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Abstract—Shared autonomous electric mobility has attracted significant interest in recent years due to its potential to save energy

consumption, enhance mobility accessibility, reduce air pollution, mitigate traffic congestion, etc. Although providing convenient, low-

cost, and environmentally-friendly mobility, there are still some roadblocks to achieve efficient shared autonomous electric mobility, e.g.,

how to enable the accessibility of shared autonomous electric vehicles in time. To overcome these roadblocks, in this article, we design

Safari, an efficient Shared Autonomous electric vehicle Fleet mAnagement system with joint Repositioning and chargIng based on

dynamic deadlines to improve both user experience and operating profits. Our Safari considers not only the highly dynamic user

demand for vehicle repositioning (i.e., where to relocate) but also many practical factors like the time-varying charging pricing for

charging scheduling (i.e., where to charge). To perform the two tasks efficiently, in Safari, we design a dynamic deadline-based

deep reinforcement learning algorithm, which generates dynamic deadlines via usage prediction combined with an error compensation

mechanism to adaptively learn the optimal decisions for satisfying highly dynamic and unbalanced user demand in real time. More

importantly, we implement and evaluate the Safari system with 10-month real-world shared electric vehicle data, and the extensive

experimental results show that our Safari achieves 100% of accessibility and effectively reduces 26.2% of charging costs and

reduces 31.8% of vehicle movements for energy saving with a small runtime overhead at the same time. Furthermore, the results also

show Safari has a great potential to achieve efficient and accessible shared autonomous electric mobility during its long-term

expansion and evolution process.

Index Terms—Shared autonomous electric mobility, accessibility, fleet management, dynamic deadline, deep reinforcement learning

Ç

1 INTRODUCTION

SHARED autonomous electric vehicles (SAEV) are believed
to be the future mobility [1] due to their convenience and

flexibility for use, the potential to reduce the use of pri-
vately-owned vehicles for traffic congestion alleviation, as
well as the environmentally-friendly nature for gasoline
consumption and carbon footprint reduction. In addition,
as an additional social benefit, SAEV fleets are the most
effective way to introduce the public to electric cars. Hence,
they attracted significant interest from both industrial com-
panies and researchers nowadays.

Although beingmore flexible and cost-efficient for people
with low annual vehicle usage, the SAEVs are also facing

many practical fleet management roadblocks due to both the
supply uncertainty and demand uncertainty. From the supply
aspect, we need to consider the vehicle availability and park-
ing availability for better user experience and lower opera-
tion costs. From the demand aspect, we need to consider the
diverse user behavior, unbalanced spatiotemporal usage, as
well as the strict timing requirement. Typically, there are
two types of tasks for SAEV fleet management to satisfy the
future user demand: (i) vehicle Repositioning/Relocation, i.e.,
deciding where to relocate vehicles, which means proac-
tively dispatching unoccupied SAEVs from one service sta-
tion to another service station, and (ii) vehicle Charging, i.e.,
deciding where to charge vehicles [2], [3], [4], [5], which
means dispatching low-battery SAEVs from service stations
to charging stations and moving fully-charged SAEVs from
charging stations back to service stations.

In recent years, with the development of ubiquitous and
mobile computing techniques, there are an increasing num-
ber of works focusing on fleet management for different
types of vehicles, e.g., taxi [6], bus [7], [8], [9], rideshar-
ing [10], bikesharing [11], e-scooter sharing [12], carshar-
ing [13], but most of these works focused on vehicle
repositioning only [14] or charging issue only [15]. Although
some recent works [16], [17] have been done to improve the
operational efficiency of fleets by considering both vehicle
repositioning and charging scheduling, but these mobility
modalities may have different usage patterns from SAEV
fleets. Thus, many important practical factors (e.g., user
behavior and preference, time-variant charging pricing, and
strict timing requirements of user demand) may not be
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captured by them. More importantly, most of existing works
set predefined static schedules for vehicle repositioning or
charging scheduling (e.g., set 10 minutes as a time slot to
make the management decisions [10], [13], [18]), which
potentially lead to two key drawbacks: (i) it is challenging
for them to fully satisfy the user demand at intensive and
unexpected peaks, so some users cannot have access to the
mobility system in time; (ii) it may cause unnecessary deci-
sion making during low demand time periods, leading to
more energy consumption. Furthermore, most existing opti-
mization methods [16], [19] only considered short-term per-
formance of the fleet management without farsighted views,
which potentially causes suboptimal solutions.

To advance existing works, in this paper, we design
Safari, a new data-driven fleet management system with
joint repositioning and charging scheduling for SAEVs to
enable shared autonomous mobility accessibility and also
improve its operational efficiency, which means whenever
users have travel demand, they can have access to the
shared vehicles in time. However, it is very challenging to
achieve an accessible SAEV fleet considering both vehicle
repositioning and charging due to possible conflicting relation-
ships (e.g., meet the accessibility of users versus improve the
profit of the operator) and many confounding factors (e.g.,
individual user behaviors like spatiotemporal usage prefer-
ence, time-variant charging pricing, the availability and
reachability of SAEVs).

To address these challenges, in Safari, we design a
Dynamic Deadline-based Deep Reinforcement Learning algo-
rithm to learn sophisticated decisions, which has two key
advantages for SAEV fleet management: (i) the dynamic
deadline strategy helps the system to adaptively satisfy the
time-varying unbalanced user demand based on usage pre-
diction and an error compensation mechanism; (ii) the
dynamic deadline deep reinforcement learning-based deci-
sion making enables a long-term benefit of the system and
improves scalability at the cost of less coordination between
SAEVs, which causes a small runtime overhead for the real-
time requirement.

In particular, the key contributions of this paper include:

� In this paper, we design the first dynamic deadline-
based SAEV fleet management system called
Safari, which integrates two categories of decision-
making tasks to guarantee the SAEV accessibility of
users: (i) vehicle repositioning (proactively move
unoccupied vehicles in one service station to another
service station) and (ii) vehicle charging (move low-
battery vehicles from service stations to charging sta-
tions and move fully-charged vehicles from charging
stations back to service stations). Safari considers
different real-world factors for decision-making, e.g.,
dynamic demand & supply, availability of SAEVs,
reachability to other services stations or charging sta-
tions, time-variant charging pricing, etc.

� In Safari, we design a dynamic deadline-based
deep reinforcement learning algorithm to learn
which service station to relocate and which charging
station to charge for each SAEV. It has two major
components: (i) A prediction-based dynamic dead-
line mechanism is utilized to adapt to the highly

dynamic demand and supply, where the prediction
is performed based on the features we capture from
our data-driven observations, and an error compen-
sation mechanism is introduced to make our Safari
more robust to the prediction error. (ii) Based on the
dynamic deadline setting, a deep reinforcement
learning module is presented, which enables long-
term benefits for the system with a small runtime
overhead, and it has the potential to make our sys-
tem more sustainable.

� More importantly, we implement and evaluate our
dynamic deadline-based real-time fleet management
system Safari for repositioning and charging of
SAEVs with multi-source data, including 10-month
detailed order records from over 12,000 unique users
and the metadata of stations from a shared EV fleet.
The experimental results show our Safari achieves
100% of accessibility and also effectively reduces
26.2% of the charging costs and reduces 31.8% of
vehicle movements. It also has a great potential for
efficient fleet management of SAEVs during their
long-term expansion and evolution process.

The rest of the paper is organized as follows. Section 2
summarizes related works. Section 3 introduces the SAEV
system and its management significance. Section 4 shows
the key idea and problem formulation. Section 5 presents
the detailed system design. Section 6 evaluates the perfor-
mance of our Safari. The lessons learned are discussed in
Section 7. Finally, we conclude this paper in Section 8.

2 RELATED WORK

In this section, we summarize two types of related works,
i.e., vehicle repositioning and EV charging.

2.1 Vehicle Repositioning

Owing to the availability of the rich vehicle location infor-
mation and operation log data, there is a surge number of
work on addressing the unbalanced demand and supply
problem by vehicle repositioning for different mobility
modes, e.g., taxi [20], [21], [22], ridesharing [10], [18], bike-
sharing [11], [23], [24], e-scooter sharing [12], and carshar-
ing [25]. Taxi: Yuan et al. [26] proposed a recommendation
system to help taxi drivers find some locations where they
are more likely to pick up passengers quickly and maxi-
mize the profit. Zhou et al. [20] presented a spatial net-
work-based Markov Decision Process to recommend taxi
drivers to specific regions to maximize the profit in the
near future. Ridesharing: Lin et al. [18] designed a manage-
ment system for ridesharing platforms to maximize the
gross merchandise volume of the platforms by relocating
available vehicles to the locations with a larger demand-
supply gap than the current one. Miller et al. [27] pre-
sented a positioning method for improving customer qual-
ity of service in ridesharing systems. Bikesharing: Liu et al.
[23] formulated the station-based bikesharing reposition-
ing problem as mixed integer nonlinear programming to
minimize the total travel distance.

Different from existing vehicle repositioning work, in
this paper, we study an innovative transportation modality,
i.e., electric carsharing, which has essential differences with
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existing mobility modes from both spatial and temporal
dimensions. In addition, different fleets have different man-
agement modes, so they have different repositioning mech-
anisms. Moreover, existing vehicle repositioning works
rarely consider complicated charging issues and potential
impacts of dynamic deadlines.

Even though there are also some works focusing on car-
sharing vehicle repositioning, most of them are based on
theoretical models with many assumptions. For example,
Jorge et al. [28] presented a new mathematical model to
optimize the relocation operations that maximize the profit-
ability of a carsharing service and a simulation model to
study different real-time relocation policies. Due to the
data-driven nature of our work, which reveals some real-
world insights for fleet management, and we also verify our
algorithm using the real-world data.

2.2 EV Charging Recommendation

In the recent decade, there is also an increase of works on
EV charging recommendation [6], [17], [29], [30], [31], [32],
[33], which is also related to our work. Wang et al. [17]
designed a charging recommendation system to learn the
charging policy for reducing the range anxiety of e-taxi
drivers. Yuan et al. [34] developed a proactive partial charg-
ing recommendation strategy to increases EV utilization.
Wang et al. [6] presented a data-driven fairness-aware
charging recommendation method to reduce charging idle
time of e-taxi fleets. Zhang et al. [35] proposed a framework
for intelligently recommending public accessible charging
stations to EVs by jointly considering various long-term
spatiotemporal factors. Tian et al. [30] presented a real-time
recommendation system to reduce e-taxi drivers’ charging
costs by mining large-scale GPS data and taxis operation
data information. Zhou et al. [5] developed a strategy to
assign SAEVs to charging stations for maximizing user sat-
isfactions in terms of traveling distance under the budget of
solar energy income.

Uniqueness: Different from these works, our paper
focuses on a new type of mobility, i.e., shared autonomous
electric mobility. One of the most important factor for the
success of shared autonomous electric mobility is the acces-
sibility of users, which means whenever users have travel
demand, they can have access to the SAEVs in time. There-
fore, SAEVs need to be relocated between different service
stations to satisfy the highly dynamic and unbalanced spa-
tiotemporal usage distributions. The interactions between
service stations and charging stations also make it challeng-
ing to manage SAEV fleets efficiently compared to only
charge other types of EVs. More importantly, we designed a
dynamic deadline-based fleet management strategy, which
has not been presented by existing works.

3 PRELIMINARY

3.1 SAEV System and Operation

A typical SAEV fleet operation paradigm is shown in Fig. 1.
There are four main parties in the system, i.e., operator,
users, SAEVs, and stations. The operator provides a fleet
management system to monitor all real-time status informa-
tion of users, SAEVs, and stations, and performs spatial
search. In particular, the real-time location information and

order information of users are recorded and uploaded
when they use the mobile app. The real-time location and
status information of SAEVs are also periodically uploaded
to our servers via communication devices. The transaction
information is recorded when users return SAEVs.

In light of the description of this SAEV system, a usage
procedure typically includes four steps:

1) Registration. New users register for using SAEVs via
a mobile app. Their demographic information (e.g.,
age, gender, and occupation) is required when regis-
tering for verifying and security purposes.

2) Pickup. A user send a request via the app. A SAEV
will be dispatched to pick the user up once receiving
the request from the user. The SAEVs typically have
enough energy for the users to use.

3) Using. Users utilize SAEVs for their purposes.
4) Returning. Users return SAEVs, and then make the

payment via the app. Then the SAEVs will be dis-
patched to the nearest service station with available
parking spots if no other requests.

Ideally, if there are an unlimited number of SAEVs, user
demand can be satisfied trivially. However, this assumption
is normally not realistic. The operator usually possesses a
limited number of SAEVs and parking spots at each service
station due to high costs. Thus, some efforts are needed to
balance the demand and supply to guarantee the accessibil-
ity, which includes two tasks: relocating SAEVs between
service stations and driving low-battery SAEVs to charge in
charging stations and then distributing fully-charged
SAEVs back to service stations for satisfying the future
demand. Intuitively, given the unbalanced user demand
and supply, how to effectively guarantee the accessibility of users
and decide the optimal locations for SAEVs to relocate and charge
is essential to improve the user experience and increase
operating profits for the SAEV operators.

3.2 Problem Significance

Definition 1. Deadline: Typically, deadlines in a real time sys-
tem represent the time at which some specific tasks need to be
finished [36]. As shown in Fig. 2, suppose a long time period T
is divided into h consecutive intervals, e.g., fI1; I2. . .; Ihg ¼

Fig. 1. Shared autonomous EV fleet operation paradigm.
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fðd0; d1�, ðd1; d2�,...,ðdi�2; di�1�; ðdi�1; di�,...,ðdh�1; dh�g, where
d0 is the start time of the time period and di is the deadline for
decision completion. The ði� 1Þth deadline is the time when
we need to finish all vehicle repositioning and charging schedul-
ing to satisfy the user demand by the ðiÞth deadline. In other
word, the vehicle repositioning and charging scheduling per-
formed between the ði� 2Þth and ði� 1Þth deadlines will sat-
isfy the user demand arising during the period between the
ði� 1Þth and ðiÞth deadlines. The dynamic deadline means di
is not predefined and static, which needs to be learned from the
real-world demand and supply and usages. The dynamic dead-
line generation method will be introduced in Section 5.

In the shared autonomous electric mobility, user experience
is directly impacted by the availability of SAEVs. Intuitively,
users suffer from bad user experience if they cannot have
access to the SAEVs in time when they have travel demand,
and operators suffer from low operational efficiency if they
frequently relocate the SAEVs because it will cause more
energy consumption. Especially, those situations always
occur during the rush hours and valley hours if the SAEVs
are not managed effectively. Thus, to guarantee good user
experience and high operational efficiency, the dynamic
usage behaviors need to be taken into consideration. On the
one hand, how many SAEVs are picked up and returned at
each time slot determines which service station will be
jammed or starved, thus impacts how to perform vehicle
repositioning and charging scheduling; on the other hand,
how to conduct the vehicle dispatching impacts how many
available SAEVs and parking spots in each service station,
which impacts the futuremobility accessibility of users.

Therefore, how to make decisions by considering the
future user demand for good user experience and high
operational efficiency is a key task of fleet management,
which inspires us to (i) characterize the user pickup &
return demand using dynamic service deadlines; (ii) design
a practical and efficient decision making strategy to
improve the user experience and optimize the operating
profit while all the deadlines can be met.

4 KEY IDEA AND PROBLEM FORMULATION

4.1 Key Idea of Safari

In this paper, we design Safari, a new data-driven fleet
management system for SAEVs to guarantee mobility acces-
sibility (i.e., whenever users have travel demand, they can
have access to the shared vehicles in time ) and improve the
operator’s operating profits (which are highly related to the
revenue of the fleet from serving users, costs for charging,
and the extra movements of vehicle dispatching) based on
joint repositioning and charging scheduling with dynamic
deadlines. In addition, Safari also considers different
complicated real-world factors.

Fig. 3 shows the framework of our designed Safari,
which includes four key modules, i.e., data module, net flow
prediction module, prediction-based dynamic deadline gen-
eration module, and real-time decision making module by

considering both vehicle repositioning and charging of
SAEVs. (i) We first collect the real-world shared autonomous
mobility data and contextual data (e.g., weather and temper-
ature). (ii) Based on these data, we extract features for net
flowprediction. (iii) Thenwe generate the dynamic deadlines
based on the net flow prediction and error compensation. (iv)
We make decisions for real-time repositioning and charging
in order to improve the shared autonomous electric mobility
services. (v) It then provides feedback and generates new
data to feed to the system. These five steps form a closed loop
to constantly improve the shared autonomous electric mobil-
ity services.

Due to the sequential decision characteristics of SAEV
fleet management, we formulate the problem as a Markov
Decision Process (MDP), and then we present a dynamic
deadline-based distributed deep reinforcement learning
method to achieve our goals, which not only makes the sys-
tem adaptively satisfy the time-varying unbalanced pickup
and return demand based on usage prediction, but also
achieves long-term benefits with a small runtime overhead
for the real-time requirement.

4.2 Problem Formulation

Formally, we model the SAEV fleet management problem
as an MDP G for N agents, which is defined by a five-tuple
G ¼ ðS;A;R;P; gÞ, where S is the set of states; A is the
action space;R is the reward function; P is transition proba-
bility functions; and g is a discount factor. In an MDP, an
agent behaves in an environment according to a policy that
specifies how the agent selects actions at each state of the
MDP. The detailed formulation of the MDP G in our prob-
lem is shown below.

Agent. We consider each unoccupied SAEVs (i.e., does
not rent by users) as an agent, and only the unoccupied
SAEVs can be scheduled by our system. Although the num-
ber of total agents in the fleet is always N , the number of
agents in each time intervalNt is changing over time.

State S. The state of a SAEV is defined as a two-dimen-
sional vector indicating its spatiotemporal status. Suppose
there are a set of service stations fSSg and a set of charging
stations fCSg, so each unoccupied SAEV may be in one of

Fig. 2. An illustration of the dynamic deadline.

Fig. 3. Framework of the Safari.
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the service stations or charging stations. We define a local-
view state of a SAEV, st;lo ¼ ½t; l� 2 Slo, where t is the time
index and t 2 ððd� 1Þth; dth�, i.e., the time slot between the
ðd� 1Þth and the dth deadline.), and l 2 fSSg [ fCSg is the
location index (i.e., which service station or charging station
the SAEV is in). In this case, the finite local state space Slo is
a Cartesian product of the set of deadlines and the set of ser-
vice stations + charging stations, i.e., Slo ¼ fDg � ðfSSg [
fCSgÞ and the number of states is jSloj ¼ jDj � jfSSg [
fCSgj. In addition to the local-view state, we also define a
global state st;go to capture the system status includes the
number of SAEVs and parking spots availability at each ser-
vice station and their real-time predicted usages in the next
interval, and it also includes the number of unavailable
SAEVs at each station in the current and next time interval.
The global-view state st;go will update in each time slot.
Finally, the state of each available SAEV k during the time
slot t can be represented as stðkÞ ¼ ½st;loðkÞ; st;goðkÞ� 2 SðkÞ.

Action A. The action space of a SAEV k, AðkÞ specifies
where it should go by the next deadline. We define five
types of actions for the SAEV scheduling. (i) AS : Staying at
the current service station; (ii) AR: Relocating to another ser-
vice station to satisfy user demand in that station or make
parking spots for vehicles that will be returned to this ser-
vice station; (iii) AC : scheduling to Charge in a charging sta-
tion; (iv) AK : Keeping charging at the charging station; (v)
AB: moving Back to a service station;

The action to take is decided by two factors: (i) Availabil-
ity of SAEVs for users in each service station by deadlines.
(ii) Reachability to the charging stations or other service sta-
tions of SAEVs when performing repositioning or charging
scheduling. That means for each service station si 2 fSSg:
(1) # of pickups � # of available SAEVs; (2) # of SAEVs
(available or unavailable) + # of returns � # of parking
spots. Besides, for each SAEV k, it becomes unavailable if its
battery level decreases to below a threshold value h (e.g.,
30%), which means the low-battery SAEVs should be dis-
patched/moved to charge in order to satisfy future
demand. Since there are enough public charging stations in
Beijing, we envision that the number of charging points is
sufficient for SAEVs, and SAEVs can always be charged in
the nearest available charging stations.

Reward R. Reward usually determines the optimization
goal and reflects the immediate sense of the action in a spe-
cific state. A typical measurement is to estimate the differ-
ence of the accumulated reward between with and without
an action. We define three types of immediate rewards here,
i.e., positive reward, zero reward, and negative reward,
which capture the money transaction.

Specifically, (i) if a SAEV is picked up by a user during cer-
tain interval (i.e., AP ), it will have a positive reward, which is
equivalent to the money paid by the user; (ii) if a SAEV stays
at the current service station (i.e., AS), it will not be used by
users (i.e., no revenue) and also have no charging and moving
costs, so the immediate reward is zero; (iii) if a SAEV is relo-
cated from one service station to another service station (i.e.,
AR), scheduled from one service station to a charging station
(i.e.,AC), or moved backed to a service station from a charging
station (i.e., AB), it will have a negative reward due to the
energy consumption cost. (iv) if a SAEV is charging in a charg-
ing station (i.e.,AK), it will also have a negative reward due to

the charging cost, which is explicitly related to the charging
time and charging prices. Implicitly, the charging cost is also
related to the previous usages and repositionings since these
activities will directly cause the energy consumption of
SAEVs. Hence, we define the reward function as follows

RU � CC � CD ¼
Xm
i¼1

RðiÞ
u �

Xn
j¼1

������� � TTTTTTT ðjÞ
c

� �
�
Xz
k¼1

h� dk; (1)

where RU is the total revenue from serving users; CC is the
total charging cost of the electric carsharing fleet; CD is the
total energy consumption cost for dispatching SAEVs, e.g.,
relocating SAEVs from one service station to another service
station and moving SAEVs to charging stations and moving
back to services stations; RðiÞ

u is the revenue from serving ith
electric carsharing order; m is the total number of served
orders; n is the total number of charges of the fleet. TTTTTTT ðjÞ

c is a
three-dimensional vector TTTTTTT ðjÞ

c ¼ ½T ðjÞ
p ; T

ðjÞ
f ; T ðjÞ

o � describing

the charging time of jth charging event, where T ðjÞ
p , T

ðjÞ
f ,

and T ðjÞ
o denote the time in peak, flat, and off-peak charging

pricing hours of the jth charging event, respectively. Simi-

larly, we also describe the time-varying charging pricing as

a three-dimensional vector ������� ¼ ½�p; �f ; �o�, where �p, �f , �o

denote the charging prices during peak, flat, and off-peak

hours, respectively (as shown in Fig. 7). h is the energy con-

sumption rate (i.e., energy consumption per kilometer), and

we intuitively envision it is a constant value for simplifica-
tion; dk is the distance of kth movement; and z is the total

number of vehicle movements of SAEVs, so reducing the

number of vehicle movements will potentially increase the

profit of the SAEV fleet.
Hence, if we can satisfy more passenger demand, then

the total revenue from serving users RU can be increased.
We can also improve the profit of the operator by reducing
its charging cost CC for the SAEV fleet and movement cost
for dispatching SAEVs CD.

Probability function P defines the transition probability
between states by taking action S � A� S ! ½0; 1�, e.g.,
pðstþ1jst; atÞ denotes the probability of transition to the next
state stþ1 given the action at in the current state st. Our goal
is to find a function that maps a state to the best action that
each SAEV can take.

Discount factor g essentially determines how much the
agents care about rewards in the distant future relative to
those in the immediate future. The value of g is typically
selected from [0,1), so the final expected reward in the infi-
nite horizon will be convergent and bounded to a finite
number. If g ¼ 0, the agent will be completely myopic and
only learn about actions that produce an immediate reward
without considering future rewards.

5 SYSTEM DESIGN

From Fig. 3, we can see that Safari has four key compo-
nent. In this section, we show the detailed design of each
component of Safari.

5.1 Multi-Source Data Module

In this paper, we utilize a real-world shared EV fleet opera-
tion dataset collected from the Chinese city Beijing. This
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dataset is obtained by collaborating with a shared EV opera-
tor, who provides us the data for improving its business
intelligence. The shared EV fleet is similar to SAEV fleet
except for having drivers or not. The time span of the data-
set is from January 2017 to October 2017. The dataset
includes four different types of data, i.e., vehicle usage data,
trajectory data, service station and charging station data.
Some key fields of the four types of data are shown below,
and an example is in Table 1.

� Vehicle Usage Data include all user travel demand
records. If a user has successfully accessed the shared
EVs, there is a detailed usage record consisting of 26
fields describing vehicles, users, and usage-related
information, e.g., the order number, the user ID, user
age, gender, workplace & occupation, order time, vehi-
cle pickup and return time and station, the vehicle ID,
usage time, and payment, etc. If a user has not success-
fully accessed the shared EVs, it will have an incomplete
record indicating the failure. In our dataset, about 87%
of user demandwas satisfied by the current system.

� Vehicle GPS Data include fields that describe the
real-time status of each shared EV, e.g., vehicle ID,
time-stamp, and longitude & latitude. The GPS data
is collected from users’ cellphones, which is
uploaded to our server through 4 G/5 G cellular
communication. The GPS data is only collected
when users are using the shared EVs with the
mobile app.

� Service Station Data describe the service station infor-
mation, e.g., the station IDs, the station names, the
GPS locations, and the number of parking spots.

� Charging Station Data include station IDs, station
names, coordinates (i.e., longitudes and latitudes),
and the number of charging points in each station.
The charging station data is collected and uploaded
with CAN bus communication and GPRS.

Based on the multi-source dataset, we conducted a compre-
hensive data cleaning and data-driven analysis to discover
the factors that may impact user behavior. Due to the large
size of our shared EV data, it requires significant efforts for
efficient management, querying, and processing. Hence, we
performed a detailed cleaning process to filter out the error,
duplicate, and incomplete order and vehicle GPS data on a
high-performance cluster with Spark and Hadoop, which
was equipped with 80 TB memory and 20 nodes.

5.1.1 Per-Usage Spatiotemporal Patterns

Figs. 4 and 5 show the per-usage time and distance distribu-
tions. We found that about 50% of the per-usage time is lon-
ger than 5 hours and 88% of the per-usage time is shorter
than 16 hours. There are also some users who use shared
EVs for a long time, e.g., about 4% of the per-usage time is
longer than 4 days. We found most users use shared EVs for
middle-distance trips, e.g., about 75% of trips are longer
than 20 km and 80% of trips are shorter than 80 km.

5.1.2 Unbalanced Spatiotemporal Usage Patterns

We then further investigate the fine-grained pickup and
return distributions of different service stations at different
hours of a day. As shown in Fig. 6, the red circles mean
there are more pickups than returns in these service sta-
tions, and the aquamarine circles mean there are more
returns in these service stations. The size of each circle
stands for the absolute value of the difference between the
number of returns and the number of pickups, i.e.,
j# of returns�# of pickupsj.

We found the pickup and return patterns have signifi-
cant differences between different hours of a day. For exam-
ple, there are more vehicle returns in most service stations
during late-night hours (e.g., 0:00-1:00), and both the num-
ber of pickups and returns are small. In the morning rush

TABLE 1
An Example of the Dataset

Usage Data Vehicle ID Order Number Pickup Time Pickup Station Usage Time (min) Payment (CNY)

300044kzbch7 1708XXX2831 2017-08-01 00:28:01 Marriott Center 55 19.4

GPS Data Device ID Time Longitude Latitude Speed (km/h) Vehicle ID

116232100002579 2017-08-01 20:56:41 116.4062079 40.050016 25.0 10001g41q5vn

Service Station Station ID Station Name Longitude Latitude # of Parking Spots Status

66 Jiajing Tiancheng 116.483295 39.986183 3 Operating

Charging Station Station ID Station Name Longitude Latitude # of Chargers Status

1 CS1 116.225523 39.909251 10 Operating

Fig. 4. Per-usage time. Fig. 5. Per-usage distance.
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hours (e.g., 9:00-10:00), there are very high pickup demand
and return demand in different areas, e.g., more pickups in
residential areas and more returns in IT industrial areas.
The number of pickups increases during the day time, and
it peaks in the evening rush hours (e.g., 18:00-19:00). To
meet users’ highly dynamic pickup and return demand,
there should be enough shared EVs for users to pick up and
enough nearby parking spots to return vehicles in each ser-
vice station. However, this is not easy to be achieved by
users themselves, and it is necessary for the operator to dis-
patch shared EVs between service stations and move low-
battery vehicles to charge so that they can be accessed by
users in time.

5.1.3 Time-Variant Charging Pricing

We found many cities have time-variant charging pricing,
which breaks up 24 hours of a day into several intervals and
charges a different price for each interval. For example, the
charging rates in Beijing are divided into three types, i.e.,
off-peak prices (low rates), flat prices (medium rates), and
peak prices (high rates), and the corresponding electricity
rates are 1.1946, 1.4950, and 1.8044 CNY/kWh, respec-
tively [37]. The time-variant charging pricing of Beijing is
shown in Fig. 7. We found the peak price is 51% higher than
the off-peak price, which means the charging costs can
potentially reduce 51% if the operator charges SAEVs in off-
peak charging pricing hours instead of peak charging pric-
ing hours. Hence, the charging prices should also be consid-
ered for the SAEV fleet management.

5.2 Data-Driven Prediction Module

We first define the net flow and accumulated net flow as
follows.

Definition 2. We divide a long time period T into a set of small
time slots, e.g., we set the time slot length as 5 minutes to cap-
ture the more fine-grained pickup and return patterns. We then
define the net flow of a service station in a time slot as the
number of returns (i.e., inflow) minus the number of pickups
(i.e., outflow) in this time slot.

For each time slot ti, we calculate the net flow fti of a ser-
vice station in this time slot based on the real-world order

records, i.e., the net flow value will be deducted by one if
there is a pickup activity and the net flow value will be
added by one if there is a return activity.

Fig. 8a shows an example of the calculation of the net flow
of a service station. In this example, there are 10 small time
slots, and the value in each time slot denotes the net flow in
this time slot, e.g., the net flow of the service station is 1 in t1
and -2 in t4, which means there are one more returns than
pickups in t1 and there are two more pickups than returns
in t4. Based on the net flow fti of the service station in each
time slot, we then calculate the accumulated net flow in
multiple time slots, which is defined as follows:

Definition 3. Given a series of time slots ft1; t2; . . . ; tmg, the
accumulated net flow by ti of a service station is defined as
the sum of all net flows of previous time slots, i.e.,
Fti ¼

Pi
j¼1 ftj .

Fig. 8b shows the corresponding accumulated net flow of
Fig. 8a. Each value Fti in time slot ti is the sum of the net flow
from time slot t1 to ti. For example, the accumulated net flow
in t3 of the service station is Ft3 ¼ ft1 þ ft2 þ ft3 ¼ 3.

Accurate net flow predictions bftðiÞ are very important as
they directly impact the following dynamic deadline genera-
tion and decision making process. Hence, in this paper, we
comprehensively consider the factors that may impact users’
SAEV usage. Finally, we extracted five categories of basic
features (i.e., temporal features, spatial features, historical
usage features, user demographic features, and contextual
features) that are highly related to users’ usage behaviors to
predict the net flow of each service station in a small time slot
more accurately, which include the following 12 features.

5.2.1 Temporal Features FT
From Fig. 6, we found the number of pickups and returns
are closely related to the time factor. Hence, we extract three
temporal features: the time of a day (e.g., we divide one day
into a set of time slots F tod, and each time is set to be 5
minutes for a fine-grained prediction), the day of a week
F dow, and holidayFhol.

5.2.2 Spatial Features FS
We found users have different purposes for using shared
EVs, which result in different spatial usage patterns, e.g.,
people who use SAEVs for commuting may pick vehicles in
residential areas and then return them in the industrial
areas. Hence, we divide the city into seven categories of
functional areas based on the method in [38] (i.e., residence,
entertainment, business, industry, education, scenery spot,
and suburb) to capture the spatial patterns, which forms the
functional area featureF area.

Fig. 6. Spatiotemporal unbalanced usage patterns.

Fig. 7. Time-variant charging pricing in Beijing.

Fig. 8. The (accumulated) net flow of a service station.
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5.2.3 Historical Usage Features FH
Since the shared EV usages show a weekly pattern, we can
consider that the pickups/returns in a time slot are related
to the pickups/returns in the same time slot of previous
weeks. Hence, we utilize our long-term shared EV operation
data to capture the historical usage patterns. We extract the
net flow of each service station in the same time slot of three
previous consecutive weeks (e.g., Fhis1, Fhis2, Fhis3) as the
historical usage features.

5.2.4 User Demographic Features FD
We found that the users who use shared EVs in different
regions have different demographic features (e.g., more
young male users use shared EVs in areas with many IT
companies, and more young female users use shared EVs in
areas with many financial companies), so they may have
different usage patterns due to their job characteristics.
Therefore, the user demographic features are also important
for the net flow prediction. Finally, we extract the percentage
of male users and female users as the gender feature F gend

of each service station, and we utilize the users’ average age
as the age featureFage of each service station.

5.2.5 Contextual Features FC
We also found the contextual features like weather condi-
tions have a great impact on users’ shared EV usage behav-
iors. Hence, we collect meteorology data from the
website [39] and extract features for the net flow prediction.
We identify three contextual features: weather Fwea, tem-
perature F tem, and wind speed Fwind. Among these fea-
tures, the weather feature is divided into three categories:
sunny (or cloudy), rainy, and snowy. The temperature fea-
ture has also three types of values: cold (lower than 15 �C),
mild (15 -30 �C), hot (over 30 �C). The wind speed is divided
into two categories according to the Beaufort number [40]:
light (� 3) and heavy (> 3).

After identifying the related features, we then develop an
XGBoost [41]-based model to predict the net flow of each
service station in each time slot based on the long-term real-
world shared EV fleet operation data. XGBoost uses a
gradient boosting framework and is one of the most effective
machine learning models for prediction. Besides, the base
model of XGBoost is a decision tree, so it has the potential to
show better performance against overfitting and it normally
shows the best performance for the problems with small-to-
medium structured/tabular data. The predicted net flow of
the developed model can be represented as

f̂i ¼
XK
k¼1

hkðxiÞ; hk 2 H; (2)

where K is the number of trees; xi is the i
th input, including

the five categories of extracted features (12 in total); f̂i is the
corresponding predicted output, which is learned by a tree
ensemble model with a collection H of K functions hk. Then
the objective function at training round t iteration can be
denoted as

JðtÞ ¼
Xn
i¼1

ðlðfi; f̂iÞÞ þ
Xt

k¼1

VðfkÞ; (3)

where lð:Þ is the loss function (e.g., Square loss); V is the reg-
ularization term (e.g., L2 norm), which measures the model
complexity.

5.3 Dynamic Deadline Generation Module

As indicated in Fig. 6, the number of pickups and returns
are highly dynamic in both spatial and temporal dimen-
sions, so it may be challenging to satisfy the pickup demand
and return demand in some usage peak hours and it may
also cause high operation costs during low demand hours
with only predefined static schedules. Hence, in this paper,
we develop a dynamic deadline strategy to address this
issue. An illustration of the dynamic deadline setting is
shown in Fig. 9. The key idea of our dynamic deadline
design is that we set dense deadlines during peak hours
and sparse deadlines in other hours, which means we will
have more frequent dispatching during peak demand hours
and fewer actions during other hours. In this case, the acces-
sibility may be guaranteed in time and the system efficiency
can be also improved based on the dynamic deadlines.

Suppose there are N SAEVs fEV1; EV2; . . . ; EVNg in the
SAEV fleet, and n service stations fs1; s2; . . . ; sng are
deployed across the city to park these EVs. The capacity of
each service station is fcð1Þ; cð2Þ; . . . ; cðnÞg, and there are
fvð1Þ; vð2Þ; . . . ; vðnÞg available SAEVs at each service station
in the initial state (e.g., t0 in Fig. 8). If the accumulated net
flow of service station si over the time period T is F ðiÞ ¼
fFt1ðiÞ; Ft2ðiÞ; . . . ; FtmðiÞg, and there are kðiÞ ¼ fkt1ðiÞ; kt2ðiÞ;
. . . ; ktmðiÞg SAEVs that have the battery level lower than a
threshold resulting in unavailable at this service station over
time, then we can find that there are FtjðiÞ þ vðiÞ � ktjðiÞ
available SAEVs at the service station si in the jth time slot. If
the predicted number of pickups and returns at si in the ðjþ
1Þth time slot is bptjþ1

ðiÞ and brtjþ1
ðiÞ, and the estimated num-

ber of low-battery SAEVs is bktjþ1
ðiÞ, so the predicted net flow

of si in ðjþ 1Þth time slot is bftjþ1
ðiÞ ¼ bptjþ1

ðiÞ � brtjþ1
ðiÞ (more

detailed prediction process will be elaborated in Section 5.1).
Hence, the extra SAEV demand bvdtjþ1

ðiÞ and parking spot
demand cpdtjþ1

ðiÞ of si in ðjþ 1Þth time slot are

bvdtjþ1
ðiÞ ¼ maxf0;�bftjþ1

ðiÞ � ðFtjðiÞ þ vðiÞ � ktjðiÞÞg; (4)cpdtjþ1
ðiÞ ¼ maxf0; bftjþ1

ðiÞ þ ðFtjðiÞ þ vðiÞÞ � cðiÞg: (5)

Definition 4. We define the deficiency count of the service sta-
tion si in the ðjþ 1Þth time slot as dctjþ1

ðiÞ ¼ maxf bvdtjþ1
ðiÞ;cpdtjþ1

ðiÞg.

For the n service stations and m time slots, we can obtain
a n�m dimensional station deficiency matrixDn�m.

Fig. 9. The key idea of the dynamic deadline setting.
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Dn�m ¼

dctjþ1
ð1Þ � � � dctjþm

ð1Þ

..

. . .
. ..

.

dctjþ1
ðnÞ � � � dctjþm

ðnÞ

2664
3775: (6)

Each row of the matrix stands for the deficiency count of a
service station over time. However, if we make a scheduling
decision in every time slot, it may cause very high overhead
for the fleet management system. Hence, in this paper, we
try to set a sequence of dynamic scheduling deadlines,
which combine several 5-minute small time slots into an
interval based on the deficiency count of all service stations.

Suppose we finally combine the m time slots into h inter-
vals, e.g., fI1; I2; . . . ; Ii; . . . ; Ihg ¼ fðt0; d1�, ðd1; d2�,...,
ðdi�1; di�,..., ðdh�1; dh�g, where t0 is the start time, each inter-
val could consist of different number of small time slots,
and di is the ith deadline for SAEV decision making. The
basic idea of the dynamic deadline is that the deficiency count
between two consecutive deadlines should not be too small
or too large for all service stations (i.e., under a threshold
C), which means that there should be a certain amount of
demand for extra SAEVs or parking spots in some service
stations before making a management decision and the
vehicles can finish movements in time, and we should sat-
isfy enough supply for SAEVs and parking spots of the next
interval Ijþ1 in all service stations by the deadline dj.

To achieve the above objective, we combine the maxi-
mum entry of each column of Dn�m to obtain a max defi-
ciency vector DDDDDDDmmmmmmm ¼ ½maxD:;1;maxD:;2; . . . ;maxD:;m�. We first
empirically select an initial threshold C based on observa-
tions of DDDDDDDmmmmmmm, then C will also dynamically update with the
operation of the fleet management system.

5.4 Prediction Error Compensation Mechanism

However, in practice, it is possible to make inaccurate pre-
dictions due to some complicated and unexpected usage
behaviors even using advanced prediction methods com-
bined with good feature extraction. Hence, in this paper, we
further design an Error Compensation (EC) mechanism to
mitigate the influence of inaccurate predictions.

Since the objective of our work is to improve the opera-
tional efficiency of the SAEV fleet without sacrificing user
experience, our system should guarantee users’ pickup and
return demand by each deadline. However, if the absolute
value of the predicted net flow is much smaller than the
absolute value of the true value in some service stations, it
may cause some users’ demand cannot be satisfied. Hence,
we add a positive prediction compensation term �, which is
an adjustable hyperparameter, in Eqs. (4) and (5) to obtain
the following Eqs. (7) and (8) to make the system more
robust to prediction errors. The � in Eq. (7) is utilized to
compensate for the error that the predicted pickup demand
smaller than the real pickup demand. The � in Eq. (8) is uti-
lized to compensate for the error that the predicted parking
spot demand smaller than the real parking spot demand.

bvd0tjþ1
ðiÞ ¼ maxf0;�bftjþ1

ðiÞ � ðFtjðiÞ þ vðiÞ � ktjðiÞÞ þ �g (7)cpd0tjþ1
ðiÞ ¼ maxf0; bftjþ1

ðiÞ þ ðFtjðiÞ þ vðiÞÞ � cðiÞ þ �g: (8)

Based on the new extra demand of SAEVs bvd0tjþ1
ðiÞ and

demand of parking spots cpd0tjþ1
ðiÞ, we obtain the new station

deficiency matrix D0
n�m and max deficiency vector DDDDDDD0

mmmmmmm for
dynamic deadlines generation as shown in Section 5.3.

5.5 DRL-Based Decision Making Modlue

The dynamic deadline is the basis for the following decision
making. The purpose of setting the dynamic deadlines is to
decide when to make decisions for repositioning and charg-
ing. Hence, after determining the deadlines, we then utilize
these deadlines as the start and end times of decision mak-
ing for unoccupied SAEVs. The goal of the real-time reposi-
tioning and charging for fleet management is to enable
shared autonomous mobility accessibility, which potentially
improves the profit of the operator without sacrificing user
experience. It means that there should always be available
SAEVs in a service station when users pick SAEVs up, and
there should always be unoccupied parking spots when
users return SAEVs. Here, we consider the revenue from
serving users and costs for charging and repositioning as
shown in Eq. (1).

The goal of the agent is to learn a policy pðatjstÞ so as to
maximize the expected cumulative future rewards Gt ¼PT

i¼0 g
iRtþiþ1 in an episode T starting from time t. To solve

an MDP, a common objective is to learn the value functions,
including the state-value function VpðsÞ and the state-action
value function (i.e., Q-function) Qpðs; aÞ, where VpðsÞ ¼
Ep½Gtjst ¼ s� ¼ Ep½

PT
i¼0 g

iRtþiþ1jst ¼ s� and Qpðs; aÞ ¼
Ep½

PT
i¼0 g

iRtþiþ1jst ¼ s; at ¼ a�, which measures the
expected discounted sum of rewards obtained from state s
by taking action a at time t and following policy p.

In this paper, we design a dynamic deadline-based deep
reinforcement learning (DRL) method (i.e., Dynamic Dead-
line-based Deep Q-Network (D3QN)) to learn the optimal
actions for individual SAEVs, i.e., all available SAEVs
sequentially learn which action to take between two conse-
cutive deadlines. The advantage of our D3QN lies in its
computational efficiency since we streamline our D3QN
training and each individual SAEV independently learns its
own optimal policy, which ensures scalability at the cost of
less coordination between EVs. This is challenging to be
achieved by standard DQN or a multi-agent formula-
tion [13], [18].

We define the optimal Q-function for kth SAEV as the
maximum expected return achievable by any policy pt,
which is

Q	ðs; aÞ ¼ max
p

E
XT
i¼0

giR
ðkÞ
tþiþ1jstðkÞ ¼ s; at

ðkÞ ¼ a;pt

" #
; (9)

which satisfies the Bellman Equation

Q	ðs; aÞ ¼ Es0 Rtþ1 þ gmax
a0

Q	ðs;0 a0ÞjstðkÞ ¼ s; at
ðkÞ ¼ a

� �
:

(10)

For the electric carsharing fleet management problem, it
is challenging to obtain the Q-function as a table containing
values due to the large-scale states and actions. Hence, we
use deep neural networks to approximate the Q-value func-
tion with parameters u, which makes Qðs; a; uÞ 
 Q	ðs; aÞ.
This can be achieved by updating ui at each iteration i to
minimize the following loss function:
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LiðuiÞ ¼ Rtþ1 þ gmax
a0

Qðs;0 a0; u�i Þ �Qðs; a; uiÞ
� �2

; (11)

which is the squared difference between the target Q values
Rtþ1 þ gmaxa0 Qðs;0 a0; u�i Þ and the approximate Q values
Qðs; a; uiÞ. To make the network updates more stable, we
utilize the experience replay technique [17], which copies u to
another neural network u�i so that we can fix the Q-value
targets temporarily. This forms an input dataset that is sta-
ble enough for training. u�i are the parameters from the pre-
vious iteration, which are fixed and not updated for
learning ui. Then we utilize stochastic gradient descent
(SGD) with respect to the actual network parameters to min-
imize this loss. Finally, we obtain the action for each unoc-
cupied SAEV to take.

Algorithm 1. Dynamic Deadline-Based Deep Reinforce-
ment Learning for Decision Making

Input: n service stations fs1; s2; . . .sng; m time slots
ft1; t2; . . . ; tmg 2 ½t0; T �; initial thresholdC

1 for each service station si; i 2 ½1; n� do
2 for each time slot tj; j 2 ½1;m� do
3 Count net flow ftjðiÞ;
4 Count accumulated net flow Ftj ¼

Pj
z¼1 ftzðiÞ;

5 Count number of low-battery SAEVs ktjðiÞ;
6 Predict the number of pickups and returns of ðjþ 1Þth

time slot bptjþ1
ðiÞ and brtjþ1

ðiÞ;
7 Estimate number of low-battery SAEVs of ðjþ 1Þth time

slot bktjþ1
ðiÞ

8 Predict extra SAEV and parking spot demand with
error compensation of ðjþ 1Þth time slot bvd0tjþ1

ðiÞ andcpd0tjþ1
ðiÞ as in Eqs. (7) and (8)

9 Predict deficiency count of ðjþ 1Þth time slot dc0tjþ1
ðiÞ

¼ maxf bvd0tjþ1
ðiÞ; cpd0tjþ1

ðiÞg
10 Generate a station deficiency matrixD0

n�m

11 for j =1 tom do
12 Count the maximum entry of each columnD0

:;j

13 Generate a max deficiency vector DDDDDDD0
mmmmmmm ¼ ½maxD0

:;1;
maxD0

:;2; . . . ;maxD0
:;m�

14 Initialize the interval id i ¼ 1
15 for j =1 tom do
16 whileDDDDDDD0

mmmmmmm½j� < C do
17 Ii ¼ mergeð;; tjÞ;
18 Deadline di ¼ Ii:end; iþþ
19 Obtain h intervals I = fI1; . . . ; Ihg
20 Initialize experience replay memoryDD
21 Initialize the action-value function Q with random weights

for m=1 to the maximum iteration numberM do
22 initial the state s0
23 for each interval Ii 2 I do
24 Select ai ¼ argmaxa Q

	ðsi; aÞ
25 Execute action ai and observe reward Riþ1

26 Store transition ðsi; ai; Riþ1; siþ1Þ inDD
27 Sample a batch of transitions from DD, and then

update parameter of the value network ui by mini-
mizing the value loss function LiðuiÞ over the batch
in Eq. (11) by SGD to get ui.

In general, the process of our dynamic deadline-based
deep reinforcement learning is shown in Algorithm 1. Line
1 to line 19 are for the dynamic deadline generation, and the

following parts are for decision making based on the
dynamic deadlines as shown in line 23.

6 EVALUATION

In this section, we extensively evaluate the performance of
our Safari based on the real-world data.

6.1 Evaluation Data and Setting

Evaluation Data. We utilize 10-month shared EV usage data
generated by 12,375 unique users in the Chinese city Beijing
for evaluation. More than 86,700 usage records are gener-
ated during this period. In addition to the vehicle usage
data, the evaluation dataset also includes the vehicle GPS
data, and metadata of 185 service stations and 226 charging
stations. The detailed data information has been introduced
in Section 5.1.

Environment Setting. We train and test our prediction
models and fleet management decisions on a desktop with
32 GB memory, 1 TB HDD storage, Intel Xeon CPU E5-1660
v3, and a Tesla K40c, installed with the latest Windows 10
and Python coding environment.

For the D3QN-based decision making strategies, we have
the following parameter setting: the same three hidden
layer Q-network with 128, 64, and 32 nodes from the first to
last hidden layer; the activation functions of all hidden units
are ReLu, and output layers of the Q-networks use Softmax
activation functions. All the experiments are repeated 10
times to ensure the robustness of the results. The batch size
of all deep learning networks is set to be 2,000, and we uti-
lize AdamOptimizer with a learning rate of 0.001. For the
discount factor, we select g ¼ 0:99 based on [17], so the state
value is computed within a decaying future horizon.

6.2 Evaluation Results

6.2.1 Comparison of Different Management Strategies

To show the effectiveness of our Safari, we compare it
with (i) Ground Truth (GT), which is extracted from our
real-world data; (ii) Best-effort [42], which means once there
is user demand in a service station, the vehicle repositioning
will be performed to satisfy the demand. Once the battery
level of a SAEV is below the threshold, it will be scheduled
to charge for future user accessibility. (iii) TBA [43], which
is a reinforcement learning-based method adopting the
REINFORCE rule to update the policy for fleet manage-
ment. (iv) PPO in [13], which is a state-of-the-art shared EV
repositioning algorithm based on DRL.

Since the key focus of the SAEV fleet management is the
accessibility, which is defined as the percentage of satisfied
user demand, we first study the accessibility of different
methods. From Fig. 10, we found our dynamic deadline
DRL-based Safari achieves the best performance with
100% of accessibility, which means it can satisfy all travel
demand of all users, while only 87% of user demand was
satisfied by the current system.

6.2.2 Dynamic Deadline versus Static Deadline

In this paper, we designed a dynamic deadline mechanism
to achieve a win-win performance, i.e., satisfactory user
experience and low operational cost. We compare Safari
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(i.e., dynamic deadline + DQN) with strategies of different
static deadlines + DQN, and we set four typical static dead-
lines for comparisons, i.e., setting a deadline for every 30
minutes (i.e., DQN + Static30 or Static30 for short), 60
minutes (i.e., Static60), 120 minutes (i.e., Static120), and 240
minutes (i.e., Static240).

Fig. 11 shows the accessibility of Safari and its variants
with different static deadlines, which implicitly reflects the
user experience, e.g., high accessibility means more user
demand can be satisfied since more users can have access to
the services in time when they want to use SAEVs. From
Fig. 11, we found our dynamic deadline mechanism satisfies
all user demand on different days. However, as the duration
between two consecutive deadlines becomes larger, more
users may not have access to available SAEVs in time,
resulting in poor user experience.

Fig. 12 shows the percentage reduction of vehicle move-
ment under Safari and its variants with different static
deadlines, which is calculated by (current number of move-
ments - number of movements with different deadline set-
tings)/current number of movements. From Fig. 12, we
found Safari reduces 31.8% of movements. With more
sparse deadlines, the number of movements becomes less,
e.g., Static240 causes fewer movements than Safari, but
more demand cannot be satisfied by Static240 as shown in
Fig. 11. With more dense deadlines, the overhead becomes

higher due to frequent movements for relocating or charg-
ing SAEVs. Since the energy consumption is positively cor-
related with the number of movements and movement
distance, the reduction of movements potentially indicates
energy cost reduction and profit increase for the SAEV fleet.

Another important factor for SAEV fleet management is
the charging cost due to the time-varying charging pricing,
so we show the charging cost distribution at different times
of a day under different strategies in Fig. 13. We found our
Safari can reduce charging costs during most time of the
day since it can reduce some unnecessary repositioning and
leave some SAEVs to charge in the late-night time, during
which the charging price is low. In total, our Safari can
reduce about 26.2% of charging costs for the SAEV fleet. Due
to the frequent repositioning and charging activities of Best-
effort, it causes higher charging costs in some high charging
pricing durations, e.g., 13:00-15:00 and 19:00-20:00, which
leads to a 3.9% of charging cost increase. Even though PPO is
also based onDRL, it sets periodic static deadlines for reposi-
tioning, so it also causes higher charging costs.

In addition, we also show the charging cost reduction of
Safari on different days of a week, as shown in Fig 14. We
found our Safari shows better performance through Tues-
day to Thursday and a little reduction on weekends. One
possible reason would be that there is no huge pickup and
return peaks from Tuesday to Thursday, which makes less
repositioning, so more SAEVs can be charged in low charg-
ing price durations. There is highly intensive demand on
weekends from 8:00-20:00, which causes more repositioning
and charges in daytime to satisfy user demand, so the
charging cost reduction is relatively low on weekends.

6.2.3 Prediction Performance

We also compare the XGBoost-based method with other
state-of-the-art prediction approaches, including Auto-
Regressive and Moving Average (ARMA), and Random
Forest (RF), Deep Neural Network (DNN), LSTM, and
Graph Convolutional Network (GCN). As we found the

Fig. 10. Mobility accessibility under different methods.

Fig. 11. Accessibility under different methods in different days.

Fig. 12. Percentage reduction of movements.

Fig. 13. Monthly charging cost distributions of different methods.

Fig. 14. Reduction of cost of Safari in different days.
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decision making is directly related to the net flow of service
stations, so we predict the net flow (i.e., # of Returns- # of
Pickup) of each service station instead of predicting the
number of pickups and returns separately.

We adopt the Mean Absolute Error (MAE) to compare
the prediction performance of different methods, which is
computed as MAE ¼ 1

n

Pn
i¼1 jyðiÞ � ŷðiÞj, where ŷ is the pre-

dicted value, y is the true value, and n is the total number of
predictions.

Fig. 15 also gives evidence of the advantages of the
XGBoost-based approach since its MAE is as low as 0.73,
which indicates it achieves very high accuracy for the net
flow prediction of most service stations all the time.

We found some other methods like RF also achieve good
performance. One possible reason for the high prediction
accuracy is our data-driven feature extraction as we extract
5 categories of features that are highly related to users’
pickup and return behaviors based on our data-driven
observations. Hence, we further conduct ablation studies on
extracted features.

6.2.4 Ablation Studies on Extracted Features and Error

Compensation to System Performance

As shown in Fig. 16, we found lacking any category of fea-
tures, the system may damage user experience due to inac-
curate prediction, e.g., only 88.6% of user demand can be
satisfied without the temporal features FT by Safari (i.e.,
NoFT). Similarly, without the demographic feature, Safari
can only satisfy 93.8% of user demand due to large predic-
tion error.

In addition, although considering all categories of fea-
tures, it is challenging to achieve 100% of prediction accuracy
due to the complicated usage behavior and environment, as
shown in Fig. 15. Hence, in this paper,we introduced an error
compensation term � to mitigate the influence of the inaccu-
rate prediction because the prediction results will directly
impact the dynamic deadline generation and future decision
making, e.g., if the prediction error is too large, the supply of
each stationmay not guarantee future user accessibility.

Thenweneed to decide the value of the error compensation
term �. Too small error compensation may cause more users
cannot have access to SAEVs in time, while too large error
compensation may cause vehicle or parking resources waste
and potential inaccessibility of users. In thiswork, our strategy
to decide the value of � is that we round the MAE to the next
integer, i.e., � ¼ ceilingðMAEÞ. For example, 0.73 is rounded
to 1 and 1.1 is rounded to 2. The reason why we utilize the
MAEas an indicator is that it can showwhat is the general pre-
diction deviation and also get rid of the influence of outliers.

For example, when only one or a small number of prediction
values are largely different from the true values, ifwe consider
then them when we decide the value of �, it may cause huge
resource waste and potential inaccessibility of users since we
need to dispatch more vehicles to these stations or leave more
spare parking spaces. In addition, we found that over 96% of
prediction deviations are small than ceilingðMAEÞ based on
our results, so we set � ¼ ceilingðMAEÞ as the error compen-
sation term.

The results show that our data-driven feature extraction
combined the error compensation (i.e., AllFea+EC) can
make our Safari satisfy all user demand (pickup + return);
while it can only satisfy 95.6% of user demand without the
error compensation (i.e., AllFeaNoEC). Hence, with the pre-
diction error compensation mechanism, our Safari

becomes more robust to prediction uncertainties. It should
be noted that the value of the error compensation term � can
be updated with the operating of the system.

6.3 Convergence and Runtime Overhead

The training process of Safari is in an offline fashion, and
we find that the offline learning process costs an average of
18.6 minutes in our experiments, which is less than the other
deep reinforcement learning-based dispatch models, e.g.,
PPO (35.5 minutes), Static30 (26.3 minutes), and Static60
(22.6 minutes). Fig. 17 shows the training process of our
Safari and other RL-based methods. We found that our
D3QN converges and achieves the highest reward after
about 3,000 steps of training. We also found that the average
loss variations reduce as the training steps increase, so the
predicted Q-values converge to the target ones quickly in
our setting. We found the majority of the overhead is caused
by the decision making. Safari should be operated in an
online fashion, so we also evaluate the convergence and
incurred overhead at runtime. Since our Safari is based
on the D3QN, it significantly reduces the overhead of deci-
sion making. We found that with 100 SAEVs in the fleet, the

Fig. 15. MAE of different prediction methods. Fig. 16. Impact of feature extraction and EC.

Fig. 17. Learning curves of different methods.
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maximum overhead for a round of decision making is
0.12 s. As the system scales to 500 and 1,000 SAEVs, the
overhead will be progressively larger to 0.8 s and 1.3 s,
respectively. Nonetheless, the overhead remains reasonably
small and negligible compared to the deadline duration and
user pickup time, so it does not affect the real-world opera-
tion of the SAEV fleet as Safari still satisfies the accessibil-
ity of users by each deadline.

6.4 Performance on Larger Fleets and Higher
Demand

It will be a long-term process for SAEV promotion, and the
fleet size, the number of users, and the number of usages
will be evolving during this process, e.g., the number of
monthly usages increased from 113 to 21,750 during the 10
months. The rapid increase of demand potentially leads to
more SAEVs needed or more frequent dispatching. Hence,
we also investigate the impacts of fleet sizes and user
demand on our fleet management system Safari in this
paper to verify its generalizability.

In this part, we focus on two questions: (i) can our
Safari satisfy higher user demand without adding extra
infrastructures (e.g., charging stations and service stations,
and SAEVs)? (ii) How to expand a small fleet size to balance
the future user demand increase and the number of move-
ments needed? It should be noted that we do not consider
new service stations and charging stations in other locations
since station siting is another parallel topic of our work, so
we leave this for future work.

6.4.1 Impacts of User Demand on Safari

Performance

There should be higher user demand in the near future with
more and more people utilize SAEV services, and the fleet
management system needs to make decisions to adaptively
satisfy the new demand. Without loss of generality, we
assume there is a different percentage increase of user demand
during the evolving process, and the new usage in each ser-
vice station is proportional to the current usage distribution.

Figs. 18 and 19 show the percentage of satisfied user
demand and the percentage of movement reduction with
user demand increase, respectively. We found the percent-
age of satisfied user demand will decrease when user
demand increases without adding extra infrastructures (e.g.,
charging stations and service stations, and SAEVs), but our
Safari always achieves the best performance compared to
other static deadline-basedmethods. Under sparse deadline-
based methods, the average satisfied user demand will
decrease, but they take fewer movements to relocate SAEVs.

Even though Static240 needs the fewest movements, it satis-
fies much less user demand than our Safari. In general,
our Safari can achieve good performance with higher user
demand in the future, so it has the potential to sustainably
manage SAEV fleets during their evolving process.

6.4.2 Impacts of Fleet Sizes on Safari Performance

Similarly, operators would also expand their SAEV fleet size
in the long run to satisfy higher user demand, and the user
demand increase will interact with the fleet size expansion
during the long-term evolving process. Hence, we also
investigate the impacts of fleet size on system performance.
Intuitively, if more SAEVs are added to the fleet, higher
user demand can be satisfied, but it may also need more
movements to relocate and charge SAEVs, so we also inves-
tigate the correlation between fleet size and user demand.
Without loss of generality, we initially add the new SAEVs
in each service station that is proportional to the number of
SAEVs in the early morning, and then the vehicles will be
relocated and reach a relatively stable status after a period
of time to satisfy user demand.

Figs. 20a and 20b show the accessibility with both the
fleet size increase and user demand increase, and there is
10% of user demand increase in Fig. 20a and 30% of user
demand increase in Fig. 20b, respectively. We found that
more user demand will be satisfied with more SAEVs added
to the fleet. Specifically, When there is a 10% of user
demand increase, our Safari can satisfy all user demand
without adding extra new SAEVs; When there is a 30% of
user demand increase, our Safari can satisfy over 93% of
user demand without adding extra new SAEVs and it can
satisfy all user demand with 15% of new SAEV increase.
This result can provide guidance for operators to balance
the number of new SAEVs and user satisfaction. If the oper-
ator intends to reduce operational costs, fewer new SAEVs
should be good for most users. If the operator plans to sat-
isfy all user demand, more new SAEVs will be added to the
fleet with higher operational costs.

Fig. 18. Accessibility with user demand increase. Fig. 19. % movement reduction with user demand increase.

Fig. 20. Accessibility with fleet size & demand increase.

WANG ETAL.: TOWARDS ACCESSIBLE SHAREDAUTONOMOUS ELECTRIC MOBILITY WITH DYNAMIC DEADLINES 937

Authorized licensed use limited to: Florida State University. Downloaded on January 04,2024 at 02:57:36 UTC from IEEE Xplore.  Restrictions apply. 



7 DISCUSSION

In this section, we report some lessons learned from our
data-driven study, and then we discuss several potential
implications of our work.

7.1 Lessons Learned

� Data-Driven Insights. In this work, we revealed a set of
new findings of SAEVs based on our data-driven
investigation, e.g., (i) The usage patterns of shared
EVs are highly dynamic on different regions and dif-
ferent time of a day. (as shown in Fig. 6) (ii) Time-vari-
ant charging pricing also impacts the operating profit
of the SAEV fleets (e.g., Fig. 7). (iii) Users’ usage
behavior is highly related to different factors, e.g., spa-
tiotemporal and demographic factors (Section 5.1).

� Dynamic Deadline-Based Fleet Management. In this
paper, we designed a dynamic deadline mechanism-
based deep reinforcement learning algorithm, which
shows good performance for real-time fleet manage-
ment compared to existing predefined static schedules.
Our design showed good performance to improve the
mobility accessibility of users and SAEV fleet oper-
ators’ profits (e.g., Figs. 12 and 13)with a small runtime
overhead. Our collaborator also has agreed to apply
our Safari for their real-world operation.

7.2 Practical Impacts

� SAEV Fleet Management.User experience and profit-
ability of operators are two key factors that impact
the efficiency of SAEV fleets. From this work, we
found our dynamic deadline-based fleet manage-
ment system Safari can increase the operating
profits for SAEV operators and satisfy highly
dynamic user demand to guarantee the mobility
accessibility, so it has the potential to be reapplied to
other cities and enlarge the SAEV fleets. In addition,
our system also has a great potential for efficient fleet
management of SAEV during its long-term expan-
sion and evolution process, e.g., when there are
more vehicles added to the SAEV fleet in the future.

� Current Fleet Management of Electric Bikesharing, E-
Scooter Sharing, and Electric Ridesharing. Even though
this paper focuses on the SAEV fleets, we believe our
joint real-time repositioning and charging scheduling
and the dynamic deadline-based DRL method have
the potential to be reapplied to other types of EV fleet
management, e.g., electric bikesharing, e-scooter
sharing, and electric ridesharing. The difference is
that extra workers are needed to move e-bikes/e-
scooters, and the ridesharing drivers need to perform
the repositioning and charging by themselves.

7.3 Impact of Different Factors

7.3.1 Impact of the Number of Charging Stations

The number of public charging stations in the city will affect
the charging activities of shared autonomous electric
vehicles (SAEVs). For example, when there is a limited num-
ber of charging stations, different from the solution in this

work, the SAEVs cannot always be charged in the nearest
available charging stations, which means the action AC

(scheduling to charge in a charging station) will be affected
when making decisions, and it may further increase the
charging costs. From another point of view, the charging
supply is related to the charging supply. A limited number
of charging stations is also enough for some other cities with
a small number of SAEVs with fewer charging demands.
Furthermore, as shown in Figs. 18 and 19, we found the per-
centage of satisfied user demand will decrease when user
demand increases without adding extra infrastructures (e.g.,
charging stations), which might be similar to reducing the
number of charging stations without increasing charging
demand, but our Safari always achieves the best perfor-
mance compared to other static deadline-based methods.
Hence, (i) a limited number of charging stations may not
affect the proposed solution in other cities with fewer charg-
ing demands. (ii) If the number of charging stations cannot
satisfy the charging demand of SAEVs, it may increase the
charging costs, but our Safari can still achieve better per-
formance than other state-of-the-art methods.

7.3.2 Impact of the Time Slot Period

Based on our data-driven investigation, the per-usage time
of shared EVs is typically very long, e.g., most per-usage
time is longer than 30 minutes and 50% of usage is longer
than 5 hours as shown in Fig. 4. In addition, the times for
relocation and charging are also need more than 10 minutes
and one hour, respectively. Hence, in this work, we try to
set the time slot length as a short duration to capture the
more fine-grained pickup and return patterns. However, if
the time slot is too short, the usage prediction at each time
slot would be not so accurate. After trying several possibili-
ties (1 minute, 5 minutes, 10 minutes, and 20 minutes), we
found the system performance is the best when the time slot
is set to be 5 minutes. Hence, if we set the time slot to be
much less than 5 minutes (e.g., 1 minute), the system is
more likely to cause a larger prediction error, and it will
also cause a higher computational complexity. The predic-
tion error will further affect future decision making process
and accessibility to users. If we set the time slot to be much
more than 5 minutes (e.g., 20 minutes), then the merged
deadlines will be sparser. In this case, it is challenging to
fully satisfy the user demand at intensive and unexpected
peaks, so some users cannot have access to the mobility sys-
tem in time. Hence, we select the 5 minutes after carefully
comparison by considering different factors.

7.3.3 Impact of the Wireless Access Technology

Wireless access technology is critical for our work since it
facilitates the data collection and information transmission.
For example, the GPS data is uploaded to servers periodi-
cally through 4 G/5 G cellular communication. The deci-
sions for vehicle repositioning and charging should also be
transmitted by wireless communication. Hence, the reliabil-
ity and stability of wireless communication are important.
However, the real-time status or performance of wireless
access in specific areas will not have a huge impact on the
performance of the proposed algorithm. As shown in the
framework of our Safari design, we will conduct data
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cleaning to process the raw data to filter out errant GPS
records. In addition, we do not require vehicles to respond
to the decisions immediately since the repositioning time or
charging time should be much longer than the decision’s
transmission time, which means a short delay due to the
wireless communication being tolerable in our system. If
there are some wireless network interruptions lasting for a
long period, the proposed algorithm will be impacted since
information cannot be transmitted at that time.

7.3.4 Impact of the Real-Time Charging Pricing

One contribution of our work is that we consider the time-
varying charging pricing for decision making to reduce the
charging costs. If the charging rates are the same at different
times, we do not need to consider the charging rates, which
means we will take the charging scheduling action AC

immediately when the battery level of a SAEV decreases to
below a certain threshold. However, in real-world scenar-
ios, the charging pricing is time-varying with different
charging rates in many cities. In our system design, we con-
sider this real-world factor to make the system more practi-
cal even though it will also increase the complexity of the
design. During the high charging rates duration, if there are
enough SAEVs for satisfying user demand, we will keep the
low-battery SAEVs at the current location and then move
them to charge during low charging rates time, which can
reduce the charging costs and operation costs. Hence, the
charging pricing is a component of our system design,
which can be changed based on the real pricing in different
cities, and it will not affect how we obtain the final solution.

8 CONCLUSION

In this paper, we design an effective data-driven fleet man-
agement system for accessible shared autonomous electric
mobility called Safari, which means whenever users have
travel demand, they can have access to the SAEVs in time.
Our Safari jointly considers repositioning and charging
with dynamic deadlines to improve both the user experi-
ence and operating profits. In Safari, we designed a
dynamic deadline-based deep reinforcement learning algo-
rithm D3QN to adaptively satisfy the time-varying unbal-
anced user demand. The dynamic deadlines are learned
through usage prediction combined with an error compen-
sation mechanism. Extensive experimental results show
that our designed Safari potentially guarantees 100% of
mobility accessibility and effectively reduces 26.2% of
charging costs and 31.8% of vehicle movements for SAEV
fleets, and it also achieves a small runtime overhead.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments and suggestions.

REFERENCES

[1] L. D. Burns, “A vision of our transport future,” Nature, vol. 497,
no. 7448, pp. 181–182, 2013.

[2] C. D. Korkas, S. Baldi, S. Yuan, and E. B. Kosmatopoulos, “An
adaptive learning-based approach for nearly optimal dynamic
charging of electric vehicle fleets,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 7, pp. 2066–2075, Jul. 2018.

[3] J. Shi, Y. Gao, W. Wang, N. Yu, and P. A. Ioannou, “Operating
electric vehicle fleet for ride-hailing services with reinforcement
learning,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 11,
pp. 4822–4834, Nov. 2020.

[4] S. Schoenberg and F. Dressler, “Reducing waiting times at charging
stations with adaptive electric vehicle route planning,” IEEE Trans.
Intell. Veh., early access, Jan. 06, 2022, doi: 10.1109/TIV.2022.3140894.

[5] P. Zhou, C. Wang, and Y. Yang, “Design and optimization of
solar-powered shared electric autonomous vehicle system for
smart cities,” IEEE Trans. Mobile Comput., early access, Sep. 30,
2021, doi: 10.1109/TMC.2021.3116805.

[6] G. Wang, Y. Zhang, Z. Fang, S. Wang, F. Zhang, and D. Zhang,
“FairCharge: A data-driven fairness-aware charging recommenda-
tion system for large-scale electric taxi fleets,” Proc. ACM Interactive
MobileWearable Ubiquitous Technol., vol. 4, no. 1, pp. 1–25, 2020.

[7] Y. Pan, Q. Chen, N. Zhang, Z. Li, T. Zhu, and Q. Han, “Extending
delivery range and decelerating battery aging of logistics UAVs
using public buses,” IEEE Trans. Mobile Comput., early access,
Apr. 13, 2022, doi: 10.1109/TMC.2022.3167040.

[8] G. Wang et al., “Pricing-aware real-time charging scheduling and
charging station expansion for large-scale electric buses,” ACM
Trans. Intell. Syst. Technol., vol. 12, no. 1, pp. 1–26, 2020.

[9] C. Wang et al., “Optimizing cross-line dispatching for minimum
electric bus fleet,” IEEE Trans. Mobile Comput., early access, Oct.
12, 2021, doi: 10.1109/TMC.2021.3119421.

[10] Z. Xu et al., “When recommender systems meet fleet manage-
ment: Practical study in online driver repositioning system,” in
Proc. Web Conf., 2020, pp. 2220–2229.

[11] P. Hulot, D. Aloise, and S. D. Jena, “Towards station-level
demand prediction for effective rebalancing in bike-sharing sys-
tems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2018, pp. 378–386.

[12] S. He and K. G. Shin, “Dynamic flow distribution prediction for
urban dockless e-scooter sharing reconfiguration,” in Proc. Web
Conf., 2020, pp. 133–143.

[13] M. Luo et al., “Rebalancing expanding EV sharing systems with
deep reinforcement learning,” in Proc. 29th Int. Joint Conf. Artif.
Intell., 2020, pp. 1338–1344.

[14] C. Gambella, E. Malaguti, F. Masini, and D. Vigo, “Optimizing
relocation operations in electric car-sharing,” Omega, vol. 81, 2018,
Art. no. 234.

[15] E. Biondi, C. Boldrini, and R. Bruno, “Optimal charging of electric
vehicle fleets for a car sharing system with power sharing,” in
Proc. IEEE Int. Energy Conf., 2016, pp. 1–6.

[16] C. A. Folkestad, N. Hansen, K. Fagerholt, H. Andersson, and G.
Pantuso, “Optimal charging and repositioning of electric vehicles
in a free-floating carsharing system,” Comput. Oper. Res., vol. 113,
2020, Art. no. 104771.

[17] E. Wang et al., “Joint charging and relocation recommendation for
e-taxi drivers via multi-agent mean field hierarchical reinforce-
ment learning,” IEEE Trans. Mobile Comput., vol. 21, no. 4,
pp. 1274–1290, Apr. 2022.

[18] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in
Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 1774–1783.

[19] A. Di Febbraro, N. Sacco, and M. Saeednia, “One-way car-sharing
profit maximization by means of user-based vehicle relocation,”
IEEE Trans. Intell. Transp. Syst., vol. 20, no. 2, pp. 628–641, Feb. 2019.

[20] X. Zhou et al., “Optimizing taxi driver profit efficiency: A spatial
network-based Markov decision process approach,” IEEE Trans.
Big Data, vol. 6, no. 1, pp. 145–158, Mar. 2020.

[21] G. Wang, F. Zhang, and D. Zhang, “tCharge–A fleet-oriented real-
time charging scheduling system for electric taxi fleets,” in Proc.
17th Conf. Embedded Netw. Sensor Syst., 2019, pp. 440–441.

[22] G. Wang, X. Chen, F. Zhang, Y. Wang, and D. Zhang, “Experience:
Understanding long-term evolving patterns of shared electric
vehicle networks,” in Proc. 25th Annu. Int. Conf. Mobile Comput.
Netw., 2019, pp. 1–12.

[23] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike sharing
systems: A multi-source data smart optimization,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 1005–1014.

[24] H. Zhu et al., “RedPacketBike: A graph-based demand modeling
and crowd-driven station rebalancing framework for bike sharing
systems,” IEEE Trans. Mobile Comput., early access, Jan. 25, 2022,
doi: 10.1109/TMC.2022.3145979.

WANG ETAL.: TOWARDS ACCESSIBLE SHAREDAUTONOMOUS ELECTRIC MOBILITY WITH DYNAMIC DEADLINES 939

Authorized licensed use limited to: Florida State University. Downloaded on January 04,2024 at 02:57:36 UTC from IEEE Xplore.  Restrictions apply. 



[25] M. Luo, B. Du, K. Klemmer, H. Zhu, H. Ferhatosmanoglu, and H.
Wen, “D3P: Data-driven demand prediction for fast expanding
electric vehicle sharing systems,” Proc. ACM Interactive, Mobile,
Wearable Ubiquitous Technol., vol. 4, pp. 1–21, 2020.

[26] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, “Where to findmy
next passenger,” in Proc. 13th Int. Conf. Ubiquitous Comput., 2011,
pp. 109–118.

[27] J. Miller and J. P. How, “Predictive positioning and quality of ser-
vice ridesharing for campus mobility on demand systems,” in
Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 1402–1408.

[28] D. Jorge, G. H. Correia, and C. Barnhart, “Comparing optimal
relocation operations with simulated relocation policies in one-
way carsharing systems,” IEEE Trans. Intell. Transp. Syst., vol. 15,
no. 4, pp. 1667–1675, Aug. 2014.

[29] G. Wang, S. Zhong, S. Wang, F. Miao, Z. Dong, and D. Zhang,
“Data-driven fairness-aware vehicle displacement for large-scale
electric taxi fleets,” in Proc. IEEE 37st Int. Conf. Data Eng., 2021,
pp. 1376–1387.

[30] Z. Tian et al., “Real-time charging station recommendation system
for electric-vehicle taxis,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 11, pp. 3098–3109, Nov. 2016.

[31] G. Wang et al., “sharedCharging: Data-driven shared charging for
large-scale heterogeneous electric vehicle fleets,” Proc. ACM Interac-
tive,Mobile,Wearable Ubiquitous Technol., vol. 3, no. 3, pp. 1–25, 2019.

[32] G. Wang, X. Xie, F. Zhang, Y. Liu, and D. Zhang, “bCharge: Data-
driven real-time charging scheduling for large-scale electric bus
fleets,” in Proc. IEEE Real-Time Syst. Symp., 2018, pp. 45–55.

[33] G. Fan, Z. Yang,H. Jin, X. Gan, andX.Wang, “Enabling optimal con-
trol under demand elasticity for electric vehicle charging systems,”
IEEE Trans.Mobile Comput., vol. 21, no. 3, pp. 955–970,Mar. 2022.

[34] Y. Yuan, D. Zhang, F. Miao, J. Chen, T. He, and S. Lin, “p 2 charg-
ing: Proactive partial charging for electric taxi systems,” in Proc.
IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 688–699.

[35] W. Zhang et al., “Intelligent electric vehicle charging recommen-
dation based on multi-agent reinforcement learning,” in Proc. Web
Conf., 2021, pp. 1856–1867.

[36] Y. Li et al., “Cooperative service placement and scheduling in
edge clouds: A deadline-driven approach,” IEEE Trans. Mobile
Comput., vol. 21, no. 10, pp. 3519–3535, Oct. 2022.

[37] B. Bjev, “Beijing public charging points will implement peak and
off-peak electricity prices,” 2016. [Online]. Available: http://
www.hmc-hongdu.com/news/20.html

[38] J. Yuan, Y. Zheng, and X. Xie, “Discovering regions of different
functions in a city using human mobility and POIs,” in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2012,
pp. 186–194.

[39] Tianqihoubao, “Historical weather in shenzhen,” 2020. [Online].
Available: http://www.tianqihoubao.com/lishi/shenzhen/month/
201910.html

[40] Wikipedia, “Beaufort scale,” 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Beaufort_scale

[41] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785–794.

[42] Z. Li, Y. Zhang, Y. Zhao, Y. Peng, and D. Li, “Best effort task
scheduling for data parallel jobs,” in Proc. ACM SIGCOMM Conf.,
2016, pp. 555–556.

[43] F. Borutta, S. Schmoll, and S. Friedl, “Optimizing the spatio-tem-
poral resource search problem with reinforcement learning (GIS
Cup),” in Proc. 27th ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf.
Syst., 2019, pp. 628–631.

Guang Wang received the PhD degree in com-
puter science from Rutgers University, New Bruns-
wick, New Jersey. He is an Assistant Professor
with the Department of Computer Science, Florida
State University. Before that, he was a postdoctoral
research associate with the Massachusetts Insti-
tute of Technology. He is interested in mobile com-
puting, cyber-physical systems, Big Data analytics,
and machine learning. His technical contributions
have led to more than 40 peer-reviewed publica-
tions in premium conferences and journals, e.g.,

MobiCom, IMWUT/UbiComp, RTSS, KDD, ICDE, WWW, AAAI, IEEE
Transactions onMobile Computing, IEEETransactions onVehicular Tech-
nology, IEEE Transactions on Intelligent Transportation Systems, and
ACMTransactions on Intelligent Systems and Technology.

Zhou Qin is currently working toward the PhD
degree with the Department of Computer Sci-
ence, Rutgers University, New Brunswick, New
Jersey. His research interests include data-driven
applications in smart cities via Big Data analytics
and machine learning, such as user behavior
modeling, time series prediction, and recommen-
dation. His technical contributions have led to
publications in top-tier conferences and journals
such as UbiComp/IMWUT, SenSys, KDD, and
ACM Transactions on Sensor Networks.

Shuai Wang (Member, IEEE) received the BS
and MS degrees from the Huazhong University of
Science and Technology, China, and the PhD
degree from theDepartment of Computer Science
andEngineering, University of Minnesota, in 2017.
He is currently a professor with the School of
Computer Science and Engineering, Southeast
University. His research interests include the Inter-
net of Things, cyber physical systems, data sci-
ence, and wireless networks and sensors.

Huijun Sun received the PhD degree in traffic and
transportation planning and management from
Beijing Jiaotong University, China, in 2003. She is
currently a professor with the School of Traffic and
Transportation Engineering, Beijing Jiaotong Uni-
versity. Her research interests include travel
behavior analyses, travel demand management,
and so on. She has published more than 60 refer-
eed papers in leading academic journals. She was
the Winner of the Education Ministry’s New Cen-
tury Excellent Talents Supporting Plan and Nova
of Science and Technology Program in Beijing.

Zheng Dong (Member, IEEE) received the PhD
degree from the Department of Computer Sci-
ence, University of Texas at Dallas, in 2019. He is
an Assistant Professor with the Department of
Computer Science, Wayne State University. His
research interests include real-time cyber physi-
cal systems and mobile edge computing. He
received the Outstanding Paper Award at the
38th IEEE RTSS.

Desheng Zhang (Member, IEEE) is an Assistant
Professor with the Department of Computer Sci-
ence, Rutgers University. He is broadly concen-
trated on bridging cyber-physical systems and
big urban data by technical integration of commu-
nication, computation and control in data-inten-
sive urban systems. He is focused on the life
cycle of big-data-driven urban systems, from
multi-source data collection to streaming-data
processing, heterogeneous-data management,
model abstraction, visualization, privacy, service
design and deployment in complex urban setting.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

940 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: Florida State University. Downloaded on January 04,2024 at 02:57:36 UTC from IEEE Xplore.  Restrictions apply. 


