.org/10.1029/2021JD035985
https://doi.org/10.1088/1748-9326/ab76df
https://doi.org/10.1002/9781119646181.ch21
https://doi.org/10.1002/9781119646181.ch21
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.3155/1047-3289.59.6.645
https://doi.org/10.5065/D6RX99HX


Journal of Advances in Modeling Earth Systems

ZHENG ET AL.

10.1029/2022MS003099

16 of 17

Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., & Liu, Y. (2017). Estimating PM2.5 concentrations in the conter-

minous United States using the random forest approach. Environmental Science & Technology, 51(12), 6936–6944. https://doi.org/10.1021/

acs.est.7b01210

Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.) (2019). Automated machine learning: Methods, systems, challenges. Springer International 

Publishing. https://doi.org/10.1007/978-3-030-05318-5

Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., & Saynisch-Wagner, J. (2021). Towards neural Earth system 

modelling by integrating artificial intelligence in Earth system science. Nature Machine Intelligence, 3(8), 667–674. https://doi.org/10.1038/

s42256-021-00374-3

Karambelas, A., Fiore, A. M., Westervelt, D. M., McNeill, V. F., Randles, C. A., Venkataraman, C., et al. (2022). Investigating drivers of partic-

ulate matter pollution over India and the implications for radiative forcing with GEOS-Chem-TOMAS15. Journal of Geophysical Research: 
Atmospheres, 127(24), e2021JD036195. https://doi.org/10.1029/2021JD036195

Karambelas, A., Holloway, T., Kinney, P. L., Fiore, A. M., DeFries, R., Kiesewetter, G., & Heyes, C. (2018). Urban versus rural health impacts 

attributable to PM2.5 and O3 in northern India. Environmental Research Letters, 13(6), 064010. https://doi.org/10.1088/1748-9326/aac24d

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). LightGBM: A highly efficient gradient boosting decision tree. In I. Guyon, 

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al. (Eds.), Advances in neural information processing systems (Vol. 

30). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S., & Jacob, D. J. (2014). HEMCO v1.0: A versatile, ESMF-compliant 

component for calculating emissions in atmospheric models. Geoscientific Model Development, 7(4), 1409–1417. https://doi.org/10.5194/

gmd-7-1409-2014

Khare, P., & Baruah, B. P. (2010). Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site 

of North-East India. Atmospheric Research, 98(1), 148–162. https://doi.org/10.1016/j.atmosres.2010.07.001

Kumar, J., Mills, R. T., Hoffman, F. M., & Hargrove, W. W. (2011). Parallel k-means clustering for quantitative ecoregion delineation using large 

data sets. Procedia Computer Science, 4, 1602–1611. https://doi.org/10.1016/j.procs.2011.04.173

Labe, Z. M., & Barnes, E. A. (2021). Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in 
Modeling Earth Systems, 13(6), e2021MS002464. https://doi.org/10.1029/2021MS002464

Lagerquist, R., McGovern, A., & Gagne, D. J., II. (2019). Deep learning for spatially explicit prediction of synoptic-scale fronts. Weather and 
Forecasting, 34(4), 1137–1160. https://doi.org/10.1175/WAF-D-18-0183.1

Lian, T., & Chen, D. (2012). An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. Journal of Climate, 

25(15), 5361–5373. https://doi.org/10.1175/JCLI-D-11-00663.1

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.

McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D., Lagerquist, R., et al. (2017). Using artificial intelligence to improve real-

time decision-making for high-impact weather. Bulletin of the American Meteorological Society, 98(10), 2073–2090. https://doi.org/10.1175/

BAMS-D-16-0123.1

Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., et al. (2020). An evaluation of global organic aerosol schemes 

using airborne observations. Atmospheric Chemistry and Physics, 20(5), 2637–2665. https://doi.org/10.5194/acp-20-2637-2020

Pathak, B., & Bhuyan, P. K. (2022). Characteristics of atmospheric pollutants over the northeastern region of India. In Asian atmospheric pollu-
tion (pp. 367–392). Elsevier. https://doi.org/10.1016/B978-0-12-816693-2.00016-0

Porter, W. C., & Heald, C. L. (2019). The mechanisms and meteorological drivers of the summertime ozone–temperature relationship. Atmos-
pheric Chemistry and Physics, 19(21), 13367–13381. https://doi.org/10.5194/acp-19-13367-2019

Prashanth, P., Speth, R. L., Eastham, S. D., Sabnis, J. S., & Barrett, S. R. H. (2021). Post-combustion emissions control in aero-gas turbine 

engines. Energy & Environmental Science, 14(2), 916–930. https://doi.org/10.1039/D0EE02362K

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. In S. 

Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems 

(Vol. 31). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Pa-

per.pdf

Ravishankara, A. R., David, L. M., Pierce, J. R., & Venkataraman, C. (2020). Outdoor air pollution in India is not only an urban problem. Proceed-
ings of the National Academy of Sciences of the United States of America, 117(46), 28640–28644. https://doi.org/10.1073/pnas.2007236117

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat (2019). Deep learning and process understanding 

for data-driven Earth system science. Nature, 566(7743), 195–204. https://doi.org/10.1038/s41586-019-0912-1

Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied 
Sciences, 8(12), 2570. https://doi.org/10.3390/app8122570

Shi, W., & Zeng, W. (2014). Application of k-means clustering to environmental risk zoning of the chemical industrial area. Frontiers of Environ-
mental Science & Engineering, 8(1), 117–127. https://doi.org/10.1007/s11783-013-0581-5

Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., et al. (2015). Evaluating the climate and air quality impacts of 

short-lived pollutants. Atmospheric Chemistry and Physics, 15(18), 10529–10566. https://doi.org/10.5194/acp-15-10529-2015

Tai, A.  P.  K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in 

the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.

org/10.1016/j.atmosenv.2010.06.060

The International GEOS-Chem User. (2018). Geoschem/Geos-Chem: Geos-Chem 12.0.2 release. Zenodo. https://doi.org/10.5281/

ZENODO.1455215

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020). Physically interpretable neural networks for the geosciences: Applications to Earth system 

variability. Journal of Advances in Modeling Earth Systems, 12(9), e2019MS002002. https://doi.org/10.1029/2019MS002002

van Donkelaar, A., Martin, R. V., & Park, R. J. (2006). Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote 

sensing. Journal of Geophysical Research, 111(D21), D21201. https://doi.org/10.1029/2005JD006996

Wang, C., Wu, Q., Weimer, M., & Zhu, E. (2021). FLAML: A fast and lightweight AutoML library. In MLSys.

Wolpert, D. H. (1996). The lack of A priori distinctions between learning algorithms. Neural Computation, 8(7), 1341–1390. 

https://doi.org/10.1162/neco.1996.8.7.1341

World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur 
dioxide and carbon monoxide: Executive summary. World Health Organization.

Xiao, Q., Chang, H. H., Geng, G., & Liu, Y. (2018). An ensemble machine-learning model to predict historical PM2.5 concentrations in China 

from satellite data. Environmental Science & Technology, 52(22), 13260–13269. https://doi.org/10.1021/acs.est.8b02917

https://doi.org/10.1021/acs.est.7b01210
https://doi.org/10.1021/acs.est.7b01210
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1029/2021JD036195
https://doi.org/10.1088/1748-9326/aac24d
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.1016/j.atmosres.2010.07.001
https://doi.org/10.1016/j.procs.2011.04.173
https://doi.org/10.1029/2021MS002464
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1175/JCLI-D-11-00663.1
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.5194/acp-20-2637-2020
https://doi.org/10.1016/B978-0-12-816693-2.00016-0
https://doi.org/10.5194/acp-19-13367-2019
https://doi.org/10.1039/D0EE02362K
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://doi.org/10.1073/pnas.2007236117
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.3390/app8122570
https://doi.org/10.1007/s11783-013-0581-5
https://doi.org/10.5194/acp-15-10529-2015
https://doi.org/10.1016/j.atmosenv.2010.06.060
https://doi.org/10.1016/j.atmosenv.2010.06.060
https://doi.org/10.5281/ZENODO.1455215
https://doi.org/10.5281/ZENODO.1455215
https://doi.org/10.1029/2019MS002002
https://doi.org/10.1029/2005JD006996
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1021/acs.est.8b02917


Journal of Advances in Modeling Earth Systems

ZHENG ET AL.

10.1029/2022MS003099

17 of 17

Xu, J.-W., Martin, R. V., van Donkelaar, A., Kim, J., Choi, M., Zhang, Q., et al. (2015). Estimating ground-level PM2.5 in eastern China using 

aerosol optical depth determined from the GOCI satellite instrument. Atmospheric Chemistry and Physics, 15(22), 13133–13144. https://doi.

org/10.5194/acp-15-13133-2015

Zheng, Z. (2022). zzheng93/code_DSI_India_AutoML: First release (Version v0.0.0) [Software]. Zenodo. https://doi.org/10.5281/

ZENODO.6363824

Zheng, Z., Ching, J., Curtis, J. H., Yao, Y., Xu, P., West, M., & Riemer, N. (2020). Unsupervised regionalization of particle-resolved aerosol 

mixing state indices on the global scale. ArXiv:2012.03365 [Physics]. Retrieved from http://arxiv.org/abs/2012.03365

Zheng, Z., Fiore, A. M., Westervelt, D. M., Milly, G. P., Goldsmith, J., Karambelas, A., et al. (2022). Automated machine learning to evaluate 

the information content of tropospheric trace gas columns for fine particle estimates over India: A modeling testbed [Dataset]. Columbia 

University. https://doi.org/10.7916/NWX1-JT94

https://doi.org/10.5194/acp-15-13133-2015
https://doi.org/10.5194/acp-15-13133-2015
https://doi.org/10.5281/ZENODO.6363824
https://doi.org/10.5281/ZENODO.6363824
http://arxiv.org/abs/2012.03365
https://doi.org/10.7916/NWX1-JT94

	Automated Machine Learning to Evaluate the Information Content of Tropospheric Trace Gas Columns for Fine Particle Estimates Over India: A Modeling Testbed
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods
	2.1. 
          GEOS-CHEM Simulations
	2.2. Data Processing
	2.3. Delineating Geographical Regions
	2.3.1. EOF and REOF Analysis
	2.3.2. 
            k
            -Means Clustering

	2.4. Automated Machine Learning (AutoML)
	2.5. Experimental Design
	2.6. Feature Importance Attribution

	3. Results and Discussion
	3.1. Including Multiple Trace Gas Modeled Columns Generally Improves PM2.5 Estimates
	3.2. The Relative Importance of Trace Gas Columns to Accurate PM2.5 Estimates Varies Spatially and Temporally
	3.3. Implications for PM2.5 Speciation
	3.4. AutoML Consistently Outperforms Baseline Machine Learning Models
	3.5. Is “Big Data” Always Better?

	4. Conclusions
	Data Availability Statement
	References


