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FairMove: A Data-Driven Vehicle Displacement
System for Jointly Optimizing Profit Efficiency
and Fairness of Electric For-Hire Vehicles

Guang Wang, Sihong He, Lin Jiang, Shuai Wang, Fei Miao, Fan Zhang, Zheng Dong, and Desheng Zhang

Abstract—With the worldwide mobility electrification initiative to reduce air pollution and energy security, more and more for-hire
vehicles are being replaced with electric ones. A key difference between gas for-hire vehicles and electric for-hire vehicles (EFHV) is
their energy replenishment mechanisms, i.e., refueling or charging, which is reflected in two aspects: (i) much longer charging
processes vs. much shorter refueling processes and (ii) time-varying electricity prices vs. time-invariant gasoline prices during a day.
The complicated charging issues (e.g., long charging time and dynamic charging pricing) potentially reduce the daily operation time
and profits of EFHVs, and also cause overcrowded charging stations during some off-peak charging pricing periods. Motivated by a set
of findings obtained from a data-driven investigation and field studies, in this paper, we design a fairness-aware vehicle displacement
system called FairMove to jointly optimize the overall profit efficiency and profit fairness of EFHV drivers by considering both the
passenger travel demand and vehicle charging demand. We first formulate the EFHV displacement problem as a Markov decision
problem, and then we present a fairness-aware multi-agent actor-critic approach to tackle this problem. More importantly, we implement
and evaluate FairMove with real-world streaming data from the Chinese city Shenzhen, including GPS data and transaction data from
over 20,100 EFHVs, coupled with the data of 123 charging stations, which constitute, to our knowledge, the largest EFHV network in
the world. Extensive experimental results show that our fairness-aware FairMove effectively improves the profit efficiency and profit
fairness of the EFHYV fleet by 26.9% and 54.8%, respectively. It also improves the charging station utilization fairness by 38.4%.

Index Terms—Data-driven, electric vehicle, for-hire vehicle, fairness, deep reinforcement learning.

1 INTRODUCTION

ORE and more countries and cities have started their
Melectric vehicle initiatives [1], [2], [3], [4], [5] because
of the ever-growing concern about air quality and energy
security. It is reported that the worldwide sales of electric
vehicles have nearly quadrupled since 2014, and about 50%
of the vehicle sales will be electric vehicles by 2027 [6]. As
one of the most common mobility modes, for-hire vehicles
(FHVs), such as taxis and those operated by ride-hailing
platforms [7] play a very important role in people’s daily
life, and they are also in the front line of vehicle electri-
fication given their huge potential to reduce air pollution
[3]. For example, the number of electric taxis (e-taxi) in the
Chinese city Shenzhen has increased from 840 in 2015 to
over 20,130 in 2020. For the EFHV fleet, one of the most
important tasks for a management team to improve fleet
efficiency and resultant fleet profit is Vehicle Displacement,
i.e.,, making recommendations to individual vacant EFHVs
(i.e., without passengers) to proactively go from one area
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to another area to balance two relationships: (i) the future
passenger demand and vehicle supply and (ii) the future
EFHYV charging demand and charger supply.

In recent decades, a large number of works have been
done to improve the efficiency of FHV fleets [8], [9], [10].
However, a majority of these works focused on conven-
tional gas FHVs. For example, [9], [10] tried to optimize
the efficiency of taxi drivers searching for customers, e.g.,
minimizing the average searching time. Different from the
refueling process of gas FHVs, which usually takes about
3-5 minutes, the charging process of EFHVs typically lasts
for half an hour to two hours even with fast chargers [11]. In
addition, the electricity price is varying in different hours of
the day, while the gasoline price is usually constant during a
day. These long charging times and dynamic charging pric-
ing lead to very different EFHV drivers’ behaviors (where
or when to charge) and incentives (whether to follow a
recommendation). Although the energy level can be naively
considered as a constraint of existing solutions to address
the charging problem (e.g., if the energy level of an EFHYV is
lower than a threshold, the EFHV is set to be offline and re-
moved from the system, it is similar to passenger searching),
the key challenge is to decide which charging station the
EFHYV should go. The charging scheduling decisions are re-
lated to many factors like real-time traffic conditions, status
of charging stations and charging prices, which should be
considered for reducing the charging idle time and charging
costs (e.g., avoiding overcrowded charging stations). Hence,
the existing solutions for vehicle relocation or passenger
searching [9], [10] are not suitable to the fairness-aware
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vehicle displacement problem well.

Recently, some works have been done to understand and
improve the charging efficiency of EFHVs [5], [11], [12], but
almost all of them mainly focus on optimizing charging
idle time reduction instead of optimizing drivers’ profits
due to a lack of detailed transaction data from FHV fleets.
The underlying assumption by the existing works is that
optimizing charging idle time will prolong the EFHVs’
operation time. However, we found that charging idle time
reduction does not necessarily indicate the prolonged time for
serving passengers to maximize profit because some drivers may
need to spend more time to seek passengers after charging in some
regions with shorter charging waiting time but lower passenger
demand (as shown in Section 2.3).

In this paper, by working with an e-taxi agency, we
utilize its detailed proprietary transaction data along with
GPS data to improve the EFHV fleet’s profit efficiency
by designing a new vehicle displacement system called
FairMove, which balances two relationships: passenger de-
mand vs. EFHV supply, and wvehicle charging demand vs.
charging station supply. For the EFHV agency, its goal for
vehicle displacement is to jointly optimize the overall profit
efficiency of the EFHV fleet; whereas for the drivers, their
incentive to follow vehicle displacement is to enable profit
fairness among them. As a result, the key objective of our
EFHV displacement is fleet-wide joint optimization of profit
efficiency and profit fairness.

However, the EFHV displacement with this objective is
challenging due to possible conflicting relationships (e.g.,
balancing future passenger demand and supply vs. bal-
ancing future EFHV charging demand and supply), and
many confounding factors (e.g., individual drivers’ charging
behaviors like spatiotemporal charging preference, time-
variant charging pricing, and individual-level fairness). To
address these challenges, in this paper, we propose a deep
reinforcement learning (DRL)-based approach (i.e., Fairness-
Aware Multi-Agent Actor-Critic (FAMA2C for short) to
learn the sophisticated EFHV displacement policy.

FAMA2C has three key advantages for the EFHV dis-
placement compared to existing methods: (i) we integrate
fairness into our algorithm for a fairness-aware RL algo-
rithm, e.g., our reward function considers both the self-
profit efficiency and the fairness, so each agent will not only
maximize its own profit when it learns the policy but also
cooperate with other agents to improve the overall profit
fairness in a holistic view. To our best knowledge, this is the
first RL algorithm with fairness consideration for fleet man-
agement of large-scale EFHVs. Compared to conventional
actor-critic RL algorithms that typically target one single
reward, our algorithm needs to balance weighted rewards
with two possibly conflicting objectives. The weighted re-
ward is also challenging to be optimized by naive critic-
actor RL algorithms. (ii) Our FAMA2C is adaptive to a
highly dynamic and uncertain environment, which consid-
ers different practical factors and is fit for large-scale agent
applications due to our centralized training and decentral-
ized execution design. The centralized training process can
motivate multiple agents to learn globally coordinated and
cooperative policies. For example, the centralized critic is
augmented with extra information such as actions and states
of other agents (i.e., interacts with others), which means the
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critic explicitly uses extra information to ease the training
process and adapts to the dynamic environment. During the
execution process, each EFHV’s local observation is taken
as the input without requiring complete information in the
training phase, and then the decentralized policy networks
can output the actions with an efficiency and flexibility guar-
antee. (iii) We extend the standard advantage function with
contextual information to address the high variability of the
value function in our algorithm. (iv) FAMA2C maximizes
the long-term reward of a sequence of decisions for profit
efficiency and profit fairness improvement.

In particular, the key contributions of this paper include:

e We conduct an extensive data-driven analysis based
on real-world multi-source data, from which we
found some novel insights: (i) Charging time reduc-
tion does not necessarily indicate the prolonged time
for serving passengers since some drivers may need
to spend more time to seek passengers after charging
in some regions with low passenger travel demand.
(ii) The potential profits for serving passengers after
charging in different stations may also be different,
which is highly dynamic in both spatial and temporal
dimensions. (iii) Prolonged charging time of EFHVs
compared to the refueling processes of gas FHVs
causes some real-world issues, e.g., intensive charg-
ing peaks and long charging wait time in some time
slots induced by the time-varying charging pricing.

e DBased on the data-driven insights, we design
a new fairness-aware displacement system called
FairMove to improve the overall profit efficiency
and profit fairness for EFHV fleets by a FAMA2C
approach. FairMove considers not only the opera-
tion behaviors of drivers and demand & supply but
also the complicated charging processes (e.g., time-
varying charging pricing, and intensive charging
peaks). In addition, the time for seeking a passenger
after charging and trip length are also considered
for a more accurate revenue estimation. Finally, both
the operating revenues and charging costs are fed
to the FairMove system to make fair-profit-oriented
decisions, which has the potential to make the system
more sustainable.

e We implement and extensively evaluate our
FairMove based on multi-source data from the Chi-
nese city Shenzhen, including GPS records and trans-
action records from 20,130 EFHVs. The experimental
results show our FairMove effectively increases the
profit efficiency of the EFHV fleet by 26.9%, improves
the profit fairness of EFHV drivers by 54.8%, and
reduces the cruise time and idle time by 32.3% and
44.9% on average at the same time. It also improves
the charging station utilization fairness by 38.4%.

A preliminary version of this work has been published in
the research track of the 37th IEEE International Conference
on Data Engineering (ICDE) as a full paper [13]. In this
journal version, we have made a set of extensions and new
contributions to enhance the conference version. (i) In the
conference version, we mainly focus on the electric taxi fleet
management, and we generalize it to profit and fairness
joint optimization of electric for-hire vehicles in the journal
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Fig. 1. Mobility decomposition of EFHVs.

version, which makes our system design more comprehen-
sive. (ii) We extend the standard advantage function in
the conference version with contextual information, which
shows better performance to address the high variability
of the value function. (iii) We show the framework and
details of the designed FAMA2C algorithm. (iv) We define
new metrics (e.g., Percentage Reduction of Charging Cost)
and perform extensive additional experiments to further
evaluate the performance of the proposed algorithm. (v) We
add the convergence analysis of the displacement method to
show the efficiency of our FairMove. (vi) We further study
the system performance under different driver participation
rates. (vii) We investigate the fairness of charging station
utilization with different displacement strategies. (viii) We
further utilize some off-policy evaluation methods to vali-
date the learned policy against real-world data.

2 DATA AND MOTIVATION

2.1 Data Description

All EFHVs in our dataset are the same vehicle model, i.e.,
BYD e6, whose battery capacity and maximum traveling
distance are 80 kWh and 400 km, respectively [14]. There are
five datasets used in our work, i.e., GPS data, transaction
fare data, charging station data, urban partition data, and
time-variant electricity rates data. The detailed information
of the five datasets is shown as follows.

(i) GPS data includes vehicle IDs, real-time coordi-
nates (i.e., longitudes and latitudes), time stamps, directions,
speeds, and passenger indicator.

(ii) Transaction fare data includes vehicle IDs, the
pickup and drop-off times, the pickup and drop-off coor-
dinates (i.e., longitudes and latitudes), operating distances,
cruising distances, and fares.

(iii) Charging station data includes station IDs, station
names, coordinates (i.e., longitudes and latitudes), and the
number of fast charging points in each station. There are 123
charging stations deployed in Shenzhen for EFHVs only in
December 2019.

(iv) Urban Partition Data de-
scribes the urban partition for
the population census of the
Chinese city Shenzhen, which is
provided by the Shenzhen gov-
ernment. There are 491 regions,
and each region has a region ID
and longitudes & latitudes of its
boundary.
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Fig. 2. Charging prices of
EFHVs in Shenzhen.

(v) Charging Pricing Data.

Many cities have time-variant charging pricing (similar to
the time-variant electricity pricing), which breaks up 24
hours of a day into several intervals and charges a different
price for each interval [15]. The rates in Shenzhen are di-
vided into three types, i.e., off-peak prices (low rates), semi-
peak prices (medium rates, also called flat rates), and peak
prices (high rates), and the corresponding charging rates are
0.9, 1.2, and 1.6 CNY/kWh, respectively. The time-variant
charging pricing in Shenzhen is shown in Fig. 2.

2.2 Mobility Decomposition of EFHVs

We decompose the mobility of EFHVs from three dimen-
sions (i.e., time, event, and profit), as shown in Fig. 1, where
ty to t5 represents the activities of an EFHV during two
consecutive charging events.

(i) At the time ¢y, an EFHV finishes a charging event,
and then it will cruise to find passengers to serve. At ¢, the
EFHYV picks the first passenger up and drops the passenger
off at time t5. We define the time for seeking a passenger
as the cruise time, and the time for serving a passenger
(onboard) as the service time. Specifically, we define the
time duration ¢t — %( as the first cruise time ¢ and the

crutse’
time duration ty —t; as the first service time tsime. During the
cruise time, the EFHV neither has passengers on board nor
charges, so the profit remains unchanged. During the service
time, the EFHV’s profit will increase with passengers on
board. The profit is typically a function of time and distance.

(if) After serving the first passenger, the EFHV will
continue to cruise and serve the 27¢, 374 . mth passenger,
and the EFHV’s profit keeps increasing during this period.
After dropping the m'" passenger off, the energy level
of this EFHV decreases to a threshold, so it will start to
seek a charging station to charge at time ?3. We define
time duration t3 — ty as the operation time 7T, which
equals to Teruise + Tserve, Where Tepyise = S tiﬁ?mse and
Tserve = Z?:l té?me. The profit of the EFHV will increase
during Tserpe for serving passengers.

(iii) Due to some real-world issues (e.g., inadequate
charging resources and intensive charging peaks), the EFHV
may need to wait for a while to get an available charging
point. Then at time ¢4, there is an available charging point,
so the driver will plug in the charger and charge the EFHV.
We define time duration ¢4 — t3 as the idle time T}, since
the EFHV neither operates nor charges. The profit of the
EFHYV remains unchanged during the idle time.

(iv) After plugging in a charger, the EFHV will start to
charge, and it finishes the charging event at time ¢5. We
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Fig. 3. Average per-trip revenue (CNY) in different regions during different hours of a day.

define the time duration with a charger plugin t5 — ¢4 as the
charge time 7 ,jq,g.. During this time period, the profit of
the EFHV will decrease due to energy replenishment.

(v) We define the time duration between two sequential
charging events t5 —t( as a working cycle T, ;. of an EFHYV,
which equals to 75, + Tigre + Teharge- Hence, during a long
time period (e.g., one week), there will be a set of working
cycles for each EFHV. In this paper, we focus on the long-
term (e.g., weekly) profit fairness of EFHVs instead of the
short-term profit, which also has the potential to achieve a
higher overall profit efficiency for EFHYV fleets.

2.3 Motivation By Data-Driven Findings

Based on our multi-source real-world data and the above
definitions, we conduct in-depth data-driven analysis using
one-month e-taxi data to show the uniqueness and moti-
vation of our EFHV displacement design. In particular, we
provide the following findings:

(i) Idle time reduction does not necessarily indicate the
prolonged time for serving passengers since some EFHVs
may need to spend more time seeking passengers after
charging in some regions with low passenger travel de-
mand. As shown in Fig. 4(a), we found 40% of EFHVs can
find their first passengers after charging in 10 minutes, but
there are still 10% of EFHVs need to cruise over an hour to
find their first passenger after charging. In addition, the first
cruise time tgzﬂ-se is also different when charging in differ-
ent stations. Fig. 4(b) shows the first cruise time of EFHVs
after charging in three different charging stations. The three
charging stations are located in different areas of the city,
and there are different numbers of charging points in each
station. We found that the first cruise time of the EFHVs
has large differences after charging in different stations.
Hence, the charging station selection not only impacts the
idle time but also has influences on the first cruise time t&i)uise.
However, this finding has not been revealed and considered
by existing works.
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Fig. 4. First cruise time distribution and at three charging stations.

(ii) The potential revenue for serving passengers after
charging may also be different at different time slots and
stations, which is highly dynamic in both spatial and tem-
poral dimensions. Fig. 3 shows a visualization of the average

per-trip revenue in different regions during late night (00:00-
01:00), morning rush hour (08:00-09:00), and evening rush
hour (18:00-19:00). The dark red means higher average per-
trip revenue (i.e.,, more long trips) in these regions, and
light yellow means lower average per-trip revenue in these
regions. We found the average per-trip revenue has a large
gap between different regions across the city, ranging from
several CNY to over 100 CNY. For example, the per-trip
revenue in the airport region is always high, but it is very
low in some suburban areas. In addition, we found the
average trip length in a region may change during the day.
We also quantify the average per-trip revenue in the 491
regions, which can be seen from the right upper corner of
Fig. 3. We found that there are more regions with low prices
per trip during the late night, but more regions with high
prices per trip during rush hours.

Certainly, the passenger travel demand and supply in
different regions are also different, so the probability to pick
up a passenger is also different, which is usually considered
by existing works. However, existing works rarely consider
the revenue from a trip, which will also directly impact
EFHVs’ revenue. Hence, in this paper, we consider not only
the demand and supply of EFHVs but also the potential
revenue for serving passengers for displacement, which lays
a foundation for EFHVs’ revenue fairness.

(iii) Inequal profit efficiency of the EFHV fleet, which
could be potentially improved by a centralized displace-
ment system. As shown in Fig. 5, we found 20% of
EFHVs’ hourly profit efficiency is lower than 36, and
there is also 20% of EFHVs’ hourly profit efficiency is
higher than 51, which means there is a huge profit gap
between EFHVs, resulting in the profit of high-efficient
drivers will be 42% higher than the low-efficient drivers.

With people paying more at- 100
tention to fairness and equity, 80
. = (51.80%)
such a large profit gap poten- &£ ¢
tially hurts some drivers’ daily & 4
O

life and makes them unsatisfac- 20
tory. Hence, it is necessary to
have a fairness-aware displace-
ment system to improve EFHVs’
profit fairness in the fleet with-  Fig. 5. Hourly profit efficiency.
out damaging the overall profit efficiency of the fleet.
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In summary, based on our data-driven observations, we
found the EFHV displacement problem is also different from
the existing charging scheduling/recommendation since (i)
the idle time reduction does not necessarily indicate more
time for serving passengers. (ii) The first cruise time of the
EFHVs has large differences after charging in different sta-
tions. (iii) Not only the probability of picking up passengers
impacts EFHVs’ revenue but also the trip length has a
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huge impact on it, which we could also consider improving
the profit fairness for the EFHV fleet. (iv) It is necessary
to design a fairness-aware displacement system for EFHV
fleets to improve their profit efficiency and fairness, but it
may not be achieved by existing solutions for conventional
gas FHVs.

3 FairMoveE DISPLACEMENT SYSTEM DESIGN
3.1

The key idea of our FairMove is that we formulate the
EFHV displacement problem as a large-scale sequential
decision-making problem since the displacement decisions
for EFHVs are sequential and highly repetitive, where each
decision corresponds to scheduling an available (vacant)
EFHV to a region or a charging station. There are multiple,
possibly conflicting objectives in our displacement system,
e.g., improving the profit efficiency of the EFHV fleet and
reducing the profit unfairness between all EFHVs. In this
work, we balance the profit efficiency and profit fairness by
a weighted parameter to achieve the optimal displacement.

However, it is challenging to design an effective dis-
placement strategy for EFHV fleets that can adapt to an
environment involving dynamic demand & supply and
complicated charging behaviors as shown in the above data-
driven investigation. One major issue is that changes in a
displacement decision will impact future demand & supply,
and it is challenging for supervised learning approaches to
capture and model these real-time changes. Inspired by suc-
cessful applications in intellectually challenging decision-
making problems (e.g., the game of Go [16], urban crowd-
sensing [7], computation offloading [17], mobile edge com-
puting [18]), in this paper, we try to target the EFHV dis-
placement problem by deep reinforcement learning (DRL)
based methods, which combine the advantages of Deep
Neural Networks (DNNs) and Reinforcement Learning (RL)
and has the capability of handling high-dimension data and
highly dynamic environment features.

Key Idea of FairMove

3.2 Problem Statement

Definition 1. (Profit Efficiency) Profit efficiency (PE) de-
notes the per unit time profit earned by an EFHV during
its on-duty time in a period I" (e.g., a week). The on-duty
time of an EFHV includes a set of working cycles. Each
working cycle consists of three components, i.e., operation
time Ty, idle time T4, and charging time T¢pqrge. The
calculation method of the Profit efficiency of each EFHV can
be represented as Equation 1.
S~ R _ 5~ o)
__ Revenue — Costs 1; vy g; CChwge

PE ~
(k)

)

- k k k
kz (Tép) + Ti(dl)e + Tc(ht)zrge)
=1

where PE denotes the Profit Efficiency of an EFHV in a
period I'. Revenue and Costs denote the total revenue earned
from serving passengers and the operation costs during a
period I' by the EFHV. m, n, and z denote the number of
trips served by the EFHYV, the number of charging events of
the EFHV, and the number of working cycles of the EFHV
during I', respectively. R, is the revenue for serving ‘"

. trip
trip, C, G

charge 1S the charging cost for j th charging event. Té,’f ),

5

Ti(d]?e, TC(,];)W ge are the operation time 7,,, idle time T;4;c, and
charge time Tipqrge Of kth working cycle, respectively.
In this paper, since we define a working cycle as the time

between two charging events, 2 = n in Equation 1, and
the operation time 7, 0(5 ) is equivalent to the sum of cruise
time and serve time, i.e., Tc(fuise + T8, In addition, the
charging costs is a function of the time-varying charging
pricing and the charge time, so we describe the charge time
of jt" charging event T/

charge S @ three-dimensional vector
7) _ {ngj) TJ(Cj)’ Téj)],

D) e : where T3/, T¢, and T3
denotes the time in peak, flat, and off-peak charging pricing
hours of the j* charging event. Similarly, we also describe
the time-varying charging pricing as a three-dimensional
vector A = [A\,, Af, A,], where \,, Af, A, denote the charging
prices during peak, flat, and off-peak hours, respectively
(as shown in Fig. 2). Hence, we convert Equation 1 into
Equation 2 to calculate the profit efficiency of an EFHV.

Z Rit?’ip - Z (A : TC;LBM"Q@)
i=1 Jj=1
E (Tigilee + Tiggve + Tz(jl)c + Tc(i)argc>

j=1

PE =

@)

Definition 2. (Profit Fairness) It is typically challenging to
define the fairness as different people may have different
perceptions of fairness [19]. In addition, the fairness def-
inition would also be different in different scenarios [20].
Hence, to better understand EFHV drivers’ perceptions of
fairness and define the profit fairness of EFHVs properly,
our team has conducted a set of interviews with Shenzhen
e-taxi drivers and asked them related questions. We found
almost all e-taxi drivers thought it is fair when their profits
are proportional to their working time. Motivated by this, in
this paper, we define the Profit Fairness PF of an EFHV fleet
as the variance of profit efficiency of all EFHVs in the fleet,
which is denoted as Equation 3, so smaller PF' means fairer
for an EFHYV fleet. N
_1 ® _pE)

PF =~ ; (PE - PE) 6)
where N is the total number of EFHVs in an EFHV
fleet. PE®*) is the profit efficiency of the k' EFHV. PE is
the average profit efficiency of all EFHVs in the fleet, ie.,

. N
PE=2L > PE®,

In thisklgéper, we tackle the displacement problem for a
large-scale available (i.e., vacant) EFHV fleet when consid-
ering both serving passengers and charging. The objectives
of our displacement are three-fold: (1) Improving the overall
profit efficiency PE of all EFHVs in the fleet during a period
of I'. (2) Enhancing the profit fairness of the EFHV fleet PF
over I'. (3) Tradeoff between the profit efficiency and profit
fairness. A spatial-temporal illustration of the problem will
be shown in Fig. 6. For the spatial partition, we utilize the
urban partition data described in Section 2 to represent the
map, which splits the Shenzhen city into 491 regions. Our
partition is similar to the grid-based methods (e.g., square-
grid [3], [5] and hexagonal-grid [21]), but our partition is
more practical as it considers the geological structure of
the city (e.g., a mountain or a lake will be partitioned in
a single region). For the temporal partition, we split the
duration of a day into 7" time slots. At each time slot, there
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are different numbers of passenger demands sporadically
appearing in each region, and those passengers will be
served by the available EFHVs in the same region. The
role of the displacement system is to decide which region
or charging station each vacant EFHV should go in each
time slot to maximize the long-term profit efficiency and profit
fairness of the EFHV fleet.

3.3 Problem Formulation

Formally, we model the EFHV displacement problem as a
multi-agent Markov decision process G for N agents, which
is defined by a five-tuple G = (S, A, P, R, ), where S is
the set of states; A is the joint action space; P is transition
probability function; R is the reward function; and § is a
discount factor. Markov decision process is typically used
to model sequential decision-making problems.

In a Markov decision process, an agent observes the
state from the environment and executes action based on
the observed state. Then, the environment turns to the
next state and feeds a reward for the action back to the
agent. The agent evolves along with this interaction with
the environment. The goal of a Markov decision process is
to produce an optimal policy that maximizes the agent’s
expected cumulative rewards. The state-action value func-
tion of the agent can tell us how good a decision it makes
at a particular location and time under given environment
contexts with respect to the long-term objectives. By estimat-
ing the state-action value function, the value-based methods
give the optimal action at each interaction step. The detailed
definitions of the multi-agent Markov decision process G in our
FairMove displacement system are shown as below.

Agent Set: We consider each available (i.e., vacant)
EFHV as an agent, and EFHVs within the same spatial-
temporal partition are homogeneous, i.e.,, EFHVs in the
same region or charging station during the same time
slot are considered as homogeneous agents (where agents
have the same states), and the number of agents (available
EFHVs) N, is changing over time.

State S: The state of an available EFHV k s;(k) € S(k)
consists of a two-dimensional vector indicating its specific
spatiotemporal status from both the local view and global
view. And k = 1,2,...,N;, S(k) is the state space for the
available EFHV k. The joint state of all available EFHVs in
the time slot ¢ is denoted as s, € S = S(1)xS(2) x...S(IVy).
We discrete one day into a set of T time slots. And we divide
the city into a set of R regions and C charging stations, (i.e.,
R U C = the whole city; RN C = ). We define a local-
view state of an EFHV, s;, = [t,l] € S}, where t € T is
the time index (i.e., which time slot), and I € R U C' is the
location index (i.e., which region or charging station) where
the EFHYV is in. In this case, the finite local state space S,
is a Cartesian product of the set of time slots and the set of
regions + charging stations, i.e., S, = T x (R U C) and the
number of states is |Sj,| = |T'| x |(R U C)|. The EFHVs in the
same partition (region or charging station) in a time slot has
the same local state. We also define a global-view state s; 4o,
which is shared by all available EFHVs in the time slot ¢. The
global-view state includes three different spatiotemporal
features: (i) the number of available EFHVs in each region;
(ii) the number of unoccupied charging points in each charg-
ing station; and (iii) the expected number of passengers in

6

each region at the next time slot, which is predicted with
historical and real-time data. In this work, we utilize the
XGBoost model [22] to predict passenger demand, which
seems simple but can achieve better performance compared
to many state-of-the-art deep learning methods based on
our experiments. The basic idea of our method is that the
historical passenger demand information (e.g., the number
of passengers in different time slots on different days) and
the real-time traffic condition and meteorological data (e.g.,
weather conditions and temperatures) are considered as the
input features of our prediction model. The global-view
state s; 4o will update in each time slot. Finally, the state
of each available EFHV k during the time slot ¢ can be
represented as s (k) = [s¢,10(k), St,90(k)] € S(k) and EFHVs
in the same partition and time slot have the same state.
Action A: The action space of an EFHV k where
k=1,2,..,N;, A(k) specifies where it is able to arrive at
the next time slot. There are three types of actions in our
EFHV displacement setting. (i) The first type of action is
staying in the current region. (ii) The second type of action
is displacing the EFHV to another adjacent region in the
direction of the potential nearest passenger. We assume the
travel conditions on road segments on the same day of
different weeks typically are similar, so we utilize historical
data to estimate the average speed of each road segment in
different time slots on different days. This is a commonly
adopted method in many existing papers [23], [24]. (iii) The
third type of action is charging in a charging station. For
the second type of action, each EFHV can go to its adjacent
regions and EFHVs in different regions have a various num-
ber of neighbor regions, so they have different dimensions
of action spaces. The EFHVs in the same region have the
same action space. For the third type of action, we consider
the nearest five charging stations for each EFHV to reduce
the action space. The charging action is decided by the
energy level of the EFHV k, which is estimated by the initial
energy level and energy consumed for operating [20]. The
energy consumption rate would be different if the EFHVs
are made of various models with different characteristics,
but the method is still applicable if we use separate energy
consumption calculation formulas for them. At time slot ¢,
the available EFHV £ takes an action a:(k) € A(k), forming
the joint action a; € A = A(1) x A(2)--- x A(N;), which
induces a transition in the environment according to the
state transition function P (sy41/s¢,a;) : SXx AXS — [0,1).
Reward R: Reward reflects the immediate feedback of
the action in a specific state, but the maximizing immediate
reward is not equivalent to the goal. However, reward
usually determines the optimization goal of the displace-
ment system, which usually utilizes rewards to guide the
learning process. A typical measurement is to estimate the
difference in the accumulated reward between with and
without following the displacement system’s decisions. We
define three types of immediate rewards in our EFHV dis-
placement scenario: (i) positive rewards for serving passen-
gers; (ii) rewards for cruising; and (iii) negative rewards for
charging. Note that both the positive rewards and negative
rewards are nondeterministic as the positive rewards are
mainly decided by the trip length, and the negative rewards
are decided by the charging time tcpqrge and time-variant
charging prices. We consider the EFHVs will always serve
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the nearest passengers, and the passengers in a region will
always be served by the vacant and available EFHVs. We
define the reward as 0 when the EFHV is cruising since
there is no direct transaction. When the energy status of
an EFHV decreases to a certain threshold 7 (e.g., 20%), the
EFHV should go to charge. Even though the immediate
reward for charging is negative, EFHVs cannot operate and
serve passengers without energy, so running out of battery
will cause no reward in the future. Hence, the charging
action will also benefit the long-term positive reward for the
EFHV, which means the impact of charging can be spread to
its future states. Considering both the profit efficiency and
fairness, the final reward of the EFHV k can be represented
by Equation 4. PE(k, t) is the profit efficiency of EFHV k in
the time slot ¢ (i.e., in regard to state s;(k) and action a,(k)),
PF (t) is the profit fairness of all active EFHVs in the time
slot t. Since the PF in Equation 3 indicates the unfairness
of the system, so we have the minus here to maximize the
profit fairness.

r(se(k),ac(k)) = a- PE(k, 1) + (1 —a) - (-PF()) 4

To balance the profit efficiency and profit fairness, a real-
valued parameter o« € [0,1] is leveraged to control how
much we emphasize the profit efficiency and profit fairness
of EFHVs in the fleet. As a boundary case, with & = 1, we
only explicitly maximize the profit efficiency for the fleet,
while ignoring the level of unfairness among all EFHVs.
With a = 0, we only explicitly maximize the profit fairness
for all EFHVs in the fleet, while ignoring the profit efficiency.
Therefore, the Equation 4 can be converted to Equation 5.

Z Rg:-_):_p(k, ) — 521 (A . T‘Ei)ﬂrgg(k, ;))

ﬁ (Tc(ﬁisc(‘c‘ o) + T ek e + ngg(k, t) + rji}lrge(k: :))
i=1

r(k,t) = a-

1 N
+1—a)- (—; > (PB(h o) —Wm)z)

T ®
where we use r(k,t) instead of r(s;(k),a;(k)) for short.
Our reward function considers both self-profit efficiency
and fairness, so every EFHV is not only maximizing its
own profit when they learn the policy but also cooperat-
ing with each other to maximize the profit fairness, when
every EFHV is trying to maximize its expected discounted
accumulated rewards E [Y"52, B'r(k, t +1)].

State transition function P is defined as a mapping
S x AxS — [0,1). p(s¢;1]ss,a;) denotes the probability
of transition to s;,; given a joint action a; in the current
state s;.

Discount factor 3 essentially determines how much the
reinforcement learning agents care about rewards in the
distant future relative to those in the immediate future.
The value of 3 is typically selected from [0, 1), so the final
expected reward in the infinite horizon will be convergent
and bounded to a finite number. If 8 = 0, the agent
will be completely myopic and only learn about actions
that produce an immediate reward without considering the
future reward.

To make the above definitions more clear, we show
an example of the EFHV displacement process under the
formulation of Markov decision process from spatial and tem-
poral dimensions in Fig. 6. At time slot t = 0, EFHV 1 is
displaced to stay at Region 333 r3ss by action ag(1), and

7
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Fig. 6. Displacement process in spatiotemporal dimensions.

another EFHV 2 is displaced from rozp to rzzz by action
ag(2). An EFHV 3 is displaced to charge in charging station
1 CSy, and there are available charging points in CS;. At
time slott = 1, EFHV 1 and EFHV 2 arrive at r333, and then
they are considered as homogeneous for serving passengers
in rasz. If there are two trips (e.g., passenger 1 valued for
20 and passenger 2 valued for 30 CNY) appearing in the
region, these two passengers will be assigned to the two
EFHVs equally random, e.g., the passenger 1 is served by
the EFHV 1 with an immediate reward 20 and passenger
2 is served by the EFHV 2 with an immediate reward 30.
This setting can reduce the complexity of the vehicle dis-
placement algorithm, which is also used by existing research
[25]. Since EFHV 3 starts to charge in CS;, it will have a
negative immediate reward, which is decided by how long
it charges and the charging pricing. As shown in our reward
function, if an EFHV’s current profit efficiency is higher
than the global average profit efficiency (e.g., EFHV 2), it
will receive a weakened reward to reduce its advantage in
competing for new orders. In contrast, previously inefficient
vehicles (e.g., EFHV 3) will gain additional compensation in
the probability to receive orders, which means those who
have received unfair treatment in the previous decision-
making process will be compensated in the future to ensure
fairness. The fairness definition in our problem is based on
a long time period (e.g., one day, one week, or one month)
instead of a single time slot.

3.4 Fairness-Aware Multi-Agent Actor-Critic

In this paper, we propose a fairness-aware multi-agent actor-
critic (FAMA2C) algorithm to solve the above-defined multi-
agent problem for a large-scale EFHV displacement, which
is a multi-agent policy gradient algorithm that iterates its
policy to adapt to the dynamically evolving action space.
The basic idea of the FAMAZ2C is that for each homogeneous
agent (EFHVs within the same spatial-temporal partition),
there are two networks, a policy network (ie., Actor, which
is utilized to output action) and a value network (i.e., Critic,
which is leveraged to evaluate the performance of the policy
network). EFHVs under different spatiotemporal conditions
will use different policies. These policies are trained using
different critics.

FAMAZ2C follows the paradigm of centralized training
and decentralized execution. It means each agent learns
a centralized critic, allowing agents to deal with the non-
stationary environment, and each agent also has its own
policy network. Besides, the centralized critic is augmented
with extra information such as actions and states of other
agents (ie., interacts with others), which means the critic
explicitly uses extra information to ease the training process
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and adapts to the dynamic environment. The information
used during the training of the agents is not used in the
execution process. When agents take actions using the well-
trained policies, they only need local observations. There-
fore, the execution process can be more efficient. We denote
the total number of agents in the fleet as M. There are two
key tasks for training the FAMA2C, i.e., (i) learning the
parameters of the policy network 0/, and (ii) learning the
parameters of the value network 6., where i = 1,2, ..., M.
For the notation convenience, we omit the superscript. Then
both the Critic and Actor are parameterized with deep
neural networks, and the parameters of the critic 6, and
actor 0, are updated iteratively.

Since all agents’ rewards contain the profit fairness,
available EFHVs will cooperatively take actions for a
fairness-aware optimal strategy. To improve the training
efficiency, we adopt the offline training paradigm. Without
loss of generality, the critic of a homogeneous agent is
learned by minimizing the following loss function L (6,)
as shown in Equation 6.

, 2
£(0,) = (Va, (s1) = Vig(se42:6,, . m)) ®

Where 6,, denotes the parameters of the value network,
and Vjp, (s¢) is the estimated value of the value function
under state s;. 9; denote the parameters of the target value
network, and Vi, (s;11(k); 6, ,7) is the target value, which
consists of the immediate reward and discounted estimated
value function under the next state, as shown in Equation 7.

Vig (St+1§9,’u7ﬂ') = Z‘fr(af,\st) <n+1 + BV, (st+1)> 7)
at

The parameter of the value network 60, is updated by
the gradient descent rule 6, < 6, + A1 Vg, L(6,), where
A1 is the learning rate of the critic. The parameter of the
policy network 6, is updated using the gradient given by
Equation 8.

Vo, J (0p) = Vo, logma, (st,at) (Tt+1 + ﬁVQIU (st+1) — Vev(st)> ®)

Since the value function has high variability, we extend
the standard advantage function [26] with contextual infor-
mation to address it, which is given in Equation 9.

A(st,at,x):Q(st,at,x)—Vev(st,X) (9)

where x denotes extra information, and we let the value
function takes the actions of all agents and the global state
information and outputs the estimated value function for
each agent. Q (s, a,x) is the state-action value function
for action a; in state s;. Vp,(st,x) is the average value
of that state, so this function tells us the improvement
compared to the average the action taken at that state.
A(st,ae,x) > 0 means the gradient is pushed in that
direction, and A (sy, at,x) < 0 means the action does worse
than the average value of that state.

Since Q (st,ae,X) = Te41 + ﬁVeL (st+1,X) (10)

we combining Equation 9 with Equation 10 to obtain the
estimation of the extended advantage function as shown in
Equation 11, which is equivalent to the Temporal-Difference
(TD) error [27] with extra information, so we can use an

8
extra information-aware TD error as an estimation of the
extended advantage function.

A(st,a6,X) = reg1 + BV (s641,%) = Vo, (s,x) (1)

Then all available EFHVs can cooperatively work for a
fairness-aware optimal strategy. The details of the FAMA2C
are shown in Algorithm 1.

ALGORITHM 1: FAMA2C for Displacement

1 Initialize the value network by randomly selecting
policy network parameters 0;, and value network
parameters 0, where i =1, ..., M.

2 for [ =1 to the maximum iteration number do

3 Reset the environment and obtain the initial joint
states sg

s | foreach timeslott € [0,T) do

5 fori=1to M do

6 Sample action a;(k) given s;(k) according

to the policy my; for EFHV k, where

k € N;, N; is the set contains all EFHVs
in the same spatial-temporal partition
and share the policy Toi;

7 Execute the joint action a;(1) x ... X a;(Ny)
and get the next state s;(1) X ... X s¢(Ny)
8 Store transitions

(s¢(k),ai(k),req1(k), ser1(k))ken, in the
| buffer B; fori =1,..., M.

9 for j = 1 to a certain iteration number C' do

10 fori=1to M do

11 Sample a batch of transition from the
buffer B;

12 Compute target value network V3, by

Equation 7 and the advantage function
A(s, at, x) by Equation 9

13 Update parameter of the value network ¢},
by minimizing the value loss function

L (0%) over the batch in Equation 6.

14 Update the parameter of the policy
network 0, by 0, < 0, + A2V J(6,,),
where V: .J (07) is calculated according
to Equation 8.

3.5 Displacement Emulation

In this work, we design a data-driven emulation to verify
the effectiveness of our system. In our emulation, the city
is partitioned into urban regions as shown in Fig. 6. Based
on historical passenger demand distributions and EFHVs’
status from our real-world data, we train the model to learn
optimal policies. As shown in Fig. 7, in each time slot (e.g.,
each round of displacement), there are the following steps:
(1) Vehicle status and distribution update, which decides
which EFHV is available and can be displaced, e.g., if an
EFHV is vacant with enough energy, it is available for
displacement, so the number of available EFHVs (agents)
is changing over time. This setting is different from most
of the previous studies related to multi-agent reinforcement
learning, in which the number of agents is unchanged. It
makes the design of the multi-agent learning algorithms
more intractable; (2) Charging station status and traffic
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conditions update, which is learned from historical data at
the same time. They provide information for EFHVs that
need to charge and travel time to pick up passengers; (3)
Passenger demand distribution generation, which provides
information about which region that each EFHVs should
be displaced to; (4) Computing states of EFHVs s;, which
is computed as the input of displacement algorithm; (5)
Generating policies using FAMA2C in Algorithm 1, which
generate decisions for EFHVs that they should take; (6)
Implementing displacement, then these available EFHVs
will go to serve passengers or charge in the corresponding
charging stations; (7) Computing rewards of EFHVs. Each

FEHV wrill Altain A vaurand aflar manfarmina an ankinn Than

o
Vehicle status and Charging station status Passenger demand

distribution update land traffic update generation
— j;xp, = ) 9 9
& @ e & 4,00
o\Q @A) (@8 )
g
i
& 4 Displacement h 6isplacement metho} Computing states
implementation
@i A
C J ©

Fig. 7. Displacement process in one time slot.

ALGORITHM 2: Displacement Emulation Process

1 Information of the historical passenger demand
distributions and available EFHVs’ distributions

for each time slot t do

3 (1) Updating the status and distribution of

EFHVs based on real-world data. If the EFHV is

serving passengers, it will be set as offline and

cannot be displaced. If the EFHV is vacant, it

will be set as online and can be displaced by the

system.

4 (2) Updating the status of charging stations and

traffic.

5 (3) Generating passenger demand distribution in

this time slot by using real-world data.

6 (4) Computing states s; as input for the

displacement algorithm.

7 (5) Making the displacement decisions, i.e.,

executing the joint action a; according to the

joint policies of the displacement algorithm,

which decides which region or charging station

each EFHYV should go.

8 (6) Assigning available EFHVs to serve

passengers based on their distances, and

scheduling low-energy EFHVs to charge.

9 (7) Computing rewards of each EFHV.

N

In our deep reinforcement learning-based method, both
the value function approximation networks and policy net-
works are three-layer networks, with 256, 128, and 64 nodes
from the first to the last hidden layer. The activations of all
hidden units are ReLu, while the output layers of the value
function approximation networks and policy networks use
Linear and Softmax activations, respectively.

4 EVALUATION
4.1 Experimental Setup

In order to make our simulation closer to real-world scenar-
ios, we make full use of our large-scale data for a systematic
emulation. We first analyze our long-term large-scale GPS
data and transaction data to learn real-world knowledge,
e.g., dynamic passenger distribution, vehicle distribution,
charging demand distribution, route selection distribution,
and traffic conditions in different time slots of a day, etc. We
then fuse the above real-world knowledge (e.g., demand
distributions) as input to the emulator. We initialize each
agent according to its location and time at the beginning
of a day, and its actions afterward are determined by the
emulator according to the fairness-aware displacement al-
gorithm, so our design is more practical compared to other
small-scale data-based designs.

Evaluation Data: To evaluate the effectiveness of our
displacement system, one-month real-world data collected
from an EFHV fleet in the Chinese city Shenzhen during
December 2019 is utilized in this part. The data is from
20,130 e-taxis, which institute the largest full EFHV fleet
i thelworld. The one-month EFHV data include 2.48 bil-
lion GPS records (247.9GB) and 23.2 million trip records
(4084MB). In addition to EFHV data, the evaluation dataset
also rincjudes the metadata of 123 EFHV charging stations
withtever 5,000 charging points. The details of data formats
have heen introduced in Section 2.

Dat agement: Due to the large size of our EFHV
data, it requires significant efforts for efficient management,
querying, and processing. Hence, we performed a detailed
cleaning process to filter out the error, duplicate, and in-
complete GPS and transaction data on a high-performance
cluster with Spark and Hadoop, which was equipped with
80 TB of memory and 20 nodes. We train and test our
model on a desktop with 32GB memory, 1TB HDD storage,
and Intel Xeon CPU E5-1660 v3, installed with the latest
Windows 10 and Python coding environment.

Baseline Setting: We compare our FAMA2C-based
FairMove to the following baselines.

)

e GT is the Ground Truth, which is obtained from
our real-world data. Based on our data, we have
historical passenger distributions. We also inferred
the charging events of the EFHVs according to the
method in [20], and we calculated their cruise time,
idle time, profit efficiency, and profit fairness, etc.

e SD2 is the Shortest Distance based Displacement
[28]. In this setting, the EFHVs are always displaced
to serve their nearest passengers or charge in the
nearest charging stations no matter what regions the
passengers and charging stations are, and it does
not have a learning process for a long-term reward.
Even though it is a naive method, it is very easy to
implement in complicated real-world scenarios. One
potential drawback is that some charging stations
will be overcrowded in some time slots with this
displacement method.

o TQL is the standard Tabular Q-Learning [29], which
is a widely used method for single-agent scenario. It
estimates the expected total discounted rewards of
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state-action pairs by learning a Q-function table with
e-greedy policy.

e DON (Deep Q-Network) [30] is a popular method
in deep reinforcement learning and has been
previously applied to multi-agent settings. DON
learns the action-value function )* correspond-
ing to the optimal policy by minimizing the loss:
L (9> = Es,a,ns’ [(Q*(Sa a’|9) - y)2:|/ where y=r +
B max Q*(s',a’). where Q is a target @) function
whose parameters are periodically updated with the
most recent 6, which helps stabilize learning.

o TBA is the Trip Bandit Approach [9], which is also a
reinforcement learning-based method. It is proposed
in SIGSPATIAL Cup 2019. It adopts the REINFORCE
rule [31] to update the policy. In this setting, EFHVs
only know their own states and cannot communicate
with each other, so they are purely competitive, and
EFHVs will also be displaced to serve their nearest
passengers before orders expire. They will also be
displaced to charge in the nearest charging stations if
they need to charge.

e Care is a charging and relocation recommendation
system for EFHV drivers based on multi-agent rein-
forcement learning [3]. It jointly schedules EFHVs’
charging and relocation decisions to maximize his
long-term cumulative reward. A key difference be-
tween this work with our FairMove is that this sys-
tem does not consider the fairness between drivers,
which potentially causes biases and the unsustain-
ability of the recommendation system.

Parameter Setting: The batch size of all deep learning
networks is set to be 3500, and we utilize AdamOptimizer
with a learning rate of 0.001. We set 10 minutes as a time
slot, which is widely adopted by existing works [29], so
the one day is divided into 7' = 144 time slots. For the
discount factor, we select 3 = 0.9 to guarantee convergence.
We set the weighted factor o = 0.6 for the following
experiments, and we will show the reason in Section 4.2.6.
All the experiments are repeated 10 times to ensure the
robustness of the results.

Evaluation Metrics: Our FairMove aims to optimize the
profit efficiency and profit fairness of an EFHV fleet at the
same time. According to Equation 2, an implicit indicator
of improving EFHVs'’ the profit efficiency is the reduction of
their total cruise time T¢yyise, idle time Tjg., or charging
duration in electricity pricing peak hours (i.e., reduction of
charging costs). Hence, we utilize the following metrics to
measure the system performance, including (i) Percentage
Reduction of Cruise Time (PRCT), (ii) Percentage Reduction of
Idle Time (PRIT), (iii) Percentage Reduction of Charging Costs
(PRCC), (iv) Percentage Increase of Profit Efficiency (PIPE), and
(V) Percentage Increase of Profit Fairness (PIPF). We also show
the impact of the parameter a on the system performance.
We also conduct convergence analysis and investigate the
impact of driver participation rate on system performance.

A ) A
Z Tcruise (G) - 21 Tcruise (D)

PRCT (D) = =1 = =

2:1 Tc(;zl.me (G)

1=

x 100% (12

10
Z. (i) Z. (i)
;1 Tidle (G) - ;1 Tidle (D)
PRIT (D) = 2=  — x 100% (13)
> T3 (G)
N =t N
Costy, (G) — > Costy (D)
PRCC (D) = *=L < F=1 x 100%  (14)
> Costy, (G)
k=1
where Tf:Lise(D) is the cruise time for ith trip under the

displacement strategy D, which could be SD2, TQL, DQN,
or FairMove (based on FAMA2C); M is the total number of
trips served by the EFHV fleet. Tf:.) ;s0(G) is the cruise time
for ith trip of the Ground Truth; T jl)e(D) is idle time of the
jth charging events under displacement strategy D; Z is the
total number of charging events of the EFHYV fleet; T’ i(jl)e (@)
is the idle time of the jth charging events of the Ground
Truth; Costy (D) is total charging cost of kth EFHV under
the displacement strategy D; Cost(G) is the charging cost
of kth EFHV of the Ground Truth; N is the total number
of EFHVs in the fleet; The Ground Truth is obtained by
merging the GPS data, transaction data, and the charging
station data.

N N
PE (D) = 3 PEL(G)
PIPE (D)= "=t - k=1 x 100% (15)
PE;, (G)
k=1
_ PF(GQ) — PF(D)
PIPF(D) = ——— o G x 100% (16)

where PEy (D) is the profit efficiency of the EFHV k under
the displacement strategy D, which can be SD2, TQL, DON,
or FairMove (based on FAMA2C); PE)(G) is the profit
efficiency of the EFHV k without any external displacement;
PF(QG) is the profit fairness of the Ground Truth; PF (D) is
profit fairness of the displacement strategy D.

4.2 Displacement Performance
4.2.1 Cruise Time Comparison

Since a key impact factor of profit efficiency of EFHVs is
their cruise time, we compare our FairMove to other state-
of-the-art baselines considering the cruise time reduction.
Fig. 8(a) shows the cruise time distributions under different
displacement methods. The medians of various methods in
Fig. 8(a) are 6.35, 5.8, 6.0, 5.9, 5.7, 5.65, and 5.4, respectively.
We found all methods reduce the cruise time for seeking
passengers at different degrees compared to the ground
truth due to their centralized management mode. The av-
erage value of the cruise time without other displacement
methods is around 11.1 minutes, and it decreases to 7.5 min-
utes under our FairMove displacement. In addition to the
decrease of the median value of the cruise time, its variance
also becomes smaller with FairMove displacement, which
could be induced by our fairness consideration. Fig. 8(b)
shows the average PRCT for all trips during different hours
of a day. We found FairMove achieves the best perfor-
mance compared to other methods. Particularly, FairMove
reduces over 40% of cruise time for EFHVs during 5:00-
7:00, when there are few passengers and drivers need to
cruise a longer time to find passengers without centralized
displacement.
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Fig. 8. Cruise time under different methods.

Displacement Methods

In general, our FairMove achieves 32.3% of PRCT for
each trip compared to the ground truth on average. The
reason could be that deep reinforcement learning-based
FairMove not only considers the short-term immediate
benefits but also considers the long-term benefits. Care
and DQN also achieve good performance with 28.8% and
23.6% of PRCT, followed by TBA and SD2 with 21.3% and
19.4% of PRCT compared to the ground truth. Since the
cruise time reduction also potentially indicates the reduction
of the average passenger waiting time, our FairMove can
also potentially reduce passenger waiting time. Thus, some
vehicles that used to move longer to pick up passengers can
finish the order at a smaller cost and have a longer time to
serve passengers. Therefore, the profit fairness is supposed
to be increased when using FairMove.

4.2.2 Idle Time Comparison
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(a) Per-charge idle time (b) PRIT distribution
Fig. 9. Idle time under different methods.

Since the idle time for charging will also impact the profit
efficiency of the EFHVs, we also compare our FairMove
to other state-of-the-art baselines considering the idle time
reduction. Fig. 9(a) shows the idle time distribution for each
charging event under different displacement methods. We
found that our FairMove achieves the best performance,
and 75% of the per-charge idle time is less than 22 min-
utes. However, SD2 prolongs the idle time since many
EFHVs around charging stations will be displaced to the
same charging stations, which causes long queuing in the
overcrowded charging stations. Fig. 9(b) shows the average
PRIT of all charging events during 24 hours of a day. We
found our FairMove achieves the most PRIT during the
high charging demand hours, e.g., 4:00-5:00 and 17:00-18:00,
which potentially indicates our method can also benefit the
charging issues for EFHVs, especially for addressing the
intensive charging peaks. Therefore, FairMove can save
drivers idle time for low-battery vehicles to serve more
passengers, which may increase profit fairness by improving
low-battery vehicles’ revenue.

In general, our FairMove achieves 44.9% of PRIT for
each charging event compared to the ground truth on
average, as shown in Table 1. The reason would be that
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deep learning-based FairMove will choose the stations
with the consideration of long-term benefits. Care also
achieves good performance with 36.7% of PRIT. However,
SD2 has a negative PRIT, which means it prolongs the
idle time as many near EFHVs have been displaced to
the same charging stations, resulting in long queuing in
these stations. Although TBA may also cause some charging
stations overcrowded, it achieves 3.1% of PRIT due to the
long-term benefit consideration and potential cruise time
reduction with the reinforcement learning method.

TABLE 1
Average percentage reduction of idle time (PRIT).

TBA
3.1%

FairMove
44.9%

Care
36.7%

Methods
PRIT

SD2
-23.1%

TQL
84%

DON
21%

4.2.3 Charging Costs Comparison

Due to different displacement methods may impact EFHVs’
operation patterns and time to charge, the charging costs
and the number of charges may also be different. As shown
in Fig. 10(a), we compare the weekly total charging cost
of the EFHV fleet under different displacement methods
with the metric PRCC. We found that the SD2 has a similar
charging cost with ground truth, which potentially indicates
drivers” heuristic charging behavior, i.e., charging in the
nearest charging stations. TBA also achieves a small per-
centage of increase due to the reinforcement learning for
long-term benefits. Other reinforcement learning methods,
e.g., Care and DQN can also reduce the charging cost,
but the performance of FairMove is superior to them.
Since our method considers both vehicle dispatching and
charging scheduling, it also reduces the cruise time for
EFHVs besides scheduling them to charge in low-rate hours,
so the number of charges will also change with different
methods. In general, the reduction of the extra time for
seeking passengers (e.g., proactively dispatch EFHVs to the
future high passenger demand regions and avoid heavy
traffic congestion) also reduces the energy and potentially
saves charging costs for the EFHV fleet. In particular, our
FairMove achieves the best performance by reducing 5.9%
of the charging cost. Even though the percentage is not very
large, it can reduce 4.561 million CNY for the Shenzhen
EFHV fleet per month considering the large number of
EFHVs.
6
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Displacement Methods

4.2.4 Profit Efficiency Comparison

Since one of the most important objectives of the paper is to
improve the profit efficiency of the EFHV fleet, we compare
FairMove to baselines considering their profit efficiency
changes. Fig. 10(b) shows the hourly profit efficiency of each
EFHV under different displacement methods. We found
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the hourly profit efficiency varies from 0 to 120 without
displacement, and the average value is 44.03. The profit
efficiency of SD2 has a slight decrease due to the prolonged
idle time. Both Care and DOQN increase the hourly profit ef-
ficiency for EFHVs on average, but our FairMove achieves
the best performance, with a mean value of 55.89. In addi-
tion, the variance between the EFHVs becomes smaller since
we consider the fairness between them.
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(a) PIPE comparison (b) PIPF comparison
Fig. 11. PIPE and PIPF under different methods.

In Fig. 11(a), we show the overall PIPE in one month of
different displacement methods. We found our FairMove
increases the profit efficiency for the EFHV fleet by 26.9%,
followed by Care with an 11.6% of increase. However, SD2
reduces the profit efficiency for the EFHV fleet by 5% due to
the prolonged idle time.

4.2.5 Profit Fairness Comparison

Another key objective of the paper is to improve the profit
fairness for the EFHV fleets. From 11(b), we found our
FairMove achieves the best performance with 54.8% of
PIPE. The reason may be that we formulate the problem
with fairness as a part of the objective function, and solve
it by deep reinforcement learning methods, so it not only
improves the profit efficiency but also improves the profit
fairness for the EFHV fleet. SD2 and TBA achieve similar
improvements in the profit fairness of the EFHV fleet by
13%. Due to the fairness consideration, TQL and DQN
also improve the fairness efficiency by 28.7% and 17.9%,
respectively. Even though Care also increases the profit
fairness of the EFHYV fleet, its performance is worse than our
FairMove since it does not consider the fairness between
drivers.

4.2.6 Performance Under Different Weighted Factor o

In this subsection, we conduct a sensitivity analysis to study
the impacts of the reward-weighted factor « for the training
of the proposed multi-agent deep reinforcement learning
method. As mentioned, o measures the tradeoff between the
overall profit efficiency of the fleet and the fairness between
individual EFHVs. The higher the «, the more emphasis
on the overall profit efficiency. The lower the o, the more
emphasis on fairness. We compare the performance of the
FairMove with different weighted factor o (from 0 to 1
with a step of 0.01). The average reward r of the proposed
FAMAZ2C is shown in Fig. 12, which shows that setting
the parameter a around 0.6 leads to the best system per-
formance. Since maximizing fairness alone may harm the
overall profit efficiency of the EFHV fleet, this finding is
reasonable. This is also the reason why we select o = 0.6 for
the above comparisons.

Since our method is in a centralized training and de-
centralized execution fashion, it obtains a decision for each
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Fig. 12. System performance under different weighted factor «.

EFHV within one second after the training process based
on our implementation, and the decision-making time for
EFHVs is at a similar level due to the similar sizes of their
action spaces, which is typically fast enough for the real-
world displacement requirement.

4.2.7 Convergence Behavior

It should be noted that providing a rigorous theoretical con-
vergence proof for deep multi-agent reinforcement learning
algorithms, especially for AC-based methods, is highly non-
trivial and several major technical challenges naturally arise,
such as communication cost for interactions [32], [33], [34].
Considering that single-agent AC algorithms’ convergence
is known to be fragile [35], the rigorous convergence anal-
ysis of multi-agent AC algorithms becomes much harder
due to complex mutual agent interactions. Even so, we
provide the following analysis to show the complexity of
our proposed algorithm from three aspects in the revision
of the paper, i.e., interactions, neural network sizes, and
experiments on real-world data.

(i) In our multi-agent environment, each EFHV functions
as an independent agent, capable of interacting with the
environment and collecting valuable information including
state, action, and reward. We collect exploration information
from various agents and centralize them in the replay buffer
to facilitate unified learning. This abundance of agents en-
sures a comprehensive exploration of the environment and
brings a wide range of high-quality action execution solu-
tions. As a result, the convergence process of our algorithm
is naturally accelerated with low time complexity. (ii) The
complexity of the proposed AC-based algorithms is also
related to the neural network sizes. In our algorithm, the
two neural networks have three hidden layers, with 256,
128, and 64 nodes from the first to the last hidden layer.
The update strategies of these two networks in this size are
efficient with low time complexity [36], [37]. (iii) Since this
paper mainly focuses on addressing practical problems, i.e.,
jointly optimizing profit efficiency and fairness of electric
for-hire vehicles, we use substantial and comprehensive
experiments to demonstrate the efficiency, effectiveness, and
convergence of the proposed FAMA2C algorithm. We study
the convergence behavior of our FAMA2C in terms of the
reward of agents. Fig. 13 shows the evolution of the mean
and deviation of the reward of agents, which indicates
the convergence behavior of the proposed FAMA2C in the
training process. We found after about 800 iterations, the
rewards of agents will start to be stationary. The mean
reward becomes larger and the variance becomes smaller
with the training process. Since we carefully define the
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actions and states space, which leads to a small decision-
making space for each agent, our method is effective and
efficient for the EFHV displacement.
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Fig. 13. Mean and variance of rewards of all agents.

4.2.8 Impact of Driver Participation Rate

Even though our fairness and efficiency consideration can
potentially offer an incentive for drivers to participate in
our displacement, in real-world scenarios, it is possible that
some drivers may not follow our displacement decisions
due to their own preferences. Hence, we further investigate
the system performance under different participation rates
p and show how it may affect the system as a whole. In
our simulator, this probability p indicates how likely the
drivers would accept our displacement decisions. We vary
p from 0 to 1, where p = 0 means no drivers follow our
decisions, which is equivalent to the Ground Truth (ie.,
no displacement) and p = 1 means that all drivers would
accept all the displacement proposals.
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Fig. 14. PIPE and PIPF under different participation rates.
We compare our FairMove with the two advanced

methods, i.e., DQN-based displacement and Care in terms
of PIPE and PIPF. As shown in Fig. 14(a) and Fig. 14(b), we
found that with more drivers participating in the displace-
ment system, both the profit efficiency and profit fairness
will increase. Care achieves higher profit efficiency that
DQN-based displacement but its profit fairness is lower. Our
FairMove can achieve the best performance for both profit
efficiency and fairness. Even with half drivers following
our displacement decisions, our FairMove can improve the
profit efficiency by 10.2% and profit fairness by 30.7% for the
EFHYV fleet, which indicates our FairMove has the potential
to put into practice.

4.2.9 Fairness of Charging Station Utilization

Since charging stations in a city may belong to different
operators (e.g., there are more than 10 EFHV charging
station operators in Shenzhen), different vehicle displace-
ment methods may also cause unfairness between charging
station operators. In this part, we study the impact of
displacement methods on fairness between charging station
operators. We envision that the occupation time of differ-
ent charging stations should be similar to achieve fairness
between different operators.
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We define the daily Charging Station Ultilization (CSU) of
a station s; to quantify the average daily occupation time of
each charging point in the station, which is denoted as:

[si]

g§1 Teharge (Sz)

CcSU (Si) = (17)

i
where Teharge (sf ) is the daily occupation time of jth charg-
ing point s} in the station s;; |s;| is the number charging
points in the station s;.
Hence, the fairness between charging stations can be
described as follows:
1 & 2
CSF =2 (CSU(s:i) — CSD)

i=1

(18)

where M is the number of EFHV charging stations in the
city and C'SF' is the fairness of the EFHV charging network.
A smaller value of CSF means fairer between different
charging stations.
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Fig. 15. Charging station utilization and fairness.

(b) Charging station fairness

As shown in Fig. 15(a), we found many charging stations
have low utilization without any displacement methods,
e.g., the CSU of 21% of stations is lower than 2, which
means the average occupation time is shorter than 2 hours.
This low CSU potentially causes charging resource waste
for these stations. In addition, we found that the CSU of
over 17% of stations is higher than 12, which potentially
causes crowded charging stations. This high C'SU discrep-
ancy potentially results in unfairness between charging sta-
tions. We found the SD, displacement method makes the
situation worse, leading to the C'SU of 25.2% of stations
lower than 2 and 25.2% of stations higher than 12. With our
FairMove, 61% of charging stations have the C'SU between
4 to 8, which potentially makes them efficient for charg-
ing. As shown in Fig. 15(b), our FairMove achieves the
highest fairness for charging stations. In general, FairMove
increases the C'SF by 12.7, which is 38.4% of improvement
compared to the ground truth of 20.6.

4.2.10 Off-Policy Evaluation

Since the environment where the learned policy will be
deployed may deviate from the past environment where the
ground truth data were collected and should be considered,
in order to avoid deploying a bad policy, it is imperative that
policies learned by RL algorithms are thoroughly evaluated
prior to real-world deployment. Off-policy evaluation (OPE)
[38] is the task of predicting the online performance of
a policy using only pre-collected historical data (collected
from an existing deployed policy or set of policies), it
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uses episodes generated via a behavioral policy m;, (data-
generating policy) to evaluate the value function of the
target policy m. whose value function we seek to estimate.
In recent years, OPE becomes a very hot topic in the
reinforcement learning community and more and more
researchers pay attention to it. However, there is little re-
search on applying OPE methods for fleet management or
even multi-agent deep reinforcement learning. Hence, in
this paper, we try to utilize OPE methods to validate the
learned policy against the real-world data for better real-
world deployment, but it is extremely challenging to apply
OPE methods to validate the learned policy even though us-
ing massive data because our large-scale fleet management
environment is very complicated, which includes different
practical factors, e.g., the number of active agents, number
of available charging points in each charging stations, future
passenger demand, etc. We tried different OPE methods,
including Approximate Model [39], Doubly Robust [40],
and MAGIC [41]. Approximate Model(AM) is one the most
commonly used model-based direct OPE method, which
directly estimates the value functions of the evaluation pol-
icy with regression-based techniques. The transition dynam-
ics, reward function and termination condition are directly
estimated from historical data. Doubly Robust(DR) is an
unbiased estimator of the value function of the evaluation
policy that achieves promising empirical and theoretical
results by leveraging an approximate model of an MDP to
decrease the variance of the unbiased estimates produced by
ordinary importance sampling. MAGIC directly optimizes
mean squared error, which combines a purely model-based
estimator with weighted doubly robust and has shown good

performance [41]. ;

We utilize the mean ~< T CAM
25 S
squared error (MSE) over > DR
. o 2 So |[T©—MAGIC
the episode to evaluate g | o
=28

each method, M SQE = :

E [(V(we) - V(we)) } O,SM
which is a standargl metric 02 23 26 29 32 35 38
for OPE, where V(m.) is
calculated based on the
behavioral policy m; V()
is the value function of the target policy .. As shown in
Fig. 16, we found MAGIC achieves the best performance
(i.e., smallest MSE with the increase of episodes) while
the AM achieves the worst performance. Even though the
MSE would be small when more data is used, there is
still a difference between the value function of the target
policy and the value with the real-world data. One possible
reason would be the complicated environment of our fleet
management environment, which makes the OPE methods
challenging to simulate all factors.

log(# of episodes)

Fig. 16. Comparison of OPE.

5 DISCUSSIONS
5.1 Lessons Learned

e Data-Driven Findings. Based on our data-driven
investigation, we obtain some new findings. (i) Idle
time reduction does not necessarily indicate the
prolonged time for serving passengers since some
drivers may need to spend more time seeking pas-
sengers after charging in some regions with low
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passenger travel demand (Fig. 4(a) and Fig. 4(b)),
which is rarely considered by existing charging rec-
ommendation works. (ii) The potential revenue for
serving passengers after charging in different sta-
tions may be also different, which is highly dynamic
in both spatial and temporal dimensions (Fig. 3). (iii)
There are intensive charging peaks during shifts and
low charging pricing durations, which potentially
indicates the charging price is a key factor impacting
their charging behaviors.

o Real-World Insights From Field Studies. During the
project, we have been conducting a series of field
studies in Shenzhen, where we interviewed 12 e-
taxi drivers. All drivers think they care more about
profits. The three most important factors for them to
consider when finding a charging station are charg-
ing price, queuing time, and distance, even though
they mentioned they also charge in stations that are
near to their homes. Hence, the charging costs and
queuing time should be considered in a displacement
system. Moreover, we found almost all e-taxi drivers
think it is fair when their profits are proportional
to their working time, which motivates the profit
fairness definition of this paper (Equation 3).

o Fairness-Aware Displacement for EFHV Fleets. We
found there is a huge profit efficiency gap between
EFHVs in the Shenzhen EFHV fleet (Fig. 5), which
could be improved to be fairer by an effective dis-
placement system. Our multi-agent reinforcement
learning method shows good performance for EFHV
displacement, which has the potential to improve
profit efficiency and profit fairness at the same time.

5.2 Potential Implications and Future Work

Implementation in Different Cities: In this paper, we only
leverage the data from the Chinese city Shenzhen to conduct
experiments to verify our FairMove, and we admit it is
hard to justify the universality of the proposed method
without data from other cities due to the data-driven char-
acteristics of our method. We are also in the process of
obtaining EFHV data from other cities to investigate if our
displacement system is applicable to other cities. However,
since Shenzhen is the only city that has such a large-scale
and all EFHV fleet in the world currently, it is challenging
to find another large-scale EFHV fleet for a parallel study.
Even so, we argue that our method has the potential to
generalize to other cities if we can have access to EFHV
data from other cities. The reason is that our method relies
on only the drivers” mobility, charging, and profit patterns
instead of city features.

Drivers’ Willingness to Use Our System. Since different
drivers may have different priorities, it is possible that
some drivers may not follow the displacement despite the
fact that they know the displacement decisions can benefit
them. Even though our fairness consideration can poten-
tially offer an incentive for drivers to participate in our
displacement, we also investigate the system performance
by taking drivers” willingness into consideration. As shown
in Fig. 14(a) and Fig. 14(b), we show the system performance
under different participation rates and show how it may
affect the system as a whole.
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Impact of EV Types. In our work, all EVs are the
same type, i.e.,, BYD e6, and they have the same battery
consumption model and charging model, so they share the
same solution. For different types of EVs, they have different
battery capacities, consumption rates, and charging rates,
which will impact their charge time. Although the charging
idle time will be different if EVs have different charging
rates and battery capacities, our solution considers the status
(cruise time, idle time, and charge time) of individual EVs,
so different EV models will not impact our solution since
we will input the cruise time, idle time, and charge time of
individual EV to our model for decision making. If there
are different EV models, we only need to specify their
battery capacities, consumption rates, and charging rates
to calculate the cruise time, idle time, and charge time of
individual EVs to feed into our optimization objective.

Fairness of Different Driver Groups. Since drivers may
have different performance, which is decided by many fac-
tors like EFHV driving years, accidents, and reputation, it is
also reasonable to divide all drivers into different groups by
their performance levels and quantify their fairness within
the same group. Even though we did not divide the drivers
into different groups, we found the government and EFHV
companies have comprehensively evaluated each driver’s
performance based on multiple factors and label it on the
EFHYV, which is normally represented by a five-star rating.
Hence, we can directly merge it into our displacement
system for five groups and achieve fairness in each group.

Dynamic Thresholds for Charging Decisions and Dy-
namic Temporal Partition. In this work, we only utilize a
lower bound of the energy level to decide when displacing
EFHVs to charge, which is adopted by many existing EFHV
charging works [12], [42]. In practice, the system perfor-
mance may be enhanced if we set different and dynamic
thresholds for the EFHVs even though the problem will
be also more complicated. Besides, we only utilize a fixed
temporal partition, but a non-regular partition may cause
higher performance with some extra computational costs.
We will study the impacts of dynamic thresholds on system
performance and computational complexity in future work.

6 RELATED WORK

In this section, we review four streams of literature relevant
to this paper and show the uniqueness of our work.

6.1 Traditional Gas FHV Dispatching

In the last decade, with the wide development of mobile
sensors and advanced communication technologies, a large
number of works have been done to improve the service
efficiency of FHV fleets based on real-world data, e.g., GPS
data and transaction data [43], [44]. Ding et al. [7] presented
a multi-agent RL framework to help FHVs make distributed
routing decisions for urban crowdsensing based on taxi GPS
and transaction data. Xu et al. [44] built a dispatching sys-
tem in which the predicted demands and destinations were
used for the taxi reallocation towards the future supply-
demand balance in the city. However, all these works failed
to consider the fairness between FHV drivers when they
make dispatching decisions. Even though [45] proposed a
route assignment mechanism for fair taxi route recommen-
dations, it focused on the conventional gas FHVs, which
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has different operation patterns and energy replenishment
mechanisms with EFHVs. In addition, the complicated
charging process has not been considered, which makes it
challenging to be reapplied for EFHV displacement.

6.2 EFHV Charging Scheduling

With the rapid vehicle electrification process, more and
more research [3], [20], [46], [47], [48] focuses on EFHV
charging issues. Among all these works, e-taxi charging
scheduling is one of the most popular topics. Wang et al.
[49] designed a real-time charging scheduling system called
tCharge to reduce the queuing time of e-taxi drivers for
available charging points. Dong et al. [12] developed a
real-time charging scheduling framework for EFHV fleets
to reduce the queuing time of EFHVs. However, most of
these works only focused on the charging issues of EFHVs
without considering the potential revenue loss related to
charging. In addition, they neglected the fairness between
EFHVs, which may potentially cause drivers not to follow
their scheduling decisions and make the system unsustain-
able in the long run.

Recently, there are some works [20], [50] trying to seek
fairness-aware scheduling for EFHVs. Yang et al. [50] pro-
posed a charging coordination solution for EFHVs to reduce
their queuing time in charging stations. Wang et al. [20]
designed a fairness-aware Pareto efficient charging recom-
mendation system called FairCharge to minimize the total
charging idle time (traveling time + queuing time) in charg-
ing stations combined with fairness constraints. However,
all these works only considered the charging processes of
EFHVs while neglecting their overall revenue, which is a
key concern of FHV drivers. We found that charging idle
time reduction does not mean prolonged time for serving
passengers and higher profits because some drivers may
need to spend longer time to seek passengers after charging
in some stations with shorter charging waiting time.

6.3 Deep Reinforcement Learning

There is an increasing number of studies that utilize deep
reinforcement learning to solve sequential decision-making
problems (e.g., taxi dispatching [3], computation offloading
[17], [51], and navigation [52]) due to its excellent perfor-
mance. Ding et al. [7] proposed a multi-agent reinforcement
learning framework for urban crowdsensing with for-hire
vehicles. Shi et al. [17] developed a deep reinforcement
learning-based computation offloading scheme to motivate
vehicles to share their computing resources. There are also
some works focusing on electric vehicle dispatching with
deep reinforcement learning. Wang et al. [3] designed a
charging and relocation recommendation system for e-taxi
drivers with deep reinforcement learning. However, the
fairness between drivers has not been considered in these
works, which potentially causes the system unsustainable.

6.4 Fairness in Transportation

Fairness in transportation has attracted much interest in the
research community due to its importance. Researchers have
focused on fairness in different transportation modes such
as ride-hailing [25], [53], [54], taxi [13], [20], bikesharing [55],
and e-scooter sharing [56]. Sun et al. [25] exploit joint order
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dispatching and driver repositioning to optimize the long-
term fairness in a ride-hailing system. Shi et al. [53] consider
the dependency between current and future assignments to
improve the performance of fair task assignments in ride-
hailing. Yan et al. [55] designed a fairness-aware spatiotem-
poral model for predicting new mobility resource demand.
He et al. [56] proposed a socially-equitable flow prediction
system for dockless e-scooter sharing. However, there is no
existing work on jointly optimizing the profit efficiency and
fairness of EFHVs.

6.5 Uniqueness of Our Work

In summary, to our best knowledge, our FairMove is the
first displacement system for EFHVs to improve the overall
profit efficiency of EFHV fleets with fairness consideration,
which is motivated by data-driven findings based on real-
world data. FairMove considers not only the passenger
demand but also the complicated charging issues of EFHVs
(e.g., unique charging behaviors and time-varying electricity
pricing). Moreover, FairMove also emphasizes the fairness
between EFHVs. Our multi-agent deep reinforcement learn-
ing method FAMA2C algorithm with centralized training
and de-centralized execution also shows good performance
for vehicle displacement.

7 CONCLUSION

In this paper, we design the first data-driven fairness-aware
displacement system called FairMove based on multi-
source data, which aims to jointly optimize the overall
profit efficiency and profit fairness of the entire EFHYV fleet.
We first conduct a data-driven investigation, from which
we found some new findings about the uniqueness of the
EFHV displacement problem to motivate our work. We then
formulate the EFHV displacement as a sequential decision
problem and then propose a fairness-aware multi-agent
actor-critic approach to tackle this problem. FairMove con-
siders not only dynamic passenger demand & supply in
both temporal and spatial dimensions but also considers the
complicated charging problems (e.g., time-variant electricity
pricing) and per-trip profit. We implement and evaluate our
FairMove based on a real-world dataset obtained from
a large-scale EFHV fleet including over 20,100 vehicles.
Extensive experimental results show that our fairness-aware
FairMove effectively improves the profit efficiency and
profit fairness by 26.9% and 54.8%, respectively. It also
improves the charging station utilization fairness by 38.4%.
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