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Smart quantum statistical imaging beyond the Abbe-Rayleigh
criterion
Narayan Bhusal 1,4, Mingyuan Hong1,4, Ashe Miller1,4, Mario A. Quiroz-Juárez2, Roberto de J. León-Montiel 3,
Chenglong You 1✉ and Omar S. Magaña-Loaiza 1

The wave nature of light imposes limits on the resolution of optical imaging systems. For over a century, the Abbe-Rayleigh
criterion has been utilized to assess the spatial resolution limits of imaging instruments. Recently, there has been interest in using
spatial projective measurements to enhance the resolution of imaging systems. Unfortunately, these schemes require a priori
information regarding the coherence properties of “unknown” light beams and impose stringent alignment conditions. Here, we
introduce a smart quantum camera for superresolving imaging that exploits the self-learning features of artificial intelligence to
identify the statistical fluctuations of unknown mixtures of light sources at each pixel. This is achieved through a universal quantum
model that enables the design of artificial neural networks for the identification of photon fluctuations. Our protocol overcomes
limitations of existing superresolution schemes based on spatial mode projections, and consequently provides alternative methods
for microscopy, remote sensing, and astronomy.
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INTRODUCTION
The spatial resolution of optical imaging systems is established by
the diffraction of photons and the noise associated with their
quantum fluctuations1–5. For over a century, the Abbe-Rayleigh
criterion has been used to assess the diffraction-limited resolution
of optical instruments3,6. At a more fundamental level, the
ultimate resolution of optical instruments is established by the
laws of quantum physics through the Heisenberg uncertainty
principle7–9. In classical optics, the Abbe-Rayleigh resolution
criterion stipulates that an imaging system cannot resolve spatial
features smaller than λ/2NA. In this case, λ represents the
wavelength of the illumination field, and NA describes numerical
aperture of the optical instrument1–3,10. Given the implications
that overcoming the Abbe-Rayleigh resolution limit has for
multiple applications, such as, microscopy, remote sensing, and
astronomy3,10–12, there has been an enormous interest in
improving the spatial resolution of optical systems13–15. So far,
optical superresolution has been achieved through the decom-
position of spatial modes into suitable transverse modes of
light14,16,17. These conventional schemes rely on spatial projective
measurements to pick up phase information that is used to boost
spatial resolution of optical instruments14,18–22.
For almost a century, the importance of phase over amplitude

information has constituted established knowledge for optical
engineers3–5. Recently, this idea has been extensively investigated
in the context of quantum metrology5,23–26. More specifically, it has
been demonstrated that phase information can be used to surpass
the Abbe-Rayleigh resolution limit for the spatial identification of
light sources13,18–20,27. For example, phase information can be
obtained through mode decomposition by using projective
measurements or demultiplexing of spatial modes14,17–20. Natu-
rally, these approaches require a priori information regarding the
coherence properties of the, in principle, ‘unknown’ light
sources14,15,21,22. Furthermore, these techniques impose stringent

requirements on the alignment and centering conditions of
imaging systems14,15,17–22,28,29. Despite these limitations, most, if
not all, the current experimental protocols have relied on spatial
projections and demultiplexing in the Hermite-Gaussian, Laguerre-
Gaussian, and parity basis14,17–22.
The quantum statistical fluctuations of photons establish the

nature of light sources30–34. As such, these fundamental properties
are not affected by the spatial resolution of an optical
instrument34. Here, we demonstrate that measurements of the
quantum statistical properties of a light field enable imaging
beyond the Abbe-Rayleigh resolution limit. This is performed by
exploiting the self-learning features of artificial intelligence to
identify the statistical fluctuations of photon mixtures33. More
specifically, we demonstrate a smart quantum camera with the
capability to identify photon statistics at each pixel. For this
purpose, we introduce a general quantum model that describes
the photon statistics produced by the scattering of an arbitrary
number of light sources. This model is used to design and train
artificial neural networks for the identification of light sources.
Remarkably, our scheme enables us to overcome inherent
limitations of existing superresolution protocols based on spatial
mode projections and multiplexing14,17–22.

RESULTS
Concept and theory
The conceptual schematic behind our experiment is depicted in
Fig. 1a. This camera utilizes an artificial neural network to identify
the photon statistics of each point source that constitutes a target
object. The description of the photon statistics produced by the
scattering of an arbitrary number of light sources is achieved
through a general model that relies on the quantum theory of
optical coherence introduced by Sudarshan and Glauber34–36. We
use this model to design and train a neural network capable of
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identifying light sources at each pixel of our camera. This unique
feature is achieved by performing photon-number-resolving
detection33. The sensitivity of this camera is limited by the photon
fluctuations, as stipulated by the Heisenberg uncertainty principle,
and not by the Abbe-Rayleigh resolution limit5,34.
In general, realistic imaging instruments deal with the detection

of multiple light sources. These sources can be either distinguish-
able or indistinguishable3,34. The combination of indistinguishable
sources can be represented by either coherent or incoherent
superpositions of light sources characterized by Poissonian
(coherent) or super-Poissonian (thermal) statistics34. In our model,
we first consider the indistinguishable detection of N coherent
and M thermal sources. For this purpose, we make use of the
P-function Pcoh(γ)= δ2(γ− αk) to model the contributions from the
kth coherent source with the corresponding complex amplitude
αk

35,36. The total complex amplitude associated to the super-
position of an arbitrary number of light sources is given by
αtot ¼

PN
k¼1 αk . In addition, the P-function for the lth thermal

source, with the corresponding mean photon numbers ml , is
defined as PthðγÞ ¼ ðπmlÞ�1 expð�jγj2=mlÞ. The total number of
photons attributed to the M number of thermal sources is defined
as mtot ¼

PM
l¼1 ml . These quantities allow us to calculate the

P-function for the multisource system as

Pth�cohðγÞ ¼
R � � � R PNþMðγ � γNþM�1Þ

´
QNþM�1

i¼2
Piðγi � γi�1Þd2γi

� �
P1ðγ1Þd2γ1:

(1)

This approach enables the analytical description of the photon-
number distribution pth-coh(n) associated to the detection of an
arbitrary number of indistinguishable light sources. This is calculated
as pth�cohðnÞ ¼ nh jρ̂th�coh nj i, where ρth�coh ¼ R

Pth�cohðγÞ γj i γh jd2γ.
After algebraic manipulation (see Supplementary Information), we

obtain the following photon-number distribution

pth�cohðnÞ ¼
mtotð Þn exp � jαtotjð Þ2=mtotð Þ

π mtotþ1ð Þnþ1

´
Pn
k¼0

1
k!ðn�kÞ! Γ

1
2 þ n� k
� �

Γ 1
2 þ k
� �

´ 1F1 1
2 þ n� k; 12 ;

ðRe ½αtot�Þ2
mtot mtotþ1ð Þ

� �

´ 1F1 1
2 þ k; 12 ;

ðIm ½αtot �Þ2
mtot mtotþ1ð Þ

� �
;

(2)

where Γ(z) and 1F1(a; b; z) are the Euler gamma and the Kummer
confluent hypergeometric functions, respectively. This probability
function enables the general description of the photon statistics
produced by any indistinguishable combination of light sources.
Thus, the photon distribution produced by the distinguishable
detection of N light sources can be simply obtained by performing
a discrete convolution of Eq. (2) as

ptotðnÞ ¼
Pn

m1¼0

Pn�m1

m2¼0
� � � Pn�

PN�1

j¼1
mj

mN�1¼0
p1ðm1Þp2ðm2Þ � � �

pN�1ðmN�1ÞpNðn� PN�1

j¼1
mjÞ:

(3)

The combination of Eqs. (2) and (3) allows the classification of
photon-number distributions for any combination of light sources.

Experiment
We demonstrate our proof-of-principle quantum camera using the
experimental setup shown in Fig. 1b. For this purpose, we use a
continuous-wave laser at 633 nm to produce either coherent, or
incoherent superpositions of distinguishable, indistinguishable, or
partially distinguishable light sources. In this case, the combina-
tion of photon sources, with tunable statistical fluctuations, acts as
our target object. Then, we image our target object onto a digital
micro-mirror device (DMD) that is used to implement raster

Fig. 1 Conceptual illustration and schematic of our experimental setup to demonstrate superresolving imaging. The illustration in
a depicts a scenario where diffraction limits the resolution of an optical instrument for remote imaging. In our protocol, an artificial neural
network enables the identification of the photon statistics that characterize the point sources that constitute a target object. In this case, the
point sources emit either coherent or thermal photons. Remarkably, the neural network is capable of identifying the corresponding photon
fluctuations and their combinations, for example coherent-thermal (CT1, CT2), thermal-thermal (TT) and coherent-thermal-thermal (CTT). This
capability allows us to boost the spatial resolution of optical instruments beyond the Abbe-Rayleigh resolution limit. The experimental setup
in b is designed to generate two independent thermal and one coherent light sources. The three sources are produced from a continuous-
wave (CW) laser at 633 nm. The CW laser beam is divided by two beam splitters (BS) to generate three spatial modes, two of which are then
passed through rotating ground glass (RGG) disks to produce two independent thermal light beams. These thermal beams are then separately
coupled into two single-mode fibers, which are utilized to obtain single-mode pseudo-thermal light beams. The three light sources, with
different photon statistics, are attenuated using neutral density (ND) filters and then combined to mimic a remote object such as the one
shown in the inset of b. This setup enables us to generate multiple sources with tunable statistical properties. The generated target beam is
then imaged onto a digital micro-mirror device (DMD) that we use to perform raster scanning. The photons reflected off the DMD are coupled
into a single-mode fiber and measured by a single-photon detector. Our protocol is formalized by performing photon-number-resolving
detection33. The characteristic quantum fluctuations of each light source are identified by an artificial neural network. This information is then
used to produce a high-resolution image of the object beyond the diffraction limit.
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scanning. This is implemented by selectively turning on and off
groups of pixels in our DMD. The light reflected off the DMD is
measured by a single-photon detector that allows us to perform
photon-number-resolving detection. This is implemented through
the technique described in ref. 33.
The equations above allow us to implement a multi-layer feed-

forward network for the identification of the quantum photon
fluctuations of the point sources of a target object. The structure of
the network consists of a group of interconnected neurons
arranged in layers. Here, the information flows only in one
direction, from input to output37,38. As indicated in Fig. 2a, our
network comprises two layers, with ten sigmoid neurons in the
hidden layer (green neurons) and five softmax neurons in the
output layer (orange neurons). In this case, the input features
represent the probabilities of detecting n photons at a specific
pixel, p(n), whereas the neurons in the last layer correspond to the
classes to be identified. The input vector is then defined by twenty-
one features corresponding to n= 0, 1, ..., 20. In our experiment, we
define five classes that we label as: coherent-thermal (CT), thermal-
thermal (TT), coherent-thermal-thermal (CTT), coherent (C), and
thermal (T). If the brightness of the experiment remains constant,
these classes can be directly defined through the photon-number
distribution described by Eqs. (2) and (3). However, if the
brightness of the sources is modified, the classes can be defined
through the gð2Þ ¼ 1þ ðhðΔn̂Þ2i � hn̂iÞ=hn̂i2, which is intensity-
independent30,33. The parameters in the g(2) function can also be
calculated from Eqs. (2) and (3). It is important to mention that the
output neurons provide a probability distribution over the
predicted classes39,40. Moreover, note that during the training
stage we need to define the output classes depending on the
possible combination of light sources to be identified at the
detection plane. Since our method is based on the discrimination
of photon statistics, any point in the detection plane will fall within
the defined classes, regardless of the position of the sources.
Therefore the spatial distribution of the sources is not required in
the training process. The training details of our neural networks
can be found in the Methods section.
We test the performance of our neural network through the

classification of a complex mixture of photons produced by the
combination of one coherent with two thermal light sources. The
accuracy of our trained neural network is reported in Fig. 2b. In our
setup, the three partially overlapping sources form five classes of
light with different mean photon numbers and photon statistics.

We exploit the functionality of our artificial neural network to
identify the underlying quantum fluctuations that characterize
each kind of light. We calculate the accuracy as the ratio of true
positive and true negative to the total of input samples during the
testing phase. Figure 2b shows the overall accuracy as a function
of the number of data points used to build the probability
distributions for the identification of the multiple light sources
using a supervised neural network. The classification accuracy for
the mixture of three light sources is 80% with 100 photon-
number-resolving measurements. The performance of the neural
networks increases to approximately 95% when we use 3500 data
points to generate probability distributions.
The performance of our protocol for light identification can be

understood through the distribution of light sources in the
probability space shown in Fig. 3. Here we show the projection of
the feature space on the plane defined by the probabilities p(0), p(1),
and p(2) for different number of data points. Each point is obtained
from an experimental probability distribution. As illustrated in Fig. 3a,
the distributions associated to the multiple sources obtained for 10
data points are confined to a small region of the feature space. This
condition makes extremely hard the identification of light sources
with 10 sets of measurements. A similar situation can be observed for
the distribution in Fig. 3b that was generated using 100 data points.
As shown in panel Fig. 3c, the separations in the distributions
produced with 1000 data points occupy different regions, although
brown and black points keep closely intertwined. These conditions
enable one to identify multiple light sources. Finally, the separated
distributions obtained with 10,000 data points in Fig. 3d enable
efficient identification of light sources. These probability space
diagrams explain the performances reported in Fig. 2. An interesting
feature of Fig. 3 is the fact that the distributions in the probability
space are linearly separable.
As demonstrated in Fig. 4, the identification of the quantum

photon fluctuations at each pixel of our camera enables us to
demonstrate superresolving imaging. Our technique involves two
main steps. First, we classify each pixel with the help of our neural
network (see Fig. 2). Then, we use this information to perform a
fitting procedure to find out the positions and sizes of each source
(see Methods). In our experiment we prepared each source to
have a mean photon number between 1 and 1.5 for the brightest
pixel. The raster-scan image of a target object composed of
multiple partially distinguishable sources in Fig. 4a illustrates the
performance of conventional imaging protocols limited by

ωij
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Fig. 2 Artificial neural network design and its performance for superresolving imaging. The scheme of the two-layer neural network used
to identify the photon statistics produced by a combination of three sources is shown in a. The computational model consists of an input
layer, a hidden layer of sigmoid neurons, and a Softmax output layer. The training of our neural network through Eqs. (2) and (3) enables the
efficient identification of five classes of photon statistics. Each class is characterized by a g(2) function, which is defined by a specific
combination of light sources33. In our experiment, these classes correspond to the characteristic photon statistics produced by coherent or
thermal light sources and their combinations. For example, coherent-thermal, thermal-thermal, or coherent-thermal-thermal. The figure in
b shows the performance of our neural network as a function of the number of data samples used each time in the testing process. The
classification accuracy for the five possible complex classes of light is 80% with 100 data points. Remarkably, the performance of the neural
network increases to approximately 95% when we use 3500 data points in each test sample. The shaded area represents error bars calculated
by executing our neural network algorithm 10 times.
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diffraction4,6–8. In this case, it is practically impossible to identify
the multiple sources that constitute the target object. Remarkably,
as shown in Fig. 4b, our protocol provides a dramatic improve-
ment of the spatial resolution of the imaging system. In this case,
we utilize photon statistics of the complex mixture of light sources
at each pixel rather than relying on the composite point spread
function of the multiple sources. This allows us to surpass the
diffraction limit and predict the location of the three point sources.
We then use a genetic algorithm-based optimization to predict
the actual centroids and diameters of the three point sources with
Gaussian point spread functions. Finally, we use this information
to reconstruct each of the sources. Then, we simply add all
individual source profiles to produce a single intensity plot as
described in the Methods section. Our results clearly show the
presence of the three emitters that form the remote object. The
estimation of separations among light sources is performed
through a fit over the classified pixel-by-pixel image. Additional
details can be found in the Methods section. In Fig. 4c, d, we
demonstrate the robustness of our protocol by performing
superresolving imaging for a different configuration of light

sources. In this case, two small sources are located inside the
point-spread function of a third light source. As shown in Fig. 4c,
the Abbe-Rayleigh limit forbids the identification of light sources.
However, we demonstrate substantial improvement of spatial
resolution in Fig. 4d. The plots in Fig. 4e, f correspond to the
inferred spatial distributions based on the experimental pixel-by-
pixel imaging used to produce Fig. 4b, d. The insets in Fig. 4e, f
show photon-number probability distributions for three pixels.
Sharing similarities with conventional schemes for optical super-
resolution14,18–22, our technique enables performing imaging
beyond the Abbe-Rayleigh criterion even when the detected
photons are emitted by light sources of the same kind. As shown
in Fig. 4, this is possible even if two thermal sources are detected.
The theoretical photon-number distributions in Fig. 4e, f are
obtained through a procedure of least square regression41. Here
the least squares difference between the measured and theore-
tical probability distribution was minimized for 0 ≤ n ≤ 6. The
sources were assumed to be partially distinguishable allowing the
theoretical distribution to be defined by Eqs. (2) and (3). The
combined mean photon numbers of each source generated for

Fig. 3 Projection of the feature space on the plane defined by the probabilities p(0), p(1), and p(2). The red points correspond to the
photon statistics for coherent light, and the blue points indicate the photon statistics for thermal light fields. Furthermore, the brown dots
represent the photon statistics produced by the scattering of two thermal light sources, and the black points show the photon statistics for a
mixture of photons emitted by one coherent and one thermal source. The corresponding statistics for a mixture of one coherent and two
thermal sources are indicated in green. As shown in a, the distributions associated to the multiple sources obtained for 10 data points are
confined to a small region of the feature space. A similar situation prevails in b for 100 data points. As shown in panel c, the distributions
produced with 1000 data points occupy different regions, although brown and black points keep closely intertwined. Finally, the separated
distributions obtained with 10,000 data points in d enable efficient identification of light sources.
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the fit totals the measured mean photon number (see Methods
section). Our scheme enables the use of the photon-number
distributions or their corresponding g(2) to characterize light
sources. This allows us to determine each pixel’s corresponding
statistics, regardless of the mean photon numbers of the sources
in the detected field30,33.
We now provide a quantitative characterization of our super-

resolving imaging scheme based on the identification of photon
statistics. We demonstrate that our smart camera for super-
resolving imaging can capture small spatial features that surpass
the resolution capabilities of conventional schemes for direct
imaging1–5. Consequently, as shown in Fig. 5, our camera enables
the possibility of performing imaging beyond the Abbe-Rayleigh
criterion. In this case, we performed multiple experiments in which
a superposition of partially distinguishable sources were imaged.
The superposition was prepared using one coherent and one
thermal light source which are separated from 0 to ~2.55 mm. In
Fig. 5a, we plot the predicted transverse separation s normalized
by the Gaussian beam waist radius w0 for both protocols. Here
w0= λ/πNA ≈ 1.2 mm, this parameter is directly obtained from our
experiment. Furthermore, the transverse separation s is calculated
following a similar approach to the one used to obtain Fig. 4 (see
Methods). As demonstrated in Fig. 5a, our protocol enables one to
resolve spatial features for sources with small separations even for
diffraction-limited conditions. As expected for larger separation
distances, the performance of our protocol matches the accuracy
of intensity measurements. This is further demonstrated by the
spatial profiles shown from Fig. 5b to d. The first row shows spatial
profiles for three experimental points in Fig. 5a obtained through
direct imaging whereas the images in the second row were
obtained using our scheme for superresolving imaging. The spatial

profiles in Fig. 5b show that both imaging techniques lead to
comparable resolutions and the correct identification of the
centroids of the two sources. However, as shown in Fig. 5c, d, our
camera outperforms direct imaging when the separations
decrease. Here, the actual separation is smaller than w0/2 for
both cases. It is worth noticing that in this case, direct imaging
cannot resolve spatial features of the sources. Here, the
predictions of direct imaging become unstable and erratic.
Remarkably, our simulations show an excellent agreement with
the experimental data obtained with our scheme for super-
resolving imaging (see Methods section).

DISCUSSIONS
It is worth noting that sources of light characterized by different
quantum statistical properties are ubiquitous in realistic scenar-
ios42. Indeed, this situation prevails even when the detected field
results from a combination of light sources of the same kind. For
example, the finite size of remote stars produces multimode
thermal light that is characterized by a degree of second-order
coherence g(2) that deviates from 243. Interestingly, our scheme
can identify these conditions. Furthermore, smart quantum
statistical imaging can have important implications for LIDAR
applications44,45. The performance of rangefinder systems is
limited by the ability to discriminate the photon statistics of
coherent and thermal light44,45. Remarkably, our imaging protocol
shows potential to overcome this problem. Finally, there has been
interest in using optical microscopy to identify light emitters42. In
this case, it is possible to use our technique to form superresolving
images of the optical emitters. Consequently, our work has
important implications for the many imaging techniques.

Fig. 4 Experimental superresolving imaging. The plot in a shows the combined intensity profile of the three partially distinguishable
sources. As stipulated by the Abbe-Rayleigh resolution criterion, the transverse separations among the sources forbid their identification. As
shown in b, our smart quantum camera enables superresolving imaging of the remote sources. In c and d, we show another experimental
realization of our protocol for a different distribution of light sources. In this case, two small sources are located inside the point-spread
function of a third light source. The figures in e and f correspond to the inferred spatial distributions based on the experimental pixel-by-pixel
imaging used to produce b and d. The insets in e and f show photon-number probability distributions for three pixels, the theory bars were
obtained through Eqs. (2) and (3). These results demonstrate the potential of our technique to outperform conventional diffraction-limited
imaging.
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In conclusion, we demonstrated a robust quantum camera that
enables superresolving imaging beyond the Abbe-Rayleigh resolu-
tion limit. Our scheme for quantum statistical imaging exploits the
self-learning features of artificial intelligence to identify the statistical
fluctuations of truly unknown mixtures of light sources. This
particular feature of our scheme relies on a general model based
on the theory of quantum coherence to describe the photon
statistics produced by the scattering of an arbitrary number of light
sources. While in terms of resolution, the performance of our camera
is on par with conventional schemes for superresolution, we
demonstrated that the measurement of the quantum statistical
fluctuations of photons enables one to overcome inherent limitations
of existing superresolution protocols based on spatial mode
projections14,18–22. Specifically, our protocol does not require prior
information about the coherence properties of the light field. In
addition, it does not rely on information of the individual centroids of
the sources. We believe that our work will establish a paradigm in the
field of optical imaging with important implications for microscopy,
remote sensing, and astronomy5–11.

METHODS
Training of NN
For the sake of simplicity, we split the functionality of our neural network
into two phases: the training and testing phase. In the first phase, the
training data is fed to the network multiple times to optimize the synaptic
weights through a scaled conjugate gradient back-propagation algo-
rithm46. This optimization seeks to minimize the Kullback-Leibler
divergence distance between predicted and the real target classes47,48.
Following a standardized ratio for statistical learning, we divide our data
into training (70%), validation (15%), and testing (15%) sets49. The training
is stopped if the algorithm performance stops improving on the validation
set or if the loss function does not decrease within a given number of
training epochs50. This method is called early stopping method and allows
for reducing effectively overfitting51. Specifically, a limit of 1000 epochs
was set for the examples shown in Figs. 4 and 5. In the test phase, we
assess the performance of the algorithm by introducing an unknown set of
data during the training process. The goal is to estimate the accuracy of
the neural network for unknown data by exploiting the information
unveiled during the training stage. For both phases, we prepare a data-set
consisting of the same number of observations for each output class. The
output classes are defined by the possible combinations of the number
and type of light sources at the detection plane. For example, in our
experiment presented in Fig. 4, we consider three sources, two thermal

and one coherent that lead to five classes, thermal, coherent, thermal-
thermal, thermal-coherent, and thermal-thermal-coherent. For each of the
output classes, we prepared one thousand experimental measurements of
photon statistics, for both training and test stages. Note that we train
multiple neural networks by considering different numbers of data points
for producing the photon statistics (see Fig. 2b). In all cases, we keep
invariant the size of the training and test data-set. The networks were
trained using the neural network toolbox in MATLAB, which runs on a
computer Intel Core i7-4710MQ CPU (@2.50GHz) with 32GB of RAM.

Fittings
To determine the optimal fits for Fig. 4e, f we design a search space based
on Eqs. (2) and (3). To do so we first found the mean photon number of the
input pixel, which are later applied to constrain the search space. From
here we allowed for the existence of up to three distinguishable modes
which will be combined according to Eq. (3). Each of the modes contains
an indistinguishable combination of up to one coherent and two thermal
sources whose number distribution is given by Eq. (2). The total
combination results in partially distinguishable combination and provides
the theoretical model for our experiment. From here our search space isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n¼0

ðpexpðnÞ � pthðnjn1;t ; n2;t ; ncÞÞ2
r

; (4)

where ni;t and nc are the mean photon numbers of that each thermal or
coherent source that contributes to each distinguishable mode respec-
tively. The mean photon numbers of each source must add up to the
experimental mean photon number, constraining the search. A linear
search was then performed over the predicted mean photon numbers and
the minimum was returned, providing the optimal fit. Finally, we note that
the fitting procedure does not use more information than that provided
through the classification. The fitting procedure solely uses the output
from the classification algorithm.

Simulation of the experiment and separation estimation
protocol
To demonstrate a consistent improvement over traditional methods, we
also simulated the experiment using two beams, a thermal and a coherent,
with Gaussian point spread functions over a 128 × 128 grid of pixels. At
each pixel, the mean photon number for each source is provided by the
Gaussian point spread function, which is then used to create the
appropriate distinguishable probability distribution as given in Eq. (3),
creating a 128 × 128 grid of photon number distributions. We use Gaussian
fittings because this mathematical function describes the most funda-
mental spatial mode of an optical system. The associated class data for
these distributions are then be fitted using a set of pre-labeled disks using

Fig. 5 Comparison between the spatial resolution of our camera and direct imaging. Here the distance is normalized by the beam radius
for easy identification of the Abbe-Rayleigh limit. As shown in a, the red line is the result of a Monte-Carlo simulation for traditional intensity
based direct imaging. The plateau is the area where the algorithm becomes unstable. The dotted blue line represents the limit for our
supperresolving imaging method, where perfect classification of each pixel is assumed. The blue dots represent the experimental data
collected with our camera for superresolving imaging. The experimental points demonstrate the potential of our technique for identifying
spatial features beyond the Abbe-Rayleigh resolution criterion. The first row in the panels from b to d shows the reconstructed spatial profiles
obtained through direct imaging whereas the second row shows the superresolving images obtained with our technique. The panel in
b shows the spatial profiles for the experimental point i). This corresponds to the experimental detection of two sources with the largest
separation. The spatial profiles in c correspond to the experimental point labeled as ii). Finally, the panel in d shows the spatial distributions for
the experimental point with the smallest separation, this is labeled as iii). The error bars are generated by repeating the experiment ten times.
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a genetic algorithm. This recreates our method in the limits of perfect
classification. Each of these distributions is then used to simulate photon-
number resolving detection. This data is then used to create a normalized
intensity for the classical fit. We fit the image to a combination of Gaussian
PSFs. The separation s, is found by taking the centroid of each fit and
calculating the distance between them. This value is then normalized by
the beam radius ω0 for sake of clarity. This process is repeated ten times for
each separation in order to average out fluctuations in the fitting. When
combining the results of the intensity fits they are first divided into two
sets. One set has the majority of fits return a single Gaussian, while the
other returned two Gaussian the majority of the time. The set identified as
only containing a single Gaussian is then set at the Abbe-Rayleigh
diffraction limit, while the remaining data is used in a linear fit. This causes
the sharp transition between the two sets of data.

DATA AVAILABILITY
The data sets generated and/or analyzed during this study are available from GitHub
repository at https://tinyurl.com/33kbjusf.

CODE AVAILABILITY
The code used to analyze the data and the related simulation files are available from
GitHub repository at https://tinyurl.com/33kbjusf.
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