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A B S T R A C T

This paper introduces a scalable computational framework for optimal design under high-
dimensional uncertainty, with application to thermal insulation components. The thermal and
mechanical behaviors are described by continuum multi-phase models of porous materials
governed by partial differential equations (PDEs), and the design parameter, material porosity,
is an uncertain and spatially correlated field. After finite element discretization, these factors
lead to a high-dimensional PDE-constrained optimization problem. The framework employs
a risk-averse formulation that accounts for both the mean and variance of the design objec-
tives. It incorporates two regularization techniques, the l0-norm and phase field functionals,
implemented using continuation numerical schemes to promote spatial sparsity in the design
parameters. To ensure efficiency, the framework utilizes a second-order Taylor approximation
for the mean and variance and exploits the low-rank structure of the preconditioned Hessian
of the design objective. This results in computational costs that are determined by the rank
of preconditioned Hessian, remaining independent of the number of uncertain parameters. The
accuracy, scalability with respect to the parameter dimension, and sparsity-promoting abilities
of the framework are assessed through numerical examples involving various building insulation
components.

1. Introduction

The quest for net-zero buildings in the battle against climate change has driven the exploration of novel materials for
high-performance insulation components to enhance energy efficiency, reduce carbon footprint, and promote environmental
sustainability. In particular, thermal breaks for building envelope insulation play a crucial role in interrupting heat flow paths and
mitigating the adverse impact of thermal bridges at assembly interfaces [1,2]. Recently, silica aerogels have emerged as the most
promising materials for next-generation thermal breaks due to their lightweight and ultralow thermal conductivity [3–6]. However,
their limited mechanical strength due to high porosity hinders widespread adoption in construction [7–9]. Recent developments
in additive manufacturing [10–12] have expanded the potential for precise material placement within components. For thermal
breaks, for example, incorporating high porosity aerogel in certain regions provides exceptional insulation capabilities, while using
low porosity aerogel in other areas enhances mechanical stability against environmental loads. To harness the potential of this
technology, a reliable simulation-based design is crucial for optimizing material distribution and creating cost-effective components
with superior insulation and mechanical performance.
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Despite remarkable recent advancements in computational methods for designing materials with tailored performances, e.g., [13–
23], the optimal design process involving partial differential equations (PDEs) of material properties remains confronted with
formidable computational challenges. Firstly, uncertainty is inherent in the design process due to various factors, such as experimen-
tal data noise and model inadequacy during calibration and validation, errors in component fabrication, and randomness in external
loads and environmental conditions. These uncertainties introduce variations in model and design parameters, leading to significant
differences in the optimal design for different realizations. Secondly, the high dimensionality of the design problem, combined with
the computational cost of solving possibly nonlinear PDEs for large-scale systems, poses another challenge. Accurate discretization
of the forward model gives rise to a PDE-constrained optimization problem with high-dimensional design parameters, leading to
computationally prohibitive solutions due to the so-called curse of dimensionality. The final challenge is achieving desirable design
characteristics. For instance, a continuous spectrum of aerogel materials may render high-volume and cost-effective production of
thermal breaks unfeasible. Therefore, it is crucial to incorporate appropriate regularizations in the optimization process to balance
enforcing solution sparsity and achieving conflicting design objectives while accommodating uncertainty in the high-dimensional
parameter spaces.

In recent years, the development of computational methods to handle uncertainty in PDE-constrained optimization under
high-dimensional parameter space has gained significant attention, e.g., [24–42]. One class of risk-averse optimization involves
formulating the cost functional to consider both the mean and variance of the objective, preventing undesired significant
variations [30–32,40,43,44]. Other approaches include using conditional value-at-risk to measure the expectation of the objective
exceeding a required level of risk aversion [36,45] and employing min–max optimization to seek the extreme values of the objective
within the range of uncertain parameters [46]. However, these methods encounter significant computational challenges, particularly
in high-dimensional parameter spaces, when evaluating the statistics of objectives, such as moments or conditional probabilities.
Various approximations of statistical moments in the cost functional have been recently demonstrated in different PDE-constrained
optimization problems. For instance, Doostan et al. [27] introduced an efficient topology optimization method that approximates the
objective, constraints, and their gradients using a limited number of adjoint and forward solves per iteration. By employing a small
number of random samples, this approach achieves substantial computational cost reduction compared to Monte Carlo methods An
alternative class of approximations relies on the perturbation method, e.g., [47,48], utilizing truncated Taylor expansions to assess
the moments of random variables and alleviate the computational demands of sampling methods. In their recent seminal works,
Ghattas and co-workers [30–32,38] presented a scalable solution method for PDE-constrained optimization under high-dimensional
uncertainty. Their approach leverages Taylor expansion of the mean and variance of the optimization objective with respect to the
uncertain parameter field. Remarkably, by using the approximated objective directly or as a control variate for variance reduction,
they achieve dimension-independent solutions and deliver several orders of magnitude in computational savings compared to Monte
Carlo estimators. The linearization of the moments of the optimization objective using Taylor expansions has been previously
incorporated into the robust design optimization framework by Doltsinis et al. [49,50] and applied to topology optimization by
Lazarov et al. [51]. In a similar vein, Kriegesmann and co-workers [52–54] introduced a topology optimization method that utilizes
the first-order second-moment method to compute the mean and standard deviation of the objective functions. They presented
an efficient method to evaluate the variance gradient with one additional model evaluation [54]. Finally, Chen and Royset [55]
conducted a comprehensive analysis of approximation-based algorithms for PDE-constrained optimization under uncertainty.

Expanding upon these earlier works, this study introduces a computational framework for risk-averse multi-objective PDE-
constrained optimal design, with a particular emphasis on obtaining spatially sparse solutions. We implement this framework to
design building insulation components, aiming to simultaneously enhance thermal performance while maintaining mechanical
stability. In particular, the forward PDE consists of a two-phase thermo-mechanical continuum model of porous silica aerogel
materials with model parameters determined from experimental data previously [56]. The design parameter is the spatial distribution
of porosity over the domain of the insulation components, which includes uncertainty due to material variability and errors in the
additive manufacturing process. The design parameter is a space-dependent field that, after finite element discretization, results
in a high-dimensional optimal design problem under uncertainty. We adopt a risk-averse formulation that encompasses both
the mean and variance of the thermal and mechanical design objectives, enabling us to attain the desired performance levels
while mitigating the impact of uncertainty during optimization. Additionally, we introduce approximated l0-norm and phase field
regularization functionals to promote spatial sparsity in the designed porosity field. To ensure the computational efficiency of our
solution algorithm, we employ a second-order Taylor approximation for the design objective, alleviating the computational burden
associated with Monte Carlo estimations of the mean and variance. Furthermore, we implement a gradient-based optimization
method that exhibits dimension-independent convergence rates. These elements collectively contribute to the scalability of our
framework for design under uncertainty, resulting in computational costs – measured in terms of the number of PDE solves – that
remain independent by the dimensionality of the design parameters. We assess the accuracy, efficiency, and effectiveness of the
sparsity-enforcing regularizations and the scalability of the framework through numerical examples featuring an L-shape insulation
component and a thermal break within an envelope-column system.

The rest of the paper is organized as follows: Section 2 introduces the optimal design under uncertainty problem, using a general
notation encompassing the PDE model, uncertain parameters, and the formulation of risk-averse optimization. Section 3 is dedicated
to the computationally tractable methods, which involve the Taylor approximation of the design objective and randomized estimators
to evaluate the resulting trace. Section 4 discusses the proposed regularization terms to enforce sparsity in the spatial distribution
of the design parameters, along with the corresponding continuation numerical schemes. Section 5 describes the gradient-based
optimization method and explains the computation of the gradient of the cost function concerning the design parameter. Section 6
adapts the design under uncertainty framework for building insulation components, covering the thermomechanical model and
the formulation for multi-object optimization. Section 7 presents the numerical experiments on the optimal design of insulation
components, followed by the conclusions and future works in Section 8.
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2. PDE-constrained optimal design under uncertainty

In this section, we introduce the optimal design problem under uncertainty in an abstract setting, covering the representation of
high-dimensional and spatially correlated uncertain parameters, as well as the formulation for mean–variance cost functional.

2.1. Forward model and design objectives

We denote the strong form of the (possibly nonlinear) PDE forward model in an abstract setting as,

R(u, m, d) = 0 in V ®
, (1)

which reads that given uncertain parameter m À M and design parameter d À D, find the state u À U such that minimizes the PDE
residual operator R(�) to zero in V ®. Here U , M and D denote infinite-dimensional Hilbert space and V ® the dual space. The weak
form is then represented as,

r(u, v, m, d) := V Ív,R(u, m, d)ÎV ® = 0 ≈v À V (2)

where v is the adjoint variables and V Í�, �ÎV ® represent the duality pairing between the V and V ®. The design objective is a general
real-valued functional, denoted as Q, which not only depends on the state solution u, but also explicitly depends on both the
uncertain parameter m and the design parameter d, i.e., Q(u, d, m).

2.2. Uncertain parameter

We assume that the uncertain parameter m has a mean value of Ñm and a covariance structure denoted as C, that may, in general, be
finite or infinite-dimensional within the proposed design under uncertainty framework. In particular, to address spatially correlated
uncertainty, we consider m(x) as a Gaussian random field using the Matérn kernel C = A*2 [57], such that, the action of the operator
A in the Sobolev space of functions with derivatives in L2(⌦) on m is

Am =
T
� ( � (⇥ (m) + � m in ⌦

(⇥ (m) � n +
˘
� �

1.42 m on � .

(3)

In (3), � and � control the variance �2 = 1_4⇡ � � and spatial correlation length L
c
=

˘
8�_�, and ( and (� are the gradient and

divergence operators, respectively. The constant Robin coefficient
˘
��_1.42 is employed to minimize boundary artifacts, following

the approach in [58]. For a more advanced approach that involves a variable Robin coefficient determined through optimizations,
we refer readers to [59]. Moreover, ⇥ is a symmetric positive definite two-dimensional anisotropic tensor

⇥ =
4
#
x
sin2(↵) + #

y
cos2(↵) (#

x
* #

y
) sin(↵) cos(↵)

(#
x
* #

y
) sin(↵) cos(↵) #

x
cos2(↵) + #

y
sin2(↵)

5
, (4)

where ↵ is the angle between the magnitudes #
x
and #

y
in x and y directions, respectively.

2.3. Optimal design under uncertainty

Due to the explicit dependency of the design objective on the uncertainty parameter, Q is inherently a random variable. Extending
the mean–variance optimization approach, e.g., [30,31], the cost functional for the proposed optimal design is expressed as,

J (d) = E[Q(u, d, m)] + �
V
V[Q(u, d, m)] + �

R
R(d). (5)

Here, E[�] and V[�] represent the mean and variance, and R(d) is a regularization term. The weights �
V
and �

R
govern the relative

importance of the variance of the design objective and the regularization term in relation to the means of the design objective.
Accordingly, we can formulate the risk-averse PDE-constrained optimal design under uncertainty as,

dopt(x) = argmin
dÀ[0,1]

J (d).

subjected to r(u, v, m, d) = 0.
(6)

A common approach to compute the mean and variance terms in (5) is the sample average approximation for N
mc
samples,

E[Q] ˘ 1
N
mc

Nmc…
i=1

Q(m(i)), (7)

V[Q] ˘
⇠ 1
N
mc

Nmc…
i=1

Q
2(m(i))

⇡
*
⇠ 1
N mc

Nmc…
i=1

Q(m(i))
⇡2

, (8)

where {m(i)}Nmc
i=1 are independent and identically distributed (i.i.d) random samples from the uncertain and spatially correlated

parameter defined in Section 2.2. However, the Monte Carlo method exhibits a convergence rate of O
� 1˘

Nmc

�
, which requires a

considerable number of PDE model evaluations to compute the cost functional (5) accurately, leading to computationally prohibitive
optimization under uncertainty problem.
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3. Taylor approximation of the design objective

In this section, we present a computationally tractable approach by approximating the mean and variance of the design objective
by means of low-order Taylor expansion [30,31,51]. The Taylor approximation of Q at the mean of the uncertain parameter Ñm

truncated with L terms is,

T
L
Q(m) =

L…
l=0

)
l

m
Q( Ñm) (m * Ñm)l , (9)

where )l
m
Q( Ñm) is the lth order tensor derivative, assumed to be sufficiently smooth and Fréchet differentiable with respect to the

uncertain parameter Choosing L = 2, we obtain the quadratic Taylor approximation in the form

T2Q(m) = ÑQ +
⇣
ÑQ
m
, m * Ñm

⌘
+ 1

2
⇣
ÑQ
mm (m * Ñm), m * Ñm

⌘
. (10)

where ÑQ, ÑQm, and ÑQ
mm represent the design objective and its gradient and Hessian with respect to m, respectively, all evaluated at

the mean Ñm. In the above relation, the symbol
⇣
�, �
⌘
denotes the inner product. The closed-form expression for the expectation of

the approximated design objective in (10) can be derived, taking into account E[ ÑQ] = ÑQ, E[
⇣
ÑQ
m
, m* Ñm

⌘
] = 0, and Lemma 1 of [60],

as the following expression:

E[T2Q(m)] = ÑQ + 1
2 tr

�
ÑH
c

�
, (11)

where ÑH
c
= C ÑQ

mm denotes the covariance preconditioned Hessian computed at the mean of m and tr(�) is trace operator. Moreover,
noting that variance is invariant with respect to its translation, one can write,

E[(T2Q(m) * ÑQ)2] = E[(
⇣
ÑQ
m
, m * Ñm

⌘
+ 1

2
⇣
ÑQ
mm(m * Ñm), m * Ñm

⌘
)2], (12)

which, after expansion, each term can be expressed as

E[(
⇣
ÑQ
m
, m * Ñm

⌘
)2] =

⇣
ÑQ
m
,C ÑQ

m
⌘
,

E[(
⇣
ÑQ
mm(m * Ñm), m * Ñm

⌘
)2] = tr( ÑH

c
)2 + 2 tr(( ÑH

c
)2),

E[
⇣
ÑQ
m
, m * Ñm

⌘⇣
ÑQ
mm(m * Ñm), m * Ñm

⌘
] = 0. (13)

Furthermore, the square of the first moment of T2Q(m) * ÑQ can be written as,
�
E[T2Q(m) * ÑQ]

�2 = �
E[T2Q(m)] * E[ ÑQ]

�2 = 1
4
�
tr
�
ÑH
c

��2
. (14)

From (13) and (14), the variance of the quadratic Taylor approximation of Q in (10) is obtained as,

V[T2Q(m)] = V[T2Q(m) * ÑQ] =
⇣
ÑQ
m
,C ÑQ

m
⌘
+ 1

2 tr((
ÑH
c
)2). (15)

Consequently, the mean and variance of the design objective in (5) can be replaced by their corresponding Taylor approximations
in (11) and (15), respectively, leading to the quadratically approximated cost function as

Jquad(d) = ÑQ + 1
2 tr

�
ÑH
c

�
+ �

V

0⇣
ÑQ
m
,C ÑQ

m
⌘
+ 1

2 tr((
ÑH
c
)2)

1
+ �

R
R(d). (16)

In upcoming sections, we present the Lagrangian formalism to derive the m-gradient and m-Hessian, representing the gradient and
Hessian of Q with respect to m. We also introduce an efficient method for evaluating the covariance preconditioned Hessian, ÑH

c
.

3.1. Gradient and hessian of design objective with respect to the uncertain parameter

The Lagrangian functional, considering the adjoint variable v as the Lagrange multiplier associated with the state equation, is
defined as,

L(u, v, m, d) = Q(u, d, m) + r(u, v, m, d), (17)

where r(u, v, m, d) is the weak form in (2). By imposing the condition that the first-order variation of the Lagrangian functional at Ñm
with respect to the adjoint variable v and the state variable u is equal to zero, we obtain, the state problem: Find u À U , such that

Í Év, )v ÑrÎ = 0, ≈ Év À V , (18)

and adjoint problem: Find v À V , such that

ÍÉu, )u ÑrÎ = *ÍÉu, )u ÑQÎ, ≈Éu À U . (19)

In the above relations, (Ñ�) denotes the quantities computed at the mean of the uncertain parameter, e.g., Ñr = r(u, v, Ñm, d), and (É�)
indicates directional variables. The gradient of Q at Ñm acting in the direction Ém = m * Ñm is then given by,

Í Ém, ÑQmÎ = Í Ém, )
m
ÑrÎ. (20)
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Thus, evaluating m-gradient in (20) requires the solution of state problem (18) for u and the adjoint problem (19) for v.
To solve for the m-Hessian, we consider a meta-Lagrangian functional with incremental state Çu and adjoint Çv

LH (u, v, m, d; Çu, Çv, Çm) = Í Çm, )
m
ÑrÎ + Í Çv, )v ÑrÎ + Í Çu, )u Ñr + )u ÑQÎ (21)

where the terms on the right-hand side are m-gradient, state, and adjoint problems, respectively. Repeating the similar process of
vanishing the first variation of the Lagrangian functional with respect to adjoint and state, we obtain the incremental state problem:
Find Çu À U , such that

Í Év, )vu Ñr ÇuÎ = *Í Év, )vm Ñr ÇmÎ, ≈ Év À V , (22)

and the incremental adjoint problem: Find Çv À V , such that

ÍÉu, )uv Ñr ÇvÎ = *ÍÉu, )uu Ñr Çu + )uu ÑQ Çu + )um Ñr Çm + )um ÑQ ÇmÎ, ≈Éu À U . (23)

By taking the variation of LH with respect to m as zero, the Hessian of Q acting on Çm is computed as,

Í Ém, ÑQmm ÇmÎ = Í Ém, )
mv Ñr Çv + )mu Ñr Çu + )

mm
Ñr Çm + )

mu ÑQ Çu + )
mm

ÑQ ÇmÎ. (24)

We should note that the last term on the right-hand side of (23) and the last two terms on the right-hand side of (24) are included
because we account for the explicit dependence of the design objective Q(u, d, m) on the design and uncertain parameters in this
study. As a result, evaluating the m-Hessian acting on Çm in (24) requires the solution of the incremental state problem (22) for Çu
and the incremental adjoint problem (23) for Çv. For an overview of the steps in computing the m-gradient and m-Hessian, we direct
interested readers to Algorithms 1 and 2 in [61].

3.2. Randomized trace estimator

The quadratic approximations for the mean (11) and variance (15) of the design objectives depend on the trace of the
covariance preconditioned Hessian ÑHc, which is typically a large dense matrix. A common approach to obtain the trace is
through the Monte Carlo method, where the action of the Hessian on a number of random directions sampled from a Gaussian
distribution is computed [30]. Nevertheless, even adhering to lower bounds on the required number of samples for attaining
accurate trace approximations, as discussed in [62], entails substantial values (e.g., 106 samples are necessary to guarantee a
probabilistic error bound of 10*3). As a consequence of the substantial number of samples needed at each optimization iteration,
this approach is computationally prohibitive for the design under uncertainty problem considered in this work. Here, we employ a
randomized approximated eigen-decomposition to estimate the trace and trace-squared using the dominant eigenvalues {�

n
}Neig
n=1 of

the covariance-preconditioned Hessian ÑH
c
, expressed as,

tr
�
ÑH
c

�
˘
Neig…
ng1

�
n
, tr

�
ÑH2
c

�
˘
Neig…
ng1

�
2
n
. (25)

The above forms of trace estimators are justified by the symmetric positive definite property of the operator H
c
. It is noteworthy

that the value of Neig is invariant to the parameter dimension and in many problems, e.g., [63–66] it tends to be small when the
covariance-preconditioned Hessian is low-rank or when its eigenvalues decay rapidly (see the numerical results of Section 7). The
eigenvalues �

n
are obtained by solving the following generalized eigenvalue problem,

⇣
⇣, ÑQ

mm
 
j

⌘
= �

j

⇣
⇣,C*1

 
j

⌘
, ≈⇣ À M, j = 1,… , Neig (26)

where the eigenvectors  
j
exhibit orthonormality with C*1,

⇣
 
i
,C*1

 
j

⌘
= �

ij
, i, j = 1,… , Neig and �ij denotes the Kronecker delta

function. By an n-degree finite element discretization, (26) is recast into a matrix form as A = �B where A and B are n-by-n
symmetric matrices, B is positive definite, and  represents a vector of size n. To solve the resulting eigenproblem, we employ a
double-pass randomized algorithm [67], outlined in Algorithm 1.
Algorithm 1: Double-pass randomized algorithm

Input : Matrices A,B À Rnùn stem from finite element discretization, number of eigenpairs requested Neig, oversampling
factor No

Output: Eigenpairs (�
j
,  

j
), j = 1, ..., Neig

1 Generate a realization of a Gaussian random matrix G À Rnù(Neig+No)

2 Compute range Y = B*1(AG)
3 Compute QR-factorization Y = QR such that QTBQ = I

Neig+No

4 Compute QTAQ
5 Compute eigenvalue decomposition QTAQ = S⇤ST
6 Obtain the eigenpairs via �

j
= ⇤[j, j],  

j
= QS[:, j], j = 1, ..., Neig.
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4. Sparsity-enforcing regularizations and continuation schemes

The final aspect of the design problem involves selecting an appropriate regularization term R(d) in (5). In Section 6, we will
discuss the practical requirements of the problem, which include the need for a spatially sparse distribution of the design parameter,
ideally comprising two materials with different porosities and a controlled interface thickness. The choice of regularization plays
a critical role in this context and represents a significant contribution of the proposed design under uncertainty framework. We
propose two sparsity-enforcing regularizations based on the l0-norm and double-well functions of the design parameter.

4.1. l0-Norm regularization

The l0-norm regularization has been utilized in discrete optimization problems, such as neural network pruning to encourage
weights to become zero during training [68] and determining optimal sensor placement from a finite set of candidate locations
in optimal experimental design problems [29]. For designing the spatial distribution of porosity within the domain, we define the
l0-norm as the area of the non-zero regions in the design parameter field. However, this definition results in a non-convex function
with a singularity near the origin (d = 0). Accordingly, we propose an approximated l0-norm in the regularization term for our
problem as,

�
R
R0(d) = �tik  

⌦

(d2 d⌦ +  
⌦

f
✏0 (d) d⌦, (27)

where the first term is the Tikhonov regularization function, and f
✏0 is a continuously differentiable approximation of the

l0-norm [29],

f
✏0 (d) =

h
n
l
nj

d_✏0, d À [0, ✏0_2]
p3(d, ✏0), d À (✏0_2, 2✏0)
1, d À (2✏0, 1].

(28)

In the above equation, p3(d, ✏0) is a third-order polynomial in terms of d, and ✏0 À (0, 0.5] acts as a hyperparameter controlling the
approximation accuracy of f

✏0 (d) to the l0-norm (see Fig. 1(a)). To ensure that f
✏0 (d) is continuously differentiable for d À [0, 1],

we uniquely determine p3(d, ✏0) based on the value of the hyperparameter ✏0. Specifically, we consider the polynomial in the form
p3(d, ✏0) = a3 d

3 + a2 d2 + a1 d + a0, where ai(✏0) are the polynomial coefficients. To determine these coefficients, we impose certain
conditions, including the polynomial p3 must pass through the points (

✏0
2 ,

1
2 ) and (2✏0, 1), and the derivatives at the left and right

sides of f
✏0 (d = ✏0

2 ) and f✏0 (d = 2✏0) should be equal. These conditions form a system of four equations that allow us to compute
the polynomial coefficients.

4.2. Phase field regularization

Taking inspiration from the Ginzburg–Landau free energy functional used to model phase transition phenomena in binary
systems, e.g., [69–71], we propose a phase field regularization with the following form,

�
V
Rp(d) =  

⌦

0
�tik (d2 + �wellW (d)

1
d⌦. (29)

The first term of (29) corresponds to the Tikhonov regularization, while the second term consists of a double well function W (d)
with global minima at d = 0 and d = 1 and the parameter �well serves to reinforce sparsity. Following [72], we propose the following
second derivative double-well function W (d) with respect to d,

W
dd (d) =

�
2 (2d * 1)2

�
+ ✏

w

�
(2d * 1)2 * 1

�
, (30)

that decomposes the second derivative into a strictly positive term and a remainder term that may take non-positive values. The
hyperparameter ✏

w
À [0, 1] scales the second term in (30), thereby transforming it from a single well (at ✏

w
= 0) to a full double

well (at ✏
w
= 1) located at d = 0 and d = 1, as depicted in Fig. 1(b).

It is worth acknowledging that phase field-based approaches have been an attractive approach in topology optimization methods,
e.g., [73–75]. In these methods, the density function, which characterizes the material presence or absence, evolves using the
modified Allen–Cahn differential equations [76,77]. However, our approach exploits the structure of the free energy function
of phase-field models as a regularization term that obviates the need to solve additional time-dependent PDE. In parallel, the
mathematical analysis of the resulting optimization problem, including rigorous derivation of minimizers and optimality conditions,
is recently presented in [78].

4.3. Continuation numerical schemes

To handle potential multiple local minima arising from the non-convex regularization functions (27) and (29), we employ
continuation numerical schemes with respect to the hyperparameters ✏0 and ✏w. The continuation procedure involves solving the
optimization problem (6) with an evolving regularization function, utilizing a decreasing sequence of hyperparameters

�
✏
(i)
0 =

( 12 )
i
�K
i=1 for l0-norm regularization and an increasing sequence of

�
✏
(i)
w

= i*1
K*1

�K
i=1 for phase field regularization, as illustrated in
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Fig. 1. Plots of sparsity-enforcing functions versus design parameter d: (a) f
✏0
(d) in (27) to approximate the l0-norm, controlled by ✏0; (b) the proposed double

well function W (d) in (29), evolving from a single well at ✏
w
= 0 to a double well at ✏

w
= 1.

Fig. 1. Each ith continuation iteration employs the previous optimal solution d(i*1)opt as an initial guess. These continuation processes
terminate when the specified stopping criteria are met. For l0-norm regularization (27), the hyperparameter value ✏0 directly controls
the interface thickness. Hence, the continuation scheme stops when the interface thickness reaches a user-defined tolerance, such
as the multi-material additive manufacturing precision. Regarding phase field regularization (29), the continuation process stops
when a full double well forms at ✏

w
= 1. The number of intermediate steps in the continuation process is problem-dependent and

selected as a trade-off between convergence and computational cost.

5. Gradient-based optimization

To solve the optimization problem (6), we employ the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimiza-
tion algorithm with box constraints on the design parameter d À [0, 1]. L-BFGS is widely recognized as one of the most efficient
methods among Quasi-Newton optimization algorithms [79]. Instead of computing and storing a dense n-by-n Hessian matrix (or
its inverse), where n is the dimension of the design parameters stemming from discretization, L-BFGS stores only a few vectors
representing the previous designs and their corresponding gradients. These vectors contain local curvature information and enable
the construction of a limited memory Hessian matrix, irrespective of the parameter dimensions.

5.1. Gradient of cost function with respect to the design parameter

We use the Lagrangian formalism to derive the gradient of the quadratically approximated cost function Jquad(d) with respect to
the design parameter, denoted as d-gradient, to provide gradient information to l-BFGS-b. By substituting the trace estimators (25)
into (16), we have

Jquad(d) =
0
ÑQ + 1

2

Neig…
jg1

�
j

1
+ �

V

0⇣
ÑQ
m
,C ÑQ

m
⌘
+ 1

2

Neig…
jg1

�
2
j

1
+ �

R
R(d). (31)

To evaluate the d-gradient, we consider a quadratic meta-Lagrangian functional

Lquad(u, v, {�j}, { j}, { Çuj}, { Çvj},u<, v<, {�<j }, { 
<
j
}, { Çu<

j
}, { Çv<

j
}, d)

= Jquad(d) + Ív<, )v ÑrÎ + Íu<, )u Ñr + )u ÑQÎ

+
Neig…
j=1

Í <
j
, ( ÑQmm * �

j
C*1) 

j
Î

+
Neig…
j=1

�
<
j
(Í 

j
,C*1

 
j
Î * 1) +

Neig…
j=1

Í Çv<
j
, )vu Ñr Çuj + )vm Ñr  jÎ

+
Neig…
j=1

Í Çu<
j
, )uv Ñr Çvj + )uu Ñr Çuj + )uu ÑQ Çu

j
+ )um Ñr  j + )um ÑQ jÎ

(32)

where (�<) denotes the adjoint variables, (Ç�) denotes the incremental variables, and {�} is the abbreviation of {�}Neig
n=1 . The terms on

the right hand side of (32), respectively, are: the quadratically approximated cost function (31), the state problem (18), the adjoint



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116628

8

J. Tan and D. Faghihi

problem (19), the generalized eigenvalue problems (26), the orthonormality constraint of the eigenvectors, the incremental state
problem (22) for the directions of the eigenvectors, and the incremental adjoint problem (23) for the directions of the eigenvectors.
To compute the design gradient, we need to calculate five sets of functional derivatives to solve for the corresponding five sets of
adjoint variables (u<, v<, { <

j
}, { Çu<

j
}, { Çv<

j
}) in (32), while the adjoint variable set for the eigenvalue set {�<

j
} is not required due to its

independency of the design parameter d.
By vanishing the first variation of (32) with respect to the eigenvalue set {�

j
}, the only contributing terms are the quadratically

approximated cost function and the orthonormality constraint of the eigenvectors, such that

{ <
j
} =

0
1
2 + �

V
�
j

1
{ 

j
}, j = 1,… , Neig. (33)

Upon equating the first variations of (32) to zero with respect to v
j
and u

j
lead to the incremental state problem: Find Çu À U , such

that
⇣
Év, )vu Ñru<j

⌘
= *

⇣
Év, )vm Ñr  <

j

⌘
, ≈ Év À V , (34)

and the incremental adjoint problem: Find Çv À V , such that
⇣
Éu, )uv Ñr v<j

⌘
= *

⇣
Éu, )uu Ñr Çu<j + )uu ÑQ Çu<

j
+ )um Ñr  <

j
+ )um ÑQ <

j

⌘
, ≈Éu À U , (35)

similar to (22) and (23), respectively. In combination with (33), we can formulate the adjoint variables for the incremental state
and adjoint problems individually for each eigenvector as

{ Çu<
j
} =

0
1
2 + �

V
�
j

1
{ Çu

j
}, j = 1,… , Neig, (36)

{ Çv<
j
} =

0
1
2 + �

V
�
j

1
{ Çv
j
}, j = 1,… , Neig. (37)

By vanishing the first variation of the Lagrangian functional (32) with respect to the adjoint and the state, we obtain the linear state
problem: Find u< À U , such that

Í Év, )vu Ñr u<Î = * 2�
V
Í Év, )vm Ñr (C)m Ñr)Î *

Neig…
j=1

Í Év, )vmu Ñr Çuj  <
j
+ )vmm Ñr  j  <

j
Î

*
Neig…
j=1

Í Év, )vuu Ñr Çuj Çu<j + )vum Ñr  j Çu<j Î, ≈ Év À V ,

(38)

and linear adjoint problem: Find v< À V , such that

ÍÉu, )uv Ñr v<Î = * ÍÉu, )u ÑQÎ * 2�
V
ÍÉu, )um Ñr (C)m Ñr)Î * ÍÉu, )uu Ñru< + )uu ÑQu<Î

*
Neig…
j=1

ÍÉu, )umv Ñr Çvj  <
j
+ )umu Ñr Çuj  <

j
+ )umm Ñr  j  <

j
Î

*
Neig…
j=1

ÍÉu, )uvu Ñr Çuj Çv<j + )uvm Ñr  j Çv<j Î

*
Neig…
j=1

ÍÉu, )uuv Ñr Çvj Çu<j + )uuu Ñr Çuj Çu<j + )uuu ÑQ Çu
j
Çu<
j
+ )uuum Ñr  j Çu<j Î,

≈Éu À U .

(39)

And finally, having all the adjoint variables, the d-gradient is obtained by

Í Éd,D
d
Jquad(d)Î = Í Éd, )

d
LquadÎ. (40)

The procedures for computing the quadratically approximated cost function and its gradient with respect to the design parameter
are summarized in Algorithm 2. In summary, the computational cost incurred for the evaluation of Jquad(d) in (31) consists of one
state problem, one linear adjoint problem and 4(Neig + N

o
) linear PDEs resulting from the double-pass randomized algorithm in

Algorithm 1, and the computation of the d-gradient requires the solution of 2(Neig + 1) linear PDEs.

6. Problem formulation: Optimal design of insulation components

In this section, we implement the described design under uncertainty framework to the specific context of designing silica aerogel
insulation components, retaining both mechanical stability and insulation performance. This entails presenting the thermomechan-
ical PDE model for porous materials, defining the design objectives, representing uncertain design parameters, and formulating the
multi-objective optimal design problem.
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Algorithm 2: Evaluation of the Jquad and its d-gradient

Input : Design objective (5) and weak form of the PDF (2).
Output: Approximated cost function Jquad(d) and its gradient with respect to the design parameter d.

1 Solve for m-gradient (20)
2 Solve for m-Hessian (24)
3 Solve for generalized eigenpairs with Algorithm 1
4 Compute Jquad by (31)
5 Solve the linear state problem (38)
6 Solve the linear adjoint problem (39)
7 Obtain the d-gradient (40)

6.1. Forward thermomechanical model

We employ a thermomechanical model of silica aerogel materials built upon a continuum mixture theory [56]. The model
considers incompressible solid aerogel network and compressible fluid (gaseous) phases within the materials. According to the
mixture theory, each phase independently follows its own motion, balance laws, internal energy, and entropy while adhering to
the overall balance laws of the entire mixture. Consequently, a set of four PDEs is derived that governs the heat transfer in the
solid and fluid phases, the deformation in the solid phase and the evolution of pore pressure. In the context of designing insulation
components, we specifically consider steady-state and static conditions, which simplify the governing equations. The strong form of
the PDEs corresponding to (1) is expressed as,

h
n
n
n
l
n
n
nj

*( � (�
s

s
(✓

s
) + h(✓

s
* ✓

f
) = 0 in ⌦,

*( � (�
f

f
(✓

f
) * h(✓

s
* ✓

f
) = 0 in ⌦,

✓
s
= ✓

f
= ✓

† on �
d
,

*�
s

s
(✓

s
= hair (✓s * ✓amb) on �

c
,

*�
f

f
(✓

f
= hair (✓f * ✓amb) on �

c
,

(41)

h
n
n
l
n
nj

C p + (( � u
s
) = 0 in ⌦,

*( � T®
s
* (2�

f
* 1)(p = 0 in ⌦,

u
s
= u†s on �

e
,

nT®
s
= t on �

t
.

(42)

In the above equations, ⌦ œ Rd is an open and bounded domain with Lipschitz boundary )⌦, and �
d
, �

e
œ )⌦ denote the Dirichlet

portions and �
c
, �

t
œ )⌦ indicate the Neumann portions of )⌦ such that �

d
‰ �

c
= )⌦, �

d
„ �

c
= Á, �

e
‰ �

t
= )⌦, and �

e
„ �

t
= Á.

The state variables ✓
s
, ✓

f
, u

s
, and p represent the solid and fluid temperatures, solid displacement, and fluid pressure, respectively,

defined over the domain ⌦. The conductivity associated with the solid and fluid phases is denoted as 
s
and 

f
, h represents the

inter-constituent convection coefficient, and C represents the fluid compressibility. The temperature and solid displacement are
subject to fixed values ✓† and u†s at the boundaries �d and �e, respectively. At �c , we consider convective heat transfer with a
coefficient hair and ambient temperature ✓amb and at the boundary �t with unit outward vector n, a traction vector t is imposed.
For a visual representation of the thermal and mechanical boundary conditions considered in the numerical examples, please refer
to Figs. 12 and 3. The design problem involves the determination of spatial distributions of the fluid volume fraction (porosity),
denoted by �

f
(x), which is equivalently expressed as 1*�

s
(x) with �

s
(x) being the solid volume fraction. In (42), the effective solid

stress is

T®
s
= 2�E

s
+ � tr(E

s
) I with E

s
= 1

2
�
(u

s
+ ((u

s
)T
�
, (43)

where E
s
is the solid strain and � and � are the Lamé constants. Determining the model parameters 

s
, 

f
, h, K, C, and � from

experimental data of silica aerogel is demonstrated in [56] and assumed to be known here.
The weak formulation of the PDEs (41) and (42), corresponding to (2), can be expressed as follows: Find u = (✓

s
, ✓
f
,u
s
, p) À U ,

such that

*
⇣
�
s

s
(✓

s
,(z

s

⌘
*
⇣
h(✓

s
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f
), z
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⌘
*
⇣
�
s
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⌘
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*
⇣
�
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
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s
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f
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⇣
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�
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s
+ ((u

s
)T
�
,w

u

⌘
+
⇣
t,w

u

⌘
= 0, (44)

for all choices of adjoint variables v = (z
s
, z
f
,w

u
) À V , where U and V are Hilbert spaces. We define Q

T
and Q

M
as measures of

thermal insulation and mechanical stability, respectively, for the insulation component over domain ⌦,

Q
T

= 1
2

…
i=s,f

⇣
�
i

i
(✓

i
,(✓

i

⌘
+

…
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Fig. 2. The sigmoid function asymptotically bounding porosity in physically meaningful range �
f
À [0%, 100%]. The x-axis represents d +m, where the d À [0, 1]

is the design parameter and m Ì N (0,C) is the uncertain parameter.

Q
M

= 1
2
⇣
T®
s
,E

s

⌘
+
⇣
t,u

s

⌘
. (45)

6.2. Uncertain design parameter

Owing to imprecise control of silica aerogel properties, substantial uncertainty is associated with the porosity value within the
insulation component. This uncertainty is spatially correlated and exhibits anisotropic properties, arising from the layer-by-layer
deposition of aerogel ink during the additive manufacturing process [11]. To effectively model the variability in porosity, we
represent material porosity �

f
(x) within the range of [0%, 100%] using a density-like design parameter d(x) in the range [0, 1],

complemented by the uncertain parameter m(x) introduced in Section 2.2, as

�
f
(x) = f (d(x) + m(x)) . (46)

As illustrated in Fig. 2, f (�) is a sigmoid function that remains almost linear within �
f
À [10%, 90%] and d + m À [0, 1] to mitigate

the influence on the correlation length L
c
while ensuring porosity values asymptotically stay within the physically valid range of

�
f
À [0%, 100%]. In other words, the mapping described in (46) is employed primarily to constrain variations in porosity caused by

the uncertain parameter.
Another essential requirement for the design of insulation components is achieving spatial sparsity in the porosity distribution.

Ideally, this involves components with two distinct aerogel inks with different porosities and a precisely controlled interface thick-
ness. Such a design minimizes the number of nozzles required and reduces the fabrication time within the additive manufacturing
process. To address this solution sparsity, the proposed regularization terms discussed in Section 4 are incorporated into the
optimization process.

6.3. Multi-objective PDE-constrained optimal design under uncertainty

The optimal design problem described in Section 2.3 can be extended to accommodate multiple, potentially conflicting objectives
{Q

p
}P
p=1, each of which holds varying degrees of importance in the overall design process. In this context, the cost functional for

the resulting multi-objective optimal design is expressed as follows:

J (d) =
P…
p=1

⇠
�
Ep
E[Q

p
(d, m)] + �

Vp
V[Q

p
(d, m)]

⇡
+ �

R
R(d), (47)

where the weights {�
Vp
}P
p=1 and �

R
govern the proportionate significance of the variance of the design objectives and the

regularization term relative to the means of design objectives, characterized by �
Ep
. In the numerical experiments detailed in

Section 7, we consider the multi-objective design of components to enhance both their mechanical strength and thermal insulation
properties. To achieve this, we define the total design objective Q as a weighted sum of the thermal and mechanical objectives
outlined in (45), given by

Q = �
M
Q
M

*Q
T
, (48)

where �
M

represents the mechanical weight that governs the trade-off between thermal insulation and mechanical stability.
Subsequently, without loss of generality, we specialize (47) by P = 2, �

E1 = �
M
, �

E2 = *1, �
V1 = �

V
�
M
, and �

V2 = *�
V
. As

a result, the mean–variance cost function and the risk-averse PDE-constrained optimal design under uncertainty take the forms
presented in (5) and (6), respectively.
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6.4. Hyper-parameters

The proposed design under uncertainty framework involves various hyper-parameters that significantly impact the resulting
optimal solutions. These hyper-parameters encompass the variance, correlation length, and anisotropy of the Gaussian random field
in (3), the weight factors introduced within the cost functional (5), and the parameters associated with the regularization term in
(27) and (29). The coefficients of the Gaussian random field are intricately linked with material properties and can be determined,
in conjunction with the model parameters, from experimental measurements. Optimization techniques like the one implemented
in [63] provide suitable means for such inference. Identifying the Pareto design set via multi-objective optimization, e.g., [80]
provides insights into the optimal trade-offs between conflicting thermal and mechanical objectives and their variances, aiding
in decision-making and objective prioritization for the final design. A practical method for selecting the Tikhonov regularization
weight �tik is the L-curve method [81], which strikes a balance between stabilizing the design parameter and minimizing the design
objective’s mean and variance. Alternatively, Morozov’s discrepancy principle, involving a meta-optimization problem [82–84] can
be leveraged. The parameter �well in phase field regularization controls the interface thickness between sparse design parameters
and is selected to balance spatial gradient and the double-well functions.

7. Numerical examples

This section presents numerical experiments utilizing the proposed design under uncertainty framework for two aerogel insulation
scenarios in which the design parameter is the discretization of a random field. The objective is to achieve both thermal insulation
and mechanical stability while mitigating uncertainty in the design process, as formulated in (48), (5), and (6). The first example
involves an L-shape component, which demonstrates key aspects of the framework. These include assessing the accuracy and cost
of the quadratic approximation of cost functional, analyzing the effects of mechanical and variance weights on the optimal design,
and evaluating the scalability of the optimization under uncertainty algorithm concerning the dimension of the design parameters.
The second example is the design of thermal breaks within an envelope-column system that demonstrates the continuation schemes
for both l0 and phase-field regularizations.

In both examples, the parameter values for the multiphase model in (41) and (42) are 
s
= 0.477, 

f
= 0.085, h = 81059, C = 0.25,

� = 6.77, and � = 3.38, adopted from [56]. For all the numerical experiments, unless explicitly specified, we utilize the quadratic
approximation of the design objective with Neig = 25 dominant eigenvalues and the oversampling factor as N

o
= 20. The uncertain

parameter m is the Gaussian random field with Matérn covariance, with mean Ñm = 0, the variance of �2 = 0.52, correlation lengths
of L

c
= 0.5. To emphasize dominant anisotropy along the x-direction, we set #

x
= 1 and ↵ = 90˝, while assigning a small value to

#
y
= 1ù10*4 to ensure numerical stability. The computational implementation of the proposed design under uncertainty framework

relies on a series of open-source libraries, including, FeniCS1 [85] for finite element solution of the forward model, hIPPYLib2 [86–
88] for the Gaussian random field in (3) and the trace estimator in Algorithm 1, SOUPy3 [31,36] for quadratic approximation of
the design objective described in Section 3, and l-BFGS-b optimizer in Scipy4 [89].

7.1. L-shape insulation component

The domain of the L-shaped insulation component is illustrated in Fig. 3 . For the heat transfer model in (41), the Neumann
boundary conditions are taken into account, entailing ✓amb = 1 at the outer boundary �1, ✓amb = 0 at the inner boundary �2, and
insulated condition (hair = 0) on �3. The boundary conditions of the mechanical model in (42), consists of prescribing uniform
traction load ÒtÒ = 1 along and opposite direction of the unit vectors on �1, fixed solid displacement us = 0 on �2, and setting the
displacement component along the unit vectors to zero on �3. Unless specified otherwise, a finite element mesh with 8587 nodes
(design parameter dimension) is employed.

Fig. 4 demonstrates the influence of the uncertain parameter m, originating from an anisotropic Gaussian random field in (3), on
the porosity field �

f
(x). An illustrative example of porosity design is shown in this figure, along with two sets of porosity samples,

evaluated from the samples of uncertain parameter m and (46). The higher correlation length of m yields a distinct anisotropic of the
material porosity in Fig. 4(e - g). Such anisotropy can effectively model horizontal layer-by-layer manufacturing of the component,
capturing the correlation of aerogel ink properties within individual layers as well as the distinct properties among various layers.

To evaluate the effectiveness of the Robin condition in minimizing the boundary effect on the Gaussian random field with Matérn
covariance in (3), we computed the diagonal entries of the discretized covariance operator C. Fig. 5(a) shows the exact marginal
variance of the anisotropic uncertain parameter m (see [59] for a more efficient marginal variance estimator). The deviation of
the marginal variance from a constant field (the blue area along the horizontal boundaries covering roughly 6% of the domain) in
this figure indicates a relatively small undesired boundary effect, which is significantly mitigated by the imposed Robin boundary
conditions with a constant coefficient as described in Section 2.2. The horizontal noise in this figure results from assigning a small
value to #

y
= 1 ù 10*4 in the anisotropic tensor (4) for numerical stability. Furthermore, Fig. 5(b–c) shows the spatial correlation

structures at three different locations within the domain, indicating minimal boundary effects in this problem based on the largely
undistorted elliptical contours.

1 https://fenicsproject.org
2 https://github.com/hippylib/hippylib
3 https://github.com/hippylib/soupy
4 https://scipy.org
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Fig. 3. Domain of the L-shape insulation component used for numerical experiments, illustrating both mechanical (left) and thermal boundary conditions (right).
In the thermal boundary conditions, red and blue indicate ambient temperatures ✓amb = 1 and ✓amb = 0, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Effect of uncertain parameter m(x) on the aerogel porosity field. (a) Illustrative half-and-half porosity design example at the mean of uncertain parameter
Ñm = 0. Samples of uncertain porosity field �

f
(x) using the map (46) and i.i.d. samples of m: (b–d) small correlation length L

c
= 0.02 and (e–g) large correlation

length L
c
= 0.5.

To assess the accuracy and efficiency of the quadratic approximations on the optimal design solution, we conduct a comparison
with the Monte Carlo method. Fig. 6 shows the Monte Carlo estimations of the mean (7) and variance (8) of the design objective for
various numbers of samples Nmc, along with the corresponding quadratic approximations in (11) and (15) over different numbers of
dominant eigenvalues Neig. As expected, both estimations converge towards the same values as the number of samples and dominant
eigenvalues increases. The relatively small variation in the mean values of the design objective for different numbers of samples,
despite the high uncertainty in porosity (see Fig. 4), can be attributed to the domain size considered for this problem in relation to
the parameter values.

Fig. 7 compares two scenarios characterized by different variances and correlation lengths of the uncertain parameter m and the
mechanical weight �

M
. It includes the optimal design dopt(x) and the probability distributions of the design objectives, including QT

and Q
M
as defined in (45), and Q as defined in (48). For each scenario, the solutions are obtained using the Monte Carlo estimation

and the quadratic Taylor approximation of the mean and variance of the design objective, as well as the deterministic solution, where
the uncertain parameter m is set to zero, resulting in a deterministic value for Q. The d-gradient used for optimization via the Monte
Carlo method is adopted from [31], which involves Nmc state PDE and Nmc linearized PDE solutions. As expected, the optimal design
morphologies are almost identical in the Monte Carlo, quadratic approximation, and deterministic cases for the scenario involving
low variance and a large correlation length, as shown in Fig. 7(a–c). In contrast, distinct morphologies are obtained for the large
uncertainty scenario (high variance and large correlation length), as depicted in Fig. 7(d–f). More specifically, when comparing
the design objectives obtained through quadratic approximation and Monte Carlo methods (as shown in Fig. 7(d,e)), we obtain
relative errors in means of 0.1%,0.4%, and 0.2% along with relative errors in variances of 6.1%,13.8%, and 8.5%, respectively
for Q

T
, Q

M
. The relative errors suggest that, in this specific problem, utilizing the quadratic Taylor expansion for linearizing the

objective moments provides reasonably accurate optimal design solutions, even with significant uncertainty in the porosity field.
Furthermore, in the low-uncertainty scenario, the deterministic objectives fall within the probability distributions of Q

T
, Q

M
, and

Q obtained from the Monte Carlo and quadratic approximation. However, in the high-uncertainty scenario, the deterministic design
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Fig. 5. Evaluating the effect of boundary on the Gaussian random field in (3): (a) marginal variance of the anisotropic uncertain parameter m with an estimated
6% of the domain area showing boundary effect, and point-wise correlation structure centered at (b) point (0.5, 0.5), (c) point (0.25, 0.25), (d) point (0.25,
0.75). Coordinates (x, y) are defined with respect to the bottom left corner of the L-shaped domain (refer to Fig. 3). The uncertain parameter m is characterized
by a mean value of Ñm = 0, a variance of �2 = 0.52, correlation lengths of L

c
= 0.5, anisotropy with #

x
= 1, #

y
= 1 ù 10*4, and ↵ = 90˝.

Fig. 6. Convergence plots of the estimated (left) mean and (right) variance of the design objective Q using the Monte Carlo estimations (denoted by MC)
and the quadratic approximations (denoted by Quad). At each point, ten realizations of the uncertain parameter m are considered with variance �2 = 0.52 and
correlation length L

c
= 0.5.

objectives corresponding to Fig. 7(f) differ from the probability distributions associated with Fig. 7(d,e). This deviation reflects a
trade-off, prioritizing uncertainty reduction over mean performance following the multi-objective formulation (5).

Next, we study the effect of the mechanical weight �
M

in (48) and the variance weight �
V
in (5) on the optimal design

solutions via the quadratic approximation. Fig. 8 illustrates the outcomes of the optimal design problem for varied mechanical
weight. The optimal design dopt(x) patterns shows that, as �M increases, the low-porosity covers a larger portion of the domain
and high-strength aerogel material (represented in red), leading to the emergence of mechanical supports aligned with the loading
direction. Consistently, the trend of the trade-off between thermal insulation Q

T
and mechanical strength Q

M
are reflected in their

probability distributions in Fig. 8 (d–f). Fig. 9 shows that as the variance weight �
V
increases, the spatial patterns of the optimal

designs dopt(x) begin to incorporate mechanical supports made of high-strength aerogel (represented in red) to augment mechanical
strength of the component. Concurrently, regions of high-porosity aerogel (represented in blue) appear, enhancing the thermal
insulation performance. These developing dopt(x) patterns lead to reduction of variance of both the thermal QT and mechanical QM
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Fig. 7. Optimal design dopt(x) obtained using (a,d) Monte Carlo method (denoted by MC) with Nmc = 150 samples, (b,e) quadratic approximation (denoted by
Quad) with Neig = 25 dominant eigenvalues, (c,f) deterministic design in the absence of uncertainty m = 0 (denoted by Ref ). Panels (a–c) correspond to �2 = 0.12,
L
c
= 0.02, �

M
= 1, and �

V
= 1, while panels (d–f) correspond to �

2 = 0.52, L
c
= 0.02, �

M
= 6, and �

V
= 1. The corresponding probability distributions of (g)

thermal objective Q
T
, (h) mechanical objective Q

M
, and (i) total design objective Q.

objectives, as depicted in Fig. 9(d, e). Overall, increasing �
V
reduces the design objective Q variance by trading off its mean values

in Fig. 9(f).
Finally, we study the scalability of the PDE-constrained optimization under uncertainty algorithm with respect to the design

dimension (number of nodes in the discretization of d(x)). This, in particular, depends on dimension-independent properties of two
factors: (i) decay of the eigenvalues of the covariance-preconditioned Hessian computed using randomized trace estimator described
in Section 3.2, and (ii) convergence rate of l-BFGS-b optimizer mentioned in Section 5. Fig. 10 displays the cost functional (5)
and the norm of the gradient (40) against the number of l-BFGS-b iterations, as well as the decay of the absolute values of the
generalized eigenvalues (26). These quantities are plotted for various dimensions of the design parameter, ranging from 5469 to
21,596, corresponding to the optimal design problem shown in Fig. 8(c). Using quadratic approximation, the objective functional
exhibits fast decay, and the norm of the gradient falls below the tolerance of 1ù 10*4 within 100 iterations for all mesh resolutions.
The negligible dependency of these plots on the mesh resolution implies that the gradient-based l-BFGS-b algorithm is independent of
the number of uncertain parameters. Additionally, the eigenvalues display fast decay that is independent of the uncertain parameter
dimension in Fig. 10(c), thus indicating that the randomized eigensolver for approximating the trace is also scalable with respect
to the number of uncertain parameters. Fig. 11 shows the corresponding eigenfunction of the covariance-preconditioned Hessian of
the design objective. The eigenvectors corresponding to larger eigenvalues inform the larger spatial scale of the design parameter,
while the ones related to smaller eigenvalues are increasingly more oscillatory and less informative. Combining the two dimension-
independent factors, one concludes that leveraging the quadratic Taylor approximation and stochastic optimization method results
in scalable PDE-constrained optimal design under uncertainty with respect to the uncertain parameter dimension.

7.2. Design of thermal breaks in an envelope-column system

Fig. 12 illustrates the simulation domain of a building envelope-column system. The design domain of the aerogel thermal break
is denoted by ⌦, and ⌦

c
represents the non-design domain, a concrete column with high mechanical strength and high thermal

conductivity. For the thermal model, the Neumann boundary conditions entail ✓amb = 1 at the building exterior boundary �1, ✓amb = 0
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Fig. 8. Design under uncertainty results for different mechanical weights �
M
. Optimal design dopt(x) for: (a) �M = 1, (b) �

M
= 2, and (c) �

M
= 6. The corresponding

probability distributions of (d) thermal objective Q
T
, (e) mechanical objective Q

M
, and (f) design objective Q. In all results, �

V
= 3 and �

R
= 3 ù 10*5.

Fig. 9. Design under uncertainty results for different variance weights �
V
. Optimal design dopt(x) for: (a) �V = 1E-16, (b) �

V
= 1E1, and (c) �

V
= 1E2.

The corresponding probability distributions of (d) thermal objective Q
T
, (e) mechanical objective Q

M
, and (f) design objective Q. In all results, �

M
= 1 and

�
R
= 4 ù 10*5.

at the interior boundary �2, and insulated condition on �3 are taken into account. The boundary conditions of the mechanical model
in (42), consists of prescribing uniform traction load ÒtÒ = 1 along and opposite direction of the unit vector on �1, fixed displacement
u
s
= 0 on �2, and setting the displacement component along the unit vectors to zero on �3. The thermomechanical behavior of the

column over the domain ⌦
c
is modeled using linear elasticity with Young’s modulus E

c
= 30 and passion ratio ⌫

c
= 0.3 and heat

transfer with thermal conductivity 
c
= 5. A finite element mesh with 7344 nodes is utilized to discretize the domain, resulting in

a design parameter dimension of 6694 after excluding nodes within the column region. The mechanical and variance weights are
also considered �

M
= 3 and �

V
= 10. Fig. 13 also illustrates the impact of two different samples of the uncertain parameter m on

the porosity field �
f
(x) in a design example.
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Fig. 10. The optimization solutions corresponding to Fig. 8(c) for different dimensions (discretization mesh) of the design parameter: (a) variation of the objective
functional Jquad with the number of l-BFGS-b optimization steps, (b) variation of the norm of d-gradient with the number of l-BFGS-b optimization steps, (c)
decay of the eigenvalues of the covariance-preconditioned Hessian. In all results, �

M
= 6, �

V
= 3, and �

R
= 3 ù 10*5.

Fig. 11. Eigenfunctions of the covariance-preconditioned Hessian of the design objective corresponding to the eigenvalues decay shown in Fig. 10(c).

Fig. 12. The domain of a building envelope-column system used for numerical experiments, indicating both mechanical (left) and thermal (right) boundary
conditions. The goal of the aerogel thermal break is to alleviate the heat flow between the building exterior and the concrete column with high thermal
conductivity while remaining mechanically stable against the external environmental load imposed at �1.

Fig. 13. Effect of uncertain parameter m(x) on the aerogel porosity field for an illustrative porosity design example: (a) at the mean of the uncertain parameter
Ñm = 0, (b) at two i.i.d. samples of m.
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Fig. 14. Optimal design solutions d tikopt(x) obtained using only Tikhonov regularization: (a) Scenario I with �tik = 1 ù 10*3 and a moderate interface thickness, (b)
Scenario II with �tik = 4 ù 10*3 and a large interface thickness.

Fig. 15. Optimal design solutions for Scenario I obtained through six steps of the continuation schemes. (left column) l0-norm regularization denoted by dl0 (�)
opt ,

(right column) phase field regularization with �well = 1 and denoted by dw(�)opt .

To demonstrate the continuation schemes associated with the proposed l0-norm and phase field regularization functionals in
(27) and (29), respectively, we consider Scenario I with a Tikhonov weight of �tik = 1 ù 10*3 and Scenario II with �tik = 4 ù 10*3.
Fig. 14 shows the optimal design solutions of these scenarios employing only Tikhonov regularization R = î

⌦
�tik (d2 d⌦ within the

optimization (6), denoted as dtikopt(x). In scenario I, we observe a moderate interface thickness between the sparse design parameters
with d = 0 and d = 1. In contrast, scenario II, with a more pronounced Tikhonov effect, results in a continuous spectrum of design
parameters across the domain, unsuitable for practical high-volume manufacturing.

Fig. 15 shows the optimal design solutions for scenario I using the continuation schemes for l0-norm and phase field
regularization functionals detailed in Section 4.3 In the case of the l0-norm, the continuation is initiated with dtikopt(x) (Fig. 14a),
whereas for the phase field, it starts with an initial guess dw(0)opt = 0. The number of continuation steps for phase field regularization
is set to K = 6, striking a balance between computational cost and convergence. For a fair comparison, the tolerance for l0-norm
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Fig. 16. Optimal design solutions for Scenario II obtained through six steps of the continuation schemes. (left column) l0-norm regularization denoted by dl0 (�)
opt ,

(right column) phase field regularization with �well = 1 and denoted by dw(�)opt .

regularization is set to 0.03, ensuring that the continuation process concludes with an equivalent number of steps. This figure
illustrates that both regularization functionals result in sparsified optimal designs in scenario I. However, the l0-norm results in a
thinner interface thickness, smaller than the resolution resolved by the mesh, compared to the phase field.

The continuation solutions of scenario II are shown in Fig. 16, and the corresponding probability distributions of the design
objectives at the optimal designs are shown in Fig. 17. In this scenario, characterized by a higher Tikhonov weight than scenario
I, the two regularization techniques produce distinct morphologies for the optimal design parameter. Specifically, in the l0-norm
continuation, the initial design morphology of the Tikhonov solution in Fig. 14 is maintained, with a progressive reduction in
interface thickness. In contrast, the phase field continuation forms the overall design morphology into an insulating cloak around
the column in the early steps and gradually refines sparsification as the extremum of the double well transitions towards d = 0, 1.
After an equal number of continuation steps, the phase field regularization attains a fully sparsed solution by compromising the
thermal objective, whereas the l0-norm leads to non-sparse regions. The states and porosities for the mean and samples of the
uncertain parameters at the final step of the optimal design process are displayed in Fig. 18 for l0-norm and Fig. 19 for phase field
continuation. These results indicate that the phase field regularization leads to lower stress concentration and higher fluid pressure
to attain mechanical stability while leading to weaker insulation performance than the l0-norm regularized design.

Remarks. Regarding the l0-norm and phase field regularization functionals, in terms of enforcing sparsity in the design solution
and achieving the thermal and mechanical design objectives, we offer the following remarks:

• The proposed l0 continuation method attains sparsity by gradually transitioning the regularization function towards the true
l0-norm. This process depends on a self-evolving hyperparameter ✏0 and imposes a progressive penalty on design values
between d = 0 to d = 1. The continuation scheme can be stopped when the desired interface thickness is reached. Nevertheless,
owing to the non-convex nature of the l0-norm function, the process must initiate with an optimization step that employs a
convex regularizer such as Tikhonov. Lastly, the l0-norm function exhibits a bias towards favoring d = 0 when dealing with
non-sparse regions during the continuation scheme.

• The proposed phase field continuation achieves sparsity by gradually transforming a convex single well initially centered
at d = 0.5, transitioning it into a double well with extrema at d = 0 and d = 1. As a result, all continuation steps must be
completed without an early termination option to attain a sparsified solution. Unlike the l0-norm approach, the convex nature
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Fig. 17. The probability distributions of thermal Q
T
and mechanical Q

M
objectives of Scenario II at optimal design obtained using l0-norm d

l0 (5)
opt and phase

field dw(6)opt corresponding to Fig. 16.

of the phase field functional eliminates the need for an initial optimization step. However, it requires an additional weighting
parameter, �well, which implicitly controls the final interface thickness. Lastly, due to the symmetry of the double well, the
regularization treats both of its extremums (d = 0 and d = 1) equally.

• The solution accuracy and computational efficiency of both continuation schemes can be significantly enhanced by seamlessly
integrating it with the adaptive refinement strategies of multiple discretizations, e.g., [90,91]. This entails mesh refinement
for the design parameter discretization at high gradient regions and coarsening in other areas to accurately capture interface
formation between sparse design parameters. Concurrently, individual discretization refinement for each state variable u to
ensure the accuracy of the forward model solution. The results demonstrating smooth interfaces in the optimal design solution
for scenario II through adaptive mesh refinement can be found in [61].

8. Conclusions

This work presents an efficient and scalable computational framework for multi-objective optimal design governed by PDEs and
in the presence of high-dimensional uncertainty. The problem of interest is optimizing the spatial distribution of uncertain, spatially
correlated material porosity field within building thermal insulation components, aiming to achieve both effective insulation and
mechanical stability. The framework employs quadratic Taylor expansions of the design objective with respect to the uncertain
parameter to estimate both mean and variance within the cost function. It introduces two regularization techniques based on
approximate l0-norm and phase field to achieve the desired sparse design. The optimization solution includes a randomized algo-
rithm for solving generalized eigenvalue problems, enabling efficient approximation of the trace of the covariance-preconditioned
Hessian. Additionally, it implements continuation numerical schemes for implementing the sparsity-enforcing regularizations to
achieve globally optimal solutions. The scalability of this framework stems from the rapid decay of the eigenvalues and the
dimension-independent number of required optimization iterations. Consequently, the computational cost is governed by the rank
of the preconditioned Hessian rather than the dimension of the discretized uncertain parameter field. We implement the proposed
PDE-constrained design under uncertainty framework on two examples of insulation components. These numerical experiments
demonstrate the efficiency and accuracy of the quadratic approximation compared to Monte Carlo estimations of means and
variances, as well as the scalability of the optimization concerning the number of design parameters. Furthermore, the results suggest
that phase field regularization is effective in attaining sparsity in optimal designs. However, l0-norm regularization provides direct
control over the interface thickness between different materials and can outperform phase field regularization in achieving the
design objective, even though it may not always result in fully sparse solutions.

In the future, we aim to expand upon the proposed design under uncertainty framework introduced in this study by incorporating
uncertainty of the forward model parameters, determined from the experimental measurements of aerogel [6] and using Bayesian
methods, e.g., [63,92–95]. Although the numerical results presented in this work indicate that the quadratic approximation provides
reasonably accurate solutions for optimal design, even with high uncertainty in the porosity field, challenges may arise when dealing
with high variance in the model parameters. The accuracy of the proposed framework can be improved by leveraging higher-order
Taylor approximations (e.g., cubic) of the design objective or utilizing the quadratic approximation as control variates to accelerate
the Monte Carlo estimations, as demonstrated in [31]. Another promising avenue for future research involves reformulating the
problem by considering the mechanical stability of the insulation component to mitigate stress concentration. This extension would
require adapting the current algorithm to handle PDE-constrained optimizations with inequality chance constraints, similar to the
approaches presented in [38,96]. In this context, obtaining a Pareto design set will provide more profound insights into effectively
prioritizing the mean and variance objectives. Finally, despite the efficiency of the current framework, its application in large-
scale engineering systems poses a significant challenge due to the computational cost of solving numerous PDEs throughout the
optimization process. To address this challenge effectively, one promising approach involves harnessing the capabilities of recently
developed derivative-informed neural operators [36,97–101] that provide an accurate approximation of the mapping from joint
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Fig. 18. Porosity and states of Scenario II at the optimal design dl0 (5)
opt shown in Fig. 16 obtained using (first column) the mean of the uncertain parameter Ñm = 0,

(second and third columns) two i.i.d. samples of m. The rows, respectively, show porosity �
f
, magnitude of solid displacement Òu

s
Ò, magnitude of effective solid

stress ÒT®
s
Ò, fluid pressure p, solid temperature ✓

s
, and fluid temperature ✓

f
.

uncertain and design parameters to the PDE state and its derivatives with respect to the design parameters. Additionally, this method
enables efficient construction of neural networks using reduced basis architectures, ensuring scalability for high-dimensional design
problems. An alternative approach to tackle large-scale problems involves harnessing a novel deep learning framework for PDEs
solution, as introduced in [102]. This framework involves inferring PDE solutions within a small square domain and progressively
assembling them onto larger, arbitrary domains and boundary conditions while maintaining the spatial regularity of the solution.
Although the coupling introduces additional complexity, the domain decomposition strategy in this approach significantly reduces
the size of the constructed Hessian and can effectively leverage parallel computing to enhance computational efficiency.

In summary, this study emphasizes the critical importance of mitigating uncertainty in ensuring the reliability of optimal
design solutions. Our contribution addresses the computational challenges of multi-objective optimization, which involve managing
high-dimensional uncertainty and striking a balance between solution sparsity and competing design objectives by incorporating
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Fig. 19. Porosity and states of Scenario II at the optimal design dw(6)opt shown in Fig. 16 obtained using (first column) the mean of the uncertain parameter Ñm = 0,
(second and third columns) two i.i.d. samples of m. The rows, respectively, show porosity �

f
, magnitude of solid displacement Òu

s
Ò, magnitude of effective solid

stress ÒT®
s
Ò, fluid pressure p, solid temperature ✓

s
, and fluid temperature ✓

f
.

appropriate regularizations. While this work proposes an effective framework for design under uncertainty, opportunities for further
enhancement exist and will be explored in future research works.
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