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A B S T R A C T

A new method is proposed for simulating the energy dissipation resulting from depth-limited wave breaking, in
combination with a universal breaking onset criterion, in two-dimensional (2D) fully nonlinear potential flow
(FNPF) models, based on a non-dimensional breaking strength parameter. Two different 2D-FNPF models are
used, which solve the Laplace equation based on Chebyshev polynomial expansions or a boundary element
method. In these models, impending breaking waves are detected in real time using a universal breaking
onset criterion proposed in earlier work, based on the ratio of the horizontal particle velocity at the crest 𝑢,
relative to the crest velocity 𝑐, 𝐵 = 𝑢∕𝑐 > 0.85. For these waves, wave energy is dissipated locally with an
absorbing surface pressure that is calibrated using an inverted hydraulic jump analogy. This approach is first
validated for periodic spilling breakers over plane beaches and bars, for which results are shown to be in good
agreement with experimental data. Recasting this breaking dissipation model in terms of a non-dimensional
breaking strength, the hydraulic jump analog is shown to provide results similar to those of a constant breaking
strength model, and to yield good agreement for periodic plunging breakers as well. The same approach is
then applied to irregular waves shoaling over a submerged bar, and is shown to agree well with experimental
data for the wave height, asymmetry, skewness, and kurtosis. Future work will extend this 2D breaker model
to cases of three-dimensional (3D) breaking waves, simulated in existing 3D-FNPF models, in shallow or deep
water conditions.
1. Introduction

Once generated by wind, ocean waves evolve with complex kine-
matics and dynamics, as a result of nonlinear and dispersive effects,
bathymetric variability, and dissipation from wave breaking and bot-
tom friction, to name a few. Accurate simulations of this evolution
are crucial for predicting phase-resolved surface wave properties in
complex sea states, which govern wave interactions with fixed and
floating objects, including offshore renewable energy systems, and surf
zone parameters that drive nearshore currents and sediment processes,
whose understanding and prediction are key to coastal management
decisions.

Wave processes in complex sea states have already been simu-
lated to some extent, based on equations representing the complete
physics (i.e., derived from Navier–Stokes equations for single or mul-
tiple fluids). However, such simulations are highly computationally
intensive and, hence, limited to small spatial and temporal scales. In
contrast, operational models have been developed based on equations
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that simplify the wave physics, but nevertheless can simulate realisti-
cally many ocean wave processes over large areas and for long time
periods. In such models, which are usually restricted to a specific
wave regime (e.g., shallow or deep water conditions, small amplitude
waves), important processes missing from the equations are param-
eterized in an ad-hoc manner, often on the basis of semi-empirical
terms (e.g., breaking or bottom friction dissipation, the presence of
structures). In this category are the standard phase-averaged wind
wave models that are based on a spectral representation of the wave
energy as a function of frequency and direction (e.g., STWAVE, Smith
et al., 2001; TOMAWAC, Benoit et al., 1997; WAVEWATCH III, Tolman,
2009).

However, in many engineering applications, phase-resolved wave
properties are required in real time. Thus, there is a need for models
in which the wave elevation and kinematics are predicted over space
and time, and in which the complex physics resulting from wave
nonlinearity and fluid interactions with structures and the seafloor
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can be accurately represented. Examples of problems requiring the use
of such models include ship or ocean energy system seakeeping and
motion control/optimization, coastal wave runup, and the prediction
of extreme wave loads on ocean structures.

Phase-resolved models take many forms, depending on their domain
of application. Ocean waves are often classified by the depth 𝑑 to
wavelength 𝐿 ratio. In deep water, for 𝑑 ≳ 𝐿∕2, where nonlinear-
ity is usually weak but dispersive effects are important, one might
apply models based on the linear mild-slope equation (MSE), such
as REFDIF (Kirby and Dalrymple, 1983). In shallow water, for 𝑑 ≲
𝐿∕20, where nonlinearity and bottom effects dominate, and dispersive
effects become less significant, models based on the Nonlinear Shal-
low Water (NSW) equations, which assume a uniform velocity over
depth, could be an optimal choice (e.g., Stelling and Zijlema, 2003;
Zijlema and Stelling, 2008). Lastly, in intermediate water depth, where
both wave nonlinearity and dispersion are important, Boussinesq-type
models (Kirby, 2016) that feature both nonlinearity and dispersion
to some extent, based on specifying a cutoff on higher-order terms
representing these processes, are preferred provided that the horizon-
tal velocity varies only moderately with depth such that it can be
described by a polynomial approximation (e.g., Madsen and Schäffer,
1998; Agnon et al., 1999; Madsen et al., 2002; Kennedy et al., 2000)
and fully nonlinear Serre–Green–Naghdi-type models (e.g., Wei et al.,
1995; Cienfuegos et al., 2006; Bonneton et al., 2011; Shi et al., 2012;
and Zhao et al., 2014). Boussinesq-type models are typically developed
based on a perturbation expansion of the Fully Nonlinear Potential flow
(FNPF) equations (Kirby, 2016), with wave breaking, bottom friction,
and horizontal vorticity effects represented by terms added to the
equations to parameterize these physical processes (Kennedy et al.,
2000; Shi et al., 2012; Kazolea and Ricchiuto, 2018). These models
have proved accurate in simulating laboratory experiments in which
waves are generated in deep to intermediate water conditions and
propagate into shallow water.

Models that directly solve the FNPF equations (e.g., Dold and Pere-
grine, 1985; Dommermuth and Yue, 1987; Grilli et al., 1989; Grilli
and Subramanya, 1996; Grilli et al., 2001; Bingham and Zhang, 2007;
Belibassakis and Athanassoulis, 2011; Yates and Benoit, 2015; Ducrozet
et al., 2017) are more computationally demanding than MSE, NSW,
or Boussinesq-type models, but can accurately simulate waves in all
water depth regimes up to wave breaking, since no assumptions are
made about the wave nonlinearity or dispersion. FNPF models assume
the flow is irrotational and, hence, are governed by Laplace’s equation
for the velocity potential, which makes them more computationally
efficient than full Navier–Stokes (NS) models. Among FNPF models,
those based on the Higher-order Spectral (HOS) method (Dommer-
muth and Yue, 1987) are notably very efficient, but can typically
only be applied to waves propagating in constant depth and up to a
certain wave height, unless a modified form of the models is used,
which makes them less efficient (Ducrozet et al., 2017). FNPF models
(except HOS-based models that require spatial periodicity) can also
simulate wave interactions with structures and wave shoaling over
an arbitrary bathymetry (e.g., slopes and/or bars), up to and into
breaking/overturning (e.g., Grilli et al., 1994b,a, 1997, 1998, 2004;
Grilli and Horrillo, 1999; Guyenne and Grilli, 2006; Fochesato et al.,
2007; Pomeau et al., 2008). However, FNPF models become unstable
when waves begin to break and overturn, unless this process can
be prevented by artificially specifying the dissipation of wave energy
caused by breaking (e.g., Guignard and Grilli, 2001; Grilli et al., 2020,
for a review).

As noted before, many NS models of wave breaking have been
developed, using various numerical schemes and methods, including
two-fluid models that represent the air and water (e.g., Guignard et al.,
2001; Lachaume et al., 2003; Abadie et al., 2010; Banari et al., 2014;
Derakhti et al., 2016), which can accurately simulate wave breaking
either in direct NS simulations or based on standard turbulence models
2

such as Large Eddy Simulation (LES; e.g., Harris and Grilli, 2014).
However, the spatial resolution (and hence computational time) re-
quired to apply NS models currently restricts their use to small spatial
and temporal scales and thus often to academic or idealized problems.
Therefore, considering the large range of engineering applications in-
volving strongly nonlinear and breaking waves, it is highly desirable
to extend FNPF models to adequately model breaking waves and their
related energy dissipation.

Earlier work has simulated the energy dissipation resulting from
breaking waves in FNPF models (e.g., Guignard and Grilli, 2001; Seif-
fert et al., 2017; Seiffert and Ducrozet, 2018; Papoutsellis et al., 2019;
Simon et al., 2019; Grilli et al., 2020), but here a more general
and accurate way of both detecting breaking onset in any conditions
(i.e., wave types, bathymetry, and breaker types), including for non-
linear irregular wave trains, and simulating the corresponding energy
dissipation in a more realistic manner are proposed. The present paper
only describes two-dimensional (2D) models featuring 2D breaking
waves, and the extension to three-dimensions (3D) will be presented
in future work.

FNPF models use fully nonlinear kinematic and dynamic bound-
ary conditions that are typically derived based on the formulations
of Zakharov (1968) or Longuet-Higgins and Cokelet (1976). With the
Eulerian framework of Zakharov (1968), the free surface elevation is
assumed single-valued, and thus waves can be modelled only until the
instant that the free surface becomes vertical (e.g., Dommermuth and
Yue, 1987; Craig and Sulem, 1993; Bingham and Zhang, 2007; Yates
and Benoit, 2015; Belibassakis and Athanassoulis, 2011). In models
that follow the Eulerian–Lagrangian framework of Longuet-Higgins and
Cokelet (1976), the free surface can be multivalued (e.g., for plunging
breakers) and hence accurately simulated (in comparison to experi-
ments) until the breaker jet impacts the free surface (e.g., in 2D, Dold
and Peregrine, 1985; Grilli et al., 1989; Grilli and Subramanya, 1996;
Grilli et al., 1997, 1998, 2004; or, in 3D, Guyenne and Grilli, 2006;
Fochesato et al., 2007).

In the present study, two 2D-FNPF models are modified and used
to demonstrate the application of a novel combination of breaking
onset/termination criteria and a breaker model: (i) an Eulerian model
based on a finite difference approach, Misthyc (Yates and Benoit,
2015), and (ii) an Eulerian–Lagrangian model based on a boundary ele-
ment approach, first proposed by Grilli et al. (1989), hereafter referred
to as the ‘‘numerical wave tank’’ (NWT). Although the latter model can
simulate all the cases presented here, some wave propagation cases can
be simulated more efficiently by one of the models. For instance, Mis-
thyc, similar to other models of this type (e.g., Dommermuth and Yue,
1987; Bingham and Zhang, 2007; Engsig-Karup et al., 2009; Ducrozet
et al., 2017) that only apply to single-valued free surfaces, may be faster
for larger domain sizes. In contrast, the higher-order Boundary Element
Method (BEM) used in the NWT can simulate the exact geometry
of a moving wavemaker, or complex bottom geometries, as well as
multivalued free surfaces. Both types of models are equally able to
simulate accurately highly nonlinear and dispersive waves propagating
over arbitrary bathymetries. In both models, when waves are detected
to approach breaking, an energy dissipation is explicitly specified to
prevent wave breaking (e.g., instability or overturning) from occurring,
which would interrupt the simulations. This is done by first identifying
where and when in the computational domain impending breaking
waves occur, using a breaking onset criterion, then applying a physi-
cally realistic energy dissipation onto these waves, commensurate with
their parameters, and finally defining where and when this dissipation
should cease to be applied, using a breaking termination criterion.

Wave breaking onset (or impending breaking) refers to the location
in space and moment in time where and when some properties of
an individual wave reach values indicating that the wave will soon
begin to break and dissipate some of its energy through turbulence
and viscosity. In a NS model of breaking waves, this process is in-
cluded in the model equations and typically occurs automatically in

the simulations. In models with reduced physics, such as FNPF, explicit
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breaking criteria must be defined to detect impending wave breaking.
Wave breaking criteria usually depend on local wave properties such
as the crest kinematics, steepness, surface slope, or curvature reaching
a specified threshold value. Since the physics of wave breaking varies
from deep to shallow water, until recently, different breaking criteria
have been proposed to simulate different wave breaking regimes. In
deep water, wave breaking is usually attributed to exceeding a crit-
ical wave steepness, and is referred to as steepness-limited breaking.
In shallow water, wave breaking is usually induced by bathymetric
effects, occurring during the shoaling process as waves propagate into
shallow water, and is referred to as depth-limited breaking. In the
latter case, the type of wave breaking (e.g. spilling or plunging) and
the energy dissipation intensity depend on the incident wave train and
wave shoaling process (e.g. bottom slope). Spilling breaking generally
occurs over mild slopes, plunging breaking over steeper slopes, and
surging breaking over very steep slopes (see, e.g., Grilli et al., 1997
for solitary wave shoaling). Accordingly, many different definitions and
criteria have been proposed for estimating breaking onset, and they
can be broadly classified (Derakhti et al., 2020) as geometric (e.g.,
Schäffer et al., 1993), kinematic (e.g., Wei et al., 1995; Kurnia and van
roesen, 2014), or dynamic (e.g., Barthelemy et al., 2018) criteria. For
epth-limited breaking, the geometric and kinematic criteria are often
sed (Grilli et al., 1997, 2020; Papoutsellis et al., 2019; Simon et al.,
2019), but they require an empirical constant that is case-specific and
depends on the bathymetry and incident wave conditions. Barthelemy
et al. (2018) and Derakhti et al. (2020) recently showed that there
ppears to be a universal breaking onset criterion for an evolving crest
n the form of the ratio of the horizontal particle velocity at the crest to
he wave (or crest) celerity, 𝐵 = 𝑢∕𝑐 reaching a threshold value 𝐵𝑡ℎ =
.85. This criterion indicates that, when the wave crest reaches this
𝑡ℎ value, the wave will inevitably evolve towards breaking, although
t does not necessarily start breaking at the threshold. Seiffert et al.
2017) and Seiffert and Ducrozet (2018) recently used this criterion in
HOS model, coupled with an energy dissipation model based on an
ddy viscosity, and they demonstrated the accuracy of this criterion for
ocused wave trains breaking over a flat bottom in intermediate water
epths with comparisons to laboratory experiments. This breaking
nset criterion based on 𝐵 is used in the present work.
Energy dissipation resulting from wave breaking is complex and

ot yet fully understood, thus simulating it in reduced-physics models,
ncluding those based on FNPF, has often relied on analogies with
ell-known dissipative phenomena, such as a hydraulic jump (HJ;
.g., Guignard and Grilli, 2001). For example, a weak spilling breaker
issipates energy as white water rolls on the front face of the wave
nd, by moving in a frame of reference at the wave speed, this process
esembles a bore or a HJ. Svendsen et al. (1978) and Stive (1984)
ompared the energy dissipated by a spilling breaker with that of a bore
nd estimated an empirical constant, 𝜇 ≃ 1.5, quantifying the ratio of
nergy dissipated by the breaking wave to that of an equivalent HJ.
his analogy has been successfully used to simulate spilling breaking
ave dissipation in FNPF models (Grilli et al., 2020; Papoutsellis et al.,
019; Simon et al., 2019); it will also be applied in the present work.
lthough the HJ analog approach should be less accurate for plunging
reakers, because breaking is more violent and the overturning surface
o longer resembles a hydraulic jump, it appears adequate in most
ases. However, to simulate long-term irregular sea states, where both
pilling and plunging wave breaking occurs, it is necessary to develop
breaker model that does not rely on test case dependent empirical
onstants.
Over the past few decades, many advances have been made in

arameterizing wave breaking dissipation. Duncan (1983) conducted
series of experiments on steady breaking waves induced by fully
ubmerged towed 2D hydrofoils, and quantified for these cases the non-
imensional breaking strength parameter 𝑏 (the wave breaking energy
ormalized by the fifth power of the wave celerity). Similarly, Phillips
3

1985), formulated spectral breaking strength as a function of wave
peed using 𝑏 in deep water for irregular wind-generated waves in the
cean. Based on laboratory experiments, Romero et al. (2012) followed
p on this idea for deep water focused breaking waves, defining an
mpirical curve for 𝑏 as a function of the maximum surface slope
f the focusing wave packet. Derakhti et al. (2018a) proposed an
mpirical relationship for parameterizing the breaking strength 𝑏 as
function of the time rate of change 𝑑𝐵∕𝑑𝑡 of the breaking onset
arameter (Barthelemy et al., 2018) at breaking onset 𝐵 = 𝐵𝑡ℎ, for
eep or intermediate water 2D/3D focused waves. In this approach,
y estimating the onset kinematics, the total energy dissipation of the
esulting focused breaking can also be estimated.
To utilize this new criteria in FNPF models, a universal breaking

arameterization extending from shallow to deep water conditions is
eeded, and the instantaneous energy dissipation needs to be specified
xplicitly. The objectives of the current study are thus to propose a
niversal breaking parameterization for FNPF models, with a particular
ocus in depth-limited breaking waves.
The paper is organized as follows. The formulations of the two

NPF models used are briefly described in Section 2. The breaking
nset/termination criteria and the breaking dissipation models are
escribed in Section 3, including the hydraulic jump model and a newer
ynamic model proposed by Derakhti et al. (2018b). Applications of
oth models are presented in Section 4 for several regular and irregular
epth-limited breaking wave cases. Finally, the results are discussed
nd conclusions drawn in Sections 5 and 6.

. FNPF models

FNPF models compute the irrotational motion of an incompressible
nd inviscid fluid, for which the fluid velocity 𝐮 is represented by a
calar potential 𝜙, with 𝐮 = ∇𝜙. For such flows, mass conservation
ecomes the Laplace equation for the potential,

2𝜙 = 0 (1)

n the fluid domain 𝛺 of boundary 𝛤 .
For two-dimensional (2D) transient free surface flows in a vertical

lane (𝑥, 𝑧), with a single-valued free surface elevation 𝜂(𝑥, 𝑡), the
inematic and dynamic free surface boundary conditions are,

𝜕𝜂
𝜕𝑡

=
𝜕𝜙
𝜕𝑧

−
𝜕𝜂
𝜕𝑥

𝜕𝜙
𝜕𝑥

(2)
𝜕𝜙
𝜕𝑡

= −𝑔𝜂 − 1
2
|∇𝜙|2 −

𝑝𝑎
𝜌
, (3)

on the boundary 𝛤𝑓 and where 𝑔 denotes the gravitational acceleration,
𝜌 is the fluid density, and 𝑝𝑎 is the free surface (atmospheric) pressure.

For typical 2D wave propagation problems, the fluid domain has
an impermeable bottom boundary where a no-flow, Neumann bottom
boundary condition is specified as,

𝐮 ⋅ 𝐧 =
𝜕𝜙
𝜕𝑛

= 0 (4)

on the boundary 𝛤𝑏, where 𝐧 denotes the outward unit normal vector
to the boundary. Typical conditions at the lateral boundaries of the 2D
domain will be periodicity, a wave maker for generating waves, or an
absorbing beach for dissipating waves. The details of these boundary
conditions are provided in Section 4 for each specific application.

In the following subsections, the equations are briefly presented,
and the numerical methods are summarized for the two existing FNPF
models that use different versions of the free surface boundary condi-
tions and different numerical methods for solving Laplace’s Equation
(Eq. (1)).
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2.1. Misthyc

The Misthyc FNPF model, developed by Yates and Benoit (2015),
olves Laplace’s Equation (Eq. (1)) by mapping the potential 𝜙(𝑥, 𝑧, 𝑡)
nto a boundary fitted vertical coordinate 𝑠 ∈ [−1, 1] and using a
pectral approach to express 𝜙(𝑥, 𝑠, 𝑡) as a linear combination of Cheby-
shev polynomials (following Tian and Sato, 2008). At each time step,
(𝑥, 𝑠, 𝑡) is calculated by solving a system of𝑁𝑥(𝑁𝑇 +1) linear equations,
here𝑁𝑥 is the number of free surface nodes in the horizontal direction
and 𝑁𝑇 is the maximum order of the Chebyshev polynomials (here
𝑇 = 7, following Yates and Benoit, 2015).
Assuming single-valued free surface elevations 𝜂(𝑥, 𝑡), the free sur-

ace boundary condition Eqs. (2)–(3) are expressed following Zakharov
(1968) as,

𝜕𝜂
𝜕𝑡

= 𝑤̃
{

1 +
(

𝜕𝜂
𝜕𝑥

)2}

−
𝜕𝜂
𝜕𝑥

𝜕𝜙̃
𝜕𝑥

(5)

𝜕𝜙̃
𝜕𝑡

= −𝑔𝜂 − 1
2

(

𝜕𝜙̃
𝜕𝑥

)2
+ 1

2
𝑤̃2

{

1 +
(

𝜕𝜂
𝜕𝑥

)2}

−
𝑝𝑎
𝜌
, (6)

where 𝜙̃(𝑥, 𝑡) = 𝜙(𝑥, 𝑧 = 𝜂, 𝑡) and 𝑤̃(𝑥, 𝑡) = 𝑤(𝑥, 𝑧 = 𝜂, 𝑡) = 𝜕𝑠𝜙(𝑥, 𝑠, 𝑡)|𝑠=1
re the velocity potential and the vertical velocity on the free sur-
ace 𝛤𝑓 , respectively (where subscripts indicate partial derivatives).
ote that Eqs. (5)–(6) can be transformed to express a relationship
etween 𝜂 and 𝜙̃ in the form of a so-called Dirichlet–Neumann (DtN)
perator (Craig and Sulem, 1993). Following Bingham and Zhang
2007), Yates and Benoit (2015) formulated the DtN problem corre-
ponding to these equations.
Assuming known 𝜂(𝑥, 𝑡) and 𝜙̃(𝑥, 𝑡) values on 𝛤𝑓 (𝑡), once 𝑤̃(𝑥, 𝑡) is

computed from the solution of Laplace’s equation, these quantities are
advanced to time 𝑡 + 𝛥𝑡 by integrating Eqs. (5)–(6) with an explicit
fourth-order Runge–Kutta scheme.

With the assumption of single-valued free surface in the Misthyc
model, the resolution along the vertical for spectral approximation
becomes undefined when the free surface becomes vertical, causing
the model to numerically break down. To prevent this situation from
occurring, impending wave breaking is detected using a breaking on-
set criterion, and a local damping is specified in the dynamic free
surface boundary condition using an absorbing pressure 𝑝𝑎 calibrated
to simulate the wave breaking dissipation (Guignard and Grilli, 2001;
Papoutsellis et al., 2019; Simon et al., 2019; Grilli et al., 2020). Finally,
waves are generated and absorbed at each end of the fluid domain by
specifying relaxation zones that extend horizontally for ∼ 3𝐿, where 𝐿
is the dominant wavelength. Details are provided for specific cases in
Section 4.

2.2. Numerical wave tank (NWT)

Longuet-Higgins and Cokelet (1976) first proposed a 2D-FNPF
model to simulate overturning waves in a periodic domain with con-
stant depth, until the instant the breaker jet impinges the free surface.
The model solved Laplace’s Eq. (1) at each time 𝑡, based on a complex
potential Boundary Integral Equation (BIE) formulation (in a con-
formally mapped space) and integrated the kinematic and dynamic
free surface boundary conditions Eqs. (2)–(3), expressed in a mixed
Eulerian–Lagrangian frame of reference,
𝐷𝐫
𝐷𝑡

= 𝜕𝐫
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐫 = 𝐮 = ∇𝜙 (7)
𝐷𝜙
𝐷𝑡

= −𝑔𝑧 + 1
2
|∇𝜙|2 −

𝑝𝑎
𝜌
, (8)

y way of a predictor–corrector scheme, where r denotes the position
ector on the free surface 𝛤𝑓 . Dold and Peregrine (1985) later proposed
more accurate time integration scheme for this model, based on an ex-
licit Taylor series expansion of both 𝐫 and 𝜙 on the free surface, which
equires computing the successive material derivatives of Eqs. (7)–(8)
nd solving additional Laplace’s equations for the corresponding time
4

𝑐

erivatives of the potential, up to a desired order. However, their model
as still expressed in a conformally mapped domain and limited to
pace-periodic waves propagating in constant depth.
The 2D-FNPF model of Grilli et al. (1989), Grilli and Svendsen

1990), Grilli and Subramanya (1994, 1996), Grilli and Horrillo (1997)
sed here is based on the same approach, but is formulated in the phys-
cal space, which allows for modelling wavemakers or other types of
xact generation of fully nonlinear waves, such as from streamfunction
ave theory, an absorbing beach at the far end of the domain, and an
rbitrary bottom bathymetry. Laplace’s Eq. (1) is solved based on a BIE
erived from Green’s second identity,

(𝐱𝑖)𝜙(𝐱𝑖) = ∫𝛤

{

𝜕𝜙
𝜕𝑛

(𝐱)𝐺(𝐱 − 𝐱𝑖) − 𝜙(𝐱) 𝜕𝐺
𝜕𝑛

(𝐱 − 𝐱𝑖)
}

d𝛤 , (9)

where 𝜙 is the velocity potential on the boundary 𝛤 , 𝛼 is the interior
angle made by the boundary at point 𝐱𝑖 and 𝐺(𝐱, 𝐱𝑖) = −(1∕2𝜋) ln 𝑟𝑖
is the 2D free space Green’s function (with 𝑟𝑖 = |𝐱 − 𝐱𝑖|). In the
odel, this equation is discretized by various types of higher-order
oundary elements and both regular and singular, as well as quasi-
ingular (occurring when two parts of the boundary are close to each
ther, e.g., in the tip of breaker jets) integrals are computed by very
ccurate methods (Grilli and Subramanya, 1994, 1996). Additionally,
extended compatibility conditions of the solution on both sides of
the boundary are specified at corners in the domain (e.g., between a
wave maker and the free surface, Grilli and Svendsen, 1990; Grilli and
Subramanya, 1996).

Assuming known 𝜂(𝑥, 𝑡) and 𝜙(𝑥, 𝑡) values on 𝛤𝑓 (𝑡), once 𝜕𝑛𝜙 is
omputed from the solution of Eq. (9), these quantities are advanced
o time 𝑡 + 𝛥𝑡, by integrating Eqs. (7)–(8), as in Dold and Peregrine
1985), based on explicit Taylor series expansions of both 𝐫 and 𝜙,
limited here to second-order, hence requiring to solve an additional
Laplace’s equation for 𝜕𝑡𝜙. This is done using a similar BIE to Eq. (9)
in the same discretized computational domain, for a modest additional
computational effort.

To generate waves, the NWT can simulate the motion of a flap or
piston wavemaker, or the generation of numerically exact streamfunc-
tion waves on a lateral boundary (Grilli and Horrillo, 1997). For wave
absorption, an absorbing beach can be specified at the far end of the do-
main, combining an absorbing free surface pressure for high-frequency
waves and an absorbing lateral piston wavemaker for low-frequency
waves (Grilli and Horrillo, 1997).

3. Wave breaking model

Wave breaking in a FNPF model requires three steps: (i) a breaking
onset criterion, which allows identifying where on the free surface
and when a wave has reached a threshold beyond which breaking
is inevitable, and indicating where on the free surface and when the
application of an energy absorption in the model should start; (ii) based
on wave parameters, a method to quantify the energy dissipation rate
that should be specified in the model to damp waves that are identified
to be breaking in (i); and (iii) a breaking termination criterion, which
indicates where on the free surface and when the application of the
energy dissipation should end.

3.1. Breaking onset criterion

As discussed in the introduction, in this work, breaking onset is
detected based on the universal criterion proposed by Barthelemy
t al. (2018) for deep and intermediate water depth breaking, and
alidated by Derakhti et al. (2020) for shallow water breaking of any
ype (i.e., spilling, plunging, or surging). These studies showed, for a
ide variety of conditions leading to breaking such as energy focusing
r effects of bathymetry, that a steepening wave whose ratio of the
orizontal particle velocity at the crest 𝑢 to the wave (or crest) celerity
, noted 𝐵 = 𝑢∕𝑐, exceeds the threshold value 𝐵 = 0.85, will eventually
𝑡ℎ



Coastal Engineering 183 (2023) 104316S. Mohanlal et al.

m
t
(
p
a

i
a
t

o
p
t
t
m

3

3

b
w
e

w
𝜈
o
p
s
e
b

i

n

P
b
i

𝛱

s

𝜇

w

w

w
l
b
b
b
p
t

break; and waves for which 𝐵 < 𝐵𝑡ℎ will not break. It should be
emphasized that wave breaking does not start at this threshold, but
later on when 𝐵 ≃ 1. Instead, the 𝐵 criterion predicts where and
when a wave crest passes a point of no return, beyond which it will
eventually break. Derakhti et al. (2020) showed that, in shallow water,
this occurs about 0.2𝑇 in average after breaking onset, where 𝑇 is the
ean wave period in the sea state. In the FNPF models, it takes time for
he absorbing pressure that is used to damp impending breaking waves
see next subsection) to extract enough energy from the wave crest to
revent breaking. Therefore, the energy dissipation in the models is
pplied when a wave reaches the threshold 𝐵 = 𝐵𝑡ℎ.
One challenging aspect of applying this dynamic breaking criterion

s that it is local and requires first that all wave crests be identified
nd tracked at all times over the entire free surface 𝛤𝑓 , and second
hat the crest celerity, 𝑐 = 𝑑𝑥𝑐∕𝑑𝑡 is computed accurately (where 𝑥𝑐 (𝑡)
denotes a given wave crest location as a function of time). Accordingly,
in the models, similar to Guignard and Grilli (2001), Grilli et al. (2020),
and Stansell and MacFarlane (2002), the instantaneous celerity 𝑐(𝑡)
f individual tracked wave crests is computed by fitting a moving
olynomial to 𝑥𝑐 (𝑡) over a time interval [𝑡 − 𝑛𝛥𝑡, 𝑡] (where 𝑛 denotes
he number of time steps involved in the curve fit), and taking the
ime derivative analytically in the polynomial. Details of the numerical
ethod used to compute 𝑐 are provided in Appendix.

.2. Breaking dissipation

.2.1. Absorbing surface pressure
For waves that have been identified as evolving to breaking by the

reaking onset criterion, the energy dissipation is specified, as in earlier
ork (Guignard and Grilli, 2001; Grilli and Horrillo, 1997; Papoutsellis
t al., 2019; Grilli et al., 2020), using an absorbing (or damping) surface
pressure 𝑝𝑎 in the dynamic free surface boundary condition, Eq. (6)
or (8) for the Misthyc and NWT models, respectively. This pressure is
applied spatially across part of the back and front of the breaking wave
crest, and it is defined as being proportional to the normal velocity of
water particles at the free surface (Fig. 1),

𝑝𝑎(𝑥, 𝑡) = 𝜈𝑎(𝑡)𝑆(𝑥)
𝜕𝜙
𝜕𝑛

(𝑥, 𝑡) ∀𝑥 ∈ (𝑥𝑙 , 𝑥𝑟) (10)

here 𝑆(𝑥) is a non-dimensional shape function (defined below) and
𝑎(𝑡) is an absorption function, with the dimension of 𝜌 𝑐 (i.e., units
f kg m−2 s−1), defined such that the rate of work produced by the
ressure against the wave motion, 𝑝𝑎 𝜕𝑛𝜙, integrated over the selected
egment of the breaking wave surface, matches an expected rate of
nergy dissipation per unit length of crest, 𝛱𝑏 for the wave, as will
e described in the following subsection.
For single valued surface elevations Eq. (10) yields,

𝜈𝑎(𝑡) =
𝛱𝑏

∫ 𝑥𝑟
𝑥𝑙

𝑆(𝑥)(𝜕𝑛𝜙)2
√

1 + (𝜕𝑥𝜂)2𝑑𝑥
. (11)

n which the square root is the Jacobian, 𝑑𝛤∕𝑑𝑥.
The limits of integration in Eq. (11) are defined across each breaking

wave crest, with (𝑥𝑙 , 𝑥𝑟) located near the troughs located behind and
ahead of the breaking wave crest, respectively, such that |𝜕𝑛𝜙| <
𝜀 |𝜕𝑛𝜙|𝑚𝑎𝑥, where 𝜀 ≪ 1 (here 𝜀 = 10−4). As shown in Fig. 1, 𝑆(𝑥) is
a smooth function that varies from 0 to 1 over the breaking region,
with a ramp to ensure smooth transitions of 𝑝𝑎 between zero in non-
breaking regions and its calculated value in breaking regions (Guignard
and Grilli, 2001; Grilli et al., 2020; Papoutsellis et al., 2019),

𝑆(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝑥 ≤ 𝑥𝑙
cos

(

𝜋
2

𝑥−𝑥𝑙1
𝑥𝑙−𝑥𝑙1

)

, 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑙1
1, 𝑥𝑙1 ≤ 𝑥 ≤ 𝑥𝑟1
cos

(

𝜋
2

𝑥−𝑥𝑟1
𝑥𝑟−𝑥𝑟1

)

, 𝑥𝑟1 ≤ 𝑥 ≤ 𝑥𝑟
0, 𝑥 ≥ 𝑥𝑟

(12)

where 𝑥 = 𝑥 + 𝛼(𝑥 − 𝑥 ) and 𝑥 = 𝑥 − 𝛼(𝑥 − 𝑥 ), 𝛼 = 0.1.
5

𝑙1 𝑙 𝑟 𝑙 𝑟1 𝑟 𝑟 𝑙 𝛱
Fig. 1. (top) Geometric parameters used to calculate the HJ dissipation, and (bottom)
the shape function 𝑆(𝑥).

3.2.2. Rate of energy dissipation
Two different parameterizations of the rate of energy dissipation

in breaking waves, 𝛱𝑏, will be considered in this work. The first one,
based on the hydraulic jump analogy introduced in earlier work (Guig-
ard and Grilli, 2001; Papoutsellis et al., 2019; Grilli et al., 2020), will
be the default method used in both models, and the second one, based
on the time rate of change of the breaking onset criterion, recently
proposed by Derakhti et al. (2018b), will be used for comparison.

Hydraulic jump analogy: In earlier work, Guignard and Grilli (2001),
apoutsellis et al. (2019), and Grilli et al. (2020) parameterized 𝛱𝑏
ased on the classical energy dissipation of an hydraulic jump (HJ),
.e.,

ℎ = 𝜌𝑔𝑐 𝑑 𝐻3

4ℎ𝑐ℎ𝑡
with 𝛱𝑏 = 𝜇𝛱ℎ, (13)

where 𝑐 is the wave phase speed (or crest celerity), 𝑑 the undisturbed
water depth below the point of maximum front slope, 𝐻 the wave
height (measured trough to crest), ℎ𝑐 the total depth below wave crest,
and ℎ𝑡 the total depth below wave trough (Fig. 1). As shown in Svend-
en et al. (1978) and Stive (1984), the equation for 𝛱ℎ can be obtained
easily from a control volume approach by deriving equations for mass,
momentum, and energy conservation assuming periodic waves with
a uniform velocity over depth, hydrostatic pressure, and negligible
bottom friction. Based on laboratory experiments for spilling breakers
propagating over mild slopes, Svendsen et al. (1978) proposed that
= 1.5.
Note, for symmetric linear waves breaking over mild slopes,𝐻 = 2𝑎,

ith 𝑎 the wave amplitude, 𝑐 ≃ 𝑐𝓁 =
√

𝑔𝑑, ℎ𝑡 ≃ 𝑑 − 𝑎 and ℎ𝑐 ≃ 𝑑 + 𝑎,
and Eq. (13) transforms into,

𝛱𝑏 = 𝜇
(

𝜖
𝑏

)

2𝐹 3

1 − 𝐹 2
(14)

ith 𝜖 = 𝑏𝜌𝑔−1𝑐5, (15)

here 𝐹 = 𝑔𝑎∕𝑐2𝓁 is the wave Froude number (Kirby, 1998), which for
ong breaking waves in shallow water reduces to 𝐹 ≃ 𝑎∕𝑑, 𝜖 is the
reaking energy dissipation rate per unit of wave crest width proposed
y Duncan (1981, 1983), based on measurements of steady spilling
reakers in deep-water, and 𝑏 is a non-dimensional breaking strength
arameter that was parameterized as a function of the hydrofoil charac-
eristics and submergence depth used in these experiments. To obtain

= 𝜖 requires that 𝑏 ≃ 2𝜇𝐹 3 in Eq. (14), assuming 𝐹 2 ≪ 1. Based
𝑏
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on Svendsen’s parameterization, for small 𝐹 , the HJ breaking strength
arameter can thus be expressed as 𝑏 ≃ 2𝜇𝐹 3 = 3𝐹 3.
Making various scaling arguments of the turbulent energy dissipa-

tion for unsteady breakers in deep or intermediate water, Drazen et al.
(2008) showed that 𝑏 ∝ 𝐹 2.5, while more recently, using different
scaling arguments, Mostert and Deike (2020) proposed that 𝑏 ∝ 𝐹 3.5

or unsteady shallow water breakers. Thus, the above formulation of 𝑏
alls in between these independent results, without any clear guidance
n which result is most realistic. Note that, consistent with the analysis
f Drazen et al. (2008), Romero et al. (2012) and Derakhti et al.
(2018b) assumed that 𝑏 ∝ 𝐹 2.5. It is outside the scope of this paper to
attempt to reconcile these conflicting results, which will be the object
of other studies (Derakhti et al., 2023).

The default parameterization of energy dissipation in both FNPF
models used in the present applications will thus be based on Eq. (13),
with 𝜇 = 1.5. It should be noted that, similar to the breaking onset
criterion used to detect impending breaking in the models, computing
𝛱ℎ requires identifying individual wave crests and troughs and accu-
rately computing the crest celerity. The same method used to compute
the onset criterion is thus used to compute the parameters required for
estimating the wave energy dissipation.
Parameterization based on time rate of breaking onset criterion: By per-
forming numerical simulations of focused waves, Romero et al. (2012)
and Derakhti et al. (2016) extended Duncan’s parameterization of the
rate of energy dissipation 𝜖 to intermediate water, steepness-limited,
plunging breaking waves and irregular wave trains. Following the
introduction of the breaking onset criterion based on 𝐵 by Barthelemy
et al. (2018), Derakhti et al. (2018a) observed in their NS simulations
f focused wave trains, that the slope of 𝐵(𝑡) at breaking onset was
orrelated with the average breaking power dissipated in the model,
rom breaking onset to termination, ⟨𝜖⟩, or the corresponding breaking
trength 𝑏 obtained from Eq. (15). On this basis, they proposed a new
arameterization of the breaking strength parameter,

𝑏 =
𝑔⟨𝜖⟩
𝜌𝑐5𝑙𝑏

= 0.034 (𝛾 − 0.30)2.5 (16)

𝛾 = 𝑇𝑏
𝑑𝐵
𝑑𝑡

|

|

|

|𝐵=𝐵𝑡ℎ

(17)

computed based on wave crest parameters at breaking onset and
a breaking wave period, 𝑇𝑏 = 𝐿𝑏∕𝑐𝑙𝑏, estimated based on, 𝑐𝑙𝑏 =
√

𝑔 tanh(𝑘𝑏𝑑)∕𝑘𝑏, with 𝑘𝑏 = 2𝜋∕𝐿𝑏, the linear wave celerity at breaking
in arbitrary depth, and 𝐿𝑏 a relevant breaking wave length calculated
based on the method proposed by Derakhti et al., 2020. Specifically,
the width of the breaking crest is taken as twice the distance between
two zero-crossing points, except in cases where, particularly for long
waves, this does not describe well the breaking region. In this case, an
equivalent zero-crossing distance is computed (cf., Fig. A2 in Derakhti
et al., 2020), here with a manual computation instead of a skew
Gaussian due to the simpler geometry of a BEM result compared to
their Navier–Stokes solver. In some of the applications in Section 4,
𝑏 will be computed with Eq. (16) and compared to results based on
the HJ analog. To do so, the time rate of change of 𝐵 at the threshold
will be calculated by applying a linear fit to the 𝐵 values computed in
the interval [0.82, 0.85] (In the NWT, the nodes are regridded every
few time steps (Grilli and Subramanya, 1996), thus the time variation
of 𝐵 at the crest may exhibit sawtooth oscillations when the wave
becomes very steep as 𝐵 approaches the threshold value. In this case,
regridding is turned off when 𝐵 ≈ [0.7, 0.85].) Note that 𝑏, which
quantifies the average energy dissipation rate during a breaking event
based on 𝛾, computed at breaking onset, is not the time average of
(𝑡), which quantifies the instantaneous energy dissipation rate based
n instantaneous wave parameters.
As discussed before, Derakhti et al. (2020) showed that the 𝐵

riterion also applies to shallow water breaking waves and, hence, is
niversal. Calculating the energy dissipation rate in their model for
hallow water breaking waves, Derakhti et al. (2018b) confirmed the
6

parameterization of 𝑏 in Eq. (16) for 𝛾 < 1.11, with the breaking
strength parameter reaching an upper bound 𝑏𝑚𝑎𝑥 = 0.02 for larger
𝛾 values, although this parameterization, particularly for large 𝛾, was
revised by Derakhti et al. (2023).

Given 𝛱𝑏 = 𝜖, the second parameterization of energy dissipation
considered in both FNPF models in the present applications will be
based on the expression of 𝜖 in Eq. (15), with 𝑏 obtained from Eq. (16)
for 𝛾 ≤ 1.3, and 𝑏 = 𝑏𝑚𝑎𝑥 for 𝛾 ≥ 1.3. As before, most wave
crest parameters required to compute 𝛱𝑏 are similar to those used to
compute 𝐵 and are already available in the models.

3.3. Breaking termination criterion

Breaking termination is also an important factor to extract accu-
rately the appropriate amount of energy from breaking waves in the
models. However, unlike in actual waves, as would for instance be
simulated in a NS-VOF model (Derakhti et al., 2020), the value of
𝐵 does not grow much beyond or remain above 𝐵𝑡ℎ in the FNPF
model once dissipation is applied and a different method is required to
detect breaking termination. To be consistent with the onset criterion,
the termination criterion is based on 𝐵 reaching a value 𝐵off that is
ower than the onset threshold, and needs to be calibrated based on
enchmark data. For the applications considered here, the optimal 𝐵off
alue appeared to be problem dependent. Specific values and their
mplications are discussed in the Section 4.2.

. Applications

.1. Comparison of the two formulations of breaking dissipation

Before presenting detailed applications using the same breaking
nset/termination criteria, it is of interest to analyse and compare
alues of 𝐵 and 𝑑𝐵∕𝑑𝑡 computed near and at the breaking onset for
arious cases, as well as the breaking strength parameter 𝑏 and/or
dissipation rate 𝛱𝑏 resulting from the two parameterizations of the rate
of energy dissipation discussed before. These are the experimentally
validated depth-limited HJ spilling breaker model (Grilli et al., 2020),
whose energy dissipation rate is given by Eq. (13) and for which 𝑏 can
eadily be obtained based on the expression of 𝜖 in Eq. (15), assuming
𝑏 = 𝜖, and the newer dissipation rate based on 𝑑𝐵∕𝑑𝑡 and 𝛾 (Derakhti

et al., 2018b), with 𝑏 given by Eq. (16).
In the following, breaking wave parameters calculated based on

the HJ breaking model, with Misthyc and the NWT, are compared
by simulating laboratory experiments of: (i) periodic shoaling and
plunging breaking waves propagating over a bar, from Beji and Bat-
tjes (1993) (BB-regular); (ii) periodic shoaling and spilling breaking
waves propagating over a plane slope, from Hansen and Svendsen
(1979) (HS); and (iii) periodic shoaling and spilling breaking waves
propagating over a plane slope from Ting and Kirby (1994) (TK). The
details of the set-up and numerical parameters for these simulations are
described in the following subsections. Note, the HJ dissipation model
and corresponding 𝛱𝑏 values were previously experimentally validated
using the NWT model for the HS test cases by Grilli et al. (2020),
and using the Misthyc model for the regular and irregular BB cases
by Simon et al. (2019), and with another FNPF model called HCMT,
for the regular wave TK and BB cases by Papoutsellis et al. (2019).

In each test case, the HJ breaking dissipation model is used, and
he parameter 𝑏 is calculated using the expression of 𝜖 in Eq. (15),
ased on the average power dissipated in the model over the breaking
nset/termination range, 𝜖 = ⟨𝛱𝑏⟩, through the application of the
bsorbing pressure 𝑝𝑎 based on Eqs. (10)–(12), with the instantaneous
𝑏(𝑡) given by Eq. (13). For the second parameterization of dissipation,

the corresponding 𝑏 values are found using Eq. (16), based on the wave
parameters computed at breaking onset.

Fig. 2 shows the evolution of 𝐵 computed leading up to wave
breaking with the Misthyc model as a function of the non-dimensional
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Fig. 2. Evolution of 𝐵 = 𝑢∕𝑐 in simulations with the Misthyc model as a function of non-dimensional time 𝑡∗ = (𝑡−𝑡𝑏)∕𝑇𝑏 (𝑡𝑏 denotes the time of breaking onset when 𝐵 = 𝐵𝑡ℎ = 0.85),
or periodic: (i) plunging breaking waves propagating over a bar, from Beji and Battjes (1993) (BB-regular, red); (ii) spilling breaking waves propagating over a plane slope,
rom Hansen and Svendsen (1979) (HS, magenta); and shoaling and spilling breaking waves propagating over a plane slope, from Ting and Kirby (1994) (TK, green).
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ime 𝑡∗ = (𝑡 − 𝑡𝑏)∕𝑇𝑏, where 𝑡𝑏 is the time of breaking onset over the
egion of interest for calculating 𝑑𝐵∕𝑑𝑡. Consistent with Derakhti et al.
2018a,b), of the three test cases shown, the plunging breaker case (BB-
egular) has the fastest rate of change of 𝐵 at the threshold, whereas
he spilling breaker cases (HS and TK) show slower changes in 𝐵. The
alculation of 𝑑𝐵∕𝑑𝑡 was found to be sensitive to the interval over
hich it is calculated, as well as to the spatial and temporal resolution
f the simulation. Fig. 2 (right) shows the linear fit applied to 𝐵 in the
nterval [0.82, 0.85], used to compute 𝑑𝐵∕𝑑𝑡 and, for this interval for
he HS case, Table 1 shows the sensitivity of the 𝑑𝐵∕𝑑𝑡 and 𝛾 values
alculated for different spatial and temporal grids.
Fig. 3 shows the average 𝑏 values computed in each test case using

he HJ model as a function of 𝛾, compared to the values predicted
y the second parameterization based on 𝛾 (Eq. (16)). Average values
f 𝑏 computed over the breaking region using the HJ dissipation
ange within [0.02, 0.08], and corresponding 𝛾 vary within [0.6, 2.5].
hese results are in moderate agreement with those of the Derakhti
t al. (2018a,b) parameterization, when 𝛾 ∈ [1, 2]. Some differences
etween these two parameterizations of 𝑏 are to be expected since
ven the Derakhti et al. (2018a,b) parameterization is only a curve
it, with significant spread of individual values. Recall also that the
reaking strength shown here is based on an average energy dissipation
ate, ⟨𝜖⟩, which will have a different value depending on the duration
f active breaking, which in both models could be adjusted without
ffecting significantly the resultant wave characteristics. Finally, in this
aper potential flow is assumed, while wave breaking transfers energy
o non-potential components of the flow (e.g., vorticity) that may not
e dissipated and would appear as an over-prediction of the energy
issipation.
Based on the 𝑏 values simulated in these applications, an instan-

aneous dissipation rate 𝛱𝑏 = 𝜖 defined with the expression of 𝜖 in
q. (15), based on a constant breaking strength 𝑏 = 0.05, was also
ested. Since the wave celerity used in the definition of 𝜖 is a function
f space and time, 𝑐(𝑥, 𝑡), this parameterization also provides a time-
arying dissipation rate. For instance, for the BB-regular case, Fig. 4
hows that this constant breaking strength yields an instantaneous dis-
ipation rate that agrees well with that calculated using Eq. (13) for the
HJ parameterization. Therefore, for the BB-regular case, the constant
strength approach would likely be accurate enough, and Fig. 3 shows
that for the wider range of cases that will be considered hereafter, the
average 𝑏 value computed in the model in each case is on the same
order as 𝑏 = 0.05.

4.2. Experimental validations

In this subsection, the results of numerical simulations with one
7

or both FNPF models, using the energy dissipation rate of the HJ
Table 1
Sensitivity of 𝛾 computed with Eq. (16) for different spatial and temporal
resolutions, for the Hansen and Svendsen (1979) (HS) case.
Model 𝛥𝑥 (𝑚) 𝛥𝑡 (𝑠) 𝑑𝐵

𝑑𝑡
|𝐵=𝐵𝑡ℎ

(𝑠−1) 𝛾

Misthyc 0.020 0.008 0.974 0.788
Misthyc 0.028 0.007 0.885 0.726
NWT 0.031 0.008 1.00 0.774
NWT 0.041 0.010 1.075 0.791

Fig. 3. Average breaking strength 𝑏 computed for the HJ parameterization, as a
function of 𝛾 for depth-limited breaking waves simulated in Misthyc including: (filled
circles) regular wave cases, magenta: HS, green: TK and red: BB; (hollow circles) BB-
irregular cases. For comparison, the empirical parametrization from Eq. (16) proposed
y Derakhti et al. (2018a), is indicated with a solid line. The dashed line shows the
onstant strength average breaking value 𝑏 = 0.05 used in the Mis-005 parameterization.

odel, the constant breaking strength 𝑏 = 0.05, or both, are compared
ith laboratory experiments performed for five standard benchmark
ases. The five test cases are the periodic spilling breaker experiments
ver a plane slope of Hansen and Svendsen (1979), and Ting and
irby (1994), the regular and irregular plunging breakers over a bar
f Beji and Battjes (1993), and the irregular breaking waves over a bar
f Adytia et al. (2018). In the models, fully nonlinear periodic waves
re generated based on streamfunction wave theory in the generation
one for Misthyc (Benoit et al., 2002), and using an exact wavemaking
particle curtain) boundary (Grilli and Horrillo, 1997) for the NWT.
Irregular waves are simulated in the model using a flap wave maker
boundary (e.g., Grilli and Horrillo, 1997).
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Fig. 4. Comparison of the instantaneous energy dissipation rate 𝛱𝑏(𝑡) calculated for the
plunging BB-regular case in the Misthyc model using: (blue) the HJ analogy Eq. (13),
or (red) the Mis-b005 Eq. (15) parameterization with 𝑏 = 0.05.

Table 2
Numerical parameters used in the simulations with the Misthyc and NWT models for
the five experimental benchmark test cases.
Test case 𝛥𝑥 (𝑚) 𝛥𝑡 (𝑠) Domain 𝑇𝑚𝑎𝑥

Misthyc NWT Misthyc NWT length (m) (𝑠)

HS 0.019 0.031 0.008 0.008 22.7 25
TK 0.019 0.055 0.008 0.013 29.7 32
BB-regular 0.014 0.048 0.01 0.015 34.4 35
BB-irregular 0.02 – 0.01 – 30 600
AH 0.02 – 0.01 – 60 500

The model discretizations in space and time are specified such that
he Courant number, CFL ≈ 1.0 in Misthyc (as suggested by Yates
and Benoit, 2015) and CFL ≈ 0.45 in the NWT (found to be optimal
by Grilli and Subramanya, 1996). Using the optimal CFL number for
each model, a refined spatial discretization is specified in each case
to ensure high numerical accuracy (see Grilli and Subramanya, 1996,
for guidance). Fig. 5 shows examples of the instantaneous free surface
elevation computed for the HS test case for a range of spatial dis-
cretizations after simulations reach a quasi-steady state in the models.
These are defined based on the initial spatial discretization on the free
surface 𝛥𝑥, where 𝐿∕𝛥𝑥 = 35, 50, or 70, and 𝐿 is the incident wave
length. The simulation results show that free surface elevations are
nearly identical in deeper water for both models over the range of
tested discretizations. Small differences can only be seen in shallower
depths, particularly near the wave crests. Based on these results, in
all the simulations discussed hereafter, the spatial discretization was
prescribed such that 𝐿∕𝛥𝑥 > 50 (note, for irregular waves, 𝐿 denotes
the dominant wavelength). Table 2 summarizes the spatio-temporal
parameters used in the simulations with the Misthyc and NWT models
for the five benchmark cases detailed in the following sections.

4.2.1. Periodic spilling breakers on a slope — Hansen and Svendsen (1979)
Hansen and Svendsen (1979) (referred to as HS) performed ex-

eriments for periodic waves shoaling and spilling breaking waves
ropagating over a mild slope. The wave tank had a constant initial
epth of ℎ0 = 0.36 m, from the wavemaker up to 𝑥 = 14.78 m, the toe
f the 1∕34.26 slope. Regular waves with an initial height𝐻0 = 0.095 m,
eriod 𝑇 = 1 s, and incident wavelength 𝐿0 = 1.43 m were generated
t the wavemaker (note, these waves were generated in intermediate
aver conditions, with ℎ0∕𝐿0 = 0.252). This benchmark was simulated
ith both Misthyc and the NWT, using the energy dissipation rates
rom the HJ and Mis-b005 or NWT-b005 models, respectively (see
8

able 2 for the numerical parameters used). Since wave runup was H
ot considered in either model, an absorbing beach was modelled for
≥ 25.5 m with a deepening bathymetry (for 𝑥 ∈ [25.5, 27] to induce
eshoaling, which aids the absorption of waves) followed by constant
epth in the absorption zone (see Fig. 6a and Fig. 1 in Grilli et al., 2020
or details). In these experiments, the breakers reach the shoreline, so
off = 0 is used as the breaking termination criterion. Preliminary tests
ith larger values appeared to cause wave reformation that was not
bserved in the experiments. In the numerical models, breaking onset
ith 𝐵 = 𝐵𝑡ℎ = 0.85 occurs at 𝑥𝑏 ≃ 22.2 m, as compared to 𝑥𝑏 ≃ 22.5 m
n the experiments. The model results were averaged over 5 successive
ave periods after the simulations reached a quasi-steady state.
Fig. 6b shows (in both the experiments and all numerical simula-

ions) the wave celerity normalized by the deep water linear celerity
0 = 𝑔𝑇 ∕(2𝜋) gradually decreases in the shoaling region. In general,
he simulation results agree well with the experimental measurements,
ut less so in breaking region (𝑥 > 𝑥𝑏; where experimental data is very
oisy) due to unsteady variations in calculations of the derivative of
he wave crest displacement. For 𝑥 < 𝑥𝑏, 𝑐∕𝑐0 is slightly larger than in
xperiments, which is consistent with the results of Grilli et al. (2020).
ig. 6c shows the wave height normalized by 𝐻0 gradually increases
ver the shoaling region then rapidly decreases beyond breaking onset
nd, in all cases, the simulation results agree well with experimental
easurements.
Considering the two parameterizations of energy dissipation in
isthyc, the simulation results show only small differences throughout
he simulations, and these differences, as well as those with the NWT
esults, mostly occur at the far end of the tank for 𝑥 > 23.5 𝑚.
he differences likely result from the different numerical methods and
iscretizations, as well as the regridding used in the NWT, where the
ulerian–Lagrangian approach causes grid points to cluster around the
reaking crests. To limit this clustering, regridding is periodically calcu-
ated in the model using cubic shape functions (Grilli and Subramanya,
996), which may slightly affect the application of the breaker model
round the breaking crests.
Note, when using the NWT with the HJ model and a geometric

reaking criterion (front slope 𝛽𝑚𝑎𝑥 = 37◦) for this case, Grilli et al.
2020) predicted breaking onset slightly sooner at 𝑥𝑏 = 21.75 m and, as
a consequence, had lower 𝐻∕𝐻0 values at 𝑥 = 22.5 m relative to both
the present simulations and the experimental data.

4.2.2. Periodic spilling breakers on a slope — Ting and Kirby (1994)
Experiments of shoaling and spilling breaking waves propagating

over a plane 1/35 slope, similar to those by HS in the previous section,
were performed by Ting and Kirby (1994) (referred to as TK). Periodic
aves of height 𝐻0 = 0.125 m, period 𝑇 = 2.0 s, and wavelength
0 = 3.85 m, were generated by a piston wavemaker and propagated in
tank of constant depth ℎ0 = 0.4 m to 𝑥 = 3.85 m, the toe of the slope.
imilar to the previous test case, in the models, an absorbing beach
as specified for 𝑥 > 15.5 m, starting in a water depth ℎ = 0.067 m and
radually deepening to ℎ = 0.29 m at 𝑥 = 18 m. As in the previous case,
off = 0. Fig. 7 shows the experimental setup along with the locations
f the 12 wave gauges that measured the free surface position.
For this test case, the models detected the onset of wave breaking

t 𝑥𝑏 ≃ 10.0 m, with ℎ𝑏 = 0.21 m and 𝐻𝑏 = 0.178 m, which agrees
ell with the experimental values, 𝑥𝑏𝑒 = 10.25 m, ℎ𝑏𝑒 = 0.196 m,
nd 𝐻𝑏𝑒 = 0.162 m. Fig. 8 shows a 4-second window of the measured
nd simulated free surface elevation at 12 wave gauges after a quasi-
teady state was achieved. The free surface elevations computed with
isthyc and the NWT for 𝑥 < 𝑥𝑏 are in close agreement with each other,
nd are nearly identical the experimental measurements. Note, using a
inematic onset criterion (𝛾𝑖

√

𝑔ℎ), Papoutsellis et al. (2019) reported
reaking onset at 𝑥 = 9.7 m, which led to an underestimation of the
rest and wave height at gauge 𝑥 = 10.25m, whereas, using the 𝐵 = 0.85
riterion, both models predict more accurately the wave elevation at
his gauge. Beyond breaking (for 𝑥 > 𝑥𝑏), results from Misthyc using the
J model agree reasonably well with the experiments at all subsequent
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Fig. 5. Sensitivity of the simulation results to the spatial discretization for the HS test case using the NWT (blue dashed, 𝐿∕𝛥𝑥 = 35, and blue solid, 𝐿∕𝛥𝑥 = 50) and Misthyc (solid
red with 𝐿∕𝛥𝑥 = 70) model.
Fig. 6. (a) Bathymetry of the Hansen and Svendsen (1979) (HS) experimental set-up for periodic shoaling and spilling breaking waves, where the shaded cyan region indicates
the wave crest location from the onset of wave breaking (note an absorbing beach is specified in the models for 𝑥 ≥ 25.5 m). Spatial evolution of the (b) wave celerity, and (c)
wave height in the experimental data (circles), Misthyc using the HJ model (dashed red line), Mis-b005 (solid red line) and NWT-b005 (solid blue line), averaged over 5 successive
wave periods after a quasi-steady state is reached.
gauges, whereas using Mis-b005 yields similar results until 𝑥 = 12.35
m, but increasingly large differences in the crest area for shallower
gauges. In contrast, the results of NWT-b005 yield surface elevations in
better agreement with those predicted by Misthyc with the HJ energy
dissipation model.
9

4.2.3. Periodic plunging breakers over a bar — Beji and Battjes (1993)
Beji and Battjes (1993), among others, performed laboratory exper-

iments for periodic waves propagating over a trapezoidal bar (referred
to here as BB-regular). Some of the generated incident waves were
sufficiently steep to break over the bar as plunging breakers. Fig. 9
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Fig. 7. Setup for Ting and Kirby (1994) laboratory experiments of periodic spilling breakers propagating over a 1/35 slope, with black arrows showing the locations of the 12
wave gauges. The cyan shading indicates the simulated wave breaking region, from onset to termination. The grey shading indicates the beach absorption zone.
Fig. 8. Comparison of the temporal evolution of the free surface position measured at the gauge locations from Ting and Kirby (1994) for regular spilling waves (circles) with
imulations using Misthyc with the HJ model (dashed red line), Mis-b005 (solid red line), and NWT-b005 (solid blue line).
hows the set-up of the computational domain used in the models
o simulate BB’s experiments, with arrows indicating the locations of
he wave gauge, where time series of the free surface elevation were
easured in experiments. Waves were generated at 𝑥 = 0 in the
10
constant depth region with ℎ0 = 0.4 m, shoaled over the bar with
a mild 1/20 offshore slope, and then broke over the crest of the bar
where ℎ = 0.1 m, before the water depth increased again over the 1/10
onshore slope of the bar.
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Fig. 9. Set-up of the computational domains in the simulations of the Beji and Battjes (1993) experiments for periodic waves shoaling and plunging breaking over a bar (BB).
Arrows indicate the locations of wave gauges in the experiments and simulations. Wave breaking occurs in the models in the cyan shaded region, from onset to termination, and
the grey shaded region indicates the absorbing beach. Note, the free surface shown is of BB-regular.
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The target periodic wave characteristics in these experiments were
a height 𝐻0 = 0.054 m, period 𝑇 = 2.5 s, and wavelength 𝐿0 = 4.8 m
n the region of constant depth. However, in the wave gauge measure-
ents, the actual wave height was 𝐻0 ≃ 0.042 m at the toe of the slope,
hich was thus used as the wave height in the simulations. Simulations
ere performed with Misthyc and the NWT using 𝑏 = 0.05 and, in

both models, breaking onset occurred at 𝑥𝑏 ≃ 12.2 m, as compared to
between 12 and 13 m in experiments. The breaking termination was
specified at 𝐵off = 0.3 in the models, which occurs before the water
depth increases shoreward and causes wave deshoaling (end of cyan
shaded region in Fig. 9).

Fig. 10, compares the measured time series of free surface elevations
to those computed in the models. They agree well in the shoaling
region, for 6 < 𝑥 < 12 m, and in the breaking region, for 12 < 𝑥 < 14
m. Larger differences start occurring for 𝑥 > 14 m, but wave breaking
on top of the bar and deshoaling for 14 < 𝑥 < 17 m are simulated
well overall. Differences between the results of both models are small,
except for higher harmonics generated on top of and beyond the bar,
which Misthyc does not capture as well as the NWT. This may be due to
the limited number of vertical layers (𝑁𝑇 ), or the difference in timestep
used.

The effect of the breaking termination criterion value was tested
in the Misthyc model in the range 𝐵off = 0.2 to 0.35. Fig. 11 shows
the simulated and measured spatial variation of the significant wave
height 𝐻𝑠 throughout the domain. The results show that, in the zone
after wave breaking (for 𝑥 > 14 m), using 𝐵off = 0.20 leads to
underpredicting 𝐻𝑠, whereas using 𝐵off = 0.35 leads to overpredicting
it. Using 𝐵off = 0.30 or even 0.25, allows reproducing well𝐻𝑠 measured
in the experiments after the bar. Thus, 𝐵off = 0.30 was selected for all
cases shown here involving submerged bars (where waves deshoal).

4.2.4. Irregular plunging breakers over a bar — Beji and Battjes (1993)
Using the same submerged bar, water depth, and set of wave gauges

(see Fig. 9), Beji and Battjes (1993) also tested cases with irregular
incident wave trains generated at the wavemaker based on a JONSWAP
spectrum with significant wave height 𝐻𝑠 = 0.049 m and peak spectral
period 𝑇𝑝 = 1∕𝑓𝑝 = 2.5 s (referred to as BB-irregular). In the simulations,
performed here using only Misthyc with 𝑏 = 0.05, incident waves are
specified as a linear superposition of periodic waves in the frequency
range [0.25𝑓𝑝, 5𝑓𝑝], obtained from an FFT of the experimental free
surface elevation measurements at the wave gauge located at 𝑥 = 6 𝑚.
Once again, 𝐵off = 0.30 is used in the model.

The simulation is run for 600 s or 240 peak periods, and breaking
of the steepest waves were observed over the bar crest, as in the
experiments where they were plunging breakers. To compare the sim-
ulated and experimental results, several wave statistics are computed
based on the time series of free surface elevations at the wave gauges.
These quantities are the significant wave height (𝐻𝑠), the asymmetry
11

(𝐴𝑠), a measure of left–right differences in a wave, the skewness (𝑆𝑘),
a measure of deviation in crest-trough shape, and the kurtosis (𝐾𝑢),
a measure of the tailedness of a distribution relative to the normal
distribution, defined as follows

𝐻𝑠 = 4𝜎1∕2 (18)

𝐴𝑠 = ⟨H(𝜂 − ⟨𝜂⟩)3⟩∕𝜎3∕2 (19)

𝑆𝑘 = ⟨(𝜂 − ⟨𝜂⟩)3⟩∕𝜎3∕2 (20)

𝐾𝑢 = ⟨(𝜂 − ⟨𝜂⟩)4⟩∕𝜎2 − 3 (21)

where 𝜎 = ⟨(𝜂−⟨𝜂⟩)2⟩ is the free surface variance, ⟨ ⟩ the time averaging
operator, i.e, ⟨𝑓 ⟩ = 1

𝑡𝑓−𝑡𝑖
∫ 𝑡𝑓
𝑡𝑖

𝑓 (𝑡)𝑑𝑡, and H, the Hilbert transform. For
example, a linear Gaussian sea state would have 𝐴𝑠 = 0, 𝑆𝑘 = 0, and
𝑢 = 0.
Fig. 12 shows that there is a good agreement between the simu-

ated and measured wave statistics for all wave characteristics. More
pecifically, Fig. 12a shows that 𝐻𝑠 increases up to the onset of wave
breaking at 𝑥 ≃ 12 m, then decreases during breaking over the bar
crest (12 < 𝑥 < 14 m), and remains roughly constant for 𝑥 > 14 m.
ig. 12b shows that wave asymmetry is maximum at breaking onset
𝑥 ≃ 12 m) and decreases during wave breaking. Finally, Figs. 12c,
shows that the skewness and kurtosis, which quantify the wave
onlinearity, gradually increase during shoaling and breaking, and then
ecrease during deshoaling, after the bar. Both of these statistics agree
etter with the experiments than the results reported by Simon et al.
2019), who also simulated this test case using Misthyc with the HJ
issipation and an eddy viscosity model (Kurnia and van Groesen,
014) in combination with several breaking onset criteria that were
ot based on 𝐵.

.2.5. Irregular waves breaking over a bar — Adytia et al. (2018)
Adytia et al. (2018) also performed experiments with irregular

aves propagating and breaking over a submerged bar with a different
eometry than BB’s (referred to as AH). Irregular incident waves were
enerated with𝐻𝑠 = 0.2m and 𝑇𝑝 = 2.5 s, in a constant depth ℎ0 = 0.615
m. Fig. 13 shows the Misthyc model set-up, with the bar having a 1/20
offshore slope with the toe located at 𝑥 = 23.65 m and extending up
to 𝑥 = 31.98 m, followed by a constant depth crest with ℎ = 0.2 m, to
𝑥 = 41 m. Time series of the free surface elevation were measured at
15 wave gauges, with the locations indicated with arrows in Fig. 13.
As in the BB-irregular test case, the free surface elevation measured at
the gauge located at 𝑥 = 11.5 m is used to calculate the incident waves
conditions for the simulation (based on a FFT).

The simulation is run for 500 s or 200 peak periods, and breaking on-
set occurs at 𝑥𝑏 ∈ [30, 32]m. The same wave statistics as in the previous
application are computed here based on experimental measurements
and simulations with the Misthyc model, using 𝑏 = 0.05. These are
shown in Fig. 14 where, overall, there is a good agreement between
the experiments and simulations. Fig. 14a shows that 𝐻𝑠 gradually
increases over the offshore slope of the bar until wave breaking begins
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Fig. 10. Comparison of the temporal evolution of the free surface at the gauge locations from the Beji and Battjes (1993) test case for regular plunging waves (circles) with
Mis-b005 (red solid line) and NWT-b005 (blue solid line).
Fig. 11. Spatial evolution of the significant wave height 𝐻𝑠 for the BB-regular experiments (circles) and simulations with the Mis-b005 model using different breaking termination
criteria 𝐵off =: (red) 0.2, (blue) 0.25, (green) 0.30, and (yellow) 0.35.
𝐿

over the bar crest, then decreases in the breaking region (30 < 𝑥 < 35
), and finally remains constant for 𝑥 > 35m to the end of the bar crest.
similar trend is observed in asymmetry as in the BB-irregular test
ase in Fig. 14b: an increase up to the onset of breaking, a decrease in
the breaking region, and a roughly constant value afterwards. Although
the variation of skewness and kurtosis are reproduced better in the
breaking region compared to Simon et al. (2019), some differences are
seen in the post-breaking region (see Figs. 14c, d).

5. Discussion

In the previous section, the results of simulations using one or both
FNPF models with the newly proposed breaking onset/termination and
dissipation parameterizations were presented, for standard experimen-
tal benchmarks from the literature (referred to as HS, BB, TK and
AH) featuring regular or irregular waves propagating and breaking
over several mild beach slopes and bars. In each case, the type of
breaking (spilling-S or plunging-P) was reported in the experiments,
as well as the measured breaking index value 𝜅 = (𝐻 ∕ℎ ) for
12

𝑏𝑒 𝑏 𝑏 𝑒 1
some cases. Overall, the simulation results agreed well with the exper-
imental data, confirming that the breaking onset criterion (𝐵 = 0.85)
proposed by Barthelemy et al. (2018) is accurate, and wave elevation
and kinematics at breaking onset and during breaking are accurately
simulated in the models using the absorbing pressure and the proposed
parameterizations of the energy dissipation rate.

Table 3 summarizes, for the periodic wave cases reported in the HS,
BB-regular and TK studies, the incident wave and bathymetric parame-
ters specified in the models and experiments: (𝐻0, 𝑇 ), offshore slope 𝑆,
and wave characteristics simulated at breaking onset (𝑇𝑏, 𝑐𝑏, 𝜅𝑏). Note
the breaking period used in the definition of 𝛾, 𝑇𝑏 < 𝑇 is based on the
breaking crest geometry, following Derakhti et al. (2020). In addition
to the test cases described in detail in Section 4.2, additional simula-
tions were performed for periodic wave cases from two more studies
by Narayanan and McCalpin (1997) (NM) and Blenkinsopp and Chaplin
(2007) (BC), whose parameters and results are also summarized in
Table 3. For each case, the Table also lists the value of Battjes’ surf
similarity parameter (or Iribarren number), 𝜉0 = 𝑆∕

√

𝐻0∕𝐿0, where
0 is the incident wavelength in deep water, 𝐿0 = 𝑔𝑇 2∕(2𝜋) (Battjes,
974). Battjes showed that periodic waves shoaling over a plane slope
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Fig. 12. Spatial evolution of wave statistics computed from the experiments (circles) and simulations with Mis-b005 (solid line) for the irregular wave case of Beji and Battjes
(1993) (JONSWAP spectrum with 𝐻𝑠 = 0.049 m and 𝑇𝑝 = 2.5 s). Waves break over the bar in the model and in the experiments (plunging breakers).
Fig. 13. Set-up for simulations with Misthyc of Adytia et al. (2018) experiments for irregular waves propagating over a bar (𝐻𝑠 = 0.2 m and 𝑇𝑝 = 2.5 s), with arrows showing the
ocation of the 15 wave gauges. The cyan shading shows the breaking region from onset to termination, and the grey shading indicates the absorbing beach region.
reak as spilling breakers for 𝜉0 ≤ 0.5 and as plunging breakers for 0.5 <
0 ≤ 3.3. In all of the experiments reported in Table 3, waves broke
ither as spilling or plunging breakers, except in one case (c: S/P-BC)
here both were observed. In most cases, the 𝜉0 value is consistent with
he observed type of wave breaking, despite some of these experiments
eing performed over a bar and not just a plane slope. Consistent with
attjes’s work and predictions based on the surf similarity parameter
or periodic depth-limited breakers, the models predicted a breaking
ndex 𝜅𝑏 ∈ [0.7, 1.2] for the tests considered here. In the next section,
he dependence of the breaking strength 𝑏 predicted using the HJ model
n the instantaneous 𝜅 ≃ 2𝐹 values in the breaking area is examined.
13
5.1. HJ model breaking strength

For the HJ model, the instantaneous breaking strength parameter
𝑏 can be computed in each case using Eq. (13) and expression of 𝜖 in
Eq. (15), assuming𝛱𝑏 = 𝜖. As shown in Eq. (14), assuming small ampli-
tude waves (i.e., a small 𝐹 ) yields 𝑏 ≃ 2𝜇𝐹 3 with 𝐹 = 𝑔𝑎∕𝑐2𝓁 ≃ 𝑎∕𝑑 and
𝑐𝓁 ≃

√

𝑔𝑑 in shallow water. Since waves tend to not be symmetric about
the mean water level, this equation underestimates the product ℎ𝑐ℎ𝑡
in Eq. (13), and therefore overestimates the non-dimensional breaking
strength compared to using the complete formula. Therefore, the value
predicted this way represents an upper bound, i.e., 𝑏 = 2𝜇𝐹 3. Now,
𝑚𝑎𝑥
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Fig. 14. Spatial evolution of wave statistics computed based on results of experiments (circles) and simulations with Mis-b005 (solid line) for the irregular wave case of Adytia
et al. (2018) (𝐻𝑠 = 0.2 m and 𝑇𝑝 = 2.5 s); waves break over the bar in the model and in the experiments.
Table 3
Periodic wave breaking test cases and their parameters. Each test case name has 3 parts: (1) the model
used, M-Misthyc, N-NWT; (2) type of breaking reported in experiments, S-Spilling, P-Plunging; and (3)
the experiment: (slope) HS-Hansen and Svendsen (1979), TK-Ting and Kirby (1994), NM-Narayanan and
McCalpin (1997) and BC-Blenkinsopp and Chaplin (2007), and (bar) BB-Beji and Battjes (1993).
Label Name 𝐻0 (cm) 𝑇 (s) slope 𝑆 𝑇𝑏 (s) 𝑐𝑙𝑏 (m/s) 𝜅𝑏 𝜅𝑏𝑒 𝛾 𝜉0
a M-S-HS 9.50 1.0 1/34.26 0.78 1.03 0.73 0.78 0.77 0.118
b M-S-TK 12.50 2.0 1/35 1.33 1.26 0.81 0.82 0.80 0.202
c N-S/P-BC 10.05 1.0 1/10 0.75 1.06 0.69 0.87 1.01 0.394
d N-S-NM 12.00 2.0 1/34.66 1.23 1.31 0.84 – 1.12 0.208
e N-P-NM 12.00 5.0 1/34.66 1.54 1.24 1.09 – 1.54 0.520
f M-S-BB 4.40 2.5 1/20 0.82 0.89 0.79 – 1.30 0.744
g N-P-TK 12.80 5.0 1/35 1.71 1.27 1.09 1.21 1.65 0.499
h N-P-BC2 9.72 1.42 1/10 1.04 1.07 0.95 0.91 1.43 0.569
i M-P-BB 5.40 2.5 1/20 0.99 0.92 0.92 – 2.47 0.672
j N-P-BC1 7.82 2.0 1/10 1.64 1.04 1.17 0.84 1.52 0.894
𝑏
f
l
f
l
w
o

noting that in Eq. (13) we always have, ℎ𝑐ℎ𝑡 < (𝑑 + 2𝑎)2 = (1 + 2𝐹 )2𝑑2,
eplacing the latter value in the equation yields a lower bound of the
reaking strength, i.e., 𝑏𝑚𝑖𝑛 = 𝑏𝑚𝑎𝑥∕(1 + 2𝐹 )2. As the energy dissipates
uring the breaking process, the relative depths under the crest and
rough, ℎ𝑐 and ℎ𝑡, change, and therefore the exact value of 𝑏 will
ary, roughly bounded by these approximations, until the breaking
ermination criterion is met.
Fig. 15 shows the breaking strength 𝑏 computed with the Misthyc
odel, using the HJ parameterization, as a function of 𝜅(𝑡) = 𝐻∕𝑑 ≃
𝐹 , for the HS, TK, and BB-regular periodic wave experiments, as well

3 2
14

s its approximate lower and upper bounds, 𝑏𝑚𝑖𝑛 = (𝜇∕4)𝜅 ∕(1+𝜅) and
𝑚𝑎𝑥 = (𝜇∕4)𝜅3, respectively. Breaking onset is at the right side of the
igure, where the largest values of 𝑏, 𝜅 and 𝐹 occur and, moving to the
eft of the figure, the waves propagate through the breaking region as a
unction of time, with breaking termination occurring near the bottom
eft. The model results for 𝑏 are in the range [0.01, 0.1] and fall mostly
ithin its previously defined lower and upper bounds, estimated based
n 𝐹 values. As expected, at breaking onset, 𝜅𝑏 = 𝐻𝑏∕ℎ𝑏 is in the range

[0.7, 1.2] (Table 3).
These observations, as well as the good agreement between the

simulations and experimental observations for a variety of benchmark

cases, confirm the relevance of modelling the energy dissipation rate
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Fig. 15. Evolution of the instantaneous breaking strength 𝑏 calculated with the HJ model during breaking simulations with Misthyc for the (Table 3): (a) HS (solid magenta), (b)
TK (solid green), and (i) BB-regular (solid red) periodic spilling/plunging breaking wave experiments, as a function of 𝜅 = 𝐻∕𝑑. The dashed blue curves represent the lower (𝑏𝑚𝑖𝑛)
and upper (𝑏𝑚𝑎𝑥) bounds estimated for 𝑏, and the horizontal dash-dotted black line is 𝑏 = 0.05.
o
s
i

d
c
s

for depth-induced breaking waves as analogous to that of a hydraulic
jump (or bore), with a single calibration constant 𝜇 = 1.5 (Svendsen
et al., 1978 and Stive, 1984; Eq. (13)). Furthermore, unlike in ear-
lier studies that used a variety of case specific breaking criteria and
related energy dissipation rates, good agreement with all experiments
reported here for spilling and plunging breaker cases was achieved
using universal breaking onset and termination criteria based on 𝐵
and a dissipation rate based on the HJ analogy. Fig. 15 also shows
that the time-averaged breaking strength, based on all simulated cases,
is 𝑏 ≃ 0.05, as tested in several simulations in Section 4.2. And
although the actual 𝑏 value differs substantially from this average near
breaking onset and termination, as seen in earlier results, there were no
significant differences in the results obtained with a constant 𝑏 = 0.05
or varying 𝑏 value throughout breaking within the accuracy/variability
f most experiments, and both approaches agreed similarly with the
xperiments for the 5 considered benchmark cases.

.2. Breaking onset kinematics

Fig. 16 shows the time evolution of the 𝐵 value up to breaking
onset (𝐵 = 0.85), as computed in simulations of the 10 experimental
cases listed in Table 3. As expected from the parameterization of 𝑏 as
an increasing function of 𝛾 ∝ 𝑑𝐵∕𝑑𝑡, defined in Eq. (16) (Fig. 3), 𝑑𝐵∕𝑑𝑡
is observed to be larger at breaking onset for plunging breakers than for
the spilling breakers. This observation appears to be independent from
the type of bathymetry that caused waves to break. For instance, BB
and TK conducted S and P breaker experiments on barred and sloped
bathymetries, respectively, and 𝑑𝐵∕𝑑𝑡 is larger for P than for S breakers
in all cases. Blenkinsopp and Chaplin (2007) conducted three types of
experiments, for strongly P (BC1), P (BC2), and S/P (BC) breakers and,
among these, 𝑑𝐵∕𝑑𝑡 is largest for BC1 and lowest for BC, as would be
expected.

For the cases shown in Table 3, the S breakers, with 𝜉0 < 0.7
have 𝛾 < 1.3 and the P breakers, have 𝜉0 > 0.5 and 𝛾 > 1.4. Hence,
consistent with the value of 𝑑𝐵∕𝑑𝑡 at breaking onset, 𝛾 values may also
distinguish S from P breakers. However, a more accurate estimation of
this threshold 𝛾 value should be based on a larger number of test cases.

The computation of breaking onset 𝐵 is sensitive to small changes in
𝑢 and 𝑐. Thus, a high-order interpolation scheme was used to track wave
crests, but errors may still appear as a function of the discretization,
15

which may delay or advance the onset of breaking, thus affecting the e
Table 4
Sensitivity of the breaking model to the discretization for the TK test
case using the Misthyc model. Here, 𝑡𝑓 − 𝑡𝑏 is the duration of breaking,
𝑇 , the time period, and 𝜖𝑏 the total energy dissipated per unit length of
a quasi-steady breaking crest.

𝛥𝑥 (m) 𝛥𝑡 (s) (𝑡𝑓 − 𝑡𝑏)∕𝑇 𝜖𝑏 = ∫ 𝑡𝑓
𝑡𝑏

𝛱𝑏𝑑𝑡 (m4∕s2)

0.0385 0.02 0.58 0.049
0.0385 0.01 0.70 0.0491
0.0256 0.013 0.68 0.050
0.0192 0.01 0.67 0.0476
0.0154 0.008 0.55 0.0439
0.0128 0.006 0.56 0.0437

energy dissipation. These effects were evaluated by simulating the TK
test case with six increasingly refined grids listed in Table 4. For the
time duration of breaking, results yield a standard deviation of 0.062𝑇 ,
where 𝑇 = 2 s, and for the resulting total energy dissipated per unit
length of the breaking crest (𝜖𝑏), the standard deviation is 0.0025m4∕s2,
that is, less than 0.05𝜖𝑏. In both cases, the observed values for the two
finer discretizations are nearly constant, indicating convergence.

5.3. Breaking termination conditions

For waves breaking on a plane beach (such that depth always
decreases as waves propagate into shallower water), as described
in Svendsen et al. (1978), from breaking onset shoreward, the breaking
dissipation can occur up until waves run up the dry upper slope.
However, the FNPF setup used here does not model wave run-up or
bottom friction, which becomes significant near the shoreline. Using a
similar model set-up, simulations in previous work on plane beaches
did not use a breaking termination criterion. For example, in Fig. 9a
from Grilli et al. (2020), the wave height decreases from the onset up
to the shallowest depth. For the cases on a plane slope, this is also seen
in Fig. 10 of Simon et al. (2019), where the same variation in 𝐻𝑠 is
bserved. Finally, Papoutsellis et al. (2019) also mention that for the
pilling breaker case of Ting and Kirby (1994), they terminate breaking
nside the sponge layer.
In contrast, for waves breaking over a bar, which is followed by

eshoaling over the shoreward slope of the bar, a breaking termination
riterion 𝐵off = 0.30 was used in all of the present applications. As
hown in Fig. 11, this value appears to be optimal for reproducing the
xperimental results. Waves breaking on a bar may terminate breaking
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Fig. 16. Evolution of 𝐵 = 𝑢∕𝑐 as a function of non-dimensional time 𝑡∗ = (𝑡 − 𝑡𝑏)∕𝑇𝑏, referred to the time of breaking onset, up to breaking onset (𝐵 = 0.85; horizontal dashed
line), computed for a wave crest evolving over sloping bathymetries in the experimental test cases listed in Table 3. Red lines for P-cases and blue lines for S-cases have larger
and smaller values of 𝑑𝐵∕𝑑𝑡 at breaking onset, respectively.
over the crest or on the shoreward slope of the bar. Here, the choice
of termination criterion is important since the wave evolution depends
strongly on it.

To the authors’ knowledge, a universal breaking termination cri-
terion does not exist. Alternative ideas have been tested, such as a
termination criterion based on the slope of the free-surface (e.g., Simon
et al., 2019). Another possibility is a time-based criterion. Derakhti
et al. (2018a) noted that the active breaking period 𝜏 ≈ 0.75𝑇𝑏, and
so this could also be tested in future applications.

6. Conclusions

A unified method of modelling depth-limited wave breaking dis-
sipation in FNPF models was demonstrated, building on the work
of Guignard and Grilli (2001) and Grilli et al. (2020), who proposed
aking the energy dissipation rate analogous to that of a hydraulic
ump. Two different FNPF models were applied here: Misthyc (Yates
and Benoit, 2015) and a BEM-NWT (Grilli et al., 1989; Grilli and
Subramanya, 1996). The detection of breaking onset in the models
was based on the universal criterion 𝐵 = 𝑢∕𝑐 = 0.85, first proposed
by Barthelemy et al. (2018) for deep and intermediate water cases,
nd validated by Derakhti et al. (2020) in shallow water. Similar to
arlier work such as Grilli et al. (2020) or Simon et al. (2019), we
show that simulation results based on this approach agree well with
experimental measurements for a variety of standard shallow water
breaking cases from the literature, for both regular and irregular wave
trains and different bathymetries.

Using the hydraulic jump (HJ) analogy originally proposed by
Svendsen et al. (1978) and Stive (1984) for spilling breakers, the non-
dimensional breaking strength 𝑏, is found in most cases, including both
spilling or plunging breakers, to have a fairly narrow range of variation
centred on 0.05. However, consistent with the recent parameterization
of 𝑏 proposed by Derakhti et al. (2018a,b), proportional to 𝑑𝐵∕𝑑𝑡 at
the onset, the instantaneous value of 𝑏 resulting from the HJ analogy
is much larger at breaking onset, and then decreases throughout the
breaking region. Recalling that the HJ dissipation rate is related to the
relative wave height 𝜅, or wave Froude number 𝐹 , with 𝜅 = 𝐻∕𝑑 ≃ 2𝐹
in shallow water and for the depth-limited breaking waves tested here,
𝜅𝑏 ∈ [0.7, 1.2], consistent with Battjes’ predictions based on the surf
similarity parameter (Battjes, 1974). This implies that for waves in this
16
parameter range, 𝑏 would always have a similar order of magnitude.
With this rationale, simulations of spilling and plunging depth-limited
breaking waves were performed using a constant breaking strength
𝑏 = 0.05. The simulated results using a constant 𝑏 or the HJ model with
a time-varying 𝑏 agreed similarly with the experimental measurements,
within the range of experimental uncertainty. Although in very complex
cases there may be waves in an irregular wave train requiring larger or
smaller 𝑏 values, the constant 𝑏 value provides results with a similar
level of uncertainty or accuracy as the HJ model.

There are some weaknesses in this current approach that must be
resolved in order to obtain a fully general method. While concentrating
on the wave breaking criterion and dissipation rate, the breaking
termination criterion has not yet been thoroughly investigated, which
should be a point for further research. For the cases shown here, wave
breaking on a slope were not terminated until the shallowest depth
in the model domain (or the absorbing beach) were reached, whereas
wave breaking on a bar was terminated at a value 𝐵off = 0.30, which
was found to yield results in good agreement with experiments. Since
the energy dissipation rate 𝛱𝑏 = 𝜖 of breaking waves depends on the
fifth power of wave celerity, when this parameterization is used in the
constant strength model, an accurate tracking of wave crest locations
as a function of time 𝑥𝑐 (𝑡) and the calculation of the time derivative
𝑑𝑥𝑐∕𝑑𝑡 = 𝑐 are important for accurate simulations. With the method
used here to compute 𝑐 (see Appendix), some spurious oscillations are
still observed when taking the derivative of the crest position, which
results in small oscillations of 𝛱𝑏 = 𝜖 and thus wave heights in the
breaking region. Another issue is the accurate real-time identification
of wave crests/troughs in irregular sea-states. In situations where small
breaking waves ride on top of larger waves, the estimation of the
spatial extent of dissipation could be misinterpreted, which could cause
instabilities.

By using a breaking dissipation rate 𝛱𝑏 = 𝜖 proportional to a
constant 𝑏, instead of using the HJ analogy, the need to compute the
local geometric characteristics of waves required in the HJ dissipation
Eq. (13) is eliminated (e.g., water depth under the trough, etc.), and the
dissipation can simply be related to the crest kinematics. This simpler
formulation clearly will yield its greatest advantages when applying
the model in three-dimensions, where the identification of local wave
parameters, even the crest location, is challenging. Derakhti et al.
(2018b) also showed that a constant 𝑏 might be expected in shallow
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water based on results of a Navier–Stokes model. The present modelling
approach with the constant strength 𝑏 and dissipation rate 𝛱𝑏 = 𝜖
arameterization could be generalized to intermediate or deep water
ases, by using the 𝑏(𝛾) breaking strength model proposed by Derakhti
t al. (2018a), who found that the value of 𝑏 in deep or intermediate
ater (which is clearly not constant) could be related to the kinematics
f the wave as well, specifically to 𝑑𝐵∕𝑑𝑡 and a relevant breaking
eriod 𝑇𝑏 at breaking onset. Some additional work may be required,
owever, to implement the deep-water parameterization, as 𝑏 obtained
rom a 3D finite volume NS solver, in which energy is dissipated within
he domain volume, may not have the same distribution or effect in a
NPF model, where the energy dissipation is applied to the surface and
nly acts on the potential part of the flow.
In considering the kinematics of the shallow water breaking waves

imulated here, the value of 𝛾 appears to provide a parameter to dis-
inguish spilling and plunging breakers, with a threshold value around
.3–1.4. For waves shoaling on a plane slope, this may be loosely
elated to Battjes’ surf similarity parameter and may be of interest
or applications beyond the scope of those envisioned here, such as
f identifying breaker types from existing models that are unable to
imulate the breaking process.
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ppendix. Calculation of wave crest kinematics

The instantaneous location of wave crests is first roughly estimated
n the 2D-FNPF models’ free surface, by finding local maxima. (The
rests with wave height, 𝐻 < 0.05𝑑, where 𝑑 is the depth at the wave-
aker, are discarded, as these are mostly flat and the calculation of 𝑐
ets very noisy.) Then, four model points surrounding each wave crest
ocation are identified with elevation, particle velocity, and location
17

𝜂𝑖, 𝑢𝑖, 𝑥𝑖) (𝑖 = 1, 2, 3, 4) and mapped to a local coordinate 𝜉 ∈ [−1, 1].
Fig. 17. Sketch showing the calculation of a local wave crest location between
discretization points on the simulated free surface.

Cubic shape functions (Eq. (22)) are used to interpolate 𝜂(𝜉) between
these points.

𝑁1(𝜉) =
1
16

(1 − 𝜉)(9𝜉2 − 1)

𝑁2(𝜉) =
9
16

(1 − 𝜉2)(1 − 3𝜉)

𝑁3(𝜉) =
9
16

(1 − 𝜉2)(1 + 3𝜉)

𝑁4(𝜉) =
1
16

(1 + 𝜉)(9𝜉2 − 1)

(22)

The wave crest location is then estimated based on the 𝜉𝑐 value at
which 𝑑𝜂∕𝑑𝜉 = 0 (Fig. 17). Therefore, the horizontal location of a local
crest in the global coordinate is calculated as

𝑥𝑐 = 𝑥1𝑁1(𝜉𝑐 ) + 𝑥2𝑁2(𝜉𝑐 ) + 𝑥3𝑁3(𝜉𝑐 ) + 𝑥4𝑁4(𝜉𝑐), (23)

and the horizontal particle velocity at the crest, 𝑢 as

𝑢 = 𝑢1𝑁1(𝜉𝑐) + 𝑢2𝑁2(𝜉𝑐) + 𝑢3𝑁3(𝜉𝑐) + 𝑢4𝑁4(𝜉𝑐 ). (24)

Prior to calculating 𝑐, 𝑥𝑐 (𝑡) is smoothed by second-order exponential
smoothing (Guthrie, 2020), described as follows, denoting 𝑋𝑡

𝑐 as the
smoothed horizontal crest location at time 𝑡 = 0,
𝑋0

𝑐 = 𝑥0𝑐
𝑠0 = 𝑥1𝑐 − 𝑥0𝑐

(25)

For 𝑡 > 0,
𝑋𝑡

𝑐 = 𝛼𝑥𝑡𝑐 + (1 − 𝛼)(𝑋𝑡−1
𝑐 + 𝑠𝑡−1)

𝑠𝑡 = 𝛽(𝑋𝑡
𝑐 −𝑋𝑡−1

𝑐 ) + (1 − 𝛽)𝑠𝑡−1,
(26)

where (𝛼, 𝛽) based on some preliminary tests are taken as (0.05, 0.01).
Wave celerity of a crest at a time 𝑡, 𝑐(𝑡) is then calculated by a linear

fit to the smoothed data in the interval [𝑋𝑡−𝑛
𝑐 ,… , 𝑋𝑡

𝑐], such that 𝑛𝛥𝑡 <
0.04𝑇 , where 𝛥𝑡 is the discretization in time and 𝑇 is a representative
wave period. In the test cases presented this study, 𝑛 = 8. The location
of a crest 𝑋𝑡

𝑐 at the previous time i.e, 𝑋𝑡−1
𝑐 is determined by comparing

all the crests at (𝑡−1)th time step to that of𝑋𝑡
𝑐 such that𝑋𝑡

𝑐−𝑋
𝑡−1
𝑐 < 𝑚𝛥𝑥,

where 𝑚 ∈ [10, 20] and 𝛥𝑥, the discretization in space (Note, 𝛥𝑥 and
𝛥𝑡 in the test cases here are chosen such that a crest horizontally does
not advance more than a few 𝛥𝑥). This gets challenging for irregular
test cases when small waves are present on top of longer waves, for
the cases seen here, 𝛥𝑥 and 𝑚 are small enough such that crests are
correctly tracked. To compute 𝛾, the discrete values of 𝐵 = 𝑢∕𝑐 at
the crest, when in the range [0.82, 0.85], are then linearly fit to obtain

𝑑𝐵∕𝑑𝑡|𝐵=𝐵𝑡ℎ

.
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