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Abstract Indiais largely devoid of high-quality and reliable on-the-ground measurements of fine
particulate matter (PM, ). Ground-level PM, ; concentrations are estimated from publicly available satellite
Aerosol Optical Depth (AOD) products combined with other information. Prior research has largely overlooked
the possibility of gaining additional accuracy and insights into the sources of PM using satellite retrievals

of tropospheric trace gas columns. We evaluate the information content of tropospheric trace gas columns

for PM, 5 estimates over India within a modeling testbed using an Automated Machine Learning (AutoML)
approach, which selects from a menu of different machine learning tools based on the data set. We then quantify
the relative information content of tropospheric trace gas columns, AOD, meteorological fields, and emissions
for estimating PM, 5 over four Indian sub-regions on daily and monthly time scales. Our findings suggest that,
regardless of the specific machine learning model assumptions, incorporating trace gas modeled columns
improves PM, ; estimates. We use the ranking scores produced from the AutoML algorithm and Spearman’s
rank correlation to infer or link the possible relative importance of primary versus secondary sources of PM, s
as a first step toward estimating particle composition. Our comparison of AutoML-derived models to selected
baseline machine learning models demonstrates that AutoML is at least as good as user-chosen models. The
idealized pseudo-observations (chemical-transport model simulations) used in this work lay the groundwork
for applying satellite retrievals of tropospheric trace gases to estimate fine particle concentrations in India and
serve to illustrate the promise of AutoML applications in atmospheric and environmental research.

Plain Language Summary Ground-level fine particle (PM, ) concentrations are frequently
estimated with freely available satellite Aerosol Optical Depth (AOD) products. We focus on India where
sparse ground-based monitoring leaves gaps in our understanding of particle concentrations and the relative
importance of different sources. We use an atmospheric chemistry model to test whether satellite retrievals of
tropospheric trace gas columns can provide information on the origins of PM, 5 and improve satellite-derived
PM, ;. We created an Automated Machine Learning workflow to evaluate the utility of incorporating multiple
trace gas columns in PM, 5 estimates, which represents nonlinear relationships between predictands and
predictors while freeing users from selecting and tuning a specific machine learning model. On daily and
monthly time scales, we quantify the relative information content of trace gas columns, AOD, meteorological
fields, and emissions. We find that incorporating trace gas columns improves PM, ; estimates and may also
enable inference of broad characteristics of particle composition.
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1. Introduction

High levels of ambient fine particles (known as PM, s, particles 2.5 pm in diameter or smaller) pose a major envi-
ronmental issue in India. As estimated by Chowdhury et al. (2019), nearly the entire population (99.9%) in India
is exposed to annual PM, ; exceeding the previous World Health Organization (WHO) guideline of 10 pg/m?. The
latest WHO Global Air Quality Guidelines (AQG) announced on 22 September 2021, lowered the annual AQG
level of PM, ; to 5 pg/m? (World Health Organization, 2021). To tackle the issue of air pollution, the Govern-
ment of India launched the National Clean Air Program in January 2019, aimed at reducing particulate pollu-
tion by 20%-30% relative to 2017 levels by 2024. Monitoring air quality and understanding pollutant sources
are critical to implementing effective air quality management plans, but India mostly lacks long-term, publicly
accessible, reliable (i.e., quality controlled) measurements of particle composition that enable source attribution
(Bali et al., 2021; Brauer et al., 2019). Although the Central Pollution Control Board (CPCB) has maintained
a routine monitoring network for total PM, ; mass (composition unknown) and certain gas-phase species since
2008, the density of India's monitoring network (~0.14 monitors/million persons) is lower than other developing
countries such as China (1.2 monitors/million persons) and developed countries such as USA (3.4 monitors/
million persons), and leaves the majority of rural India entirely unmonitored (Bali et al., 2021; Brauer et al., 2019;
Karambelas et al., 2018; Ravishankara et al., 2020).

Publicly available satellite products offer the opportunity to overcome limitations in spatiotemporal coverage and
estimate PM, 5 across India by combining satellite data with other information. Satellite aerosol optical depth
(AOD) is often used to estimate PM, 5 (Hoff & Christopher, 2009; van Donkelaar et al., 2006). Columnar AOD is
combined with geophysical or statistical models that ingest additional meteorological data, emission inventories,
chemical transport model simulations, and/or land use to estimate PM, 5 and achieve better performance (Brauer
et al., 2016; Xu et al., 2015). Typically, these approaches require high-quality ground-based measurements for
model training and validation, which is particularly challenging in India due to the country’s low monitor density
relative to other world regions (e.g., U.S. and China).

Importantly, the possibility of gleaning additional insights into sources of PM from satellite retrievals of tropo-
spheric trace gases has generally been overlooked. Trace gases including sulfur dioxide, nitrogen dioxide, and
ammonia are precursors to fine particles that form via chemical reactions and thus should indicate the potential
to form secondary PM. Other trace gases such as carbon monoxide (a product of incomplete combustion) and
formaldehyde (produced during the oxidation of numerous organic gases) may correlate with emissions of aero-
sols or their precursor gases and may thus indicate primary (directly emitted) PM, as well as transported pollution
of particles emitted or produced upwind. We evaluate here the potential for increased accuracy of ground-level
PM, ; estimates in India by incorporating trace gas tropospheric columns in statistical approaches relating colum-
nar AOD to surface PM, ;. In this study, we use a chemical transport model as a testbed to assess the potential
information content in tropospheric trace gas columns retrieved from satellite instruments.

Artificial intelligence (Al) and data science methods, and machine learning (ML) methods in particular, have
been developed and used in atmospheric and environmental studies over the last few years. This trend is likely
to persist into the foreseeable future enabled by the rapid advances and tremendous needs in many areas, such
as weather forecasting and predictions (Agrawal et al., 2019; Lagerquist et al., 2019; McGovern et al., 2017),
Earth system modeling (Gentine et al., 2021; Irrgang et al., 2021; Reichstein et al., 2019), and climate analysis
(Labe & Barnes, 2021; Toms et al., 2020). As an alternative to simple geophysical or statistical approaches, ML
approaches such as Random Forest (RF) and Gradient Boosting have been applied to meld satellite estimates of
AOD with weather and land use data to produce highly spatially and temporally resolved data sets of surface
PM, ; concentration (Di et al., 2019; Geng et al., 2020; Rybarczyk & Zalakeviciute, 2018; Xiao et al., 2018).
According to the “No Free Lunch” theorem (Wolpert, 1996), no one ML algorithm can be universally good for
all data and problems. Instead, the nature of the problem, the data, and the purpose synergistically determine the
appropriate learning algorithm for a problem. For example, a deep-learning-based model architecture trained to
predict severe weather might not successfully predict an extreme air pollution episode. In some cases, given the
sensitivity of the data-driven models, incorporating new predictors could shift the “ideal” learning algorithm
from one to another (e.g., from linear to nonlinear). Even if the “best” learning algorithm is predefined (e.g., a
neural network or a gradient boosting model), searching and tuning the hyperparameters (e.g., number of hidden
layers in a neural network, or the learning rate of a gradient boosting model) usually depends on human knowl-
edge and decisions. Furthermore, ML model development (training and selection) generally requires significant
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computational resources. However, a model’s performance is a reflection of how accurately it captures the impor-
tance of each feature and, accordingly, is able to extract information from them. It is thus essential to employ a
tailored “best model” for each problem, since a model with better performance is more likely to provide a more
accurate feature importance.

Concerns with machine learning computational efficiency have given rise to fast and economical software frame-
works, known as Automated Machine Learning (AutoML) (Wang et al., 2021), in which “the user simply provides
data, and the AutoML system automatically determines the approach that performs best for this particular appli-
cation” (Hutter et al., 2019). AutoML frees domain scientists from selecting learners and hyperparameters and
can potentially prevent suboptimal choices due to idiosyncrasies or ad-hocness. For example, Adams et al. (2020)
have successfully employed AutoML (an R package “H,0”) for an optimal solution to correct low-cost air quality
Sensors.

In this study, we leverage the power of AutoML to evaluate the added benefit of including satellite retrievals of
tropospheric trace gases in statistical models used to derive PM, ; estimates over India. We use a chemical trans-
port model as a synthetic testbed for developing methods under spatially and temporally continuous (“perfect”)
data sets and use the AutoML as a tool to fit the regression of surface PM, 5 given the meteorological fields, emis-
sion inventories, and satellite-like pseudo-data sets sampled from the model. Data-driven models can be derived
from real world data or highly detailed geophysical (in our case, atmospheric chemistry) simulations. Here, we
focus on data-driven models derived from a chemical transport model, which is driven by meteorology and emis-
sions, without chemical data assimilation; consequently, the PM, ; fields over India simulated by the chemical
transport model are considered “ground truth” (or “label” in Machine Learning) and “performance upper bound”
in this paper. Data-driven models, like the ones we explore below, offer the chance to overcome computing limi-
tations as a low-cost alternative to expensive high-resolution simulations with chemical transport models, and
can provide new insights by revealing underlying relationships between the predictor variables and PM, 5. Note
the overarching goal of this study is not to provide regression models or PM, 5 products. Instead, we aim to assess
the improved accuracy that may be possible by incorporating satellite retrievals of tropospheric trace gases in
combination with AOD and meteorological variables currently used to derive PM, s from satellite products. The
information obtained by blending together multiple data sets can provide guidance for developing future PM, g
products, especially over regions lacking widespread networks of particle mass and composition measurements.

2. Methods
2.1. GEOS-CHEM Simulations

We use simulations from the GEOS-Chem version 12.0.2 (The International GEOS-Chem User Community, 2018)
chemical transport model as idealized pseudo-observations continuously available from ground-based and
space-based platforms. The simulations were conducted for the year 2015 with a global 2° latitude X 2.5° longitude
domain providing boundary conditions to a nested grid (0.25° latitude x 0.3125° longitude, ~25 x 30 km) and 47
non-uniform vertical layers over India (0—40°N and 60—100°E) as described in Karambelas et al. (2022). This nested
grid configuration was loosely based on (Chaliyakunnel et al., 2019), which used the MERRA-2 reanalysis mete-
orology. Instead, we use GEOS-FP fields to achieve higher spatial resolution (Karambelas et al., 2022). We use the
standard tropospheric and stratospheric chemistry (e.g., NOy-O,-HC-aerosol-Br with a simple secondary organic
aerosol representation) and physics (Pai et al., 2020; Prashanth et al., 2021), and natural and biogenic emissions.
Anthropogenic emissions are from the ECLIPSE anthropogenic emission inventory (Stohl et al., 2015) processed
through the Harvard-NASA Emissions Component (Keller et al., 2014). Modeled surface PM, 5 concentrations
were previously evaluated against observations from India's Central Pollution Control Board (https://app.cpcbecr.
com/ccr/#/caagm-dashboard-all/caagm-landing/data) with findings presented in Karambelas et al. (2022). Briefly,
GEOS-Chem underestimates annual average concentrations (Normalized Mean Bias (NMB) = —49%). Model
performance improves during periods of higher concentrations such as pollution episodes (NMB = —33%) The
model is able to reproduce spatial variations in concentrations across the country (> = 0.55), again improving during
periods of high pollution (2 = 0.69). More information on the simulations can be found in Karambelas et al. (2022).

2.2. Data Processing

The machine learning models can be expressed as
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Y(lat,lon,t) = £(X(lat,lon,t)) (1)

where Y (predictand) is the daily surface PM, 5 concentration at location (lat, lon) at time ¢, and f denotes the
function (machine learning model) for calculating Y. The variable X (predictor) could represent a single feature
(e.g., “2-m air temperature”) or a combination of features (e.g., “2-m air temperature” and “tropospheric vertical
column of CO”). Note that “feature” and “field” are interchangeable when referring to “predictor.” We construct
surface PM, 5 concentrations from the individual simulated chemical components (ammonium, nitrate, sulfate,
black carbon, organic carbon, secondary organic aerosols, dust, and sea salt), and assume a relative humidity of
50%. Table 1 lists the features (“predictors”) used in our analyses. We develop “pseudo-data sets” by sampling
modeled fields at satellite overpass time. These data sets are “perfect” in the sense that no instrument noise or
missed retrievals are introduced (e.g., due to clouds, etc.). Specifically, we use the Flexible Aerosol Optical Depth
post-processing tool (Curci et al., 2015) to estimate AOD at 550 nm and dust AOD. These fields are sampled
at 5:00 a.m. UTC to coincide with Terra's local 10:30 a.m. overpass. The tropospheric vertical columns (trop-
osphere is defined as from the surface layer to model level 38 or about 48 hPa) of trace gases (CO, SO,, NO,,
CH,0, and NH,) are sampled at 8:00 a.m. UTC to match satellite instruments (SO,, NO,, and CH,O from Aura/
OMLI, and CO and NH, from Aqua/AIRS) with a local 1:30 p.m. overpass. Meteorological fields were averaged
on a daily and a monthly basis for further analysis. The emission fields without daily variation were only used
for monthly analyses. In other words, only the features with daily variance are utilized in daily machine learning
models. Note that the “moderate PM2.5”” months of April and August (Figure S1 in Supporting Information S1)
were used as the hold-out samples (testing data) for validation purposes, and the remaining 10 months were used
for the regionalization (see Section 2.3) and training in the AutoML workflow. The values on the ends of the
PM, ; distribution, such as PM episodes that happened in December, are included in the training data to ensure
that the training data is as representative of the full data distribution as feasible. To test model skill in estimating
higher PM, 5, we also examine the sensitivity to moving October data from training to testing, as higher PM, 5
concentrations occur in October than in April or August (Figure S1 in Supporting Information S1). Our analysis
is restricted to land grid cells (defined as land covering a fraction greater than 0.5 of any individual cell).

2.3. Delineating Geographical Regions

We perform regional analysis to facilitate comprehension of spatial patterns. Rather than define regions for our
analysis based on prior studies, for example, based on climate regions (Hu et al., 2017) or PM, 5 concentrations
(Greenstone et al., 2015), we propose a simple data-driven unsupervised learning approach for regionalization
(Figure 1). Our approach groups grid cells into a few regions (clusters) based on their spatiotemporal similarity.
The regionalization consists of two steps: (a) Empirical Orthogonal Functions (EOFs) and Varimax Rotated
EOFs (REOFs) analysis to reduce the dimensionality of the data set and capture the spatiotemporal patterns, and
(b) k-means clustering to identify common regional patterns of variability across the EOFs.

2.3.1. EOF and REOF Analysis

Compared to supervised learning, where model performance is evaluated by a set of metrics (e.g., root-mean-square
error) against validation data sets, unsupervised learning does not lend itself to quantitative evaluation. The prin-
cipal component analysis (PCA) and its variant “varimax rotated PCA” have been widely applied in atmospheric
and climate research, such as decomposing sea surface temperature (Lian & Chen, 2012) into REOFs to determine
modes of variability. Motivated by a previous application of REOFs on the observed patterns of surface ozone (O,)
in the eastern United States (Fiore et al., 2003, 2022), we first applied PCA to derive the EOFs. The first four EOFs
capture 55% of the variance in daily PM2.5 (Figure 1a). As the 5th EOF explains <5% additional variance, we select
the first four EOFs and apply a varimax rotation which re-distributes the explained variance among the retained
EOFs (Figure 1b). This approach should better identify regions where day-to-day variations are occurring coher-
ently, as we might expect to occur on regional scales under the influence of common large-scale weather patterns.

2.3.2. k-Means Clustering

The k-means clustering is an unsupervised learning approach and has been applied for ecoregion delineation
(Kumar et al., 2011), environmental risk zoning (Shi & Zeng, 2014), and aerosol mixing state regionalization
(Zheng et al., 2020). Qualitatively, we gauge successful implementations of clustering by the emergence of
spatially contiguous regions without the direct guidance of spatial information (e.g., providing the algorithm
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Table 1
Features (Fields) Definitions
Temporal
Type Feature (fields) Description resolution
Meteorological T2M 2-m air temperature Daily and
RH 2-m relative humidity Tty
PBLH Planetary boundary layer height
UloM 10-m eastward wind
VIiOM 10-m northward wind
PRECTOT Total precipitation
Satellite (aerosol) AOT_C Aerosol optical thickness (or AOD) at 550 nm
AOT_DUST_C Aerosol optical thickness (or AOD) of dust at 550 nm
Satellite (trace gases) CO_trop tropospheric vertical column of CO
SO,_trop tropospheric vertical column of SO,
NO,_trop tropospheric vertical column of NO,
CH,O_trop tropospheric vertical column of CH,O
NH,_trop tropospheric vertical column of NH,
Emission EmisDST_Natural Dust emissions from natural sources (EmisDST1_Natural + EmisDST2_Natural + EmisDST3_
Natural + EmisDST4_Natural), number indicates GEOS-Chem size bin
EmisNO_Fert NO emissions from fertilizer
EmisNO_Lightning NO emissions from lightning
EmisNO_Ship NO emissions from ships
EmisNO_Soil NO emissions from soil
EmisBC_Anthro Black carbon aerosol emissions from anthropogenic sources (EmisBCPI_Anthro + EmisBCPO_ Monthly

EmisBC_BioBurn

EmisOC_Anthro

EmisOC_BioBurn

EmisCH,O_Anthro
EmisCH,O_BioBurn
EmisCO_Anthro
EmisCO_BioBurn
EmisCO_Ship
EmisNH,_Anthro
EmisNH,_BioBurn
EmisNH,_Natural
EmisNO_Aircraft
EmisNO_Anthro
EmisNO_BioBurn
EmisSO,_Aircraft
EmisSO,_Anthro
EmisSO,_BioBurn
EmisSO,_Anthro

Anthro), “PI” refers to “hydrophilic” and “PO” refers to “hydrophobic”

Black carbon aerosol emissions from biomass burning
(EmisBCPI_BioBurn + EmisBCPO_BioBurn)

Organic carbon aerosol emissions from anthropogenic sources
(EmisOCPI_Anthro + EmisOCPO_Anthro)

Black carbon aerosol emissions from biomass burning
(EmisOCPI_BioBurn + EmisOCPO_BioBurn)

Formaldehyde (CH,0) emissions from anthropogenic sources
CH, O emissions from biomass burning
CO emissions from anthropogenic sources
CO emissions from biomass burning

CO emissions from ships

NH, emissions from anthropogenic sources
NH, emissions from biomass burning

NH, emissions from natural sources

NO emissions from aircraft

NO emissions from anthropogenic sources
NO emissions from biomass burning

SO, emissions from aircraft

SO, emissions from anthropogenic sources
SO, emissions from biomass burning

SO, emissions from anthropogenic sources

Note. All fields are taken from the GEOS-Chem simulation; meteorological data and emissions fields are input to the chemical transport model simulations whereas

the column concentrations are simulated output.
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Figure 1. The workflow of delineating geographical regions. (a) Principal component analysis to derive the Empirical Orthogonal Functions (EOFs) that capture over
50% of the variance (first four EOFs); (b) varimax-rotated loadings for the selected EOFs; (c) weighted averaged loadings for the selected REOFs; (d) “Elbow method”
to determine the number of regions (clusters); (e) regions based on k = 6 from k-means clustering; (f) four regions that intersect with India's land pixels.

with latitude and longitude). We then multiply the EOF loadings by the corresponding explained variance to
produce “weighted REOFs” (Figure 1c) as the input for the k-means clustering so that Euclidean distances among
them correctly capture the relationships with respect to the original feature space. We use the “elbow method”
(Figure 1d) to identify an optimal trade-off point and select six clusters (Hastie et al., 2009). Then we select four
regions that intersect with India's land pixels as our study areas. Note that the four regions (Figure le) contain
not only India but also nearby countries, such as Bangladesh, Nepal, and Myanmar. Additionally, Region C (the
union of four regions) and Region A (India and its neighbors, including all land grid cells within the nested grid
of the simulations) are considered in this study to examine patterns at various spatial scales (see Section 2.4).

2.4. Automated Machine Learning (AutoML)

Rather than using a specific machine learning approach (e.g., RF) to build regression models and quantify the
importance of various features (fields), here we use a lightweight Python library “FLAML” (a Fast and Light-
weight AutoML library) (Wang et al., 2021) as the tool for the AutoML task. This library chooses a search order
optimized for both computational cost and model error, and selects the learner, hyperparameters, sample size, and
resampling strategy iteratively. When tested on a large open-source AutoML benchmark, FLAML has superior
performance compared to the top-ranked AutoML libraries, but with much smaller computational and time budg-
ets (Wang et al., 2021). Given our modeling formulation, we configured the AutoML for a regression task with
“auto” for the estimator list, optimizing the R?> metric, and assigned a time budget of “5,400 s” (1.5 hr) for each
AutoML experiment. The “auto” scheme of ML estimator models consists in this library of tree-based approaches,
namely, LightGBM (Light Gradient Boosting Machine, Ke et al., 2017), XGBoost (eXtreme Gradient Boosting,
Chen & Guestrin, 2016), CatBoost (categorical boosting, Prokhorenkova et al., 2018), RF (Breiman, 2001), and
Extra-Trees (Extremely randomized trees, Geurts et al., 2006). We then compare the best estimator (the specific
learning algorithm/model with optimized hyperparameters) from AutoML with two baseline models: the default
configurations of XGBoost (xgboost. XGBRegressor) and RF (sklearn.ensemble.RandomForestRegressor).
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Table 2
Experimental Design and Core Questions
Feature Time scale Region
Core questions Do tropospheric trace gases improve How does the ranking of features vary at How does the ranking of features vary in different
PM2.5 estimates? different time scales? regions?
Experiments Data from the collection of all the grid - daily - E/S/W/N: individual region from Figure 1f
cells falling into a certain region: - Monthly
- with trace gas columns - C: the union of four regions (E + S + W + N)

- without trace gas columns but with

AODs

- without trace gas columns and without

AODs

- A: India and the neighboring countries (all land grid
cells from the simulations, including Region C)

2.5. Experimental Design

We conduct a series of comparisons and answer three core questions by using the best estimators trained from
AutoML (Table 2). First, the maximum benefit of tropospheric trace gas columns (using modeled proxies as
described in Section 2.2) for surface PM, 5 estimates can be determined by assessing the improvement in estima-
tor performance when trace gas columns are used as features, in addition to meteorological variables, emissions,
and AOD. We also test the model performance in the absence of AOD (removing total and dust AOD) when trace
gases, meteorological variables, and emissions are available. Second, the same feature combination but different
data (monthly vs. daily) can be used to estimate the maximum information content possible from tropospheric
trace gas columns and other input variables (using “perfect” model data sets) at different time scales. Monthly
estimates, in comparison to daily estimates, attempt to capture spatial patterns and seasonal cycles but are unable
to incorporate daily weather data. Third, the best estimators trained on data at different-sized regions ingested on
different temporal averaging periods (monthly vs. daily) provide insights on whether any benefit from including
tropospheric trace gas columns is spatially equivalent. Table 3 provides an overview of the training sample size
for each experiment.

2.6. Feature Importance Attribution

In Data Science, “feature importance” refers to a score that represents how useful the feature is at predicting
the target variable. However, the type of feature importance score differs for different learning algorithms and
results in values with varying orders of magnitude. For example, the feature importance of Extra-Trees is based
on “impurity” (the normalized total reduction of the mean squared error brought by that feature), LightBGM's
feature importance is by default based on “split” (the numbers of times the feature is used in a tree node in the
model), and XGBoost usually uses “gain” (the average Gini impurity/information gain across all splits the feature
is used in). However, the interpretability of machine learning models is still a challenging issue, and there is no
consensus over which technique for determining feature importance is superior. For instance, although Shap-
ley Additive exPlanations (Lundberg & Lee, 2017) is a unified approach to interpreting model predictions, the
assumption that an ML prediction can be represented by a sum of contributions from each feature may not hold
for highly nonlinear models (Gosiewska & Biecek, 2019). Therefore, we employ the default “feature importance”
attribute of the approach selected by AutoML, as it is most frequently employed by domain-specific researchers.

Then, we derive a “ranking score” metric to unify the comparison of feature importance from different learning
algorithms (e.g., Extra-Trees, LightGBM, and XGB). For each estimator, we rank the feature importance values
from lowest to highest and assign a “ranking score” to each feature based on the rank order of the corresponding

Table 3

Training Sample Size (10 Months in the Year 2015)

Time scale Region E Region S Region W Region N Region C Region A

Daily 230,128 113,392 274,816 574,256 1,192,592 2,174,512

Monthly 7,570 3,730 9,040 18,890 39,230 71,530
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Figure 2. Improved predictive capability of PM, ; estimates when adding trace gas columns to other feature types in Table 1. Estimators are trained based on (a)
Automated Machine Learning and (b) linear regression. The left and middle panels differ in time scale (daily vs. monthly), and the middle and right panels differ in
feature numbers (see Section 2.2 and Table 1). GA: both trace gas columns and Aerosol Optical Depths (AODs) are available; A: AODs are available but trace gas
columns are not available; G: trace gas columns are available but AODs are not available. Note the bars with the coefficient of determination lower than 0 are not
shown, and results are based on testing data.

feature importance value. That is, the least important feature has a score of 1, the second to least important feature
has a score of 2, and so on. As a result, ranking scores are bounded between 1 (least important) and the number
of features (most important), which converts the feature importance of different estimators to the same scale for
comparison. We also group features within the same type (Table 1) and compute the mean ranking score and the
standard deviation within each type.

3. Results and Discussion
3.1. Including Multiple Trace Gas Modeled Columns Generally Improves PM, ; Estimates

We first evaluate whether PM,  estimates improve in accuracy when we add trace gas tropospheric columns
simulated by the GEOS-Chem model to the simulated meteorological variables, AOD, and emissions. We apply
AutoML-derived nonlinear models and linear regression (LR). The coefficient of determination (R?, based on an
ordinary least-squares regression) between PM, 5 simulated by GEOS-Chem versus that predicted with machine
learning approaches is used as a metric for accuracy. These regressions provide average estimates, across the
study area and time scales, of the association between trace gas columns and PM, ;. As a comparison, we also
apply the same approach to AODs.

While the “best estimator” from AutoML varies in space and time, we observe an increase in R?> when simulated
columnar trace gases are included in nonlinear and LR models (Figure 2), implying that trace gases contain
signatures useful for PM, ; estimation. However, including AODs as features in the presence of trace gas columns
does not guarantee improved performance, and sometimes impairs the model performance (e.g., the difference
between “GA” (both trace gas columns and AODs are available) and “G” (trace gas columns are available but
AODs are not available) in monthly Region N). Given that the models with nonlinear relationships exhibit higher
R? compared to the linear model, here we focus on the results from AutoML. The comparisons between “GA”
and “A” with different ML model assumptions are discussed in Section 3.4. Some emission inventories in the
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model are only available at the monthly resolution, while others vary day-by-day. By comparing the results of
monthly PM, ; estimates using only the emissions available at daily time scales (“Monthly (same features as
Daily)”) versus all emission inventories (“Monthly”), we find that using “all emission inventories” yields higher
R? (e.g., 0.02 to 0.15 improvement in R? for “GA”) at monthly time scales, implying that more accurate emission
inventories (captured by the monthly emission features) will improve PM, ; estimates. In the following sections,
we will keep the “Monthly” results that utilized emission data available at both monthly and daily time scales for
analysis, since they yielded the best overall estimates of PM, s in this study.

The improvements in R? vary spatially and temporally at the regional scale. In Region E, adding trace gas columns
alongside AOD (GA) boosted daily R? from 0.59 to 0.74, and monthly from 0.76 to 0.93 compared to AOD alone
(A). But in Region W, the increases in R? are moderate (+0.07 for daily and +0.01 for monthly). Given that other
features already account for 86% of the variance in Region W on the monthly scale, adding trace gases only results
in marginal increases in R? (note the improvement is not a linear addition, it reconstructs the interactions among all
features, not only the interactions between other features and trace gases). Marginal increases in R? also occur for
Region N, where the daily and monthly increases are 0.06 and 0.04, respectively. The increases in R? are not propor-
tional to the baseline (without trace gases; A). For example, although the baseline monthly R? in Region S is rela-
tively low, its increase is similar to other regions. The lower R? values for monthly PM, s estimates in Region S may
be due to insufficient samples, as this region's sample size is approximately one-fifth to half that of the other regions.

When training on data from the union of our four individual regions (Region C) or all the land grid cells as a
whole (Region A), the inclusion of trace gases always contributes to a higher R?. Especially, trace gases in Region
C increased R? from 0.74 to 0.82 at the daily scale. At a larger geospatial scale (Region A), although the baseline
R? values on the daily scale (0.86) and monthly scale (0.94) are well explained by meteorological fields, emission
inventory, and AODs, the presence of trace gas columns can further explain variance (0.02 for both) in PM, 5 and
improve the estimates. However, a cost may be associated with the minor improvement, depending on the effort
required to acquire additional data. As such, it is necessary to weigh the trade-offs.

3.2. The Relative Importance of Trace Gas Columns to Accurate PM, ; Estimates Varies Spatially and
Temporally

We compare ranking scores among the types (Figure 3) and features (Figures 4 and 5), defined in Table 1, to study
the relative importance of trace gas columns for improving PM,  estimates over India, where a type or feature
with a higher ranking score indicates its higher importance compared to other types or features in the regression.
The ranking scores shown in Figures 3-5 suggest that the important features and feature interactions differ in
space and time, which may be explained by regional and temporal differences in the dominant sources and the
interactions with meteorological conditions.

On a daily scale, trace gas columns from GEOS-Chem (NO,, SO,, and CH,0) are the most important factors
that boost the performance of PM, s estimates in Region E (Figure 4). The order of other types remains similar
(Figure 3) when trace gas columns or AODs are not included as features in this region. Region S, however, shows
that the inclusion of the trace gas columns rearranges the order of feature importance among types for daily PM, 5
estimates (Figure 3). Without the use of trace gas columns to estimate daily PM, s levels, the most significant
feature type is AOD, followed by meteorological fields and emissions. When trace gas columns are considered,
the relative importance of AOD decreases, and meteorological fields (e.g., V10M and planetary boundary layer)
take precedence, implying that AOD and trace gas columns may contain redundant information over Region S.
Meteorological fields and AODs are the most important factors for PM, 5 estimates in Region W and Region N
when trace gas columns are not available. But the trace gas columns (SO,, NH,, NO,) are as important as the
meteorological fields (V10M, U10M, PBLH) when they are included, implying that both secondary aerosol
production via chemical reactions (e.g., formation of ammonium sulfate and nitrate) and physical processes (e.g.,
transport and dispersion) determine PM, ; distributions within these regions. The model trained from Region C
(four regions as a whole) shows that AODs can explain a large fraction of the variance of PM, ; when trace gas
columns are missing. However, with the presence of trace gas columns, meteorological fields are the most impor-
tant factors that modulate PM,  estimates. This discrepancy may also indicate redundant information in AODs
and trace gas columns. In a larger area (Region A), regardless of the presence of trace gas columns, meteorolog-
ical fields are the dominant features. The lower overall ranking score for either feature type when both AOD and
trace gas columns are included may be explained by the high correlation between AODs and all trace gas columns
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Figure 3. Ranking scores of Aerosol Optical Depth (AODs), meteorological fields, emission inventory, and trace gas column simulated by the GEOS-Chem model in
estimating modeled PM, ;. (a) Both trace gas columns and AODs are available; (b) AODs are available but trace gas columns are not available; (c) trace gas columns
are available but AODs are not available. Means and standard deviations of the ranking scores are derived from Automated Machine Learning-trained “best estimators”
within the same type.
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(Figure S2 in Supporting Information S1), which leads to features to be selected from either type as they contain

similar information. Notably, while daily estimates indicate that emissions are the least important features in all

cases, this could be because much of the predictive information can be inferred from the other features, due to a

scarcity of varying emission data, or because the source at daily time scales does not change spatially as much

in the model.

For monthly PM,  estimates, although the patterns of the relative importance of different feature types remain

similar among the four regions and Region C, the specific ranking order of features varies in different regions.
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Figure 4. Ranking scores of features from Aerosol Optical Depths (AODs), meteorological fields, and trace gas columns in estimating daily PM, . The ranking scores
are derived from Automated Machine Learning-trained “best estimators” that incorporate both trace gas columns and AOD, as well as meteorological fields and an
emission inventory. Ranking scores of emissions are not presented, but not all emissions have low ranking scores. For example, “EmisNO_Lightning” and “EmisNO_
Soil” lie between “RH” and “U10M” in Region E, and “EmisNO_Fert” is between “U10M” and “SO,_trop” in Region N.
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Figure 5. Ranking scores of features from Aerosol Optical Depths (AODs), meteorological fields, and trace gas columns in estimating monthly PM, 5. The ranking
scores are derived from Automated Machine Learning-trained “best estimators™ that incorporate both trace gas columns and AOD, as well as meteorological fields and
an emission inventory. Ranking scores of emissions are not presented, but not all emissions have low ranking scores.

The results can be partially related to the dominant sources. For example, a slightly lower mass fraction of sulfate
in Region W (~13% of total PM, ;) compared to other regions (14%—17%) corresponds to a lower ranking score
of “SO2_trop.” When building a model for a larger geospatial extent (Region A), the ranking score of meteoro-
logical fields declines (Figure 5). A possible reason is that the ML model for Region A assumes the same inter-
actions among features for all regions and gives lower importance to meteorological variables compared to other
types. But in reality, meteorology varies across the country and different meteorological factors may play differ-
ent roles in different regions. On the other hand, monthly averaged precipitation and relative humidity in Region
A are less correlated with PM,  (Figure S3 in Supporting Information S1) than in other regions on monthly or
daily scales, implying that information about processes (e.g., wet deposition) is diluted.

3.3. Implications for PM, ; Speciation

Along with the feature importance generated by AutoML, we use Spearman's rank correlation coefficient to
infer the chemical composition of PM, ;. Note that feature importance (or ranking score) and Spearman’s rank
correlation coefficient address different aspects of our analysis. Feature importance concerns the interactions
among features and features' contribution to the predictive capability, but it does not reveal the individual rela-
tionship between target variable and each feature. On the other hand, Spearman’s rank measures the monotonic
relationship (whether linear or not) between two variables but does not necessarily inform on its significance in
a predictive model with other features. Here we show that, in the regions where trace gas columns are associated
with higher ranking scores, the correlation between trace gas columns and PM, ; are also high. We find that
tropospheric columns of SO, and NO, contribute most to the variation of daily and monthly PM, ; estimates
in Region E based on ranking scores, along with the highest Spearman’s rank correlation coefficients. The
agreement between AutoML and Spearman’s rank correlation suggests secondary inorganic PM (sulfate and
nitrate) are critical species modulating the PM, 5 concentrations in Region E. The results are consistent with
the identification of the source of PM, 5 in North-Eastern India, where multivariate analysis of the collected
samples indicates that sulfate and nitrate contribute the most to the variations (Khare & Baruah, 2010). Another
study utilizing the MERRA-2 database indicates that SO, contributed to 45% of AOD over the northeastern
region of India (Pathak & Bhuyan, 2022). Thus, the agreement between the ranking scores and the Spearman's
correlations provide evidence for chemical speciation of PM, 5 and thus potential to infer source attribution in
the subregions. Figure 6 also suggests that SO, (Region S) and CO (Region W and Region N) have higher corre-
lation coefficients with PM, 5 compared to other trace gas columns, consistent with the monthly ranking scores
(Figure 5). The findings suggest that sulfate may modulate monthly PM, ; variability in Region S, whereas the
co-variation of the primary pollutant CO with monthly PM, ; may indicate co-emission or co-production with
PM, 5 in Regions W and N.
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Figure 6. Spearman’s rank correlation coefficient between PM, ; and AODs, meteorological fields, and trace gas columns.

3.4. AutoML Consistently Outperforms Baseline Machine Learning Models

We use the independent testing data to evaluate the advantage of using AutoML by comparing the “best esti-
mator” from AutoML with LR and two commonly used nonlinear ML models: RF and XGBoost (XGB). As
expected, the performance of ML models varies case by case (Figure 7a). For example, although the performance
of RF is generally worse than XGBoost, it outperforms XGBoost when estimating monthly PM, ; in Region N.
Therefore, it is not the best practice to implement the same machine learning algorithm for every region. Instead,
the best estimators trained by AutoML outperform RF, XGBoost, and LR, especially at the regional scale. As
shown in Figure 2, XGBoost (with improved hyperparameter configurations) is selected as the best estimator for
Region E on a daily scale, while LightGBM estimators are selected for other regions. On the monthly scale, the
best estimators for the same region differ. For instance, Catboost estimators, which are not chosen on a daily scale,
are selected as the best estimators for Regions E, W, N, and C. Because AutoML consists of a set of different
learning algorithms and explores several possible hyperparameter combinations of each algorithm when training
the estimators, it is at least no worse than user-chosen models. We also show that an increase in data volume (e.g.,
daily compared to monthly) is likely to narrow the gap in R?, highlighting the importance of attaining a large
quantity of high-quality data for data-driven model development.

To assess whether trace gas columns can improve the PM, ; estimates, we repeat the regressions by implementing
the above learning algorithms on a daily and monthly scale without trace gas columns, and calculate the difference
in R? (Figure 7b). We show that no matter the choice of learning algorithms, including trace gas columns consistently
results in a higher R?. Although the most obvious improvements come from LR, the best estimators from LR are in
general worse than the nonlinear models, confirming that the assumption of a nonlinear relationship between features
and PM, ; is more appropriate. In accordance with the present results, previous studies (e.g., Porter & Heald, 2019;
Tai et al., 2010) have demonstrated that the correlations between PM and meteorological conditions are complex.

3.5. Is “Big Data” Always Better?

The above analysis has shown that a larger volume of data at the same time scale (e.g., Region A) results in a
better predictive capability compared to separate models for each of its subregions. However, such comparisons
are potentially misleading, because the testing data sets are different and model performance is “averaged’ across
regions. Two questions are raised here: (a) How well does a “generalized model” trained on the larger region
perform when applied to the sub-regions it encompasses (“‘spatial mismatch’)? (b) What role do trace gas prod-
ucts play in the application of a “spatially mismatched”” model? Both questions are in line with the emphasis of
Data-Centric Al as a generalized model attempts to make use of the additional available samples to more robustly
infer the predictive relationships, but it is possible that only a part of the data is indeed useful. On the other hand,
while the first principles (e.g., chemical reactions) should be universal, due to incomplete features such as human
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Figure 7. Performance of different estimators in estimating daily and monthly PM, ;. (a) Estimators trained from the data with trace gas columns; (b) Increases in R”
from (a) compared to the estimators without considering trace gas columns as features. Estimators are trained from Automated Machine Learning (AutoML), linear
regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGB).

activities, the underlying physical and chemical processes embedded in different places are distinct. For example,
the models are unaware of prior knowledge such as the number of vehicles and power plants, and the complex
regional meteorological processes, which would suggest using a model tailored to each region.

Here we assess the applicability of the “best estimators™ trained from larger areas (Region A and Region C) by
applying them back to the sub-regions (E, S, W, N). The results (Figure 8a), however, suggest that the general-
ized model (which includes every grid cell in the sub-regions) is not universally the best solution. For example,
incorporating data from other regions (Region C) can improve the monthly PM, ; estimates in Region S, but the
estimates suffer as a result of gaining more irrelevant data (Region A), implying that fundamentally different
governing processes control PM, 5 variability in that region. Such noise has the potential to mislead machine
learning algorithms. On the contrary, the monthly PM, ; estimates in Region N benefit from more information.
As aresult, models that perform well at larger geographic scales may ensure generally good performance overall,
but fail to capture the specificity in pollutant sources and meteorological processes for each of their subregions,
because tailored models may be necessary if pollutant sources and meteorological processes vary from region
to region. Even if we “mistakenly” apply the model across spatial scales, we find that the presence of trace gas
columns benefits models (Figure 8b). In our cases, including trace gas columns as features does not impair
predictive capability.

4. Conclusions

We use an Automated Machine Learning (AutoML) approach on a modeling testbed to evaluate the information
content of tropospheric trace gas columns for fine particle estimates in India. We quantify the relative information

ZHENG ET AL.

13 of 17

‘€ “€T0T ‘99pTTH6 1

:sdiy wouy papeoy!

ASUAIIT SUOWILO)) dA1IRAIL) a[qearjdde ayy Aq PauIaA0S ale sa[oILIE () ‘asn JO Sa[NI 10§ AIeIqI] dul[uQ) A3[IA\ UO (SUOIIPUOD-PUE-SULId}/W0d K[ 1M’ Areiqijaurjuo//:sdny) suonipuoy) pue sula |, oy 39S *[$707/10/€0] uo Areiqry autjuQ L1\ ‘saueiqi] Ajsiaatun) eiquino)) £ 660£00SINTTOT/6T01 0 1/10p/ w0 Kafim”



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2022MS003099

Coefficient of Determination

Coefficient of Determination

0.8 1

0.6 1

0.4 1

0.2 1

0.0-

Daily Monthly

region
N R
mm C
- A

1 region |
mm R
] N C
. A

S W N E S W N
Region Region

Figure 8. Performance of estimators in estimating daily and monthly PM, ; across spatial scales. (a) Estimators trained from the data with trace gas columns; (b)
Increases in R? from (a) compared to the estimators without considering trace gas columns as features. Estimators are trained from the region (R), the group of regions
(C), and all land grid cells (A) and applied back to each region. The differences between the predictions with and without trace gas columns as features are significant,

based on Wilcoxon signed-rank test.

content of trace gas columns, AODs, meteorological fields, and emissions for four sub-regions within India, and
on daily versus monthly time scales. As a byproduct, an unsupervised-learning-based regionalization strategy is
developed to delineate geographical regions with similar daily patterns of variability for analysis.

Our results suggest that incorporating trace gas modeled columns enhances PM, ; estimates in general, regardless
of model assumptions. The enhancements in predictive capability differ in both space and time. Using the ranking
scores and Spearman’s rank correlation, we can infer the possible particle composition, and thus a broad charac-
terization of PM, 5 sources. For example, we infer that PM, ; variability in Region E (see Figure 6) is modulated
by secondary PM (sulfate and nitrate). However, in Region W and Region N, primary pollutants—as indicated
by a strong correlation with CO—may modulate monthly PM, ; variability, whereas meteorological processes
influence the daily PM, , variability.

Our comparison of AutoML-derived models against selected baseline ML models demonstrates that AutoML
is at least as good as user-chosen models. We ask the question “Is Big Data always better?”” and find a nuanced
answer that is regionally dependent. Even in these “spatially mismatched”” models, however, we show that incor-
porating trace gas products can still improve PM, 5 estimates across India.

Additional analysis using AOD data from the local 1:30 p.m. overpass and the mean of the 10:30 a.m. and
1:30 p.m. overpasses demonstrates that our results are consistent regardless of the local overpass time of AOD
employed. Figures S4—-S9 and Table S1 in Supporting Information S1 illustrate for all of these combinations that
estimator performance improves when trace gas columns are utilized as features and AutoML is implemented,
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for all three AOD overpass temporal sampling approaches. When a month (October) is shifted from training to
testing data, our conclusions remain unchanged (Figures S10-S11 in Supporting Information S1). The modeling
testbed, like any other modeling-based study, is necessarily hampered by simulation accuracy. Considering the
biases in chemical transport models, there may be a discrepancy when applying the models developed from our
pseudo-data sets (model simulations) to actual satellite retrievals. The variable importance identified in this study
is limited by the physical and chemical representations and their uncertainties in the chemical transport model.
Real satellite observations and ground measurements are needed to evaluate and improve such “simulation
data-driven” models, as well as to compare our PM, 5 estimations with those of other PM, s products. However,
the idealized pseudo-observations used in this work demonstrate potential for satellite retrievals of tropospheric
trace gases to improve fine particle estimates in India and may contain information to interpret their origin. Our
analysis also highlights the promising application of AutoML in atmospheric and environmental research. Future
PM, ; estimates, for example, may benefit from the trace gas columns acquired by high-resolution geostationary
satellites.

Data Availability Statement

Scripts and data to reproduce the results and figures are preserved at https://doi.org/10.5281/zenodo.6363824
(Zheng, 2022) or https://github.com/zzheng93/code_DSI_India_AutoML. The raw data from GEOS-Chem simu-
lations used for Automated Machine Learning and analysis in this study are available at https://doi.org/10.7916/
nwx1-jt94 (Zheng et al., 2022).
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