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Abstract
Thermoelastic loss is an important energy dissipation mechanisms in resonant
systems. A careful analysis of the thermoelastic loss is critical to the design
of low-noise devices for high-precision applications, such as the mirrors used
for gravitational-wave (GW) detectors. In this paper, we present analytical
solutions to the thermoelastic loss due to thermoelasticity between different
materials that are in contact. We find expressions for the thermoelastic loss
of multimaterial coatings of finite substrates, and analyze its dependencies on
material properties, mirror design and operating experimental conditions. Our
results show that lower operating mirror temperature, thinner layers and higher
number of interfaces in the coating, and the choice of the first layer of the
coating that minimizes the thermal expansion mismatch with the substrate are
strategies that reduce the thermoelastic loss and, therefore, diminish the thermal
noise that limits the resolution in sensing applications. The results presented in
this paper are relevant for the development of low-noise GW detectors and for
other experiments sensitive to energy dissipation mechanisms when different
materials are in contact.
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1. Introduction

Thermal noise has been shown, through calculations derived from experimentalmeasurements,
to be one of the most significant noise sources that is limiting the sensitivity of gravitational-
wave (GW) detectors [1, 2]. It consists of Brownian noise, which is related to mechanical loss
intrinsic to the material and is the dominant contribution at room temperature (RT) [3], ther-
morefractive noise, caused by refractive index variations due to temperature fluctuations [4],
and thermoelastic noise, caused by thermoelasticity, which is the coupling between the elastic
field in the structure due to deformation and the temperature field [5].

In coated substrates, as used for GW detector mirrors [6, 7], thermoelasticity can be caused
by two different mechanisms: (1) statistical temperature fluctuations, intrinsic to any material,
and (2) thermal expansion mismatch between different materials in contact. Mechanism (2)
will be the focus of this paper. In a vibrating structure, the periodic elastic displacement field
causes a temperature gradient, where the compressed region becomes hotter and the stretched
region becomes cooler. Consequently, heat transfer takes place in order to reach thermal equi-
librium and yields elastic components out of phase with the input fields [8, 9]. The ratio of
energy dissipated due to this irreversible heat flow (Ediss) to the total energy stored in the sys-
tem (Estored) is defined as thermoelastic loss ϕ. The loss factor, whether it is determined from
a single or many dissipation mechanisms, is defined as ϕ = Ediss/2πEstored.

The contribution to thermal noise Sx from thermoelastic loss ϕ at a particular frequency f
can be found using the method proposed by Levin based on the fluctuation-dissipation the-
orem [10]:

Sx( f) =
2kB
π2

TEdiss

fF2
0

=
4kB
π

TEstored

fF2
0

ϕ (1)

where kB is the Boltzmann constant, T is the temperature at which Sx( f) is evaluated and F0

is the amplitude of the imposed force F= F0cos(2π ft). For further details on equation (1) and
its form for a Gaussian laser beam, the specific case for GW detectors, see [10–12].

GW detectors, such as the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1] and the Virgo interferometer [6], are kilometer-sized interferometers that bounce
a beam of light between highly reflective optical mirrors. These mirrors at present consist
of a silica substrate and a multilayer coating that alternates layers of silica and titania-doped
tantala [13]. The sensitivity of such detectors improves when thermoelastic loss is reduced,
thereby reducing the system thermal noise. For this reason, establishing design and experi-
mental parameters that contribute to thermoelastic loss is important to minimizing thermal
noise in GW detectors.

In 1937, Zener first published an analysis of thermoelastic damping in thin resonator beams
undergoing flexural vibrations [8]. Lifshitz and Roukes later refined his model and solved the
fundamental equations more rigorously, leading to different approximate solutions of tem-
perature profile and hence, different expressions of the thermoelastic loss [14]. Fejer et al
developed an independent approach for the computation of ϕ in mirrors for GW detectors;
they determined the energy lost due to the elastic field induced by thermal fluctuations in
the coating on an infinitely thick substrate [15]. Based on the work of Fejer et al, Somiya
and Yamamoto calculated the coating thermal noise considering a substrate of finite thick-
ness and proposed a different form of solution to the thermal equations using the elastic
response of a cylinder with finite thickness [16]. Fejer et al and, separately, Somiya and
Yamamoto, adopted the same approach to calculate the thermoelastic noise in mirrors with
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multilayered coatings: specifically, the effective medium approach (EMA), in which the mul-
tilayers are abstracted as a homogeneous medium of weighted-average physical properties
[15, 16].

In this paper, and based on the model described by Fejer et al [15], we present analyt-
ical solutions for the thermoelastic loss of a multimaterial coated substrate of finite thick-
ness without using the EMA. We derive expressions for ϕ due to thermal expansion mismatch
between different layers in the coating and substrate, which allow the calculation of the associ-
ated thermoelastic noise using equation (1). The total thermal noise due to thermoelasticity of
finite size mirrors can then be estimated combining the thermoelastic noise due to mechanisms
(1) [17, 18] and (2) described above. This, however, is not the scope of this paper, and we focus
on the strategies that reduce ϕ regarding the multilayer design of a coated finite substrate and
its operating temperature. We note that ϕ is a ratio of energies, dimensionless and independent
of the details of the laser field. The results presented in this paper show that thermoelastic loss
ϕ can be minimized through a careful choice of variables, such as operating temperature of the
mirror, thickness of layers and number of interfaces in the coating, and the choice of the first
layer of the coating in contact with the substrate such as to minimize their thermal expansion
mismatch.

The paper is outlined as follows: section 2 presents an overview of the key equations used
to evaluate the thermoelastic loss in a substrate uniformly coated with either a single layer
or a multilayer. Thermoelastic response and the consequent heat propagation normal to the
interfaces are studied. We first consider a model consisting of a single layer, then expand
the model to include a multilayer coating, and refine the heat equations to accommodate the
alternating layers without adopting the EMA. Analytical solutions for both types of structure
are derived. Finally, section 3 presents the results calculated from the formulae of thermoelastic
loss for various cases and discusses how material properties and external factors impact the
thermoelastic loss. Particular attention is paid to the multilayer structure, where the structure
of the coating (layers thickness and number of interfaces) is preserved.

2. Mathematical framework for the thermoelastic loss

To derive an expression for the thermoelastic loss in a coated substrate, we consider a film
of thickness l on a substrate with a thickness of h− l, as illustrated in figure 1. We define the
surface normal to be in the z-direction. The film’s surface is located at z= 0 and its interface
with the substrate at z= l, the substrate extends from z= l to z= h, where h≫ l. Our model
assumes that both the film and the substrate are homogeneous, i.e. that their physical properties
do not change throughout their volume, that there is no temperature variation in the x-y plane,
and that the transverse dimensions are much larger than the longitudinal ones (thicknesses of
film and substrate), therefore, only the thermal diffusion along z-direction needs to be taken
into account.

The energy loss due to thermoelasticity is calculated for two states of stress, in-plane stress
and normal stress. Detailed derivations are presented in the following sections. Thermoelastic
loss is a measure of energy dissipated due to the coupling between the deformation and thermal
fields. Hence first, the relationship between the intrinsic elastic field and the temperature field
produced by it needs to be determined. By defining the boundary conditions and solving the
equilibrium equations, the thermal strain and the associated dissipated power can be found.
Subsequently, the elastic energy stored in the coating can be obtained from the applied stress
through the use of theory of elasticity. Finally, based on the definition of thermoelastic loss ϕ,
an expression of ϕ for the system can be found.
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Figure 1. Illustration of the homogeneous system studied by our model: a substrate
coated with a film.

2.1. Formulation of the thermal field

The dynamic deformation of a body causes temperature variations. We use the linear heat
equation along the z-direction to find the temperature distribution coupled to the input elastic
field [19],

∂θj
∂t

−κj
∂2θj
∂z2

=−
EjαjT

(1− 2νj)Cj

∂

∂t

∑
ϵ0, j (2)

where θj(t,z) is the time/position-varying temperature, κj is the thermal diffusivity, Ej is the
Young’s modulus, αj is the coefficient of linear thermal expansion, T is the background tem-
perature, ν j is the Poisson’s ratio, Cj is the specific heat capacity per unit volume and j= f,
s indicates quantities evaluated in the film (f ) and in the substrate (s), respectively. GW mir-
rors are exposed to high-intensity laser beams; therefore, the mirror thermal field depends on
both elastic field and optical absorption. In the model presented in this paper, we only study
the dependence of the thermal field with the elastic field. The work on photothermal transfer
function by Ballmer [20] serves as a basis for calculating the heat flow and thermal expansion
caused by optical absorption.

Taking θj(t,z) to be in the form of θj(z)exp(iωt) and the strain as ϵ0 exp(iωt), whereω = 2π f
is the angular frequency, equation (2) becomes,

iωθj−κj
∂2θj
∂z2

=−iωβj (3)

where βj = (EjαjT)/[(1− 2νj)Cj]
∑

ϵ0, j. The boundary conditions for heat fluxes are defined
as follows,

∂θf
∂z

∣∣∣
z=0

= 0,

kf
∂θf
∂z

∣∣∣
z=l

= ks
∂θs
∂z

∣∣∣
z=l

,

∂θs
∂z

∣∣∣
z=h

= 0

(4)

where k represents the thermal conductivity.
As previously proposed by Fejer et al [15], the final solution to the heat equation consists

of two parts, a particular (p) solution of thermal field, θp, j(z), that is coupled to the strain and
satisfies equation (3), and a specific (s) solution, θs, j(z), that meets the boundary conditions.
It can be written as

θj = θp, j(z)+ θs, j(z). (5)
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We solve for the thermal fields consistent with the boundary conditions (equation (4)); the
calculation is shown in appendix A. The thermal fields in the film and the substrate along the
z direction are

θf =−βf+
∆β× cosh(γfz)

cosh(γfl)+Rsinh(γfl)coth(q)
,

θs =−βs−
∆βR× cosh[γs(h− z)]

coth(γfl)sinh(q)+Rcosh(q)

(6)

where q= γs(h− l), ∆β = βf−βs, γj = (1+ i)
√
π fCj/kj and R= (kf γf)/(ksγs) =√

(kfCf)/(ksCs).
To determine the induced stress field ϵ1 and strain field σ1 by oscillatory thermal fluctuation,

we assume that any expansion/contraction along the z-direction is not restricted, and therefore,
ϵ1,zz = αjθj, σ1,zz = 0.When considering the in-plane thermal expansion, one assumptionmade
in the calculation is that the substrate expands freely, effectively uninfluenced by the film;
however, the in-plane expansion of the film is constrained. Moreover, the film is assumed to
have a uniform strain of αsθs(z= l), which is the expansion of the substrate at the interface
with the film. This approximation is reasonable if the substrate is much thicker than the film,
i.e. (h− l)≫ l. Since the free expansion in plane of the film is forbidden, stress is developed
in the interior of the film and the stress level depends on the mismatch between the thermal
expansion of the film and the substrate. Taking these into consideration, we find the elastic
fields due to the thermal mismatch as

ϵ1,ii, j = A1,ii, jαjθj,

σ1,ii, j = B1,ii, jαjθj.
(7)

The matrices A1,ii, j and B1,ii, j are defined as

A1,ii, f =

αsθs,l 0 0
0 αsθs,l 0
0 0 αf θf

 ,

B1,ii, f =

−b 0 0
0 −b 0
0 0 0

 ,

A1,ii,s =

αsθs 0 0
0 αsθs 0
0 0 αsθs

 ,

B1,ii,s =

0 0 0
0 0 0
0 0 0



(8)

where b= Ef(αf θf−αsθs,l), and θs,l represents θs(z= l).

2.2. Applied elastic field and elastic energy

In order to calculate the oscillatory thermal field caused by an oscillatory stress or a vibration
at a frequency ω, we need to first determine the stress and strain states. Here two potential
cases are considered: (1) in-plane stress and (2) normal stress to the surface. The latter one is
relevant to mechanical loss measurements and LIGO operation. Solutions to other stress states
can be attained by a sum of the solutions based on these two stress fields. Using the elastic
boundary conditions, we find the driving elastic fields in the film, denoted by the subscript 0.
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2.2.1. Stress parallel to the coated surface. The boundary conditions for stress parallel to
the coated surface are: σ0,xx = σ0,yy = σ0,∥ (with the assumption of symmetry), and σ0,zz = 0.
Using Hooke’s law, we find

ϵ0,xx, j = ϵ0,yy, j =
1− νj
Ej

σ0,∥,

ϵ0,zz, j =
−2νj
Ej

σ0∥.

(9)

Summarizing the results in matrix form, the stress and strain fields can be expressed in the
forms of

ϵ0,ii,∥, j = a0,ii, jσ0,∥,

σ0,ii,∥, j = b0,ii, jσ0,∥
(10)

where

a0, j =


1−νj
Ej

0 0

0 1−νj
Ej

0

0 0 −2νj
Ej

 ,

b0, j =

1 0 0
0 1 0
0 0 0

 .

(11)

Therefore, the elastic energy stored per unit area is given by

Estored,∥, j =
1
2
σϵ× l

=
1
2
σ2
0,∥, jl

∑
b0, ja0, j

=
1
2
σ2
0,∥, jl×

2(1− νj)

Ej
.

(12)

2.2.2. Stress perpendicular to the coated surface. For stress perpendicular to the coated
surface, the boundary conditions are defined as: σ0,zz = σ0,⊥, σ0,xx,σ0,yy ̸= 0; ϵ0,zz ̸= 0, ϵ0,xx =
ϵ0,yy = 0. With the Hooke’s law expression, we obtain

σ0,xx, j = σ0,yy, j =
νj

1− νj
σ0,⊥,

ϵ0,zz, j =
σ0,⊥

Ej

(1− 2νj)(1+ νj)

1− νj

. (13)

The collective results are,

ϵ0,ii,⊥, j = c0,ii, jσ0,⊥,

σ0,ii,⊥, j = d0,ii, jσ0,⊥
(14)

6
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where

c0, j =

0 0 0
0 0 0

0 0 (1−2νj)(1+νj)
1−νj

1
Ej

 ,

d0, j =

 νj
1−νj

0 0
0 νj

1−νj
0

0 0 1

 .

(15)

Hence, the amount of elastic energy stored per unit area is given by

Estored,⊥, j =
1
2
σϵ× l

=
1
2
σ2
0,⊥, jl

∑
d0, jc0, j

=
1
2
σ2
0,⊥, jl×

(1− 2νj)(1+ νj)

Ej(1− νj)
.

(16)

Additionally, specific elastic fields can be substituted into this model by defining ϵ0,ii, j and
σ0,ii, j to obtain Estored,j for these specific cases.

2.3. Energy dissipation and thermoelastic loss

We first consider the energy dissipated within the film. The rate of energy dissipation per unit
volume in a deformed body, in this case, the film, is defined as

pdiss, f =
σ

2
∂ϵ

∂t
(17)

which has to be a real function. The overall film stress and strain in the case of in-plane stress
are described as

ϵf,ii,∥ = a0,iiϵ0,∥ +A1,ii, fαf θf,

σf,ii,∥ = b0,iiσ0,∥ +B1,ii, fαf θf.
(18)

As for the case of stress perpendicular to the coated surface, we write

ϵf,ii,⊥ = c0,iiϵ0,⊥ +A1,ii, fαf θf,

σf,ii,⊥ = d0,iiσ0,⊥ +B1,ii, fαf θf.
(19)

The oscillatory stress and strain fields have a time dependence

ϵ= ϵf,ii× eiωt,

σ = σf,ii× eiωt.
(20)

Hence, pdiss, f can be written as

pdiss, f =
∑ 1

2
∂σf,iiϵf,ii

∂t

= ω
∑

Im[σf,iiϵf,ii]

= ω
∑

Im[σ0,iiϵ0,ii+σ1,iiϵ0,ii+σ0,iiϵ1,ii+σ1,iiϵ1,ii]

= ω
∑

Im[σ1,iiϵ0,ii+σ0,iiϵ1,ii]

(21)
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since σ0,iiϵ0,ii is real, and σ1,iiϵ1,ii can be neglected because the induced elastic fields are sig-
nificantly smaller than the input fields. Therefore, the energy dissipated per unit area is

Ediss, f =
2π
ω

ˆ l

0
pdiss, f dz. (22)

Substituting equation (21) and the expressions of thermal and applied elastic fields, previously
derived in sections 2.1 and 2.2, into equation (22), we obtain the total energy dissipated in the
film and the substrate for parallel and perpendicular stress fields, respectively:

Ediss,total,∥ = 2πσ0 × Im
[
(2νf− 2)αf θ1, f γ

−1
f sinh(γfl)

+ (4− 2νf)αsθ1,s cosh(γs(h− l))× l− 2αsθ1,sγ
−1
s sinh(γs(h− l))

]
.

(23)

Ediss,total,⊥ = 2πσ0 × Im
[
αf θ1, f γ

−1
f sinh(γfl)

+
2νf

1− νf
αsθ1,s cosh[γs(h− l)]× l− 1+ νs

1− νs
αsθ1,sγ

−1
s sinh[γs(h− l)]

]
.

(24)

The detailed derivation is included in appendix B.
The loss factor is generally defined as the ratio of energy dissipated per radian to the poten-

tial energy in a cycle. In this case, the potential energy is the elastic energy stored in the strained
material. The consideration of an infinite substrate prevents the analysis of the elastic energy
stored in the substrate, and only the strain energy of the coating can be considered. Therefore,
to allow a direct addition/subtraction of all loss components (mechanical and thermoelastic),
the denominator has to be consistently defined for these loss factors as the elastic energy of the
system (coating and substrate). In this paper, we consider the stored potential energy in both
the coating and the substrate.

According to equations (12) and (16), the total stored energy in the system can be written
in the form of

Estored,total,∥ =
1
2
σ2
0 l×

2(1− νf)

Ef
+

1
2
σ2
0(h− l)× 2(1− νs)

Es
,

Estored,total,⊥ =
1
2
σ2
0 l×

(1− 2νf)(1+ νf)

Ef(1− νf)
+

1
2
σ2
0(h− l)× (1− 2νs)(1+ νs)

Es(1− νs)
.

(25)

Therefore, the thermoelastic loss ϕ can thus be calculated from

ϕ∥ =

∣∣Ediss,total,∥
∣∣

2π×Estored,total,∥
,

ϕ⊥ =
|Ediss,total,⊥|

2π×Estored,total,⊥
.

(26)

Typically the substrate is significantly thicker than the film, i.e. (h− l)≫ l, implying that
the total stored energy is mostly contained in the substrate (the second terms of equation (25)).
As a result, by using a thicker substrate, which leads to a larger elastic energy stored in the
substrate (while having little impact on the temperature gradient and inducing only a small
increase in the energy lost per cycle due to thermoelasticity), we see a decrease in ϕ. It should

8
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be noted that this is different from the dilution factor [21] considered in mechanical loss meas-
urements from the GeNS method [22]. In the GeNS method, the mechanical loss of a coating
is determined as the difference between the total (substrate+ coating) and the substrate mech-
anical losses weighted by the dilution factor, which is defined as the ratio between the energy
stored in the coating and the total energy of the system [21]. Since the thermoelastic loss
that we report in this paper is caused by the thermal expansion mismatch between different
materials, it is due to interactions between layers, i.e. ϕ cannot be determined as the com-
bined contribution from single layers. Somiya and Yamamoto showed that ϕ decreases with
the substrate thickness and hits a plateau at a certain thickness [16]. As per the definition of
thermoelastic loss (equation (26)), the thicker the substrate the larger the system stored energy,
while the energy dissipated remains almost unchanged. Thus, using a thicker substrate would
lead to a lower thermoelastic loss caused by thermal expansion mismatch between different
materials. The thermoelastic loss plateau discussed above is a direct consequence of only tak-
ing into account the film elastic energy. The substrate effect will be discussed in more detail
in section 3.

2.4. Multilayer coating on a finite substrate

In this section, we consider a coating made of alternating layers of two materials attached to a
homogeneous substrate, which resembles the dielectric mirror coating used in GW detectors,
as depicted in figure 2. We make the assumptions that (i) the outer surface is not subjected to
any heat flux, namely, that heat transfer only takes place within the films and substrate, and
(ii) each component is only affected by its nearest neighbors. These assumptions are likely to
be valid in most cases as the temperature fluctuation caused by the driving stress is reason-
ably small so that there would not exist a large temperature difference across the coated body.
Therefore, we study the thermoelastic dissipation dividing the system in two regions: along
(1) the coating layers, and (2) the first deposited layer and the substrate.

To find the energy dissipation between coating layers made of two different materials, we
begin by considering the thermal field in a single layer and assuming that its derivative is zero at
the center, a direct consequence of continuity. We assume that each layer is homogeneous and
the system is in steady state. The thermal fields are then solved using the boundary conditions
and a model consisting of two half-layers (depicted in figure 2(a)), where the temperature
profile and heat flux are deemed symmetric.

The thermal field solutions for the stack illustrated in figure 2(a) are similar to those derived
in section 2.1, with the boundary conditions now being

∂θf1
∂z

∣∣∣
z=

t1
2

= 0,

kf1
∂θf1
∂z

∣∣∣
z=t1

= kf2
∂θf2
∂z

∣∣∣
z=t1

,

∂θf2
∂z

∣∣∣
z=t1+

t2
2

= 0

(27)

where z= t1/2 is the center of a layer of Material 1, z= t1 is the interface between Material 1
and Material 2, z= t1 + t2/2 is the center of a layer of Material 2. The thermal profile derived
for this particular stack is repeated due to periodicity in the multilayer coating.

9
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Figure 2. Illustration of a substrate coated with a multilayer showing the model used
to calculate (a) ϕ between layers, and (b) ϕ between the first deposited layer and the
substrate, where N is the number of layers in the coating, t1 the thickness of a single
layer made of Material 1, t2 the thickness of a single layer made of Material 2, and ts
the substrate thickness. The red lines show an example of the temperature profile across
coating and substrate.

We solve for the thermal fields in the two materials and obtain

θf1 = θp, f1 + θ1, f1 cosh(γf1z),

θf2 = θp, f2 + θ1, f2 cosh
[
γf2

( t1
2
+
t2
2
− z

)] (28)

where θ1, f1 and θ1, f2 are defined as

θ1, f1 =
∆β ′

cosh
(

γf1 t1
2

)
+R ′ sinh

(
γf1 t1
2

)
coth

(
γf2 t2
2

) ,
θ1, f2 =− ∆β ′R ′

coth
(

γf1 t1
2

)
sinh

(
γf2 t2
2

)
+R ′ cosh

(
γf2 t2
2

) (29)

where∆β ′ = βf1 −βf2 and R
′ = (kf1γf1)/(kf2γf2) =

√
(kf1Cf1)/(kf2Cf2). The energy dissipated

for parallel and perpendicular fields in the adjacent films (illustrated in figure 2(a), indicated
by subscript a, respectively, is thus written as

Ediss,a,∥ = 2πσ0 × Im

[
(2νf1 − 2)

αf1θ1, f1
γf1

sinh
(γf1 t1

2

)
+(4− 2νf1)αsθ1,s cosh(γsts)×

t1
2

− (2− 2νf2)
αf2θ1, f2
γf2

sinh
(γf2 t2

2

)
+(4− 2νf2)αsθ1,s cosh(γsts)×

t2
2

] (30)

Ediss,a,⊥ = 2πσ0 × Im

[
αf1θ1, f1
γf1

sinh
(γf1 t1

2

)
+

2νf1
1− νf1

αsθ1,s cosh(γsts)×
t1
2

+
αf2θ1, f2
γf2

sinh
(γf2 t2

2

)
+

2νf2
1− νf2

αsθ1,s cosh(γsts)×
t2
2

]
.

(31)
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From elasticity theory, the elastic energy stored in the case of parallel and perpendicular
fields, respectively, in these half layers can be expressed as

Estored,a,∥ =
1
2
σ2
0
t1
2
×

2(1− νf1)

Ef1
+

1
2
σ2
0
t2
2
×

2(1− νf2)

Ef2
,

Estored,a,⊥ =
1
2
σ2
0
t1
2
×

(1− 2νf1)(1+ νf1)

Ef1(1− νf1)
+

1
2
σ2
0
t2
2
×

(1− 2νf2)(1+ νf2)

Ef2(1− νf2)
.

(32)

For the thermoelastic loss due to heat conduction between the last layer of Material 2 and
the substrate (illustrated in figure 2(b)), indicated by subscript b and by adopting the boundary
conditions for single-layer coated substrates, we find the energy dissipated in the form of

Ediss,b,∥ = 2πσ0 × Im [(2νf2 − 2) ×
αf2θ

′
1, f2

γf2
sinh

(γf2 t2
2

)
+(4− 2νf2)αsθ1,s cosh(γsts)×

t2
2
− 2αsθ1,s

γs
sinh(γsts)

] (33)

Ediss,b,⊥ = 2πσ0 × Im

[
αf2θ

′
1, f2

γf2
sinh

(γf2 t2
2

)
+

2νf2
1− νf2

αsθ1,s cosh(γsts)×
t2
2
− 1+ νs

1− νs

αsθ1,s
γs

sinh(γsts)

] (34)

where θ ′
1, f2 and θ1,s are defined as

θ ′
1, f2 =

∆β ′ ′

cosh
(

γf2 t2
2

)
+R ′ ′ sinh

(
γf2 t2
2

)
coth(γsts)

,

θ1,s =− ∆β ′ ′R ′ ′

coth
(

γf2 t2
2

)
sinh(γsts)+R ′ ′ cosh(γsts)

(35)

and where ∆β ′ ′ = βf2 −βs and R ′ ′ = (kf2γf2)/(ksγs) =
√
(kf2Cf2)/(ksCs).

The energy stored for parallel and perpendicular fields is expressed in the form of

Estored,b,∥ =
1
2
σ2
0
t2
2
×

2(1− νf2)

Ef2
+

1
2
σ2
0 ts×

2(1− νs)

Es

Estored,b,⊥ =
1
2
σ2
0
t2
2
×

(1− 2νf2)(1+ νf2)

Ef2(1− νf2)
+

1
2
σ2
0 ts×

(1− 2νs)(1+ νs)

Es(1− νs)
.

(36)

The Ediss and Estored terms in the first deposited layer of Material 2 are double counted in
the two regions. Therefore, the expression of the total thermoelastic loss of a homogeneous
system, a substrate coated with a multilayer, is given by

ϕ =
Ediss,a×N−Ediss,a2 +Ediss,b

2π× (Estored,a×N−Estored,a2 +Estored,b)
(37)

where N is the total number of layers, Ediss,a2 and Estored,a2 stand for the energy dissipated and
stored in half a layer of Material 2, correspondingly.

3. Results and discussion

In this section, we present the thermoelastic lossϕ due to thermal expansionmismatch between
different materials for various cases, which is calculated using the equations presented in the
previous sections. The input elastic field, unless specified, uses the normal stress field described

11



Class. Quantum Grav. 40 (2023) 144001 R Zhou et al

Table 1. Elastic and thermal properties at room temperature of materials used for the cal-
culations of ϕ: Young’s modulus E, Poisson’s ratio ν, thermal expansion coefficient α,
specific heat per unit volume CV, and thermal conductivity k. The temperature depend-
encies of the thermal properties (α, CV and k) are implemented for the calculations of ϕ
as reported in their corresponding references.

E ν α CV k
Materials (GPa) (10−6 K−1) (106 Jm−3 K−1) (Wm−1 K−1)

Fused a-SiO2 71 [23] 0.17 [23] 0.6 [24] 1.6 [25] 1.4 [26]
c-Si 169 [27] 0.28 [27] 2.6 [28] 1.6 [29] 92.0 [30]
a-Si 115a 0.18a 2.4b [31] 2.4 [32] 91.0 [33]
a-SiO2 70 [13] 0.19 [13] 0.6c [34] 2.2c [34] 1.2c [34]
a-Ti:Ta2O5 120 [13] 0.29 [13] 3.9 [35] 2.1 [15] 33 [15]
c-GaAs 85.5 [36] 0.31 [36] 5.75 [36] 1.74 [36] 46 [36]
c-
Al0.92Ga0.08As

100 [37] 0.32 [37] 5.2 [37] 1.7 [37] 70 [37]

a a-Si elastic properties are obtained using E= 2G(1+ ν), where E= (1− ν)140 GPa [38], and
the shear modulus G= 49 GPa [39], both experimentally measured.
b a-Si thermal expansion coefficient temperature dependence is assumed to be the same than for
c-Si reported in [28].
c a-SiO2 thermal properties temperature dependence is assumed to be the same as for fused
a-SiO2 reported in [40, 41].

in section 2.2, as it is commonly seen in many applications and used in the measurement of
coating properties. The physical properties of the materials used for these calculations are
listed in table 1. We note that while small variations in the elastic properties, up to 30%, do
not have a significant effect in the accuracy of the thermoelastic loss calculations, variations
in the thermal properties have a much larger effect. Therefore, accurate values of the thermal
properties are necessary to obtain reliable estimations of the thermoelastic loss.

3.1. Thickness and frequency dependence

The thermoelastic loss of single-layer coated substrates was first investigated. ϕ of amorphous
silicon (a-Si) films of various thicknesses, deposited on fused silica and crystalline Si (c-Si)
substrates at RT is plotted as a function of frequency in figure 3. The numerical values of ϕ
are obtained from equation (26), for a frequency range from 1 to 107 Hz. In figure 3, ϕ shows
a non-monotonic behavior with one or two inflection points as a function of frequency. The
thermoelastic loss exhibits a Lorentzian behavior as a function of the vibration frequencyω and
the relaxation rate τ of the system, with a maximum value when ωτ = 1 [14]. The inflection
points shown in figure 3 are, in fact, ϕ local maxima, dominated by either the coating or the
substrate, and occur at a frequency flm = 1/(2πτ), where τ = ℓ2CV/k is the thermal diffusion
time through a layer of thickness ℓ. In figure 3, the inflection points at low and high frequencies
are dominated by the substrate and by the coating, respectively. The larger the thermal diffusion
time through the coating or the substrate, the lower the frequency at which the corresponding
inflection point will appear.

These results show that a thicker film would yield higher thermoelastic loss, which is a
direct outcome of a larger temperature difference, and thus a higher heat flux between the
film and the substrate. The substrate thickness also has an impact on ϕ; thicker substrates

12
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Figure 3. Thermoelastic loss ϕ as a function of frequency calculated at room temperat-
ure for an a-Si layer 10 nm-thick (black line), 100 nm-thick (red line) and 1000 nm-thick
(blue line) onto 100 µm-thick substrates: (a) fused silica (a-SiO2) and (b) crystalline sil-
icon (c-Si).

lead to an approximately proportional reduction in the thermoelastic loss, which is demon-
strated in figure 4. As discussed at the end of section 2.3, while the elastic energy stored
is linearly proportional to the substrate thickness, there is only a marginally small increase
in the overall energy dissipation, which results in near proportional damping. Eventually, ϕ
would approach zero at infinite substrate thickness, as the energy loss caused by thermal expan-
sion mismatch would be vanishingly small in comparison to the elastic energy stored in the
substrate.

Considering that both film and substrate thicknesses have an impact on the thermoelastic
loss, we note that certain film to substrate thickness ratios may cause the thermoelastic loss
to be one of the main energy dissipation mechanisms in the system. These results highlight a
remarkable difference with other dissipation mechanisms, such as mechanical loss and ther-
moelastic loss due to statistical fluctuations, where the loss factor is intrinsic to thematerial and
independent of the system’s volume. Themoelastic loss due to thermal expansion mismatch
depends on the system’s volume.
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Figure 4. Thermoelastic loss ϕ as a function of frequency calculated at room temperat-
ure for a 100 nm-thick a-Si layer onto 100 µm-thick (black line) and 100 cm-thick (red
line) silica substrates.

Figure 5. Thermoelastic loss ϕ as a function of frequency calculated at room temper-
ature for a 100 µm-thick c-Si substrate coated with an a-Si layer 10 nm-thick (black
lines), 100 nm-thick (red lines) and 1000 nm-thick (blue lines) and with either normal
stress (solid lines) or in-plane stress (dashed lines).

3.2. Effect of input stress field

As previously mentioned in section 2.2, another common type of stress is in-plane stress.
Figure 5 compares the thermoelastic loss for the in-plane and perpendicular stress components.
The inflection points position and intensity are only slightly affected by the field polarization;
the difference is within 3% and 11%, respectively. Other types of stress (bulk, shear. . .) can
also be incorporated into the calculation, which makes this model a powerful tool to perform
calculations in complex systems.
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Figure 6. Thermoelastic loss ϕ as a function of frequency calculated at room temperat-
ure for a 10 cm-thick fused silica substrate coated with a variable number of alternating
layers of a-Si (76.0 nm) and a-SiO2 (184.7 nm): 2 layers (black line), 20 layers (red line)
and 200 layers (blue line). We used n= 3.5 for a-Si [43] and n= 1.44 for a-SiO2 [44].

3.3. Multilayer coating

We now consider a multilayer coating consisting of amorphous silicon and amorphous silica
on top of a fused silica substrate. The substrate thickness is set to be 10 cm and the layer thick-
nesses are selected to follow the quarter-wavelength rule, λ/4n, where λ is the wavelength of
the operating laser and n is the layer refractive index [42]. We first investigated the effect of the
number of layers. As can be seen in figure 6, while the peak position does not change notice-
ably, the thermoelastic loss increases in proportion to the number of layers with a constant
thickness, i.e. ϕ increases proportional to the amount of material.

The EMA considers the two materials used in the multilayer coating as one homogeneous
film with averaged physical properties. In contrast, our method treats each layer as an indi-
vidual component and computes the loss generated from heat transport across all interfaces.
In figure 7 we compare the results obtained by our model and the EMA. The total film thick-
ness is kept constant while the thickness of the layers varies. It can be seen that the ϕ peaks are
approximately at the same loss intensity, which is expected since ϕ is proportional to the total
volume of the system. However, our model predicts that the number of interfaces plays a role
and affects the loss peak position. This result is a consequence of the layers’ thickness effect on
the system’s thermal field that modifies the coating temperature profile as depicted in figure 2.
This effect is implicit in the frequency dependence of the thermal field (see section 2.1) and
can be observed comparing figures 6 and 7; the shift in frequency of the thermoelastic loss
peak is a consequence only of the layers’ thickness, not their number.

Figure 7 shows that by reducing the thickness of the layers at constant coating thick-
ness, i.e. increasing the number of interfaces, the loss peak position is shifted towards higher
frequencies, which effectively lowers ϕ in the frequency range of interest for GW detect-
ors (10 Hz–10 kHz), such as LIGO, Virgo and the Kamioka Gravitational-Wave detector
(KAGRA) [7]. Ourmodel can analytically estimateϕ for any layer thickness, even nanolayered
coatings [45–47]. However, the model predictions will remain valid only if the system com-
ponents, its substrate and layers, are homogeneous and their thermal and elastic properties are
known.
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Figure 7. Thermoelastic lossϕ as a function of frequency calculated at room temperature
for a 10 cm-thick fused silica substrate coated with a variable number of alternating
layers of a-Si and silica keeping a coating total thickness of 2607 nm: 1 layer using
the EMA (blue line), 2 layers consisting of a 760 nm-thick a-Si layer and a 1847 nm-
thick a-SiO2 layer (black line), 20 layers consisting of 76.0 nm-thick a-Si layers and
184.7 nm-thick a-SiO2 layers (red line), and 200 layers consisting of 7.60 nm-thick a-Si
layers and 18.47 nm-thick a-SiO2 layers (orange line).

Table 2. Estimated thermoelastic loss ϕ at different frequencies for current Advanced
LIGO mirrors and potential designs at different laser wavelengths λ. All ϕ values are
calculated at room temperature, except those of the silicon-silica coating, which are
estimated at 123 K. The composition and thickness details of each mirror design are
shown at the bottom of the table as [thickness layer 1 / thickness layer 2](layers number) //
thickness substrate.

Mirror design λ ϕ
nm 100 Hz 1 kHz 10 kHz

Advanced LIGOa 1064 2.8× 10−13 9.4× 10−13 3.2× 10−12

Multimaterial coatingb 1064 8.4× 10−12 2.7× 10−11 9.4× 10−11

Silicon-silica coatingc
1550 5.4× 10−22 3.4× 10−21 2.7× 10−20

2000 1.0× 10−21 6.8× 10−21 5.3× 10−20

Crystalline coatingd 1064 6.2× 10−12 2.0× 10−11 4.6× 10−11

a [1] : [128.5 nm a-Ti:Ta2O5 / 183.4 nm a-SiO2](30) // 10 cm a-SiO2
b [48]: [176.0 nm a-Ta2O5 or 111.0 nm a-Si / 267.0 nm a-SiO2](30) // 10 cm a-SiO2
c [49]: [76.0 nm a-Si / 184.7 nm a-SiO2](16) // 55 cm c-Si
d [50]: [76.4 nm c-GaAs / 89.4 nm c-AlGaAs](70) // 10 cm c-Si.

3.4. Comparison of mirror coatings for GW detectors

Based on the model presented in section 2.4, the thermoelastic loss of multilayer coating is
calculated for various combinations of materials and layer thicknesses at three excitation fre-
quencies, 100 Hz, 1 kHz and 10 kHz. The predicted values are listed in table 2. Our calculation
shows that the choice of mirror coating and substrate in Advanced LIGO (the current LIGO
generation); using a coating made of amorphous titania-doped tantala and amorphous silica
and a fused silica substrate, has the lowest thermoelastic loss at all three frequencies compared
to other candidate materials.
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Figure 8. Thermoelastic loss ϕ as a function of frequency calculated at room temperat-
ure RT (black line) and at 10 K (red line) for a c-Si substrate 100 µm-thick coated with
a 100 nm-thick a-Si layer.

3.5. Dependence on temperature

Thermoelastic loss is largely dependent on temperature T since the induced thermal field is a
function of T, as seen in equation (2). In addition, the thermal properties of materials (coef-
ficient of thermal expansion α, specific heat CV, and thermal conductivity k) are temperature
dependent. As a result, ϕ varies with temperature. In this section, we consider that the elastic
properties do not change with temperature since their dependence with T is much weaker than
that of the thermal properties. We calculate ϕ(T) using experimental values of the thermal and
elastic properties of the materials used in the system, and when those are not available, we
make reasonable estimations. We assume that amorphous silicon has the same thermal expan-
sion coefficient of its crystalline form [28], while its thermal conductivity and heat capacity
are taken from [32, 33]. The values for the thermal properties of fused silica are taken from
[40, 41, 51]. Figure 8 illustrates that the thermoelastic loss of 100 nm-thick a-Si onto a silica
substrate 100 µm-thick is significantly lower at 10 K than at RT for all frequencies, and the
inflection points are shifted towards higher frequencies.

The thermal expansion coefficient of crystalline silicon αc−Si is zero at 17.6 K and
123.7 K [28, 52]. For this reason, future cryogenic GW detectors, such as LIGO Voyager, plan
to operate at 123.7 K using silicon-based mirrors to eliminate the thermoelastic loss due to
thermal mismatch between different materials [49]. a-Si has good mechanical loss and optical
reflectivity compared to the currently used a-Ti:Ta2O5 layer in LIGO and Virgo [53–55].
Future LIGO Voyager plans to use crystalline silicon for the mirror substrate, and amorph-
ous silicon as the high-index material and silica as the low-index layer for the mirror coating.
This detector will operate at cryogenic temperatures to further reduce the loss and improve the
sensitivity beyond the detection limits of the current GW detectors.

We calculated the thermoelastic loss of the proposed multilayer stack of a-Si/a-SiO2 films
for the LIGO Voyager mirror coating at two different excitation frequencies. As plotted in
figure 9, ϕ increases with increasing the vibration frequency, in agreement with the results
previously discussed, and shows two deep minima when the thermal expansion coefficient α
of c-Si is zero; at 17.6 and 123.7 K [28]. For this calculation we assumed that α of a-Si is the
same as that of c-Si.
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Figure 9. Thermoelastic loss ϕ as a function of temperature for a 55 cm-thick c-Si sub-
strate coated with 16 alternating layers of a-Si (142.9 nm) and a-SiO2 (347.2 nm). ϕ
is calculated at an excitation frequency of 100 Hz (black line) and 1 kHz (red line).
The 100 Hz∗ data (blue dashed line) is obtained reversing the order of the layers in
the coating so that a-Si is in contact with the c-Si substrate, which highlights the effect
of minimizing the thermal expansion mismatch between the substrate and the layer in
contact with the coating.

The predicted loss shown in figure 9 is based on the structure where a-SiO2 is the first
layer and in contact with the substrate. We note that when a-Si is the first layer, the ther-
moelastic loss is significantly lower at all temperatures (blue dashed line in figure 9). This
happens because the thermal expansion mismatch between a-Si and c-Si is significantly smal-
ler than that between a-SiO2 and c-Si. If the thermal expansion coefficient of a-Si is not exactly
zero at the same temperatures as for c-Si (17.6 K and 123.7 K), then the two minima seen
in figure 9 would split into four, one to the left and one to the right of the current peaks.
This could affect the current plans of making 123.7 K the operating temperature for LIGO
Voyager.

4. Conclusions

We present a mathematical model to calculate the thermoelastic loss due to thermal expansion
mismatch between different materials. The results obtained highlight how material properties,
measurement temperature and frequency, and mirror design (materials, thickness of layers
and number of interfaces) affect the thermoelastic loss and, therefore, the thermal noise that
limits the resolution in sensing applications. In the frequency range studied, thermoelastic loss
increases with frequency up to a maximum value, related to the thermal diffusion time through
the coating, and decreases above that.

For a single-layer coating, we find that thermoelastic loss increases with the coating thick-
ness, and reduces with a thicker substrate for a fixed coating thickness. We extend our ana-
lytical solutions to multilayered structures, specifically without using the EMA, which there-
fore allows us to calculate the effect of interfaces due to the mismatch of thermal expansion
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between neighboring layers. We demonstrate that thermoelastic loss correlates with the num-
ber of layers, or interfaces, for a given total thickness. At constant coating thickness, the ther-
moelastic loss curve shifts toward higher frequencies when the number of layers, or interfaces,
increase, which therefore implies that thermoelastic loss decreases in the frequency range rel-
evant for GW detectors. We show that thermoelastic loss is proportional to temperature due to
the dependence of thermal field and materials properties with temperature.

We show that future mirrors should consider the thermal expansion of the materials used
and their mismatch, including in particular the material chosen for the first layer in contact
with the substrate, the thickness of layers and the number of interfaces within the coating.
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Appendix A. Thermal field solutions

As discussed in section 2.1, two components are required for the expression of the thermal
fields in the z-direction, the particular solution and the specific solution. The particular solution
is assumed not to depend on the in-plane position if both film and substrate are homogeneous.
Looking at equation (3), we can conclude that

θp, j =−βj. (A.1)

Using the boundary conditions, we can solve for the specific solution

θs, f = θ1, f cosh(γfz),

θs,s = θ1,s cosh[γs(h− z)]
(A.2)

and γj = (1+ i)
√
ω/(2κj) = (1+ i)

√
π fCj/kj, so that

∂θp, j
∂t

−κj
∂2θp, j
∂z2

=−iωβj,

∂θs, j
∂t

−κj
∂2θs, j
∂z2

= 0.

(A.3)

The continuity of temperature and thermal flux at z= l requires

θp, f(z= l)+ θ1, f cosh(γfl) = θp,s(z= l)+ θ1,s cosh(γs(h− l)),

kf[θ
′
p, f(z= l)+ θ1, f γf sinh(γfl)] = ks[θ

′
p,s(z= l)− θ1,sγs sinh(γs(h− l))].

(A.4)
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θ ′
p, f and θ ′

p,s are zero for homogeneous film and substrate. Substitute in θp, f and θp,s and solve
for θ1, f, we get

θ1, f =
∆β

cosh(γfl)+Rsinh(γfl)coth(q)
,

θ1,s =− ∆βR
coth(γfl)sinh(q)+Rcosh(q)

(A.5)

where q= γs(h− l), ∆β = βf−βs and R= (kf γf)/(ksγs) =
√

(kfCf)/(ksCs).
The thermal field solutions can thus be expressed as a sum of the particular and the specific

solutions and be written as

θf =−βf+
∆β× cosh(γfz)

cosh(γfl)+Rsinh(γfl)coth(q)
,

θs =−βs−
∆βR× cosh[γs(h− z)]

coth(γfl)sinh(q)+Rcosh(q)
.

(A.6)

Appendix B. Energy dissipation due to thermoelastic response

Substituting equation (21) and the expressions obtained previously in section 2.2 into
equation (22), we get

Ediss, f =
2π
ω

ˆ l

0
ω
∑

Im[σ1,iiϵ0,ii+σ0,iiϵ1,ii]dz

= 2πσ0

ˆ l

0
Im[d0, f]dz

(B.1)

where d0,f,∥ = B1a0 + b0A1 =−(2− 2νf)αf θf+(4− 2νf)αsθs,l and d0,f,⊥ = B1c0 + d0A1 =
αf θf+ 2νf(αsθs,l)/(1− νf).

In previous calculations in section 2.1, we have shown that θp, f is a constant and a real
number. Hence equation (B.1) can be simplified into

Ediss,f,∥ = 2πσ0 × Im

[
(2νf− 2)

αf θ1, f
γf

sinh(γfl) + (4− 2νf)αsθ1,s cosh(q)× l
]
,

Ediss,f,⊥ = 2πσ0 × Im

[
αf θ1, f
γf

sinh(γfl) +
2νf

1− νf
αsθ1,s cosh(q)× l

] (B.2)

where q= γs(h− l).
A similar derivation for the substrate can be done by following all the procedures discussed

above. The energy dissipated in the substrate can be determined and expressed in

Ediss,s =
2π
ω

ˆ h

l
ω
∑

Im[σ1,ii,sϵ0,ii,s+σ0,ii,sϵ1,ii,s]dz

= 2πσ0

ˆ h

l
Im[d0,s]dz

(B.3)
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where d0,s,∥ = 2αsθs and d0,s,⊥ = (1+ νs)αsθs/(1− νs). And

Ediss,s,∥ = 2πσ0 × Im

[
−2

αsθ1,s
γs

sinh(q)

]
,

Ediss,s,⊥ = 2πσ0 × Im

[
−1+ νs

1− νs

αsθ1,s
γs

sinh(q)

]
.

(B.4)

In order to calculate the thermoelastic loss in the film and the substrate, the total energy
dissipated and the total elastic energy stored have to be found. The total energy dissipated is
simply the sum of Ediss, f and Ediss,s and is given by

Ediss,total,∥ = Ediss,f,∥ +Ediss,s,∥

= 2πσ0 × Im

[
(2νf− 2)

αf θ1, f
γf

sinh(γfl)

+ (4− 2νf)αsθ1,s cosh(q)× l− 2
αsθ1,s
γs

sinh(q)

]
,

(B.5)

Ediss,total,⊥ = Ediss,f,⊥ +Ediss,s,⊥

= 2πσ0 × Im

[
αf θ1, f
γf

sinh(γfl)

+
2νf

1− νf
αsθ1,s cosh(q)× l− 1+ νs

1− νs

αsθ1,s
γs

sinh(q)

]
.

(B.6)

ORCID iDs

R Zhou https://orcid.org/0000-0003-1320-1453
M Molina-Ruiz https://orcid.org/0000-0003-4892-3042
F Hellman https://orcid.org/0000-0002-9135-6330

References

[1] Aasi J et al (Advanced LIGO) 2015 Class. Quantum Grav. 32 074001
[2] Buikema A et al 2020 Sensitivity and performance of the advanced LIGO detectors in the third

observing run Phys. Rev. D 102 062003
[3] Gurkovsky A and Vyatchanin S 2010 The thermal noise in multilayer coating Phys. Lett. A

374 3267–74
[4] Evans M, Ballmer S, Fejer M, Fritschel P, Harry G and Ogin G 2008 Thermo-optic noise in coated

mirrors for high-precision optical measurements Phys. Rev. D 78 102003
[5] Braginsky V B, Gorodetsky M L and Vyatchanin S P 1999 Thermodynamical fluctuations and

photo-thermal shot noise in gravitational wave antennae Phys. Lett. A 264 1–10
[6] Acernese F et al 2015 Advanced Virgo: a second-generation interferometric gravitational wave

detector Class. Quantum Grav. 32 024001
[7] Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D and Yamamoto H

2013 Interferometer design of the KAGRA gravitational wave detector Phys. Rev. D 88 043007
[8] Zener C 1937 Internal friction in solids. I. Theory of internal friction in reeds Phys. Rev. 52 230–5
[9] Zener C 1938 Internal friction in solids II. General theory of thermoelastic internal friction Phys.

Rev. 53 90–99
[10] Levin Y 1998 Internal thermal noise in the LIGO test masses: a direct approach Phys. Rev. D

57 659–63
[11] Bondu F, Hello P and Vinet J-Y 1998 Thermal noise in mirrors of interferometric gravitational

wave antennas Phys. Lett. A 246 227–36
[12] Liu Y T and Thorne K S 2000 Thermoelastic noise and homogeneous thermal noise in finite sized

gravitational-wave test masses Phys. Rev. D 62 122002

21

https://orcid.org/0000-0003-1320-1453
https://orcid.org/0000-0003-1320-1453
https://orcid.org/0000-0003-4892-3042
https://orcid.org/0000-0003-4892-3042
https://orcid.org/0000-0002-9135-6330
https://orcid.org/0000-0002-9135-6330
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1016/j.physleta.2010.06.012
https://doi.org/10.1016/j.physleta.2010.06.012
https://doi.org/10.1103/PhysRevD.78.102003
https://doi.org/10.1103/PhysRevD.78.102003
https://doi.org/10.1016/S0375-9601(99)00785-9
https://doi.org/10.1016/S0375-9601(99)00785-9
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRev.52.230
https://doi.org/10.1103/PhysRev.52.230
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1103/PhysRevD.57.659
https://doi.org/10.1016/S0375-9601(98)00450-2
https://doi.org/10.1016/S0375-9601(98)00450-2
https://doi.org/10.1103/PhysRevD.62.122002
https://doi.org/10.1103/PhysRevD.62.122002


Class. Quantum Grav. 40 (2023) 144001 R Zhou et al

[13] Granata M et al 2020 Amorphous optical coatings of present gravitational-wave interferometers∗

Class. Quantum Grav. 37 095004
[14] Lifshitz R and Roukes M L 2000 Thermoelastic damping in micro- and nanomechanical systems

Phys. Rev. B 61 5600–9
[15] Fejer M M, Rowan S, Cagnoli G, Crooks D R M, Gretarsson A, Harry G M, Hough J, Penn S D,

Sneddon P H and Vyatchanin S P 2004 Thermoelastic dissipation in inhomogeneous media:
loss measurements and displacement noise in coated test masses for interferometric gravitational
wave detectors Phys. Rev. D 70 082003

[16] Somiya K and Yamamoto K 2009 Coating thermal noise of a finite-size cylindrical mirror Phys.
Rev. D 79 102004

[17] BraginskyV andVyatchanin S 2003 Thermodynamical fluctuations in optical mirror coatingsPhys.
Lett. A 312 244–55

[18] Lovelace G, Demos N and Khan H 2018 Numerically modeling Brownian thermal noise in amorph-
ous and crystalline thin coatings Class. Quantum Grav. 35 025017

[19] Lifshitz E M, Kosevich A M and Pitaevskii L P 1986 Theory of Elasticity 3rd edn (Amsterdam:
Elsevier)

[20] Ballmer S W 2015 Photothermal transfer function of dielectric mirrors for precision measurements
Phys. Rev. D 91 023010

[21] Li T et al 2014Measurements of mechanical thermal noise and energy dissipation in optical dielec-
tric coatings Phys. Rev. D 89 092004

[22] Cesarini E, Lorenzini M, Campagna E, Martelli F, Piergiovanni F, Vetrano F, Losurdo G and
Cagnoli G 2009 A “gentle” nodal suspension for measurements of the acoustic attenuation in
materials Rev. Sci. Instrum. 80 053904

[23] Comte C and von Stebut J 2002 Microprobe-type measurement of Young’s modulus and Poisson
coefficient by means of depth sensing indentation and acoustic microscopy Surf. Coat. Technol.
154 42–48

[24] Kuhn B and Schadrack R 2009 Thermal expansion of synthetic fused silica as a function of OH
content and fictive temperature J. Non-Cryst. Solids 355 323–6

[25] Richet P, Bottinga Y, Denielou L, Petitet J and Tequi C 1982 Thermodynamic properties of quartz,
cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and
a review from 0 to 2000 K Geochim. Cosmochim. Acta 46 2639–58

[26] Combis P, Cormont P, Gallais L, Hebert D, Robin L and Rullier J-L 2012 Evaluation of the
fused silica thermal conductivity by comparing infrared thermometry measurements with two-
dimensional simulations Appl. Phys. Lett. 101 211908

[27] Hopcroft M A, Nix W D and Kenny T W 2010 What is the Young’s modulus of silicon? J.
Microelectromech. Syst. 19 229–38

[28] NIST material properties: silicon 2023 (available at: https://trc.nist.gov/cryogenics/materials/
Silicon/Silicon.htm)

[29] Flubacher P, Leadbetter A J andMorrison J A 1959 The heat capacity of pure silicon and germanium
and properties of their vibrational frequency spectra Phil. Mag. 4 273–94

[30] Glassbrenner C J and Slack G A 1964 Thermal conductivity of silicon and germanium from 3◦K
to the melting point Phys. Rev. 134 A1058

[31] De Lima M M, Lacerda R G, Vilcarromero J and Marques F C 1999 Coefficient of thermal expan-
sion and elastic modulus of thin films J. Appl. Phys. 86 4936–42

[32] Queen D R, Liu X, Karel J, Metcalf T H and Hellman F 2013 Excess specific heat in evaporated
amorphous silicon Phys. Rev. Lett. 110 135901

[33] Zink B L, Pietri R and Hellman F 2006 Thermal conductivity and specific heat of thin-film amorph-
ous silicon Phys. Rev. Lett. 96 055902

[34] El-Kareh B 1995 Fundamentals of Semiconductor Processing Technology (New York: Springer)
[35] Abernathy M R, Hough J, Martin I W, Rowan S, Oyen M, Linn C and Faller J E 2014 Investigation

of the Young’s modulus and thermal expansion of amorphous titania-doped tantala films Appl.
Opt. 53 3196

[36] Sze SM and NgKK 2006 appendix G properties of Si and GaAs Physics of Semiconductor Devices
3rd edn (Hoboken, NJ: Wiley) p 790

[37] Chalermsongsak T, Hall E D, Cole G D, Follman D, Seifert F, Arai K, Gustafson E K, Smith J R,
Aspelmeyer M and Adhikari R X 2016 Coherent cancellation of photothermal noise in GaAs/Al
0.92 Ga 0.08 As Bragg mirrorsMetrologia 53 860

22

https://doi.org/10.1088/1361-6382/ab77e9
https://doi.org/10.1088/1361-6382/ab77e9
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevD.70.082003
https://doi.org/10.1103/PhysRevD.70.082003
https://doi.org/10.1103/PhysRevD.79.102004
https://doi.org/10.1103/PhysRevD.79.102004
https://doi.org/10.1016/S0375-9601(03)00473-0
https://doi.org/10.1016/S0375-9601(03)00473-0
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1103/PhysRevD.91.023010
https://doi.org/10.1103/PhysRevD.91.023010
https://doi.org/10.1103/PhysRevD.89.092004
https://doi.org/10.1103/PhysRevD.89.092004
https://doi.org/10.1063/1.3124800
https://doi.org/10.1063/1.3124800
https://doi.org/10.1016/S0257-8972(01)01706-6
https://doi.org/10.1016/S0257-8972(01)01706-6
https://doi.org/10.1016/j.jnoncrysol.2008.11.005
https://doi.org/10.1016/j.jnoncrysol.2008.11.005
https://doi.org/10.1016/0016-7037(82)90383-0
https://doi.org/10.1016/0016-7037(82)90383-0
https://doi.org/10.1063/1.4764904
https://doi.org/10.1063/1.4764904
https://doi.org/10.1109/JMEMS.2009.2039697
https://doi.org/10.1109/JMEMS.2009.2039697
https://trc.nist.gov/cryogenics/materials/Silicon/Silicon.htm
https://trc.nist.gov/cryogenics/materials/Silicon/Silicon.htm
https://doi.org/10.1080/14786435908233340
https://doi.org/10.1080/14786435908233340
https://doi.org/10.1103/PhysRev.134.A1058
https://doi.org/10.1103/PhysRev.134.A1058
https://doi.org/10.1063/1.371463
https://doi.org/10.1063/1.371463
https://doi.org/10.1103/PhysRevLett.110.135901
https://doi.org/10.1103/PhysRevLett.110.135901
https://doi.org/10.1103/PhysRevLett.96.055902
https://doi.org/10.1103/PhysRevLett.96.055902
https://doi.org/10.1364/AO.53.003196
https://doi.org/10.1364/AO.53.003196
https://doi.org/10.1088/0026-1394/53/2/860
https://doi.org/10.1088/0026-1394/53/2/860


Class. Quantum Grav. 40 (2023) 144001 R Zhou et al

[38] Witvrouw A and Spaepen F 1993 Viscosity and elastic constants of amorphous Si and Ge J. Appl.
Phys. 74 7154

[39] Molina-Ruiz M, Rosen Y J, Jacks H C, Abernathy M R, Metcalf T H, Liu X, DuBois J L and
Hellman F 2021 Origin of mechanical and dielectric losses from two-level systems in amorphous
silicon Phys. Rev. Mater. 5 035601

[40] Jacobs S F, Shough D and Connors C 1984 Thermal expansion uniformity of materials for large
telescope mirrors Appl. Opt. 23 4237

[41] Zeller R C and Pohl R O 1971 Thermal conductivity and specific heat of noncrystalline solids Phys.
Rev. B 4 2029

[42] Sheppard C J R 1995 Approximate calculation of the reflection coefficient from a stratified medium
Pure Appl. Opt. 4 665

[43] Pierce D T and Spicer W E 1972 Electronic structure of amorphous si from photoemission and
optical studies Phys. Rev. B 5 3017

[44] Leviton D B and Frey B J 2006 Temperature-dependent absolute refractive index measurements of
synthetic fused silica Proc. SPIE 6273 62732K

[45] Pan H-W, Wang S-J, Kuo L-C, Chao S, Principe M, Pinto I M and DeSalvo R 2014 Thickness-
dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by
ion beam sputter method Opt. Express 22 29847

[46] Magnozzi M et al 2018 Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for
1064 nm mirror technology Opt. Mater. 75 94–101

[47] Kuo L-C, Pan H-W, Chang C-L and Chao S 2019 Low cryogenic mechanical loss composite silica
thin film for low thermal noise dielectric mirror coatings Opt. Lett. 44 247

[48] Steinlechner J, Martin I W, Hough J, Krüger C, Rowan S and Schnabel R 2015 Thermal noise
reduction and absorption optimization via multimaterial coatings Phys. Rev. D 91 042001

[49] Adhikari R X et al 2020 A cryogenic silicon interferometer for gravitational-wave detection Class.
Quantum Grav. 37 165003

[50] Koch P et al 2019 Thickness uniformity measurements and damage threshold tests of
large-area GaAs/AlGaAs crystalline coatings for precision interferometry Opt. Express
27 36731–40

[51] Fukuhara M, Sanpei A and Shibuki K 1997 Low temperature-elastic moduli, Debye temperature
and internal dilational and shear frictions of fused quartz J. Mater. Sci. 32 1207–11

[52] Middelmann T, Walkov A, Bartl G and Schödel R 2015 Thermal expansion coefficient of single-
crystal silicon from 7 K to 293 K Phys. Rev. B 92 174113

[53] Murray P G, Martin I W, Craig K, Hough J, Robie R, Rowan S, Abernathy M R, Pershing T and
Penn S 2015 Ion-beam sputtered amorphous silicon films for cryogenic precision measurement
systems Phys. Rev. D 92 062001

[54] Birney R et al 2018 Amorphous silicon with extremely low absorption: beating thermal noise in
gravitational astronomy Phys. Rev. Lett. 121 191101

[55] Steinlechner J andMartin IW 2021How can amorphous silicon improve current gravitational-wave
detectors? Phys. Rev. D 103 042001

23

https://doi.org/10.1063/1.355031
https://doi.org/10.1063/1.355031
https://doi.org/10.1103/PhysRevMaterials.5.035601
https://doi.org/10.1103/PhysRevMaterials.5.035601
https://doi.org/10.1364/AO.23.004237
https://doi.org/10.1364/AO.23.004237
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1088/0963-9659/4/5/018
https://doi.org/10.1088/0963-9659/4/5/018
https://doi.org/10.1103/PhysRevB.5.3017
https://doi.org/10.1103/PhysRevB.5.3017
https://doi.org/10.1117/12.672853
https://doi.org/10.1117/12.672853
https://doi.org/10.1364/OE.22.029847
https://doi.org/10.1364/OE.22.029847
https://doi.org/10.1016/j.optmat.2017.09.043
https://doi.org/10.1016/j.optmat.2017.09.043
https://doi.org/10.1364/OL.44.000247
https://doi.org/10.1364/OL.44.000247
https://doi.org/10.1103/PhysRevD.91.042001
https://doi.org/10.1103/PhysRevD.91.042001
https://doi.org/10.1088/1361-6382/ab9143
https://doi.org/10.1088/1361-6382/ab9143
https://doi.org/10.1364/OE.27.036731
https://doi.org/10.1364/OE.27.036731
https://doi.org/10.1023/A:1018583918380
https://doi.org/10.1023/A:1018583918380
https://doi.org/10.1103/PhysRevB.92.174113
https://doi.org/10.1103/PhysRevB.92.174113
https://doi.org/10.1103/PhysRevD.92.062001
https://doi.org/10.1103/PhysRevD.92.062001
https://doi.org/10.1103/PhysRevLett.121.191101
https://doi.org/10.1103/PhysRevLett.121.191101
https://doi.org/10.1103/PhysRevD.103.042001
https://doi.org/10.1103/PhysRevD.103.042001

	Strategies to reduce the thermoelastic loss of multimaterial coated finite substrates
	1. Introduction
	2. Mathematical framework for the thermoelastic loss
	2.1. Formulation of the thermal field
	2.2. Applied elastic field and elastic energy
	2.2.1. Stress parallel to the coated surface.
	2.2.2. Stress perpendicular to the coated surface.

	2.3. Energy dissipation and thermoelastic loss
	2.4. Multilayer coating on a finite substrate

	3. Results and discussion
	3.1. Thickness and frequency dependence
	3.2. Effect of input stress field
	3.3. Multilayer coating
	3.4. Comparison of mirror coatings for GW detectors
	3.5. Dependence on temperature

	4. Conclusions
	Appendix A. Thermal field solutions
	Appendix B. Energy dissipation due to thermoelastic response
	References


