
Digital Object Identifier no. 10.1109/TVCG.2023.3327198

ieee TransaCTions on VisuaLiZaTion anD CompuTer grapHiCs, VoL. 30, no. 1, JanuarY 2024 913

Manuscript received 31 March 2023; revised 1 July 2023; accepted 8 August 2023.
Date of publication 31 October 2023; date of current version 21 December 2023.

1077-2626 © 2023 ieee. personal use is permitted, but republication/redistribution requires ieee permission.
see https://www.ieee.org/publications/rights/index.html for more information.

A Computational Design Pipeline
to Fabricate Sensing Network Physicalizations

S. Sandra Bae, Takanori Fujiwara, Anders Ynnerman,
Ellen Yi-Luen Do, Michael L. Rivera, and Danielle Albers Szafir

Abstract—Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it
requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in
an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended
or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline
to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also
requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers
can readily produce network physicalizations supporting selection—the most critical atomic operation for interaction—by touch through
capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently
considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i)
computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design
paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.

Index Terms—Physicalization, tangible interfaces, 3D printing, computational fabrication, design automation, network data

1 INTRODUCTION

Interactions are critical for working with data. They help people build
mental models as they explore a dataset by zooming into critical details,
filtering for important information, or panning to view otherwise hidden
surfaces [53,92]. Manipulating data physically can further enhance our
data understanding when compared to more traditional formats (e.g.,
2D display) by being more natural [24], yielding better performance on
certain tasks [48], and even improving information recall [50, 78,79].
Despite these benefits, most physicalizations are static representations
that do not support common data interactions (e.g., selecting, filtering).
Without interactions, physicalizations are essentially static images of
datasets, reducing data expressiveness and inhibiting data exploration.

Creating interactive physicalizations is challenging because it re-
quires cross-disciplinary knowledge spanning visualization, fabrication,
and electronics [8, 23]. Visualization enables us to effectively represent
data. Fabrication converts data into physical objects using computer-
aided designs (CAD). Electronics integrate interactive capabilities into
the resulting objects. Most interactive physicalizations are produced in
an ad hoc, unstructured manner, resulting in one-off solutions tailored
to a specific dataset, problem, or interaction. Without generalizable
approaches, these unstructured explorations mean that the form (i.e.,
physical structure) and function (i.e., interactive capabilities) of phys-
icalizations are produced as separate workflows, leading to a lack of
transferable techniques for future physicalizations.

To support generalizability, this work presents a computational de-
sign pipeline that enables developers to 3D print various network
physicalizations with integrated sensing capabilities. Given a net-
work dataset, our pipeline leverages multi-material printing to produce
network physicalizations that support node selection using capacitive
sensing—a common technique for capturing touch input on devices
(e.g., smartphones) [34]. The capacitive sensors within the network are

• S. Sandra Bae, Ellen Yi-Luen Do, Michael L. Rivera are with University of
Colorado, Boulder. E-mail: {sandra.bae, ellen.do, mrivera}@colorado.edu

• Takanori Fujiwara, Anders Ynnerman are with Linköping University.
E-mail: {takanori.fujiwara, anders.ynnerman}@liu.se

• Danielle Albers Szafir is with University of North Carolina-Chapel Hill.
E-mail: danielle.szafir@cs.unc.edu.

then used to uniquely identify each node. By concurrently considering
form and interactivity, our pipeline automates low-level hardware in-
strumentation to raise selection-driven interactions to the application
level (e.g., AR/VR, shape-changing displays, or desktop visualizations).
Our pipeline intentionally provides flexibility for interaction design: the
node selection provides input, but how the selection is used to generate
corresponding output on the application level is left to the developer.

We focus on networks as they have broad utility in almost all do-
mains [9, 51, 57]. Past network physicalizations investigated layouts of
physical networks (e.g., brain networks) [21] and how physicality can
aid in data sensemaking [24] and common network tasks [55]. However,
these artifacts lack interactivity. Networks have complex geometry that
requires significant engineering considerations to make them physically
interactive (e.g., circuit design, sensor integration). Our computational
design pipeline—enabled by 3D printing—addresses these challenges
by generating electrical circuits and 3D models in two steps.

First, given a network dataset, our pipeline automatically generates
conductive traces (i.e., wires) with tuned electrical resistance that will
be integrated into the links of a network physicalization. Second, it
generates the necessary 3D geometry to fabricate the sensing network
physicalization consisting of links and nodes. Conductive traces within
the links act as resistors, and the nodes act as electrodes. The nodes
and links are computationally designed to exploit a phenomenon called
resistor-capacitor (RC) delay (cf. Sec. 3.1). Our pipeline generates
unique RC time delays when a user touches any node within the network
thereby enabling applications to identify the touched node using a
single capacitance measure. Applications can use this identification to
implement selection by touch. Selection—the ability to indicate a mark
of interest—is a fundamental interaction primitive for more complex
interaction designs, such as filtering or elaborating [4, 26, 92].

Sensing physicalizations, as a whole, provide a critical step toward
creating future physicalizations with interactivity. To lay this founda-
tion, we demonstrate the efficacy of our approach with computational
evaluations, expert discussion, and three usage scenarios. These usage
scenarios motivate the need for sensing networks and illustrate how
selection can support three general visualizations tasks: exploration,
explanation, and analytic provenance [30, 65, 93]. Furthermore, our
network physicalizations serve as groundwork to support any visual-
izations modeled as a hub-and-strut form: a series of connected points
(e.g., vertices in a Voronoi diagram, points on a line chart).

This work shows how a systematic approach can lead to generaliz-
able techniques for physicalizations by integrating form and interaction

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

ieee TransaCTions on VisuaLiZaTion anD CompuTer grapHiCs, VoL. 30, no. 1, JanuarY 2024914

into one cohesive fabrication workflow. Consequently, this new design
paradigm can aid in lowering the barrier to physicalization research,
creation, and adoption. The source code and supplemental materials
(e.g., video demo) are available at our project website [1].
Contributions: The primary contributions of this paper are:
• A fabrication approach that integrates capacitive sensing into net-
work physicalizations and supports the data interaction selection;

• Novel algorithms that (i) convert network datasets into electrical cir-
cuits of resistors, (ii) optimize the resistance selection, and (iii) per-
form network layout adjustments to satisfy fabrication constraints.

2 RELATED WORK

Due to the cross-disciplinary nature of physicalizations [8], we build
upon past work in (i) interaction primitives in visualization, (ii) fabrica-
tion approaches used in physicalizations, (iii) network physicalizations,
and (iv) fabrication techniques to create capacitive sensors within 3D
printed objects.

2.1 Select as an Interaction Primitive
To efficiently explore data (whether digitally or physically), people
must be able to easily select different parts of the representation and
inspect (or hide) details [53, 92]. Both human-computer interaction
(HCI) and visualization recognize select as an interaction primitive that
enables other interactions to take place. Foley et al. [26] place selec-
tion at the highest hierarchical level of input interactions for graphics,
indicating its foundational role in supporting more complex interaction
designs. Similarly, several visualization interaction taxonomies [4, 92]
highlight the necessity of select for visualization systems to enable
other data-related interactions. While select is traditionally achieved
with the keyboard and mouse in desktop visualizations, we do not have
a corresponding paradigm for physicalizations.

Despite the lack of interaction standards for physicalization, research
identifies several benefits of interacting with data physically. Compared
to desktop visualizations, direct manipulation with physicalizations has
been shown to be more natural and preferred [24], yield better task
performance [48], and improve information recall [50, 78, 79]. How-
ever, most physicalizations still have limited interaction capabilities.
A key reason for this limitation is that the materials used to create
physicalizations generally do not sense and respond to users.

Though some physicalizations’ forms naturally afford interac-
tions [18,44], most offset this difficulty by incorporating off-the-shelf
electronic components (e.g., motors, LEDs) into their form [52, 82]
or using computer vision (CV) techniques [38, 55]. Electronic com-
ponents have pre-defined scales and dimensions, ultimately affecting
how they can be incorporated into a physicalization. Solutions lever-
aging electronic components do not generalize well to more complex
physicalizations (e.g., complex spatial structures, large datasets). For
example, electronic components are unlikely able to support interactiv-
ity for a network of 50 nodes and 70 links given the complex internal
wiring. CV typically relies on visual tracking for gesture interactions,
introducing challenges such as inaccurate alignment of the virtual and
physical objects as objects move, occlusion from hands or other parts
of the structure, and requiring users to stay in-frame [13]. Additionally,
most devices using CV cannot reproduce the haptic benefits that we
naturally leverage (i.e., holding, rotating, tracing) with our sense of
touch. Past studies [11,24,41,90] confirm the importance of tangible
inputs when virtually exploring data. The existing practices for imple-
menting these two approaches reflect the prevailing design paradigm
of separating interactive physicalization design into two phases: first
thinking about form and then interactions.

Separating form from interaction leads to a series of issues, includ-
ing post-hoc instrumentation, the potential for conflicting constraints
requiring costly design iterations, and a lack of generalizability across
design instances. Most existing interaction infrastructures are designed
for a specific implementation, resulting in one-off artifacts where the
design insights and methods gained from a physicalization are specific
to that instantiation [8, 23]. Our methodology integrates sensing ca-
pabilities directly into a physicalization’s form, enabling designers to
concurrently consider form and interactivity. This concurrent design

enables us to address two key design and fabrication challenges in
physicalization as outlined by Djavaherpour et al [23]: (i) designing for
manufacture and assembly and (ii) prototyping and interactive design.

2.2 Digital Fabrication Approaches for Physicalizations
Digital fabrication uses a digital representation (e.g., 3D model) to
produce a physical object. This procedure allows designers to use
computational techniques to generate designs for physicalizations that
would be otherwise difficult to manually create. 3D printing is a com-
mon digital fabrication technique used to make physicalizations [8, 23].
With 3D printing, thin amounts of material are layered to produce an
object with complex geometries (e.g., overhangs, lattices, and internal
structures). 3D printing can also employ multiple materials to achieve
differences in color or material properties (conductivity, flexibility,
etc.) [58]. These capabilities offer creative opportunities to represent
data, including cartographic maps [3, 83], customized data represen-
tations [80], and common visualization idioms (e.g., bar charts [81],
networks [21,24,55]). These works illustrate how 3D printing is a pow-
erful representational medium and highlight its potential to produce
more complex physicalizations.

Computational pipelines [20, 81] can also make designing physical-
izations easier. MakerVis [81] imports a dataset to be fabricated as
layered visualizations (e.g., bar, line) or prism maps. These physical-
izations are passive, static objects. Abreu de Freitas et al. [20] extend
MakerVis by enabling a designer to specify the intended behavior for
bar charts (i.e., passive, reconfigurable, dynamic). Dynamic bars are
printed but must be attached to various external electronic components
for interaction, which presents limitations (cf. Sec. 2.1).

We build on past pipelines in two ways: supporting structural com-
plexity using 3D printing and integrating key interaction support during
fabrication. Our approach explores complex geometries (i.e., networks),
which offer unique structural challenges for fabrication that our pipeline
dynamically resolves (see Sec. 3.4.1). Our pipeline also automatically
specifies and produces electrical circuitry inside of a physicalization
using a conductive filament, rather than designing around electrical
components that would be integrated post-production. This approach
eases the process of creating interactive physicalizations by linking
electronic design and implementation with a physicalization’s form.

2.3 Network Physicalizations
Current network physicalizations are passive objects with no innate
sensing capabilities (e.g., [27, 33, 59]). Drogemuller et al. [24] investi-
gate haptic and visual comprehension of a flat 2D network physicaliza-
tion (16–24 nodes) using an external camera to log user interactions.
Dehmamy et al. [21] introduce a network layout algorithm for physical
networks that is optimized to avoid link intersection, but their algorithm
relies on a rigorous trial-and-error process to determine layout parame-
ters. Their 3D printed network (184 nodes, 176 links) does not support
integrated sensing. McGuffin et al. [55] show the promise of physical
network interactions (70 nodes, 140 links) mediated with augmented
reality (AR) tracked using external cameras, which present interaction
limitations (cf. Sec. 2.1). In contrast to these works, our approach
supports network physicalizations with minimal parameter-tuning to
produce free-standing networks with integrated sensing capabilities.

2.4 Integrating Interactivity into 3D Printed Objects
Most objects made on 3D printers are static forms that have no in-
teractive capabilities. HCI research explored embedding electronic
components (e.g., sensors and LEDs [37,89,91]) and designing internal
structures (e.g., pipes for light [72, 91]) in printed objects to support
interactivity through user input and display output. Past work also
investigated how to create conductive traces within printed objects to
achieve capacitive sensing [16, 73, 74], a common technique used in
commercial devices (e.g., smartphones, tablets) to capture touch in-
put [34]. A conductive material (e.g., conductive PLA) inside an object
can create electrical traces for capacitive sensing. Capricate [73] and
./trilaterate [74] create capacitive sensors in 3D printed forms; however,
both rely on having an individual electrical connection (i.e., wire) for
each sensor. This instrumentation can affect an object’s mobility and

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

915bae ET AL.: A Computational Design Process to Fabricate...

a

Actual

b

Rendering

7.5cm 23cm

Fig. 1: A sensing network physicalization (N = 20, L = 40). (a) A multi-
material 3D printed network physicalization produced by our computa-
tional design pipeline (Sec. 3.2). Conductive traces are embedded in
the network’s links which enables node selection via capacitive sensing.
(b) A computational rendering of the network physicalization showcasing
how the conductive traces are distributed throughout the network’s links.
The conductive traces use a serpentine pattern.

scalability. Furthermore, neither system is designed to handle the com-
plex structure of networks. Our approach requires a minimum of one
wire to achieve sensing and optimizes the design of electrical traces,
capacitive sensors, and physical geometry specifically for networks.

3 METHODOLOGY

Our computational design pipeline produces network physicalizations
capable of node selection via capacitive sensing (Fig. 1a). When a
user touches a node, the network physicalization outputs unique sensor
readouts such that a visualization application (e.g., desktop, AR/VR)
can identify the selected node. See Sec. 4.2 for examples of how these
networks support a range of analytical scenarios. We first outline the
basic principles of how we achieve capacitive sensing using multi-
material 3D printing (Sec. 3.1). We then provide an overview of the
pipeline (Sec. 3.2) and discuss each pipeline subcomponent in Sec. 3.3–
Sec. 3.6. The pipeline involves various network representations. To
distinguish these networks, we define and use the following terms:
• Network Dataset: Dataset pertaining to nodes and links.
• Resistor Network: A network of resistors derived from the network
dataset that will be converted into conductive traces.

• 3D Representation Network: A 3D representation of the network
dataset, assigning spatial positions to nodes and links.

• Fabrication-ready Network: A digital model for 3D printing that
embeds the resistor network within the 3D representation network

• Printed Network: A 3D printed network produced from the
fabrication-ready network 3D model

• Sensing Network: A printed network that has sensing capabilities.
Our supplementary materials summarize notations used in the paper [1].

3.1 Basic Principles of Sensing Network Physicalization
We use capacitive sensing to infer node selection by touch. This ca-
pacitive sensing is achieved through the conductive traces distributed
throughout a set of a network’s links (Fig. 1b). Conductive filament
used in 3D printing can act as resistors in electrical circuits [22]. Our
printed network has (i) conductive nodes and (ii) traces of specific
electrical resistance integrated into its links. As shown in Fig. 2a (a
two-node network), we connect this printed network to an electrical
circuit that is managed by a microcontroller. This connection results in
a combined circuit as shown in Fig. 2b.

When a user touches a node (e.g., in Fig. 2b, the orange and green
points are nodes A and B, respectively), the user’s body and the node

Fig. 2: Identifying node selection with capacitive sensing: (a) overall
schematic where a two-node printed network is connected to a microcon-
troller’s circuit; (b) the circuit diagram corresponding to (a) with represen-
tative resistance measurements; and (c) the voltage change measured
at the receive pin when a different node is touched.

become capacitively coupled (i.e., energy moves between them [34]),
inducing an RC delay. RC delay is the time required to charge a capaci-
tor in a circuit through a particular amount of resistance. Increasing the
resistance in the circuit will also increase the amount of time needed to
charge the capacitor. Our pipeline is based on this principle: we can
design networks where the RC delay varies based on which node is
touched (cf. Fig. 2c). By computationally designing the geometry of
conductive traces, different paths with unique amounts of resistance
and regions can function as entry points of capacitive coupling for the
RC delay.

Thus, each capacitive region takes a different amount of time to
charge once a user touches it. This process enables us to infer a touched
node by measuring the time taken to reach a predefined voltage thresh-
old (e.g., 2.5V) on a microcontroller. For example, 0µs indicates no
nodes are touched; 7µs is Node A, and 14µs is Node B. Our pipeline
automatically converts network data into an electrical circuit that can
uniquely identify each node with capacitive sensing with the following.

Conductive printed network. For a printed network, nodes should
have high conductivity, so their resistance is essentially negligible.
Links, in contrast, should have low conductivity so they can act as
resistors. This process requires converting network data, specifically
the links, into a network of resistors as conductive traces (i.e., electrical
paths). The resistance of these traces can be tuned by varying their
length and thickness [22]. In our case, low conductivity/high resistance
can be achieved by printing a long, thin line using a conductive filament
with specific geometry computed using the resistivity law:

r =
ρl
a

(1)

where r is the resultant resistance, ρ is a material’s resistivity, and l
and a are respectively the length and cross-sectional area of an object.
Nodes are printed using a conductive filament, producing a large cross-
sectional area per length, resulting in low resistance. Links enclose
conductive traces using non-conductive filament, which can be varied
to support different visual design parameters (e.g., length, width, color).

Capacitive sensing of different nodes. When an electrical circuit
consists of a power source, a resistor, and a capacitor in series, the
voltage change of the capacitor is expressed as:

v(t) = vin

1− e−

t
cr


(2)

where t is the time from the start of charging the capacitor; vin is the
input voltage from the power source; c is the capacitor’s capacitance;
and r is the resistor’s resistance. When we apply capacitive sensing
to a printed network, the equation changes based on the number of
links (i.e., resistors) and their resistance, the resistors’ connections
(i.e., series, parallel, or combination), and the touched node (i.e., a
connection between a user/node).

The pipeline transforms a network dataset into a resistor network,
which is optimized to uniquely identify nodes through capacitive sens-
ing. Then our pipeline automatically generates the necessary CAD
geometry (i.e., fabrication-ready network) that can be exported as STL
files for 3D printing. After 3D printing, we can directly produce a
sensing network physicalization by connecting the printed network to
an electrical circuit that is managed by a microcontroller (Fig. 2).

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

ieee TransaCTions on VisuaLiZaTion anD CompuTer grapHiCs, VoL. 30, no. 1, JanuarY 2024916

Resistor link
selection

Network
layout

Reference for optimization

3D representation
 network

Resistor network

3D representation
network for fabrication

Resistor network with
optimized resistance

Sensing
network

3D printing

Sec. 3.3.1

Resistance
optimization

Sec. 3.3.2

Layout
adjustment
Sec. 3.4.1

Wiring,
configuration

Sec. 3.6

Data generation
for fabrication

Sec. 3.5
Printed
network

Network
data

Fabrication-ready
network

I. DATA PROCESSING II. DIGITAL FABRICATION

Fig. 3: A computational design pipeline for producing sensing network physicalizations. Rectangles represent output data or physical objects (see
Sec. 3 for definitions). Arrows represent different processes. Processes that are bolded are new methods that we introduce (Sec. 3.3–Sec. 3.6).

3.2 Computational Design Pipeline Overview

Our computational pipeline (Fig. 3) is divided into two stages: data pro-
cessing (Sec. 3.3, Sec. 3.4) and digital fabrication (Sec. 3.5, Sec. 3.6).

Data processing. Data processing has two parallel tracks. The first
track (top) designs the resistor network and the second track (bottom)
adjusts the network layout to satisfy fabrication constraints. The resistor
network design begins by selecting links from the network dataset to be
used as resistors. We refer to the selected links as resistor links. Then
our resistance optimization process identifies a suitable resistance for
each resistor link such that the RC delay is different for every touched
node. The network layout design begins by laying out the network
dataset as a 3D representation network. For this process, we can use
any existing network layout algorithms or use predefined positions
specified by the source network data. Next, we apply a network layout
adjustment method using neural networks. This adjustment is primarily
to prevent conductive components (i.e., nodes and resistor links) from
intersecting to avoid interference with the circuit (Fig. 5).

Digital Fabrication. The digital fabrication stage uses the outputs
from the data processing stage to dynamically generate a fabrication-
ready network (i.e., CAD files). This process involves computationally
(i) drawing the resistor network as long, thin traces and (ii) updating the
link geometry to structurally reinforce the connection between nodes
and links. We fabricate our network using multi-material printing and
then connect the printed network to a microcontroller.

3.3 Resistor Network Design

Designing the resistor network consists of selecting a subset of links
to be used as resistor links and optimizing their resistance to achieve
unique RC delays when a node is touched. Note that we only con-
sider networks with a single connected component (i.e., no nodes are
completely isolated from others).

3.3.1 Resistor Link Selection

Networks typically contain more links than nodes (e.g., 10 nodes, 30
links), but, in our approach, all links do not need to be resistors to
electrically connect all nodes for sensing. See Fig. 1b. For a network
with N nodes and L links, we only need to find (N−1) resistor links
that connect all N nodes. The minimum set of such links can be found
by performing a traversal search such as breadth-first search (BFS) or
depth-first search (DFS) over the network.

We use DFS to reduce the computational complexity of the resistance
optimization process in Sec. 3.3.2. DFS selects a set of resistor links
that generate fewer path branches compared to BFS. However, based
on the starting node of the traversal, DFS may find a set of resistor
links with more path branches. For example, in Fig. 4b, we show two
different sets of resistor links selected from the network dataset in
Fig. 4a. The green resistor links have the minimum number of branches
(two branches: nodes 3–6 and 5–7). The red resistor links have three
branches (nodes 3–6, 2–4, and 5–7). To find resistor links with a fewer
number of path branches, we run DFS N times. Each iteration selects
a different node as a starting node, and then we select the result with
the minimum number of branches. Note that we use this DFS-based
selection as a heuristic because finding the optimal solution (i.e., the
fewest number of path branches) can be computationally expensive [31].
After determining the resistor links, we also select one or two leaf nodes
as the connection point(s) to the microcontroller’s circuit (e.g., Node

Fig. 4: Example of resistor network generation: (a) input network, (b)
resistor network with optimal resistor links (green), while red links are
non-optimal, (c) resistor network after assigning optimized resistance.

3 in Fig. 4). Then, for each resistor link, we calculate its appropriate
resistance using the resistance optimization (cf. Fig. 4c).

3.3.2 Resistance Optimization
Optimization goal. We can identify which node is touched based on
how long it takes for a capacitor to reach a certain voltage threshold
(i.e., RC delay). When a user touches a node, a new connection to a
capacitor (i.e., the user’s body) and the ground is introduced into the
electrical circuit. This connection varies based on the touched node
(e.g., the orange vs. green dashed wires in Fig. 2b), inducing a different
RC delay based on the circuit design. Although slight time delays are
theoretically sufficient to recognize the selection of different nodes
(e.g., 10 ns), we want tomaximize the minimum difference among
the time delays for fault tolerance in the microcontroller and 3D printer.
First, we assume a microcontroller is used to capture time delays. The
CPU clock of microcontrollers is typically slow (e.g., 16MHz for the
Arduino UNO R3 [6]), which limits the precision of the measurement
(e.g., 62ns for 16MHz CPUs). Second, errors can be introduced during
the 3D printing process. Our optimization goal is formulated as:

argmax
r∈RN−1,rmin≤rk≤rmax

min{di, j(r)|1≤ i≤ N,1≤ j ≤ N} (3)

where r is a vector of resistance assigned to (N−1) resistor links, rmin
and rmax specify the value boundary for each resistance rk in r, and
di, j(r) is the difference of the time delays between cases when nodes
i and j are touched. We define the difference of the time delays as
di, j(r) = ∥ti(r)− t j(r)∥, where ti(r) is the time delay when node i is
touched. We call ti node i’s time delay function.

The optimization for Eq. 3 has two challenges. First, the time delay
function differs based on the selected node as touching a new node
results in a different circuit. Consequently, we need to evaluate various
different circuits. Second, we need to optimize r, which has a large
number of parameters (i.e., N−1). To address the first challenge, we
leverage circuit simulators to computationally generate and evaluate
a circuit corresponding to each touched node. For the second, we
compute the derivative of each time delay function with respect to r and
then apply gradient descent [69] to efficiently optimize all parameters.

Circuit generation and simplification. The pseudocode for our
resistance optimization algorithm is shown in Alg. 1. The optimization
starts by registering the circuit information (including the microcon-
troller’s circuit and resistor links) with a circuit simulator (line 1).
Afterward, we generate N different circuits, each of which corresponds
to a case where one of N nodes is touched (line 3). Circuit simulators
(e.g., SPICE [84]) typically have an analysis function to observe voltage
changes. We thus avoid manually deriving all necessary equations and
functions to calculate the time delay caused by each touch.

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

917bae ET AL.: A Computational Design Process to Fabricate...

Algorithm 1 Resistance optimization.
Inputs: N, network nodes; R, resistor links; M, microcontroller circuit information; C,
artificial human capacitor; vthres, the voltage threshold to measure the time delay; [rmin,rmax],
boundary of possible resistance
Outputs: rbest, a set of optimized resistance

Prepare touched circuits and corresponding symbolic functions
1: RegisterM and R with a symbolic circuit simulator.
2: for allN do in parallel
3: Create a touched circuit M′

i by adding C into M.
4: Combine M′

i’s resistors connected in series.
5: Get a mapping between resistance before (r) and after (r′i) aggregation.
6: Generate a time-varying voltage function vi at the receive pin.
7: Obtain a symbolic time delay function ti by solving vthres = vi(ti).
8: for i= 1, · · · , |N| do
9: for j = i+1, · · · , |N| do
10: Compute the symbolic time delay difference function di, j = ∥ti− t j∥.
11: Compute ∇di, j , the symbolic derivative of di, j with respect to {r′i,r′j}.

Iterative optimization using gradient descent
12: Initialize r (e.g., assigning random values in a range of [rmin,rmax]).
13: while not converged do
14: Evaluate Eq. 3 with current r and keep the best result so far as rbest.
15: Find a bottleneck pair of nodes (x, y) that produced the minimum di, j .
16: Update r based on ∇dx,y({r′x,r′y}) and the mapping between r′i and r.
17: Clip r to fit resistance into the boundary [rmin,rmax].
18: return rbest

Among a variety of circuit simulators, we employ a simulator (e.g.,
Lcapy [36]) that accepts symbolic computations [17, 56] to derive
derivatives. In symbolic computations, we can use mathematical sym-
bols as-is to solve equations and compute derivatives without converting
them to numerical values. Consequently, we can obtain precise deriva-
tives for the optimization and also perform an efficient optimization by
reusing the same symbolic functions across iterations.

Symbolic computing still suffers from computational costs when
several symbols are involved, particularly when we compute the matrix
inversion operation required for solving our optimization equations.
The time complexity for this matrix inversion operation is O(S3) where
S is the number of symbols. To mitigate this complexity, we utilize
the fact that resistors connected in series can be simplified as one
resistor [15]. Given three resistors (i.e., r1, r2, r3), the symbolic compu-
tation without combining these resistors would involve three symbols.
In contrast, combining three resistors with r′ = r1+ r2+ r3 would only
involve r′ in the computation.

Combining resistors can radically reduce computational costs. To
maximally reduce the number of symbols, we use the DFS-based resis-
tor link selection as discussed in Sec. 3.3.1. We combine resistors for
each of the N generated circuits, derive their voltage change functions,
and solve each function for a given voltage threshold (lines 4–7 in
Alg. 1). We further speed up these processes by solving the functions
in parallel. For the circuit induced by touching node i, we denote a
vector of resistance of the combined resistors as r′i, a bijective mapping
from r to r′i as fi : r→ r′i and its inverse mapping as f−1

i : r′i → r. Note:
|r′i| ≪ |r|.

Gradient-based optimization. From all pairs of the time delay
functions, we symbolically derive the time delay difference (i.e., di, j)
and its derivative (∇di, j) with respect to {r′i,r′j} (lines 8–11). We then
assign concrete values to r and iteratively optimize these values.

We first initialize r with user-specified or random values within a
range of [rmin,rmax] (line 12). We evaluate Eq. 3 with the current r
(line 14) by inserting the values of r into di, j while referring to the
mappings fi and f j. We then update r to improve the minimum time
delay difference with gradient descent. To achieve this, we first identify
the bottleneck dx,y, causing the minimum time delay difference (line
15). We then update r based on ∇dx,y({r′x,r′y}). However, the obtained
gradients are for the combined resistors. Thus, we evenly distribute
each combined resistance’s gradient to the set of original resistor links
by referring to f−1

x and f−1
y . For example, when a combined resistor

consists of {r1,r2,r3} and its gradient is 3, we assign 1 as a gradient
for each of {r1,r2,r3}. For convenience, we denote the gradients after
this conversion as grad(dx,y)(r). We can formulate the update of r by

a b

Fig. 5: A comparison of network layouts before and after adjustment.
Two links intersect, creating potential circuitry issues in (a). Spatial
adjustment resolves this issue (b).

gradient descent (line 16) as:
r← r−α grad(dx,y)(r) (4)

where α ∈ R is a step size to control the pace of the optimization
(e.g., 1% of (r_max− r_min)). We then clip each resistance of r in
the user-specified boundary, [rmin,rmax] (line 17). We repeat until the
optimization reaches convergence and then use the value of r that
achieves the best result for Eq. 3 (lines 13–18).

3.4 Network Layout Design
For the network layout design, we generate a 3D representation net-
work. Our pipeline conducts post-hoc adjustments that work with
any existing network layout algorithm. By default, we use the force-
directed Fruchterman-Reingold layout [28]. We can also use predefined
positions if they are available (e.g., networks with molecular structures,
brain regions, geospatial information). This process extends to non-
network visualizations deconstructed as hubs and struts (e.g., vertices in
a Voronoi diagram, points in a line graph) by using the same process as
a network with predefined positions. In this work, we mainly consider
networks only with straight links.

3.4.1 Network Layout Adjustment

The 3D representation network generated from the above process might
have an undesirable structure for fabrication. Since most existing layout
algorithms do not consider 3D volumes of nodes and links, the conduc-
tive nodes and resistor links might intersect with each other, resulting
in unexpected changes in the circuit. Thus, we introduce a network
layout adjustment algorithm to adjust network geometry to avoid such
issues. Fig. 5 shows an example of 3D representation networks before
(Fig. 5a) and after (Fig. 5b) applying our layout adjustment.

Optimization goals. Our layout adjustment has the following goals:
• Primary goal: All resistor links must not intersect with each other.
This restriction also applies to all nodes.

• Secondary goal: The adjusted layout should preserve the structure
of the original layout as much as possible.

• Optional aesthetic goals:
– Intersections of non-conductive links should also be minimized.
– Link lengths should be close to uniform [10].

To efficiently satisfy these multiple goals, we employ a neural network
(NN). A NN enables us to conveniently perform gradient-based op-
timization over loss functions corresponding to these goals [2]. The
optional goals do not fulfill all graph aesthetic criteria (e.g., maximizing
link angles). However, our NN approach can readily extend to support
such options by designing additional corresponding loss functions.

Loss functions. Node-link diagrams are intuitively represented as
cylinders (links) and spheres (nodes). We can detect the intersection
of two cylinders if the minimum distance of their axes is smaller than
the sum of their base radii. Similarly, two spheres intersect if the
distance between their centers is smaller than the sum of their radii. Let
dist(·) be a generic function computing the distance of links’ cylindrical
axes or the distance of nodes’ spheres; radius(·) be a generic function
returning a radius of the link’s cylinder base or node’s sphere. We
define an intersection loss for all links and nodes as:

Jint =∑
i
∑
j, j ̸=i

ReLU

dist(ei,e j)− radius(ei)− radius(e j)


(5)

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

ieee TransaCTions on VisuaLiZaTion anD CompuTer grapHiCs, VoL. 30, no. 1, JanuarY 2024918

where {ei} is a set of nodes or links and ReLU(·) is the rectified linear
unit function (ReLU(x) =max(0,x)). We use ReLU, instead of thresh-
olding, to train the NN more easily. If there is no intersection, ReLU
returns 0; otherwise, it returns the intersected length. We compute the
intersection loss separately for resistor links (Jres

int), non-resistor links
(Jnon_res

int), and nodes (Jnode
int).

Similar to Wang et al. [88], we measure the network layout change
before and after adjusting node positions with Procrustes distance.
Procrustes distance computes the sum of Euclidean pairwise distances
of nodes after aligning two sets of node positions with translation,
uniform scaling, rotation, and axis flipping [29]. This measure can
eliminate the influence of non-essential layout differences. Let Po and
Pu be the node positions of the 3D representation network before and
after the layout adjustment. Then the loss for the layout change can
be written as: Jpos=Procrustes(Po,Pu) where Procrustes(·) computes
the Procrustes distance. Lastly, we measure a loss corresponding to
non-uniform link lengths, Jlen, as the standard deviation of link lengths.

NN architecture and optimization procedure. We use a NN to find
appropriate updated 3D node positions, Pu. Thus, the NN outputs Pu
from IN , an input identity matrix with the size of N. We also input the
node and link information required to compute the loss functions. We
expect most network physicalizations to be relatively small (e.g., less
than 1000 nodes). Therefore, we use a simple multilayer perceptron
(MLP) consisting of three 100-neuron hidden layers by default.

Our training consists of two phases: (i) learning the original layout
and (ii) adjusting the layout. The first phase learns neuron weights
such that Pu becomes the same layout as Po by minimizing Jpos during
training. The second phase then adjusts the learned neuron weights
to satisfy our optimization goals. For this second phase, we minimize
the sum of multiple weighted loss functions. To place a higher priority
on removing intersections, we assign larger weights to Jres

int and Jnode
int .

For the loss functions corresponding to the secondary goal of layout
preservation and optional aesthetic goals, we can select weights based
on the design needs. For example, when generating the network layout
shown in Fig. 1a, we used a loss function, 3Jres

int +3Jnode
int + Jnon_res

int + Jpos+
Jlen. If Jres

int > 0 or Jnode
int > 0, the optimization result does not satisfy the

primary goal. To resolve such cases, we can retrain the NN with larger
weights for Jres

int and Jnode
int and/or reduce the links’ base radii relative to

the node radii.

3.5 Data Generation for Fabrication
The digital fabrication stage creates the necessary CAD files to 3D
print the updated network. We generate a fabrication-ready network by
embedding the resistor network into the 3D representation network.

Resistor network embedding. Nodes are fabricated with a con-
ductive filament to provide high conductivity. To materialize resistor
links, they need to have high resistance within a limited volume of each
cylindrical link. This is accomplished by drawing a thin, long trace of
the conductive filament using a serpentine trace pattern [77]. Given a
surface area, the resistivity is maximized by drawing on the xy-plane
layers with a serpentine trace pattern and connecting the endpoints in
the z-direction line, resulting in a 3D zig-zag structure (Fig. 1b).

To achieve the resistance specified in the resistor network, we de-
termine the length of each resistor link’s trace based on the resistivity
law (Eq. 1). Due to the printing resolution of most FDM printers, we
suggest using different thicknesses for the line on xy-plane and the line
along z-direction. The line thickness for the xy-plane can be close to the
printer’s nozzle extrusion width (e.g., 0.4mm), while the thickness for
z-direction should be at least twice the extrusion width (e.g., 0.8mm)
to ensure contact from the previous layer. A conductive filament’s re-
sistivity (i.e., ρ in Eq. 1) along the xy-plane and z-direction is typically
provided by the filament makers. Then, with the given line thickness,
filament’s resistivity, and link’s cylindrical shape (radius, angle, and
length), we can computationally identify the appropriate length and
drawing pattern of the trace. However, various external conditions
may influence the line area and resistivity (e.g., printing precision,
nozzle temperature, and filament production errors). Thus, we recom-
mend identifying resistance per length (i.e., ρ/a) for the xy-plane and
z-direction under the expected printing condition. The supplementary

materials include our process used to obtain this information.
Structural support. Our sensing network is a physical interface,

and thus needs to be structurally sound. We add cone-shaped structural
support to the edges to increase contact.

3.6 Wiring and Calibration
We 3D print a fabrication-ready network to produce a printed network.
We connect it to a microcontroller circuit using the same schematic
diagram as Fig. 2a. We calibrate time delays corresponding to all nodes
by manually touching each node and observing the time required to
reach a microcontroller’s logic threshold voltage (e.g., 2.5V in Fig. 2c).
Calibration is necessary as each individual and external factors (e.g.,
clothing, temperature) may generate a different capacitance [34].

3.7 Implementation
We implemented the data processing stage with Python 3 and libraries
for matrix computations such as NumPy/SciPy [87]. We used Net-
workX [35] for the DFS-based resistor link selection. For the resistance
optimization, we used Lcapy [36] and SymPy [56] for the circuit simu-
lation and symbolic computation and Pathos for multiprocessing. The
network layout adjustment is implemented with PyTorch [60].

For the digital fabrication stage, we used Rhinoceros 7 [66] as the
CAD software and its programming environment, Grasshopper [19],
to computationally build 3D models. We used a Prusa i3 MK3S+ 3D
printer coupled with a Mosaic Palette Pro 2 to enable multi-material
printing. Our conductive filament is Protopasta’s conductive PLA
(1.75mm) [64]. This filament is commonly available and provides a
good balance of conductivity and resistivity to design a sensing network.
The non-conductive filament can be any standard PLA filament. We
used iSANMATE Wood Filament PLA+ (1.75mm) [45] to emphasize
color contrast between the nodes and links. For our microcontroller, we
tested both the Arduino UNO R3 (16MHz CPU) and UNO R4 WiFi
(48MHz CPU) [6]. Both have a 5V power source and a 2.5V logic
threshold. To constantly measure the time delays, we utilized signals
from the microcontroller’s digital I/O pins [1].

4 EVALUATIONS

We evaluate our computational pipeline in three ways: (i) a quantitative
scalability evaluation, (ii) three usage scenarios driven by three general
visualization tasks, and (iii) an interview with six domain experts.

4.1 Scalability Evaluation
We conduct a two-part scalability evaluation. First, we establish the
practical performance limitations of the data processing stage (i.e.,
resistor network and network layout design) for networks of various
sizes and confirm the effectiveness of our resistance optimization in
determining a user’s touch selection (Sec. 4.1.1). Second, we analyze
how large of a network we can fabricate with our approach (Sec. 4.1.2).

4.1.1 Computational Scalability
Time complexity analysis. The DFS for resistor link selection is
O(N(N+L)) where N and L are the numbers of nodes and links, respec-
tively. The main computation for resistance optimization is the matrix
inversion, which is required to solve the equation for each touched node
(line 7 in Alg. 1). This has O(NS3) where S is the number of involved
symbols. The number of symbols is linearly correlated to the number
of resistor path branches, B (e.g., B=2 for Fig. 4c). We can thereby
rewrite the time complexity as O(NB3). The network layout process’s
time complexity depends on existing algorithms. Our default layout
is the Fruchterman-Reingold layout, which has O(N2+L). Lastly, the
network layout adjustment’s time complexity varies based on which
loss functions are employed. Jres

int has O(N
2) as it involves comparing

all resistor links. Similarly, Jnon_res
int and Jnode

int have O(L2) and O(N2), re-
spectively. The time complexities for Jpos and Jlen are almost negligible
compared to the other loss functions. For each iteration performed by
a NN, the network layout adjustment has O(N2) at minimum as we
must include Jres

int and Jnode
int . When using all the loss functions, the time

complexity becomes O(N2+L2).

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

919bae ET AL.: A Computational Design Process to Fabricate...

Fig. 6: Computational evaluation results: (a, b) performance of resistance
optimization and network layout adjustment; (c) progress of resistance
optimization over iterations. Because of long completion time, we only
show the results for networks with B≤ 4 in (a) and networks with L≤ 300
in (b). For (c), we show the results for three different networks.

From this analysis, the network layout adjustment to avoid link
intersection has the largest computational cost (O(N2+L2)). The matrix
inversion, which uses symbolic computing, also usually requires time-
consuming computations even when the number of symbols is very
small (e.g., 1000 s when S=10 [36]). Resistance optimization (O(NB3))
can be a bottleneck when a network dataset has a large number of path
branches, B (e.g., a network with many star shape sub-networks).

Experimental evaluation. We used a MacBook Pro with 2.3 GHz
8-Core Intel Core i9 and 64 GB 2,667 MHz DDR4 (no GPU use). We
collected networks from the graph-tool’s dataset collection [62] and the
Netzschleuder network repository [63] to evaluate our pipeline with
various real-world and synthetic networks. Given current limitations
on 3D printing resolution, we selected all networks with less than 100
nodes, resulting in 57 networks with the ranges of N: [4, 96] and L: [5,
2539]. For layout adjustment, we measured the time needed to process
a network with all loss functions.

As expected from the time complexity analysis, the resistance op-
timization and the network layout adjustment had longer completion
times than other pipeline phases. The friendship network of New
Guinea Highlands tribes (N=16, L=58) took 0.7ms for resistor link
selection, 50 s for resistance optimization, 4ms for network layout, and
300 s for network adjustment. From this bottleneck, we focus on evalu-
ating the completion times of the resistance optimization and network
adjustment.

The results of resistance optimization and network adjustment are
shown in Fig. 6a and b. The x-axis reflects the most influential variable
for their time complexity (e.g., B for resistance optimization due to
O(NB3)). The sequential colormap reflects N as the secondary influ-
ential variable. These results follow the theoretical time complexity.
The resistance optimization finished in approximately 4 hours for a
network with N=47 and L=504 (B=4). The retwork layout adjustment
completed in 2 hours for a network with N=70 and L=274. While
these completion times are nontrivial, it would take much longer and
be significantly more error-prone to design appropriate resistance and
layout by hand.

Lastly, we evaluated the quality of resistance optimization to exam-
ine its effectiveness in practically distinguishing touched nodes with
a microcontroller. We initialized the resistance of resistor links ran-
domly within a range of [50 kΩ, 300 kΩ] and performed optimization.
Fig. 6c shows the transition of the minimum difference among the time
delays. Optimization significantly increases the minimum difference
(e.g., from 0.8 µs to 7.4 µs for the bison network) and quickly converges.
As mentioned in Sec. 3.3.2, our resistance optimization is designed
such that it maximizes the minimum difference of the time delays. An
order of magnitude increased time delays significantly improves the
sensitivity of node recognition. This improvement enables the Arduino
UNO R4 to further distinguish touched nodes by the difference of 355
clock cycles (i.e., 7.4 µs) instead of 38 clock cycles (i.e., 0.8 µs).

4.1.2 Fabrication Scalability
To determine the largest network we can fabricate, we assume a 3D
printer with a 0.4mm nozzle (standard for consumer FDM 3D printers)
using Protopasta’s conductive PLA (1.75mm). We first measured the
maximum resistance we can produce with the conductive traces using
the serpentine trace pattern. Because the maximum resistance depends
on the cylindrical volume of a resistor link, we applied our resistor

Fig. 7: Fabrication scalability analysis: (a) the maximum resistance we
can create for different cylinder lengths; (b) the longest dimension lengths
required for printing space, where 250mm corresponds to the maximum
printable size using a Prusa i3 MK3S+.

network embedding method to cylinders with different axis lengths and
a fixed base radius of 3mm. In Fig. 7a, we see a linear relationship
between the maximum achievable resistance and the cylinder length.

Next, we identified the required resistance for sensing networks’
resistor links to be able to distinguish each selected node. To keep the
evaluation concise, we assume the following: the sensing networks are
paired with the Arduino UNO R4 (one clock cycle per 21 ns); the time
delay to distinguish a touched node is at least a difference of 2.1 µs
(100 clock cycles); the involved capacitance for each touch selection is
100 pF (a representative value for a human body [25]); and all resistor
links are connected in series. With these assumptions and Eq. 2, the
derived required resistance for each resistor link is 30 kΩ.

We use this resistance value to derive the required print sizes to fab-
ricate sensing networks. As shown in Fig. 7a, the minimum cylindrical
length to satisfy 30 kΩ is 17mm. We set the radius of each node to be
6mm (twice the base radius of a cylinder). Following our network lay-
out and adjustment processes, we laid out the networks such that their
minimum resistor link length matched the identified cylinder length.
Note that we only used Jres

int and J
node
int to avoid intersections of conductive

materials. We then obtained the maximum distance of all possible pairs
of nodes to compute the required length for the printing area.

Based on these computations (Fig. 7b), we estimate that the largest
printable sensing network size is between 20–30 nodes when using a
consumer 3D printer such as the Prusa i3 MK3S+. This result implies
that the scale of our approach is currently limited by the size of the 3D
printer rather than the computational complexity of the algorithms.

4.2 Usage Scenarios

We present three example usage scenarios to illustrate how our sensing
networks can be used in practice. These usage scenarios motivate how
selection can support three general visualization tasks: exploration,
explanation, and analytic provenance. The scenarios are contextualized
in the educational context of a student exploring disease spread using a
social network, and are driven by the concept of exploranation [93] (i.e.,
how exploratory and explanatory visualization techniques can inform
each other). The exploratory case demonstrates how our approach
aligns with emerging uses of tangible 3D input devices [12, 42].

Various studies confirm the benefits of using 3D input devices, such
as reducing mental effort, compared to the traditional keyboard and
mouse setup [11,41,70]. The explanatory case aligns with how physical
models have also been used to richly explain abstract concepts (e.g.,
visualization [7, 43], biology [5]) for educational purposes and general
science communication [68,75]. The third usage scenario emphasizes
our network physicalization’s capabilities as a sensor. Building upon
literature on analytic provenance [30, 65], our networks can richly and
passively capture how users are interacting with the data physically,
serving as a tangible data log for their physical navigation of the data.

We derived these scenarios from discussions with subject matter
experts who use networks in their everyday practice (e.g., chemistry,
computational biology, network science). The usage scenarios summa-
rize core functionality that experts currently rely on using alternative so-
lutions. They also demonstrate the broad utility of our sensing network
by enabling serial communication with other devices. Each scenario is
based on the parameters described during our interviews (Fig. 8), and
uses the network physicalization in Fig. 1. Details of these discussions
are stated in Sec. 4.3. See the supplemental video for demo [1].

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

ieee TransaCTions on VisuaLiZaTion anD CompuTer grapHiCs, VoL. 30, no. 1, JanuarY 2024920

a b

Fig. 8: Three usage scenarios (Sec. 4.2) with a sensing network phys-
icalization (N = 20, L= 40; see Fig. 1). (a) Exploratory: Alice analyzes
the network using graph centrality and concludes Node 9 should be
vaccinated; (b) Explanatory: Alice touches Node 9 to explain her findings.
Network is serially connected to audiences’ AR glasses and mobile AR
applications. Note: displayed degree and betweenness centralities are
normalized by dividing by the highest possible values for this network.

4.2.1 Exploration and Discovery

Background. Students can learn about viral transmission through
social networks, which model the connections between students. A
professor prepares a synthetic social network (N = 20, L= 40) where
each student node has a set of attributes such as age, gender, and number
of social connections. The network is represented in 2D (digital) and
3D (physical). Students apply graph theory concepts to analyze the
social interactions that determine disease dynamics.

A student named Alice assesses the network to identify individuals
who have a high potential to spread the disease. Her task is to determine
which centrality measure would lead to the best vaccination strategy.
She looks at the 2D and 3D representations of the same network. With
both representations, she immediately notices there are two distinct
clusters, but the link intersections of the righthand cluster are difficult to
distinguish on screen. Alice connects the physical model to a desktop
visualization for navigation and initial exploration. She wants to find
Node 2 who is identified as the one infected person. The desktop
currently displays all nodes and their ID. She notices Node 2 is within
the right cluster. She filters out all nodes in the left cluster by selecting
each node. These filtered nodes turn grey and their opacity reduces.

Alice double-taps all the nodes within the righthand cluster to in-
spect local details for their centrality measures. A tooltip appears. She
analyzes the degree centrality of each node. Nodes 7, 9, 16 have high
degree centrality, representing individuals with many connections in the
networks. Alice holds onto these respective nodes for three seconds to
highlight them in yellow (Fig. 8a). She then analyzes the betweenness
centrality of the highlighted nodes, which represents the extent to which
individuals lie on the shortest paths between pairs of other individuals
in the network. She compares the betweenness centrality among the
three nodes. From the tooltip, Node 9 has the highest betweenness
centrality. She concludes that Node 9 should be vaccinated.

4.2.2 Explanation and Communication

Alice presents her findings (i) to her classmates and teachers remotely
and (ii) during a live presentation at a science center.

Remote presentation. Remote presentations lack shared physical
context, making deictic gestures, such as pointing to items of interest,
difficult to interpret [86]. To provide context for her findings, Alice
uses her model as a physical prop during a video call with her class to
present her findings. She can use deictic gestures to indicate key nodes
and links during her presentation by pointing, with the physical model
providing a shared context between Alice and her remote audience.
Alice can also use the desktop visualization as a digital twin of the
network [40] and use the sensing network to interact with the twin. As
she touches different nodes, the sensing network allows the twin to
highlight those nodes in red and display additional information about
the corresponding student in the network. When she releases the node,
the information disappears, allowing her to continue her discussion.

Science communication in public museums. Science communica-
tion at museums or local science centers bridges researchers and the
general public. Visitors can engage in research data with algorithms
and software similar to what was used by researchers. However, public
displays impose installation challenges in terms of reliability and in-
teraction. To amend this challenge, museums often use touch surfaces
that enable robust and intuitive multi-user interaction [94]. Despite the
documented success of touch interfaces, tangible interfaces and physi-
calizations can better scaffold knowledge and promote learning [75].
Alice uses her physicalization in a workshop presentation at the local
science center. AR headsets and mobile AR are used to display aug-
mented information on the network model. She presents her findings
and lets the participants handle the model and study the responses to
the augmented information. Rather than relying on the cameras on
headsets and phones for interaction, which suffer from occlusion, she
uses her digital twin configuration to bridge the physical model with
the audience members’ devices. As Alice is walking through her data
exploration (Fig. 8b), the sensing capabilities of the network inform the
headsets of the different node selections and display the corresponding
node information. Audience members can see her node selections even
when the model is outside of the headset’s and phone’s field of view.

4.2.3 Provenance and Documentation
As Alice explores and explains her data, she physically interacts with
the network. What nodes she touched, for how long, and in what order
can all be logged to replay her physical interactions with the data [30].
The innate sensing capability challenges conventional approaches to
capture interactive data exploration (i.e., data sensemaking). Based
on Alice’s exploration (Sec. 4.2.1), her professor analyzes her logged
interactions to understand her data sensemaking process. He wants
to use this information to better inform his teaching curriculum. He
visualizes the logged data as a timeline visualization and a heatmap.

In the visualizations, he notes that Alice kept “bookmarking” [24,48]
Node 9 by leaving her finger in place. The lingering action confirms
that Alice was thoroughly exploring the righthand cluster. He notices
that she only engaged with the left cluster only in the beginning of her
exploration. He plans to note that if Alice did not immediately filter
out the left cluster’s nodes, she would have noticed that Node 6 also
has a high betweenness centrality and thus should also be vaccinated.

4.3 Expert Discussion on Utilization
We discussed our sensing networks with six domain experts (1 female,
5 males; age reported in bins of 26–55 years). Their expertise varied in
AR/VR (3), material science (1), computational biology (1), and high-
dimensional data (1). Four are working professionals in academia or
national labs. Two are Ph.D. students. Two interviews were conducted
remotely and four were in person. See the supplementary materials [1]
for more details.

We first explained the basic principles of the pipeline (Sec. 3.1) and
demonstrated the networks either in-person or remotely. Within the
physical condition, we asked the domain experts to interact with the
physical network themselves and demonstrated how it can be connected
to other devices. Within the remote condition, we demonstrated the
sensing capability by screen-sharing the model and playing videos we
captured in advance. We then asked questions designed to elicit both
insights into potential uses as well as preliminary perceptions of the
pipeline and resulting networks.

Overall, the domain experts reacted positively to our produced net-
works, with E6 (an AR/VR developer) saying, “Currently, there are
only a few ways objects can meaningfully respond to touch, and your
technique is changing that [paradigm].” Five of the six experts noted
the sensing network’s potential for supplementing existing exploratory
workflows. E1 (expert in uncertainty in high-dimensional data) ex-
pressed how it could potentially be used as a parameter tuning control
for high-dimensional spaces (e.g., producing an interactive Morse-
Smale Complex [32]). E1 felt she could “play with the graph of the
[high-dimensional] parameter space to [move] to new locations in
the output space, [which can] give us a better understanding of how
parameters are related and ways to navigate the parameter space.” E2,

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

921bae ET AL.: A Computational Design Process to Fabricate...

a material scientist, uses CAVEs to immersively see static 3D molecu-
lar compounds (e.g., solar cells). However, he often faces difficulties
interacting with the CAVE to filter certain sub-components to visualize
further. He envisioned that the networks can possibly act as interactive
“motifs” (similar to graphlets [76]) within the large molecular polymers
he analyzes. The network’s sensing capabilities would enable more
intuitive interactions, while the pipeline would enable him as a domain
scientist to readily produce polymer physicalizations on demand.

Experts who develop AR/VR provided similar comments on how
this can help supplement existing interaction workflows for immersive
spaces. E4-E6, all AR/VR developers, stated that the ability to pro-
duce haptic objects that share the form of critical virtual objects and
can act as input sensors will benefit the field. E6 specified that the
biggest issues with current haptic proxies stem from how they are either
completely passive or require too much instrumentation to make them
interactive. Our technique would enable developers to more easily pro-
duce responsive controllers shaped like networks or other hub-and-strut
forms, which can complement immersive analytics tools.

E3 (a computational biologist) and E6 provided useful feedback for
future work. Despite explaining the scalability of the technique, E3
noted that, “I’m not sure if I want to even hold a 50+ node network”.
This comment aligns with findings that the physical scale of a physi-
calization needs to be chosen carefully for ease of manipulation and
representation legibility [54]. E6 pointed out how the current network
could be more powerful by being modular and reconfigurable.

5 DISCUSSION

Need for computational fabrication processes. By concurrently gen-
erating data representations (form) alongside sensing capabilities (inter-
action), our pipeline addresses several low-level engineering challenges
associated with physicalization production (e.g., layout, circuit design,
and sensor integration) for networks and any visualization using a hub-
and-strut structure (see Sec. 3.4). This design paradigm shift enables
integrating sensing capabilities without disturbing a physicalization’s
form and can help achieve more complex physicalizations.

Past work in visualization authoring tools (e.g., D3 [14] and Vega-
lite [71]) parallels our goal to make it easier to produce interactive
data representations. The power of these toolkits is their ability to
concurrently consider interactions and visual representations, similar
to our pipeline. However, prior to these tools, developers used systems
designed for general graphics applications, which lacked support for
designing interactive visualizations. Consequently, developers had to
develop custom solutions for common operations (e.g., mapping data
to visual elements and event handlers). Digital toolkits reduced the
time and labor associated with visualization development, leading to
readily reusable and reliable components. Toolkits for physicalizations
have the potential to achieve similar goals, enabling developers to
focus more on what analytical scenarios they want to explore with
a physicalization rather than how to build one. We contend that our
pipeline can provide an important step towards more robust toolkits for
interactive physicalization. As a result, this work lowers the barrier of
entry for people to incorporate physicalizations into their work.

Enabling output. Interactive objects receive input (e.g., from touch)
and produce output (e.g., light, sound, color change) in a controlled
manner. Our sensing network currently addresses the first part of
the interaction loop by responding to touch inputs and can serve as a
foundational step to truly realize interactive physicalizations. One way
to enable display output in our sensing networks is to integrate trace
routing approaches for 3D printed optical fibers [91] or color-changing
dyes [49]. Color is one of the main visual channels when representing
data, and the existing work in this space (e.g., visualizations with color-
changing inks [61]) suggests its potential for physicalizations. Another
possibility is to explore sound output with 3D printed speakers [46],
which lends well to existing research efforts on sonification [39].

Working alongside other visualizations. Our computational
pipeline currently supports selection by touch through capacitive sens-
ing and computational inference. Though limited, select is a funda-
mental interaction primitive (Sec. 2.1) that enables designers to imple-
ment more complex interactions at the application layer (see Sec. 4.2).

Currently, the output of our interaction loop is achieved through dig-
ital visualizations. Though future work should investigate how to en-
able physical output, experts saw value in this current digital-physical
paradigm. This value stems from how our experts work with different
media (e.g., CAVEs, desktops, AR/VR headsets) and how our sensing
network physicalizations can be easily integrated with these different
devices through serial communication. This integration allows systems
to simultaneously leverage the responsiveness of digital displays with
the intuitive interactions and cognitive benefits of physicalizations.

Nonetheless, future work is necessary to see which display methods
(e.g., tabletop, shape-changing, AR/VR) best complement interactive
physicalizations. In turn, this hybrid modality can shed a more criti-
cal perspective on analyzing the strengths and weaknesses of digital
and physical approaches, possibly leading to a stronger post-WIMP
(windows icon menu pointer) paradigm [47,67]. Future work should
continue to investigate how to integrate input and output modalities into
physicalizations by concurrently considering form and interactivity.

6 FUTURE WORK

Improving scalability. Our fabrication process is the primary bottle-
neck for scalability (Sec. 4.1.2). While FDM 3D printers are more
affordable and approachable to end-users, they have a smaller build
volume, slower speed, and less printing resolution compared to other
processes [58]. For example, the network shown in Fig. 1 (N=20,
L=40) took 50 hours to print. A multi-nozzle 3D printer [85] could
print much larger networks at a faster rate while having more precision
in the design of conductive traces. This process can help fully explore
the benefits of larger, physical networks (e.g., extracting depth informa-
tion) while still supporting interactivity. To support higher precision
and larger scale, our algorithms’ performance must also improve. We
could improve resistance optimization by simplifying resistor links con-
nected in parallel. This would require future research into distributing
gradients for the combined resistor to the original resistor links.

Improving calibration. Currently, our sensing technique requires
manual calibration for each printed network and user due to the differ-
ences in capacitance. In addition, external environmental factors (e.g.,
temperature, surrounding materials) can affect the capacitive sensors.
One way to partially automate this process is to measure a user’s ca-
pacitance as they touch a few nodes and compute the corresponding
time delays with the circuit simulator used for resistance optimization.
However, this optimization would require high precision while print-
ing conductive traces to ensure the sensing network and the circuit
simulator have the same resistance for each resistor link.

Improving design flexibility. Our approach currently does not
support link selection. To support concurrent node and link selection,
we need to imbue both surfaces with high conductivity while creating
conductive traces within. These constraints bring additional complexity
that will need to be addressed by the resistance optimization, layout
adjustments, and fabrication process. We also plan to support different
shapes for nodes and links to allow more flexible physical encodings,
such as arbitrarily-shaped nodes, curved and bundled links. These
designs can take further advantage of the computational process of 3D
printing, which can help physicalizations represent high-dimensional,
multivariate datasets. While the nodes of our sensing networks are
uniform spheres, we can add additional visual channels by varying their
size, color, texture, and other physical and visual properties.

7 CONCLUSION

We introduce a computational design pipeline to 3D print network
physicalizations with integrated sensing capabilities. This pipeline
inputs network data, computes the internal circuitry for capacitive sens-
ing, adjusts the layout to support fabrication, and produces a sensing
network physicalization. Our methodology introduces a new design
paradigm by concurrently considering form and interactions for phys-
icalizations. By automating low-level hardware design challenges in
favor of application-level implementations, our approach can create
more complex and powerful tools for designing physicalizations. With
this new design paradigm, we can produce generalizable techniques that
lower the barrier to physicalization research, creation, and adoption.

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

ieee TransaCTions on VisuaLiZaTion anD CompuTer grapHiCs, VoL. 30, no. 1, JanuarY 2024922

ACKNOWLEDGMENTS

This research is sponsored in part by the U.S. National Science Foun-
dation through grants IIS-2040489, IIS-1764089, IIS-2320920, IIS-
1933915, IIS-2233316, the Knut and Alice Wallenberg Foundation
through grant KAW 2019.0024, and the CU Boulder Engineering Edu-
cation and AI-Augmented Learning Interdisciplinary Research Theme
Seed Grant.

REFERENCES

[1] Supplemental materials. https://sandrabae.github.io/sensing-network,
2023.

[2] R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, and M. Li. Multicriteria
scalable graph drawing via stochastic gradient descent, (SGD)2. IEEE
Trans Vis Comput Graph, 28(6):2388–2399, 2022. doi: 10.1109/TVCG.
2022.3155564

[3] K. Allahverdi, H. Djavaherpour, A. Mahdavi-Amiri, and F. Samavati.
Landscaper: A modeling system for 3D printing scale models of land-
scapes. Comput Graph Forum, 37(3):439–451, 2018. doi: 10.1111/cgf.
13432

[4] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic
activity in information visualization. In Proc. INFOVIS, pp. 111–117.
IEEE, USA, 2005. doi: 10.1109/INFVIS.2005.1532136

[5] K. D. Ang, F. F. Samavati, S. Sabokrohiyeh, J. Garcia, and M. S. Elbaz.
Physicalizing cardiac blood flow data via 3D printing. Comput Graph,
85:42–54, 2019. doi: 10.1016/j.cag.2019.09.004

[6] Arduino. Arduino Documentation. , 2023. Accessed: 2023-03-24.
[7] S. S. Bae, R. Vanukuru, R. Yang, P. Gyory, R. Zhou, E. Y.-L. Do, and D. A.

Szafir. Cultivating visualization literacy for children through curiosity
and play. IEEE Trans Vis Comput Graph, 29(1):257–267, 2023. doi: 10.
1109/TVCG.2022.3209442

[8] S. S. Bae, C. Zheng, M. E. West, E. Y.-L. Do, S. Huron, and D. A.
Szafir. Making data tangible: A cross-disciplinary design space for data
physicalization. In Proc. CHI. ACM, New York, 2022. doi: 10.1145/
3491102.3501939

[9] A.-L. Barabási. Network Science. Cambridge University Press, 2016.
[10] C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch. The aesthetics of graph

visualization. In Proc. CompAesth, pp. 57–64. EG, Goslar, 2007. doi: 10.
2312/COMPAESTH/COMPAESTH07/057-064

[11] L. Besançon, P. Issartel, M. Ammi, and T. Isenberg. Mouse, tactile, and
tangible input for 3D manipulation. In Proc. CHI, pp. 4727–4740. ACM,
New York, 2017. doi: 10.1145/3025453.3025863

[12] L. Besançon, A. Ynnerman, D. F. Keefe, L. Yu, and T. Isenberg. The state
of the art of spatial interfaces for 3D visualization. Comput Graph Forum,
40(1):293–326, 2021. doi: 10.1111/cgf.14189

[13] M. Billinghurst, A. Clark, and G. Lee. A survey of augmented reality.
Found Trends Hum-Comput Interact, 8(2-3):73–272, 2015. doi: 10.1561/
1100000049

[14] M. Bostock, V. Ogievetsky, and J. Heer. D³ data-driven documents. IEEE
Trans Vis Comput Graph, 17(12):2301–2309, 2011. doi: 10.1109/TVCG.
2011.185

[15] R. Brown. Series and parallel resistors and capacitors. Phys Teach,
41(8):483–485, 2003. doi: 10.1119/1.1625209

[16] J. Burstyn, N. Fellion, P. Strohmeier, and R. Vertegaal. PrintPut: Resistive
and capacitive input widgets for interactive 3D prints. In Proc. INTERACT,
pp. 332–339. Springer, Cham, 2015. doi: 10.1007/978-3-319-22701-6_25

[17] J. S. Cohen. Computer Algebra and Symbolic Computation: Mathematical
Methods. CRC Press, 2003. doi: 10.1201/9781439863701

[18] F. Daneshzand, C. Perin, and S. Carpendale. KiriPhys: Exploring new data
physicalization opportunities. IEEE Trans Vis Comput Graph, 29(1):225–
235, 2023. doi: 10.1109/TVCG.2022.3209365

[19] S. Davidson. Grasshopper: Algorithmic modeling for Rhino. https:
//www.grasshopper3d.com/, 2023. Accessed: 2023-03-24.

[20] A. A. de Freitas, W. C. Monteiro, T. A. Soares de Sousa, V. F. Queiroz,
T. D. Oliveira de Araújo, and B. S. Meiguins. A flexible pipeline to create
different types of data physicalizations. In Proc. IV, pp. 73–78. IEEE,
USA, 2022. doi: 10.1109/IV56949.2022.00021

[21] N. Dehmamy, S. Milanlouei, and A.-L. Barabási. A structural transition
in physical networks. Nature, 563(7733):676–680, 2018. doi: 10.1038/
s41586-018-0726-6

[22] A. Dijkshoorn, M. Schouten, G. Wolterink, R. Sanders, S. Stramigioli,
and G. Krijnen. Characterizing the electrical properties of anisotropic,

3D-printed conductive sheets for sensor applications. IEEE Sens J,
20(23):14218–14227, 2020. doi: 10.1109/JSEN.2020.3007249

[23] H. Djavaherpour, F. Samavati, A. Mahdavi-Amiri, F. Yazdanbakhsh, et al.
Data to physicalization: A survey of the physical rendering process. Com-
put Graph Forum, 40(3):569–598, 2021. doi: 10.1111/cgf.14330

[24] A. Drogemuller, A. Cunningham, J. A. Walsh, J. Baumeister, R. T. Smith,
and B. H. Thomas. Haptic and visual comprehension of a 2D graph layout
through physicalisation. In Proc. CHI. ACM, New York, 2021. doi: 10.
1145/3411764.3445704

[25] ESD Association. Fundamentals of electrostatic discharge: Part five-
device sensitivity and testing. https://www.esda.org/esd-overview/esd-
fundamentals/part-5-device-sensitivity-and-testing/, 2020.

[26] J. D. Foley, V. L. Wallace, and P. Chan. The human factors of computer
graphics interaction techniques. IEEE Comput Graph Appl, 4(11):13–48,
1984. doi: 10.1109/MCG.1984.6429355

[27] C. Freksa, T. Barkowsky, Z. Falomir, and J. van de Ven. Geometric
problem solving with strings and pins. Spat Cogn Comput, 19(1):46–68,
2019. doi: 10.1080/13875868.2018.1531415

[28] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software Pract Exper, 21(11):1129–1164, 1991. doi: 10.
1002/spe.4380211102

[29] T. Fujiwara, J.-K. Chou, S. Shilpika, P. Xu, L. Ren, and K.-L. Ma. An
incremental dimensionality reduction method for visualizing streaming
multidimensional data. IEEE Trans Vis Comput Graph, 26(1):418–428,
2020. doi: 10.1109/TVCG.2019.2934433

[30] T. Fujiwara, T. Crnovrsanin, and K.-L. Ma. Concise provenance of inter-
active network analysis. Visual Informatics, 2(4):213–224, 2018. doi: 10.
1016/j.visinf.2018.12.002

[31] M. Fürer and B. Raghavachari. Approximating the minimum degree
spanning tree to within one from the optimal degree. In Proc. SODA, p.
317–324. SIAM, USA, 1992.

[32] S. Gerber, P.-T. Bremer, V. Pascucci, and R. Whitaker. Visual exploration
of high dimensional scalar functions. IEEE Trans Vis Comput Graph,
16(6):1271–1280, 2010. doi: 10.1109/TVCG.2010.213

[33] Grabkowska, D. What Made Me. https://www.grabkowska.com/
what-made-me, 2023. Accessed: 2023-03-24.

[34] T. Grosse-Puppendahl, C. Holz, G. Cohn, R. Wimmer, O. Bechtold, et al.
Finding common ground: A survey of capacitive sensing in human-
computer interaction. In Proc. CHI, p. 3293–3315. ACM, New York,
2017. doi: 10.1145/3025453.3025808

[35] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proc. SciPy, pp. 11–15, 2008.

[36] M. Hayes. Lcapy: Symbolic linear circuit analysis with Python. PeerJ
Comput Sci, pp. e875:1–e875:30, 2022. doi: 10.7717/peerj-cs.875

[37] L. He, J. A. Wittkopf, J. W. Jun, K. Erickson, and R. T. Ballagas. ModElec:
A design tool for prototyping physical computing devices using conductive
3D printing. Proc ACM Interact Mob Wearable Ubiquitous Technol,
5(4):159:1–159:20, 2022. doi: 10.1145/3495000

[38] B. Herman, M. Omdal, S. Zeller, C. A. Richter, F. Samsel, et al. Multi-
touch querying on data physicalizations in immersive AR. Proc ACM
Hum-Comput Interact, 5(ISS):497:1–497:20, 2021. doi: 10.1145/3488542

[39] T. Hermann and H. Ritter. Listen to your data: Model-based sonification
for data analysis. Advances in Intelligent Computing and Multimedia
Systems, 8:189–194, 1999.

[40] G. Hu, Y. Wang, M. Mao, and Y. Zhao. Remote care and collaboration for
empty nest family: Smart home, digital twin and mixed reality. In Proc.
ICVR, pp. 126–134, 2022. doi: 10.1109/ICVR55215.2022.9847779

[41] H. H. Huang, H. Pfister, and Y. Yang. Is embodied interaction beneficial?
A study on navigating network visualizations. Inf Vis, 22(3):169–185,
2016. doi: 10.1177/14738716231157082

[42] Y.-J. Huang, T. Fujiwara, Y.-X. Lin, W.-C. Lin, and K.-L. Ma. A gesture
system for graph visualization in virtual reality environments. In Proc.
PacificVis, pp. 41–45. IEEE, USA, 2017. doi: 10.1109/PACIFICVIS.2017.
8031577

[43] S. Huron, S. Carpendale, A. Thudt, A. Tang, and M. Mauerer. Constructive
visualization. In Proc. DIS, p. 433–442. ACM, New York, 2014. doi: 10.
1145/2598510.2598566

[44] J. Hurtienne, F. Maas, A. Carolus, D. Reinhardt, C. Baur, and C. Wien-
rich. Move&Find: The value of kinaesthetic experience in a casual data
representation. IEEE Comput Graph Appl, 40(6):61–75, 2020. doi: 10.
1109/MCG.2020.3025385

[45] iSANMATE. Wood filament PLA+. https://www.isanmate.com/product-
category/3d_filaments/pla/wood_filament, 2023. Accessed: 2023-06-28.

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

923bae ET AL.: A Computational Design Process to Fabricate...

[46] Y. Ishiguro and I. Poupyrev. 3D printed interactive speakers. In Proc. CHI,
pp. 1733–1742. ACM, New York, 2014. doi: 10.1145/2556288.2557046

[47] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer, E. T.
Solovey, and J. Zigelbaum. Reality-based interaction: A framework for
post-WIMP interfaces. In Proc. CHI, p. 201–210. ACM, New York, 2008.
doi: 10.1145/1357054.1357089

[48] Y. Jansen, P. Dragicevic, and J.-D. Fekete. Evaluating the efficiency of
physical visualizations. In Proc. CHI, p. 2593–2602. ACM, New York,
2013. doi: 10.1145/2470654.2481359

[49] Y. Jin, I. Qamar, M. Wessely, A. Adhikari, K. Bulovic, P. Punpongsanon,
and S. Mueller. Photo-Chromeleon: Re-programmable multi-color tex-
tures using photochromic dyes. In Proc. UIST, p. 701–712. ACM, New
York, 2019. doi: 10.1145/3332165.3347905

[50] J. W. Kelly, M. N. Avraamides, and N. A. Giudice. Haptic experiences
influence visually acquired memories: Reference frames during multi-
modal spatial learning. Psychon Bull Rev, 18:1119–1125, 2011. doi: 10.
3758/s13423-011-0162-1

[51] A. Kerren, H. Purchase, and M. Ward. Multivariate Network Visualization.
Springer, 2014. doi: 10.1007/978-3-319-06793-3

[52] M. Le Goc, L. H. Kim, A. Parsaei, J.-D. Fekete, P. Dragicevic, and
S. Follmer. Zooids: Building blocks for swarm user interfaces. In Proc.
UIST, p. 97–109. ACM, New York, 2016. doi: 10.1145/2984511.2984547

[53] Z. Liu and J. Stasko. Mental models, visual reasoning and interaction
in information visualization: A top-down perspective. IEEE Trans Vis
Comput Graph, 16(6):999–1008, 2010. doi: 10.1109/TVCG.2010.177

[54] I. López García and E. Hornecker. Scaling data physicalization–how does
size influence experience? In Proc. TEI, pp. 1–14. ACM, New York, 2021.
doi: 10.1145/3430524.3440627

[55] M. J. McGuffin, R. Servera, and M. Forest. Path tracing in 2D, 3D, and
physicalized networks. IEEE Trans Vis Comput Graph, pp. 1–14, 2023.

[56] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, et al.
SymPy: Symbolic computing in Python. PeerJ Comput Sci, 2017.

[57] M. Newman. Networks. Oxford University Press, 2018.
[58] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, and D. Hui. Additive

manufacturing (3D printing): A review of materials, methods, applications
and challenges. Compos B Eng, 143:172–196, 2018. doi: 10.1016/j.
compositesb.2018.02.012

[59] Norén, L. Infographics inspire art | R. Justin Stewart. https://
thesocietypages.org/graphicsociology/tag/r-justin-stewart/, 2011.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, et al. PyTorch:
An imperative style, high-performance deep learning library. In Proc.
NeurIPS, 2019 (12 pages). doi: 10.48550/arXiv.1912.01703

[61] B. Patnaik, H. Peng, and N. Elmqvist. Sensemaking sans power: Interac-
tive data visualization using color-changing ink. IEEE Trans Vis Comput
Graph, 2022 (Early Access). doi: 10.1109/TVCG.2022.3209631

[62] T. P. Peixoto. The graph-tool python library. figshare, 2014. doi: 10.
6084/m9.figshare.1164194.v14

[63] T. P. Peixoto. The Netzschleuder network catalogue and repository.
https://networks.skewed.de/, 2020. Accessed: 2023-03-28.

[64] ProtoPasta. Conductive PLA. https://www.proto-pasta.com/products/
conductive-pla, 2023. Accessed: 2023-06-28.

[65] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing provenance
in visualization and data analysis: An organizational framework of prove-
nance types and purposes. IEEE Trans Vis Comput Graph, 22(1):31–40,
2016. doi: 10.1109/TVCG.2015.2467551

[66] Robert McNeel & Associates. Rhinoceros. https://www.rhino3d.com/,
2023. Accessed: 2023-03-24.

[67] J. C. Roberts, P. D. Ritsos, S. K. Badam, D. Brodbeck, J. Kennedy, and
N. Elmqvist. Visualization beyond the desktop–the next big thing. IEEE
Comput Graph Appl, 34(6):26–34, 2014. doi: 10.1109/MCG.2014.82

[68] H. Rosling. Global population growth, box by box. https://www.ted.com/
talks/hans_rosling_global_population_growth_box_by_box, 2014.

[69] S. Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747, 2017. doi: 10.48550/arXiv.1609.04747

[70] K. A. Satriadi, J. Smiley, B. Ens, M. Cordeil, T. Czauderna, et al. Tangible
globes for data visualisation in augmented reality. In Proc. CHI. ACM,
New York, 2022. doi: 10.1145/3491102.3517715

[71] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
Lite: A grammar of interactive graphics. IEEE Trans Vis Comput Graph,
23(1):341–350, 2017. doi: 10.1109/TVCG.2016.2599030

[72] V. Savage, R. Schmidt, T. Grossman, G. Fitzmaurice, and B. Hartmann.
A series of tubes: Adding interactivity to 3D prints using internal pipes.
In Proc. UIST, p. 3–12. ACM, New York, 2014. doi: 10.1145/2642918.
2647374

[73] M. Schmitz, M. Khalilbeigi, M. Balwierz, R. Lissermann, M. Mühlhäuser,
and J. Steimle. Capricate: A fabrication pipeline to design and 3D print
capacitive touch sensors for interactive objects. In Proc. UIST, p. 253–258.
ACM, New York, 2015. doi: 10.1145/2807442.2807503

[74] M. Schmitz, M. Stitz, F. Müller, M. Funk, and M. Mühlhäuser. ./trilaterate:
A fabrication pipeline to design and 3D print hover-, touch-, and force-
sensitive objects. In Proc. CHI, pp. 1–13. ACM, New York, 2019. doi: 10.
1145/3290605.3300684

[75] K. J. Schönborn, G. E. Höst, and K. E. Lundin Palmerius. Interactive
visualization for learning and teaching nanoscience and nanotechnology. In
K. Winkelmann and B. Bhushan, eds., Global Perspectives of Nanoscience
and Engineering Education, pp. 195–222. Springer, 2016. doi: 10.1007/
978-3-319-31833-2_7

[76] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt. Efficient graphlet kernels for large graph comparison. In Proc.
AISTATS, pp. 488–495, 2009.

[77] W.-S. Soh, K.-Y. See, W.-Y. Chang, M. Oswal, L.-B. Wang, et al. Compre-
hensive analysis of serpentine line design. In Proc. APMC, pp. 1285–1288.
IEEE, USA, 2009. doi: 10.1109/APMC.2009.5384455

[78] S. Stusak, M. Hobe, and A. Butz. If your mind can grasp it, your hands
will help. In Proc. TEI, p. 92–99. ACM, New York, 2016. doi: 10.1145/
2839462.2839476

[79] S. Stusak, J. Schwarz, and A. Butz. Evaluating the memorability of
physical visualizations. In Proc. CHI, p. 3247–3250. ACM, New York,
2015. doi: 10.1145/2702123.2702248

[80] S. Stusak, A. Tabard, F. Sauka, R. A. Khot, and A. Butz. Activity Sculp-
tures: Exploring the impact of physical visualizations on running activity.
IEEE Trans Vis Comput Graph, 20(12):2201–2210, 2014. doi: 10.1109/
TVCG.2014.2352953

[81] S. Swaminathan, C. Shi, Y. Jansen, P. Dragicevic, L. A. Oehlberg, and J.-D.
Fekete. Supporting the design and fabrication of physical visualizations. In
Proc. CHI, p. 3845–3854. ACM, New York, 2014. doi: 10.1145/2556288.
2557310

[82] F. Taher, Y. Jansen, J. Woodruff, J. Hardy, K. Hornbæk, and J. Alexander.
Investigating the use of a dynamic physical bar chart for data exploration
and presentation. IEEE Trans Vis Comput Graph, 23(1):451–460, 2017.
doi: 10.1109/TVCG.2016.2598498

[83] M. C. Thrun and F. Lerch. Visualization and 3D printing of multivariate
data of biomarkers. In Proc. WSCG, pp. 7–16, 2016.

[84] P. W. Tuinenga. SPICE A Guide to Circuit Simulation and Analysis Using
PSpice. Prentice-Hall, 1995.

[85] J. Vasquez, H. Twigg-Smith, J. Tran O’Leary, and N. Peek. Jubilee: An
extensible machine for multi-tool fabrication. In Proc. CHI, p. 1–13. ACM,
New York, 2020. doi: 10.1145/3313831.3376425

[86] G. Verhulsdonck. Issues of designing gestures into online interactions:
Implications for communicating in virtual environments. In Proc. DOC,
pp. 26–33. ACM, New York, 2007. doi: 10.1145/1297144.1297151

[87] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, et al. SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nat Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2

[88] Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu. DeepDrawing: A
deep learning approach to graph drawing. IEEE Trans Vis Comput Graph,
26(1):676–686, 2020. doi: 10.1109/TVCG.2019.2934798

[89] M. P. Weller, E. Y.-L. Do, and M. D. Gross. Posey: Instrumenting a
poseable hub and strut construction toy. In Proc. TEI, p. 39–46. ACM,
New York, 2008. doi: 10.1145/1347390.1347402

[90] M. Whitlock, S. Smart, and D. A. Szafir. Graphical perception for im-
mersive analytics. In Proc. VR, pp. 616–625. IEEE, USA, 2020. doi: 10.
1109/VR46266.2020.00084

[91] K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. Printed Optics:
3D printing of embedded optical elements for interactive devices. In
Proc. UIST, pp. 589–598. ACM, New York, 2012. doi: 10.1145/2380116.
2380190

[92] J. S. Yi, Y. a. Kang, J. Stasko, and J. Jacko. Toward a deeper understanding
of the role of interaction in information visualization. IEEE Trans Vis
Comput Graph, 13(6):1224–1231, 2007. doi: 10.1109/TVCG.2007.70515

[93] A. Ynnerman, J. Löwgren, and L. Tibell. Exploranation: A new science
communication paradigm. IEEE Comput Graph Appl, 38(3):13–20, 2018.
doi: 10.1109/MCG.2018.032421649

[94] A. Ynnerman, T. Rydell, D. Antoine, D. Hughes, A. Persson, and P. Ljung.
Interactive visualization of 3D scanned mummies at public venues. Com-
mun ACM, 59(12):72–81, 2016. doi: 10.1145/2950040

Authorized licensed use limited to: New York University. Downloaded on January 04,2024 at 14:06:07 UTC from IEEE Xplore. Restrictions apply.

