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Estimating the Spread of Wildland Fires via

Evidence-Based Information Fusion
Alexander Soderlund™, Member, IEEE, and Mrinal Kumar~, Member, IEEE

Abstract—This article presents a new evidential reasoning
approach for estimating the state of an evolving wildfire in real
time. Given assumed terrain information and lecalized wind
velocity distribution parameters, a probabilistic representation
{i.e., the belief state) of a wildfire is forecast across the spatiotem-
poral domain through a compilation of fire spread simulations.
The forecast is updated through information fusion based on
observations provided by: 1) embedded temperature sensors and
2) mobile vision agents that are advantageously directed toward
locations of information extraction based on the current state
estimate. This combination of uncertain sources is performed
under the evidence-based Dempster’s rule of combination and is
then used to enact sensor reconfiguration based on the updated
estimate. This research finds that the evidential belief combina-
tion vastly outperforms the standard forecasting approach (where
no sensor data are incorporated) in the presence of imprecise
environmental parameters.

Index Terms— Adaptive estimation, agent-based modeling, esti-
mation theory, evidential reasoning, sensor fusion.

I. INTRODUCTION

T HAS become evident that there is a need for rapid, real-
I time estimation of wildfires as their frequency and severity
are expected to increase due to warming temperatures and ear-
lier spring snow-melts, particularly along the wildland—urban
interface in certain geographic regions [1]. While naturally
occurring fires are beneficial to environments that require
consistent fire events to maintain the health and diversity of
ecosystems [2], uncontrolled wildland fires can be a source of
financial and physical losses for communities [3] and a hazard
to natural resources and wildlife habitats [4], [5].

Crucially, in the presence of unpredictable environmental
conditions, accurate predictions of fire presence are difficult
to acquire. In an official report on the Lower North Fork
Fire [6], wherein a prescribed fire in Colorado transformed
into an uncontrolled wildfire, it was determined that one of
the leading causes was “a rapidly escalating wind event™
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that carried embers across a fire control line. The autopsy
report also declared that “weather and fire behavior predictions
did not/could not predict the complete set of circumstances
that occurred.” These sentiments were echoed in a special
inquiry report regarding the Margaret River Bushfire [7],
an uncontrolled prescribed fire that broke out near Gracetown,
Australia, where observed weather conditions were “more
extreme than the forecast.” An underlying through line of
these cases is the presence of uncerfainfy regarding the fire's
behavior. When a spreading fire can be feasibly hindered by
fire suppression personnel, effective execution of fire suppres-
sion methods [8] requires a precise representation of where
the fire front currently is and where it is progressing. This
representation can be achieved through a real-time, adap-
tive state estimate of the evolving fire, where the inherent
uncertainty of this estimate may be characterized through
some stochastic model, also known as its belief state. When
observation of the system is available, it is desired that the
combination of an assumed dynamics model of the system
with these observations will yield a state estimate such that the
errors between the estimated and true values of the system's
states are reduced. A common form of state estimation (see
Bayesian filters in [9]) operates through a two-step recursion:
1) propagation of the system’s belief state through its assumed
dynamics model to a future point in time (i.e., a prior belief
state) and 2) assimilation of the received measurement data to
update the prediction (i.e., a posterior belief state) through a
step of information fusion. This posterior belief is then utilized
for the next round of propagation.

In the context of the wildland fire suppression (and, hence,
representation) problem, the recent rise in computational,
sensing, and communication capabilities allows us to adopt
this recursive state estimation procedure described above
by casting the evolving fire front as a random dynamical
system whose physical states (e.g., the perimeter positions,
flame lengths, and intensity) are propagated through a fire
spread dynamics model. These states are then autonomously
observed by sensing agenis in the field, such as unmanned
aircraft systems (also referred to as drones) for data fusion.
Furthermore, this work employs the use of adaptive stafe
estimation where both the sensing set and the dynamics model
can be modified over time. This is useful in a case where the
dynamics model of a physical system is driven by a set of input
parameters whose values are not truly known (e.g., inadequate
wind information or faulty initial ignition locations are given
to a fire spread propagator). Furthermore, a set of sensing
agents tasked with observing this physical system can be
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regularly reconfigured based on the predictions of the physical
system’s states (e.g., drones are routed to frequently predicted
fire locations) in order to provide optimal information content
{and, hence, reduce the uncertainty of the updated belief state).
Once the reconfizured sensing agents have provided data
on the system, information regarding the physical system's
parameters is obtained, and the accuracy of the dynamics
model is improved (e.z., the fire's spread/intensity indicates
that wind speeds are higher than anticipated). This refined
dynamics model will, in turn, enhance the reconfiguration
process of the sensing set (e.g., the updated set of probable
fire locations).

Contributions

The primary contributions of this work are the so-called
basic belief mappings derived for temperature and vision
sensors, and an evidence-based data fusion procedure that
uses stochastic fire spread dynamics, which underlies the
foundation of a real-time wildfire estimator. In addition to a
wildfire belief state, this autonomous estimator also provides
locations of interest that can direct mobile aerial observers and
ultimately aid effective wildland fire suppression.

Outline

The remainder of this section gives a literature review of
the fire characterization methods followed by a brief overview
of the fundamental principles of Dempster—Shafer theory
{DST), which this work adopts for both belief representation
and belief fusion. Section Il provides the methodology by:
1) reviewing the Rothermel fire spread model; 2) describing
the modeled stochastic spread of a wildfire on a landscape
scale; and 3) deriving the bidirectional estimation procedure
based on environmental, temperature, and visual data gath-
ered by the wildfire-sensing agenis used in this work. The
performance of the proposed estimation scheme via numerical
simulations is evaluated in Section III. Section IV follows
with concluding remarks and some potential avenues for future
research.

A. Preliminaries I: Wildfire Characterization

Modern methods of characterizing the spread of wild-
land fires via mathematical models date back to studies
done in the 1940s by Fons [10], [11] and directly influ-
enced the seminal works of Rothermel [12] and Albini [13],
[14] who developed an improved model in the 1970s
that serves as the basis of many predominantly used fire
spread models used today. The inclusion of stochasticity into
wildfire expansion has also been extensively studied—see
the works of Hargrove ef al [15], Catchpole ef al [16],
Boychuk et al. [17], and Krougly ef al. [18], as well a series
of survey papers compiled by Sullivan [19]-[21]. Deficiencies
in modern wildfire modeling methods have been tabulated by
Alexander and Cruz [22].

The aforementioned approaches can broadly be classified as
wildfire forecasting based on some set of physical parameters.
In an ongoing wildfire scenario, however, the forecast state

of the fire may be imprecise and can be augmented by in-
the-field observations provided by sensing agents. This act of
updating a prior belief state of the fire via measurements into
a new belief state representation is what we refer to as wildfire
estimation. This view is also shared in the 2016 work of
Srivas ef al. [23] who implemented an ensemble Kalman filter
to perform data assimilation between an FARSITE-generated
forecast and imperfect fire perimeter measurements.

In terms of sensing agents, researchers (see the work of
Doolin and Sitar [24]) have demonstrated that a network
of wirelessly connected temperature sensors can be used
to alert a central receiving station of an encroaching fire
front. This has been investigated in recent studies involving
automated fire detection through a communicating network of
cameras and sensors, such as Alert Wildfire [25]. Furthermore,
Pham et al. [26] explored the use of mobile vision sensors
emplaced on UAVs that tracked a propagating wildfire by
maintaining the fire's perimeter within each drone’s field of
view.

While the adoption of evidential reasoning methods is
not exceedingly common in the fields of wildfire science,
their use is not unprecedented. Zervas et al. [27] proposed the
evidence-based fusion of the beliefs provided by immobile
temperature and vision sensors in the use of a potential
fire detection system although the belief mappings for the
vision-based observer are not discussed. Zhao ef al. [28] used
DST to accomplish intracluster belief fusion for groups of
temperature sensors. DST was employed in [29] to identify
potential occurrence rates of wildfires in fire-prone regions
in central Chile, while DST was used in [30] in a postfire
event to estimate the extents of burned areas. In these works,
the real-time estimation of a spreading fire using evidence-
based methods was not the focus although this topic was of
interest to previous works of the present authors. In [31],
rudimentary forms of belief assignment functions (not used
in this work) for immobile temperature and vision-based
sensors were discussed but not implemented into a recursive
state estimation procedure. In [32], an estimation procedure
was realized involving the information fusion of a wildfire
forecaster, immobile temperature, and vision agents. This
was expanded in [33], where aerial agents were modified
to be mobile and observed (albeit primitive) simulated ther-
mal images of an environment. This study is a significant
advancement over these previous works in that all sources of
“wildfire belief” (the computational forecaster, the temperature
agent, and the vision agent) have been overhauled. First, the
stochastic fire forecasting models of [31]-{33] were all based
on the Markovian spread model of [17], while this work
utilizes the more precise Rothermel spread model, which is
widely used in the field of wildland fire science. Second,
temperature and imaging data obtained from a prescribed burn
were used to aid in the derivation of new belief mapping
functions for both agents, both of which differ entirely from
the assignments utilized in [31]-[33].

B. Preliminaries II: Evidential Reasoning

With the recent rise of autonomous applications, so too
has the need arisen for robust and precise automated
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decision-making procedures, particularly in the presence of
uncertainty. When a decision must be made efficiently while
in the presence of multiple sources of (often conflicting)
information, the central issue that must be addressed is that of
evidence combination: how should one fuse the information
that is being provided from numerous sources that are all
concerned with the same system of interest? In this study,
we have adopted information fusion within the DST of prob-
able reasoning, which is a generalization of the conventional
Bayesian framework. DST has seen widespread acceptance
across numerous disciplines, notably artificial intelligence and
decision-making [34]-[39]. Although an overview of this
framework is given in this section, a more in-depth explanation
and derivation can be found in an extensive review paper
from [40] and Shafer’s own recent recounting of the theory’s
development [41].

1) Dempster—Shafer Theory: Consider a question with mul-
tiple finite possible explanations (e.g., will it snow over a given
city on Christmas day?). The finite set of mutually exclusive
and collectively exhaustive hypotheses that act as adequate
answers to this question is defined as the frame of discernment:
G ={&,th,. ... 0,. ., 0} where exactly one hypothesis &
is the truth. A possible frame for the above example could
be the binary set ® = {Snow, No Snow}. Conventionally,
modern probability theory (i.e., Kolmogorov's axioms) would
treat @ as an event space and assign a probability to each
hypothesis &; such that countable additivity is honored. In this
toy example, P(Snow) = p and P{(No Snow) = | — p,
where p e [0,1]. DST differs from the “additive view™
by alternatively allowing the assignment of belief (based
on the available evidence) to multiple conflicting hypothe-
ses. Belief is allocated among members, known as proposi-
tions, of the power set 2%, To continue the snow example:
2% — (@, Snow, No Snow, {Snow, No Snow}}. In the DST
view, if there is no information to support either the “snow™
or “no snow” hypotheses (e.g., the city is not given), and then,
belief should instead be placed into the “either one is possible™
proposition {Snow, No Snow}, as opposed to assuming that
they are equally likely P{Snow) = P(No Snow) = (0.5 as in
the conventional view.

The degree of belief that a particular proposition A < @ is
true is derived from the current evidence in support of A. This
numerical “amount™ of belief for any proposition A supplied
by an expert E is quantified through the nonnegative, scalar
mass number, denoted mg(A) e [0, 1] such that the sum of
all mass numbers satisfies 3, e mg(A;) = 1. The array of
mass numbers assigned over the entire frame of discernment
is the vector mg € [0, 112°], defined as

mg = (me(@), me(Ar),...,me(A),...,.me(8)) (1)

where we adopt the conventional “closed-world™ assumption
mg(#) = 0. A useful example of a common mass assign-
ment function is the simple support function defined in the
following:

5, ifA=08
mA)=41—35, fA=0 (2)
0, otherwise.

It is helpful to envision this assignment process by having
each expert initialized from a point of complete ignorance
{e.g., m(®) = 1) and then reallocating mass away from the
ignorance and into a particular proposition B — @ by a certain
amount 5 when evidence supporting that proposition becomes
available. Furthermore, the mass assigned to a proposition
composed of multiple hypotheses is not, in general, divisible
into the masses of its constituent parts. For example, m{@) #£
m{{th ) + m{{&}) + --- + m{{&]). Inmitively, any mass for
the proposition of complete ignorance, m(®), represents the
failure of the available evidence to favor any one hypothesis
over all of the others.

2) Dempster’s Rule: In the case where two independent
experts E1 and E2 each supply their own sets of mass
numbers over the power set 2%, the fused belief of any
proposition A € 2% can be generated via Dempster’s rule of
combination [42]

mc(A)=K 3 mei(A)mex(B;))
AnBy=A

(3)

where the normalization constant K = !/1—« is computed from
the degree of conflict x € [0, 1] between the masses of the two
experts E1 and E2

K= Z me1(Ai)mez(Bj).

ANB=

(4)

The generation of this new array of mass numbers is
represented in vector form as

mg = Mg & MEg3.

In general, conflict (disagreement between sources) should
not be conflated with ignorance (the absence of evidence
supporting any one proposition over the others). The beliefs
of n experts may be combined by applying (3) recursively

me = (((mg; & Mgz) € MEs)) --- S Mg,

as Dempter’s rule is associative. The resulting array from per-
forming Dempster’s rule on a set of simple supports [defined
in (2)] yields what is known as a separable support array.
Separable support arrays serve as the foundation of the agents’
beliefs derived in Section II. We mention here that, since its
initial release, several modifications have been proposed to the
rule of combination. Yager [43], Dubois and Prade [44], and
Zhang [45] have contributed new combination tactics involving
the treatment of conflict.

We briefly mention here an extension to DST, known as
the transferable belief model (TBM) [46], which maps' the
epistemic beliefs of the mass number arrays into “pignistic”
betting probabilities Pgey : @ — [0, 1] computed as

Poa@) = n)

(5)
#HeAce 1Al

where | A| is the number of singleton hypotheses &; that belong
in the set A. In addition, the betting probabilities satisfy

!'This mapping is rooted in the principle of insufficient reasoning. An exten-
sive discussion regarding the validity of the TBM is provided in [47].
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Fig. 1. Bidirectional feedback procedure reframed for the wildfire estimation
application.

Kolmogorov's axioms

> Poa(@) = 1

G|

Prat(B) = 0.

II. METHODOLOGY: ADAPTIVE STATE ESTIMATION

This section introduces the three types of agents that assign
degrees of belief regarding the fire: 1) the forecaster; 2) the
temperature sensor; and 3) the mobile vision sensor. These
are, respectively, represented by the green, blue, and red
blocks in Fig. 1. These three sources of information assign
environmental state beliefs based on their interpretation of the
available data:

1) the computational “forecaster” that predicts the environ-
mental belief state at every location for future times via
ageregating numerous fire propagation simulations;

2) the thermal sensor agent that indirectly detects the
surrounding fire's presence via the increase in ambient
temperature readings;

3) the airborne vision sensor agent that uses rudimentary
pattern recognition to classify vegetation, flames, and
ash within its field of view.

All sources listed above are imperfect. While the forecaster
provides offers evidential information for all locations simul-
taneously, its precision is reliant on accurate wind, terrain,
and ignition location data, which may not be available. The
thermal sensor, while adept at indicating temperature anom-
alies, suffers from saturation and only provides environment
information at a single location. The aerial vision sensor
requires tuning via extensive data collection based on the

operating environment but, on a practical level, has limited
availability due to power (i.e., flight time) constraints. Their
measurements are the lens through which the actual fire is
perceived that the forecaster does not have access to and serve
as the foundation for updating the beliefs originally issued by
the forecaster. The temperature sensor is particularly useful in
scenarios where the assumed environmental conditions input
to the forecaster are incorrect. The beliefs of these agents are
combined to produce an updated belief state regarding the fire,
which is then fed back into the forecasting agent to enhance
its precision for future fire propagation (red arrow in Fig. 1).
This updated belief is also used to generate current locations
of interest in the environment. These “survey spots™ are then
routed to the mobile vision sensor as guidance actions (blue
arrow in Fig. 1) that are explored in Section II-D.

We define the frame of discernment adopted for the wildland
fire application as follows:

@ = {Vegetation(V'), Fire(F), Nonburnable(5)}.
This yields the power set of propositions
22 — (@, V,[V,F}, F,{F,8}, §, {V,§}, ©L

The hypotheses {V, F,5} describe what state a given
location within the wildfire environment is predominantly
experiencing at any given time. For instance, a location
initially composed entirely of combustible wildland fuel is
designated V. Sometime later, it may transition to F if it
becomes a segment of the growing surface fire perimeter. Once
the energy of the fuel is expended, it will then transition
into the ash state (S), which is modeled as nonburnable.
Noncombustible environmental features, such as water, are
also set to 5. Assigning beliefs into which locations can:
1) potentially burn; 2) are burning; and 3) cannot burn is
critical to characterizing the wildland fire’s evolution and
benefits evidence-based decision-making.

A. Belief Model I: Wildland Fire Forecaster

Given the assumed ignition points that a spreading fire orig-
inates from, a computational forecaster employs the modeled
dynamics of wildfire spread in order to yield a degree of
belief that the fire will arrive at a certain location and time
based on a series of input parameters (surface wind velocity,
local topography, types of vegetative fuel, humidity, and s0 on)
that drive the fire’s growth. This degree of belief regarding a
given location’s condition is given in the form of the mass
number array my and is derived from the occurrence rate
(i.e., frequency) of fire presence.

In order to adequately model the dynamics of the physical
system, this work employs the highly used model developed
by Rothermel [12] and Andrews [48] that approximate a fire's
spread based on local environmental inputs of topography,
wind velocity, and combustible fuel

Trér(l + ¢ + )
prQig

where the numerator (heat source) is composed of the total
reaction intensity [g, the propagating flux ratio &g, and the

R = (6)
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dimensionless wind and slope amplification factors, ¢, and ¢;.
The denominator (heat sink) is the amount of heat required for
ignition (;; multiplied by the bulk density gy (i.e., amount of
oven-dry fuel) and the dimensionless effective heating number
£ € [0, 1], which signifies the proportion of the fuel that is
ignited ahead of the fire's leading edge (e.g., fine fuels have
values closer to unity). This deterministic model is applicable
to local (and static) environmental parameters. This spreading
model can be extended to operate across a complex landscape
by representing the entire wildfire environment as a time-
varying m x n array, wherein each element of the lattice,
S®(i, j), represents the state of the Cartesian coordinate (i, j)
at timestep k and is described by one of three discrete values:
8W(i, j) € {Fuel, Fire, Ash/Nonburnable}. It follows that the
state of the environment at time & is denoted as

s®(1, 1 551, n)
S{*J = .

| 55(m, 1) SO, |

By compiling fuel, wind, and slope information at each
node, an array that tabulates the maximum rate of spread
from each location via (6) is created. In the case where
environmental conditions are static across the landscape, the
minimum travel time (MTT) method developed by Finney [49]
treats the minimum time required for the fire to travel from
a node (iy, ji) to any other node (i, j2) as a weighted edge
between two vertices of a graph. Since these “weights" rep-
resent differential times, any node(s) set as the initial ignition
points at time k = 0 will then yield the fire arrival times
to all nodes by implementing a shortest-path (i.e., minimum-
time) algorithm, such as the classic technique developed by
Dijkstra ef al [50]. Fig. 2(a) displays an example of fire
travel trajectories output by the MTT method from a single
ignition point. Fig. 2(b) displays the location of the merzed
fire front at a series of timesteps based on the paths of MTT
in Fig. 2(a).

Due to the presence of stochastic environmental condi-
tions, predominantly witnessed through time-varying surface
wind velocities (see [51]), this work assumes that the local
wind speed and direction at each node vary according to an
assumed distribution. For example, the wind speed at any
node, w,(i, j), can be sampled from a uniform probability
distribution, wy (i, j) ~ B (weli, j), wy(i, §)), where weii, j)
and wy(i, j) are the respective lower and upper wind speeds
predicted to occur at (i, j) over the simulation time. Given the
set of initial ignition points and the distributions of potential
parameters at each location, we may apply a Monte Carlo
method (see [52]), where the environmental inputs are sampled
from these distributions, and a single “run” of the MTT algo-
rithm is performed. The compilation of runs up to time r may
be denoted {S!*, S, ..,8% . 87}, and the completion
of Z simulations will }'ielé the aggregated spatiotemporal
frequentist chance for state &  {Fuel, Fire, Ash/Nonburnable}
to occur at time k as

Fi
a6, =2 (111896, j)=6) )
=1

Mptwark Pathe b Fire Lecations st Time- 180 min.

g §

UTH Ralative Momhisg [m]

-5
[ &M 1081 16 plied

UTH Refative Easting [m]
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Fig. 2.  (a) Associated network analogy that shows the paths that the
fire (under southwesterly winds) took from a single ignition point in the
southwest comer of the landscape at & = 0 to the cument fire locations at
k = 1B0D min. (b) Interpolated time contours of the fire front based on the
network output. Easting and northing coordinates are relative to the ignition
location. {c) Forccast of “burn probability”™ using =% at the time of 180 min.

and a resulting “frequentist chance” array =™ of size m x n
can be constructed

EBM ) LB )
E.[h = : * -

: . : (&)
[éf*]{m, 1) ... a:**’{m,nﬂ

where each element is the probability mass function
EB, ) = [gfh(i, 1), alntis 1), Ghenli, DI Fig. 2(c) dis-
plays the frequentist “burn probability” [ie., q{-f,i_,{i, D+
q_ﬂ{i, )] based on aggregated runs simulated over a range
of conditions for the environment used for the simulation in
Fig. 2(b).

The mapping from the array of frequentist values (i, j)®
to the mass number array mFJ is constructed as an array of
separable supports. To do this, we generate a set of simple
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®

Fig. 3. (a) Temperature sensor placed prior to a prescnbed bumn event
in Maron, OH, USA. (b) Temperature readings transmitted by this sensor
duning the bumn event. In this particolar case, the flame front passed directly
underneath the sensor’s position (about 2 m above ground) and cawsed no
physical damage.

supports m{ﬂ‘Er for each corresponding singleton state &

g, ifA=0
mP (A =11-g¥, ifA=© ©)
0 otherwise.

The mass arrays of all subexperts are combined via Demp-
ster’s rule (3) to create the comprehensive separable set of
beliefs for the forecasting agent at location (i, j) and time k

mf' =m¥ eml’ , &mf . (10)

B. Belief Model II: Temperature Sensor

The increase in temperature due to a moving fireline's
radiating heat flux can be observed by immobile ground-based
temperature sensing agents. These agents, placed at various
locations throughout the environment, are treated as nodes
within a wireless network that all transmit ambient temperature
measurements of their respective positions at a constant rate to
some central processing unit responsible for data acquisition
and decision-making. The network is physically represented
as a binary lattice T® of size m x n, where T®/(i, j) = 1,
if a temperature agent is reporting data from location (i, j) at
time k. Fig. 3(a) depicts a temperature sensor in use, while
Fig. 3(b) shows its corresponding temperature readings during
a prescribed burn event.

While operating in the field, a temperature agent “activates”
if its local ambient temperature surpasses some threshold
{e.g., 35 °C), which is interpreted as evidence of an approach-
ing fire front.? As the sensor is expected to saturate at
some temperature, e.g., the agent in Fig. 3 cannot measure
temperatures above 120 °C, this limit presents difficulties in
determining the precise time of fire passage as a “hot” reading
alone does not distinguish between three possibilities: 1) the
vegetation is heating up, i.e., fire is approaching; 2) the fuel
bed is actively burning, i.e., fire is present; and 3) hot ash is
cooling, i.e., fire has passed. To construct the beliefs of the
agent, one can incorporate additional information, such as the
amount af time, in which the sensor has been above a threshold
temperature and the predicted behavior of wildland fire based
on the (assumed) environmental parameters.

The characteristics (e.g., height, speed) of the approaching
fire front affect the rate of increase of the sensor’s temper-
ature surroundings due to the fire's radiating heat flux. The
contiguous wall of flame is treated as a radiative surface
(see [53]) that emanates a heat flux at a rate according to
the Stefan—Boltzmann law

E = ¢,0,T* (11)

where T is the absolute temperature in K, &; is the emissivity,
and o, = 5.67 = 107 W/m?K* is Stefan—Boltzmann's
constant. When calculating the radiative heat transfer between
any two surfaces, it is crucial to consider the view factor, Fj_s,
a dimensionless quantity between 0 and 1, which represents
the fraction of the radiation that leaves surface 1 and strikes
surface 2. Under the assumption that the surrounding heat
aura around the temperature agent acts as an enclosure,
the configuration factor Fy_» between two surfaces can be
approximated via the method employed by [54] to determine
wildland firefighter safety zones

Fry— _f [ CDS{#]]CDS[FI]EM dA;
A S Az

where A; and A, are the areas of the two respective surfaces,
oy and g, are the respective angles between the surface normal
vectors fiy and fiz. and § is the distance between the differential
areas, as shown in Fig. 4(a).

A fuel model and effective wind speed pairing will generate
both the surface rate of spread R and associated flame height
Fy. Subsequently solving (12) over varying values of the
surface distance §, the incident radiant heat flux on the sensor's
surface can be found [see Fig. 4(b)]. A sensor’s simulated
temperature response can be approximated by solving the
radiation dynamics as the flame surface approaches and then
exponentially cooling the observed temperature to an updated
ambient temperature once the fire front has passed. Thus,
a series of temperature readings over an activation period of
r timesteps Ty = [T},..., ™, ..., T7] can be generated
for each headfire spread rate within a given range Ry €
[ Rmin, Bmax]. Fig. 5(a) displays the temperature responses of
an impervious sensor as it encounters a front progressing at
either end of the spread rate range.

(12)

Headfire rates of spread are assumed for modeling purposes, but flank
(v = x/2) and back (v = x) fires also yield higher air temperatures.
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Fig. 4. (a) Flame front and the temperature agent are modeled as radiating
rectangular surfaces. (b) Radiative heat flux incident on the temperature sensor
surface as a function of: 1) sensor's distance away from the Aame front and
2) front’s flame height.

By cataloging the actual environmental states of the sensor's
location §%)(i, j) for each spread rate Ry and activated time
Tam'f a frequentist chance value of proposition A at each time
can be obtained as

(k) _ ZIEM Z_fen{] I Eit]{!s.f.} < -4-]'
= ZI'EIH Z_jen[Ta}ﬁt J.}]

Furthermore, the set of simple supports [see (2)] for each
subexpert at each time can be constructed as

(13)

q®, ifA=B
mP () =11-¢P, ifA=0 (14)
0, otherwise.

The internally combined set of beliefs for the temperature
agent m{ is computed as

K K K (3 k K
my =mf, eml , , em? em  emf . (15

The combined mass numbers m%’{.ﬁl] for a range of headfire
spread rates are shown in Fig. 5. Note that belief is apportioned
to all feasible propositions through the frequentist chances

created via (13), which indicates evidence that points to
mutually exclusive states simultaneously.

LI

¥

Temperabures [7C]
g8 8

47 [ 80 WD 13 140 60 18D 200
Activated Time (5]
(b)

Fig. 5. {a) Temperature response when encountering a flame front with

the highest and lowest spread rates. (b) Mass numbers for each proposition

m-[]’-t]m} over the temperature agent’s activation time.

C. Belief Model IlI: Aerial Vision Sensor

Unlike their temperature-sensing counterparts in
Section II-B, the airborne vision agents are mobile sensors
that are sent to specific coordinates and survey numerous
points within the environment simultanecusly. This work
assumes that this sensing set is sparse—where the fleet of
available drones includes less than ten members. We model the
vision agent based on the capabilities of the DJI Mavic 2 Pro,
which was recently utilized by the author’s research group
during a prescribed burn.

Each agent can maneuver with a maximum airspeed of
15 m/s and is equipped with a down-facing camera to capture
images that can be routed to a central ground station via a
down-link transfer, which are used to update the current fire
belief state. The primary drawbacks of this agent are: 1) its
energy requirements with approximately 30 min of battery life
and 2) its observations can be obscured by smoke and debris.?

The physical layout of the vision sensing set is similar to
the temperature agent network described above, where the
lattice V'8 is of size m x n, where V®(i, j) = 1 if a vision
agent is reporting data from location (i, j) at time k. The
field of view of each agent’s down-facing camera centered at
position (i, j) at time & will result in an image I™)(i, j) of

*Thermal imaging cameras have also been previously modeled by the
authors, as in [33].
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Fig. 6. (a) Field of view provided by a visual agent at an elevation z above
the surface. (b) Recognizable states of a wildfire environment are categorized
as bivariate distributions over image pixel information.

the landscape. When aligned with a globally fixed frame, the
pixel data contained at image coordinate (x, ¥) can be used
to yield belief state information at the pixel’s corresponding
landscape location(s). The employment of multiple aerial
agents invites carries two considerations: 1) the possibility
of mid-air collisions and 2) the optical capture of redundant
ground information. To avoid these, a (lateral) distance p, is
defined as the radius of the circle, which circumscribes each
agent’s square observation field [see Fig. 6(a)]

Pa = ﬂzﬂ' tan(f;)

and is utilized as a loose constraint when issuing flight
trajectories to the agents. Note that “loose™ in this context
refers to the fact that, in this work, agents are allowed
to temporarily pass through each other's airspace, but final
target locations are selected such that fields of view do not
intersect.

This work assumes that the digital camera housed
on each mobile agent captures and stores the received
visible light information through the additive RGB color
model where every pixel at image location (x,y) and
time k contains the array of red, green, and blue inten-
sity values [Red® (x, y), Green™ (x, v), Blue®™(x, y)]". The
received color array of a location (x,y) is mapped to a

Visible Image
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(b)
Fig. 7. {a) Visible image of a fire front s captured with a DJI Mavic

2 drone at an altitude of 120 m during a prescnbed bumn event in Marion.
(b} Proposition of highest belief Bel(A) that each pixel contains based on
the vision agent’s assignments throogh (17) and (18) of the undedying color
intensity data.

corresponding set of mass numbers m{f]'. It is well-known
that certain environmental features display particular color
signatures [35].

Consider a set of pixels whose image contents all corre-
spond to the same environmental state (e.g., fire). As each
color component ¢ of the received array takes on a value
of ¢ = [0, 255], that state will elicit a combination of color
components that, while not the same across all pixels in this
set, will tend to conform to a distribution. For example, pixels
containing flames shown in Fig. 7(a) tend to contain red
values Red™(x,y)  [175,255] and total intensity values
T (x, ¥) € [350, 700] where

E'FR%E[L y) = Red®(x, ¥) + Green®(x, y) + Blue® (x, y).

Thus, the data in pixel (x,y) at time k can be
modeled as the pair of random wariables p®(x,y) =
(Red™(x, ), Egéﬂ{x,jr}}. This pair of variables (the red
intensity value and the sum of the intensity values) was
converged upon as an appropriate tool for state classification
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and component values corresponding to the three singleton
state hypotheses {V, F, §} tabulated from 600 frames of a
2-min 4k video captured during a prescribed burn test. The
component data for each hypothesis # can be statistically fit
to a bivariate Gaussian distribution .43(pg, Cs), where p(£) is
the sample mean vector of the red and total intensity values,
and Cy is the sample covariance. Fig. 6(b) displays the 95%
confidence ellipses of the proposition distributions

{A5(bs, Cs), Av ry(Bv.Fys Civ. ),
AF(pr, Cr), Ay (v, Cv)}

along the (Red, Epgp) axes corresponding to the blue, yellow,
red, and green sample sets, respectively. Crucially, there exists
a tangible overlap between the vegetation and fire bivariate
distributions. Color component observations that reside in this
intersection can be aggrepated in order to form a sample
mean and covariance for the proposition {V, F}. In practice,
this refers to the case where the information of an observed
pixel, p*!(x, y), is evidence for both the vegetation and fire
hypotheses.

A pixel observation p*!(x, y) at any location in the agent’s
image (x,v) e I™(i, j) will be some statistical distance
{e.g., the Mahalanobis distance metric [56]) away from each
state proposition distribution 43 (ps, Ca)

AP (x,y) = pr{*}[x, ¥) =P Cl(p®(x, y) — Pa). (16)
This can then be used to assign mass numbers

exp(—Caty’), ifA=B
m p(A) =11 —exp(— CattV), ifA=0
0

(17

otherwise

where Cp is some proposition-dependent positive scaling
parameter. As in Sections II-A and 1I-B, each simple support
set m,{,:l 4 15 combined through Dempster’s rule to yield the
vision agent’s mass number array

k k k k k
m{;l = m%l'l]-" e ]“'f!rll_v.!‘_l & I“'lf'rl,;' & m{rl_’_-"" {]E}

The results of these total belief assignments are displayed
in Fig. 7, where the vision sensor's mass numbers at each
location in Fig. 7(b) are derived from the pixel data given from
the actual image in Fig. 7(a). This “belief image” demonstrates
three important concepts.

1) Recognition: High belief values are correctly placed into

locations containing ash, fire, and unobscured grassland.

2) Ambiguity: Locations along with the fire—grass interface
and red-colored fuel will result in belief assignment to
the {V, F} proposition.

3) Ignorance: Pixels where the smoke is thick enough to
obscure the color information of the landscape under-
neath will result in locations with high degrees of
ignorance m(@), represented as the black locations in
Fig. T(b).

We mention that the assignment process given through

(17) and (18), as well as the selection of tuning parame-
ters Cg, is currently environment-dependent. It is difficult

to assess how the use of the pixel information p®(x,y) =
(Red™(x, ), Eaﬁﬂ{x, v)) as the basis for classification (and
therefore belief assignment) extends to numerous environ-
ments (e.g., fire in grassland versus fire in a woodland).
The colors elicited by wildland fire are broadly consistent
(see [55]) although universal vegetation and ash identification
may require a more advanced feature extraction process.
Simply put, additional empirical studies are needed at this
time although the principles of the process are sound—visual
belief assignments should be based on received data that
are state-identifying. Note that (15) and (18) use beliefs
applied to “feasible” propositions as neither the temper-
ature nor the vision agent uses simple support functions
involving the {V, S5} proposition. The lack of evidential
crossover [see Figs. 5(b) and 6i(b)] between the vegetation
and ash states is the consequence of the data obtained
from the specific environment and is not applicable in
ceneral.

D. Bidirectional Feedback Procedure

The estimation procedure of this work is designed as
a discrete-time estimator where the dynamics of the fire
are modeled over a sequence of regularly spaced timesteps:
k = 0,1,2,..., k5. The measurements (i.e., temperature
and vision beliefs) are also provided at (generally irregularly
spaced) discrete timesteps. To invoke the flowchart of Fig. 1
once more, the output of the forecasting block (the prior
belief m{*’) for each location is combined with the beliefs
of available agents through two successive applications of
Dempster’s rule

my =m{’ & (mY & mY). (19)

As (19) is applied* across every location (i, j), the updated
belief state of the entire environment is constructed as the
array

m¥(1, 1) m&(1, n)
BY = . : (20)
mg"{m, 1) mfé”[m, )

where Bg} is a nonnegative array of size m = n = |29].
An obvious trajectory design question is where to send aerial
agents based on the current state of domain knowledge. While
numerous evidential metrics exist (e.g., ignorance) to drive the
sensor reconfiguration, this work has opted to route sensors to
locations of the highest postfusion conflict. Intuitively, the dis-
agreement between any two agents implies that, while they are
perceiving the same system of interest, one (possibly faulty)
agent is providing a significantly different interpretation of the
evidence. Let x (i, j); be the conflict at location (i, j) and time
k. A set of Ny drones can be directed toward the corresponding
Ny highest conflict locations {{fy, ji), (iz, f2), - -, (g, Jnad b
where

k(in, jr = x(iz, jode = -+ = & (ing, ngdk-

In the instances where cither agent T or agent V is not available to provide
beliefs for combination, it is given the so-called “vacuous™ mass number array
where mgﬂ{ﬁ} =1, and all other mass numbers are set to 0.
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Fig. 8. Top-down view of agent operations.

Consider the following conflict-driven example. In the sce-
nario shown in Fig. 8 three drones (whose fields of view
are represented as the rectangles containing red, green, and
blue squares) are observing a wildfire that has been growing
to the northeast for 71 min. Red squares represent observed
burning locations (i.e., my(F) is the maximum mass number
in my), green squares are observed vegetation, and blue
squares are observed ash locations. At this timestep, a temper-
ature sensor in the eastern portion of the environment (black
star) is activated due to the radiation induced by a second
{previously unforeseen) wildfire. As the forecaster had not
anticipated this event, the forecaster’s high {(and incorrect)
vegetation mass number mp(V') is fused with the temperature
agent’s comparatively lower quantity mr(V), which results
in a nontrivial conflict value xg. One of the three vision
agents in the environment (agent ) is then reassigned to
this location (i, jy), represented by the dashed purple line,
which dictates the sensor's current path of travel. The complete
estimation procedure is given in Algorithm 1. The output of
this algorithm is the combined belief lattice Bg]' at a given
timestep k.

I1I. RESULTS: SIMULATED WILDLAND FIRE NEAR TAOS,
NEw MEXICO

This study features two numerically simulated fires over a
discretized representation of a real location near Taos, New
Mexico. To evaluate how this work's adaptive estimation
process would proceed given a wildland fire event, two char-
acterization methods are employed. The first approach is the
collection of beliefs assigned by the temperature sensing set
at each timestep. By design, this naive method only provides
data at the coordinates of activated temperature sensors. The
second approach is the output of Algorithm 1, the estimated
belief state of the entire environment at each timestep. The
characterization methods are evaluated through performance
metrics detailed in Section III-A. The setup of this environ-
ment, the creation of the ersatz ground-truth fires, and the
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Algorithm 1 Fire Estimation-driven Sensor Reconfiguration
Algorithm (FESRA)

Require: Fuel (i, j), Wind (ws(i, j),wa(i, j)), Slope n(i, j)
1: for all Locations (i,j) do  © Acquire the beliefs of the
fire forecasting agent.

2: for all £ £ Z do

kR v O f+—05+0

& if sg‘:‘ (i, j) = V then

5 viev41l

6 ehnfs“‘]l:: _;} F then

T: ‘f

8: else .rs Y (i, j) =S then

Ig: 8 A 3-+ 1

1l end & Determine frequentist chance that
sk, {'} =6

12 ﬁ':* Z[w, f. s

13: e, j'] B{*}{: i & Create prior belief state,

14 for

15: for all {(i,/)|T™ (i, /) = 1} do & Acquire beliefs of each
active temperature agent.

16 TW —>m{.1.k]' for location (i, j)

17: end for

18: for all {(i, /)| V*)(i, /) = 1} do © Acquire the beliefs of
each active vision agent.

19; for all Locations (x,y) in agent’s image 1*/(i, /) do

20: {Red[*}(x, ¥), EL%B{I, y)) — m&f] for location (i, j)

21:

i an&]u?nr N "

23 m 4—n1% Dmy ! for location (i, ), Record xg

24: B :'[ i) em{f}an:' for location (i, j) & Create
updated belief state.

25 B = {g,mc(®), mc({F,5})}

metrics

25 {mmc(©), me({F,SH} - V()
Lt

27: return ‘H{é]

- Generate guidance

- Reassign to

arrangement of the temperature and vision sensor sets are
given in Section III-B. The performances of the estimators
are compared in Section III-C.

A. Large-Scale Performance Metrics

The perimeter estimate g* assesses the estimated fire shape
in regard to its extents compared to some true fire boundary,
while the representation error &* rewards the estimate for
assigning higher beliefs at the correct locations (and penalizes
for incorrect belief assignments).

Consider a single ignition point at coordinate (i, j)* and
time k = 0. Furthermore, for all succeeding times & = 0,
consider the boundary 8C representing the outer edge of the
actual burned area C. The polar coordinate r'®)(p) gives the
radial distance from the ignition point to the point on 8C at
the angle p [0, 2] at time k. Thus, given the set of N rays
at time k emanating from the ignition point over the set of
angles ® = {p1, ..., @, ..., ¢x}. a discretized representation
of the wildland fire object is given as the set of radials
R® = {r®)(@)), ..., r®p;),...,r®(py)}. A simulated fire
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Fig. 9. (&) Example of overlaid radials (the red set treated as the truth) and
the resulting radial errors G, T = 0) at cach angle in (b).

from the same ignition point whose burning (or burned) area
at time k is given as D with boundary 80 and represented
as a radial set computed over the set of identical angles
RO = (1®(py),..., 10 (p;), ..., 1P (gn)}, where 1V (p)
zives the radial distance from the ignition point to the point
on aD. Given the radial sets for the actual fire R® and the
simulated fire R™® at time &, a method given by Fujioka [57]
evaluates the radial performance error at each angle ¢

r®(p;)
16 (g;)’

In this work, we are not concerned with the radial set
of a single simulation but rather the range of possible
perimeters at each time given the probabilistic belief state.
Thus, we modify this radial error metric by introducing a
confidence threshold value T e [0,1) such that we can
generate an estimated area [} as the compact boundary
of all burned locations 2 ,_ 5 s r5,m(A) > T, which
gives a simulated radial set dependent on T, RN T) =
{F8 @, 1), ..., PO (@, 1), ..., gy, T)}). This leads to
the modified, T-dependent, radial error

r®(p;)
Gﬂ}{ sT = 1 5
*0= 16,1

Fig. %a) shows two example perimeters cast as radial sets
with T = 0. Fig. 9(b) depicts the radial errors G'® of this
estimated area ) over a set of angles. A threshold value of

GM(p) = p;) > 0.

N p;, 1) = 0. 21)

T = 0 will yield all (estimated) feasible locations of the
burned area, whereas setting T = 0.9 will give a tighter
(but more confident) perimeter from which to work from.
To encapsulate this metric per time instance, we employ (21)
and compute the mean radial performance error over the entire
angle set @

g == 6Yp. 7). (22)

1
@]

A mean radial error value of g®(T) = 1 is desired,
as it means that the estimate neither “overshoots” nor “under-
shoots” the entire extent of the fire perimeter. The second
metric arises from the need to gauge the precision of the
estimated state at every location. We adopt the use of pignistic
probabilities from (5) and propose the following representa-
tion performance metric:

- LSS

i=1 j=I

— Pi2®)), where 8, j) =0.

(23)

The subtraction ensures that a higher belief in an incorrect
state will incur a penalty. Furthermore, it does not penalize
belief allocated completely to ignore the same as it would to
belief allocated completely to the incorrect state. A perfect
estimation across every location will yield values of £® =
0 at every timestep, and £ = 1 for a completely incorrect
representation.

B. Simulation Sefup

The simulation environment was a square 2.5 km x 2.5 km
landscape modeled after a Taos County, New Mexico region,
where the Rio Grande river is situated between two mountains
{Cerro Chiflo to the northwest and the Guadalupes to the
southeast). This area was chosen as a testbed due to its chang-
ing elevation and variety of combustible fuel types. Vegetation
and elevation data from [58] and [59] were collated to provide
appropriate fuel and slope inputs, as shown in Fig. 10. Two
fuel types were adopted from the models developed by [60]:
1) the very high load, dry climate shrub [denoted SH7, the
orange locations in Fig. 10(b)] and 2) the very high load,
dry climate timber shrub [denoted TUS, the green locations
in Fig. 10(b)]. A “D2L2" moisture content scenario was
universally adopted for both fuel models, as described in
Table 1. The spread rates and flame lengths for both models
are shown in Fig. 11.

Two separate wildland fire events were numerically simu-
lated. The first simulation (denoted “Scenario I'™) was based on
average wind records near Taos on April 10, 2019, at 6 A.M.
and featured calm (i.e., low wind speed) and no variation in
wind direction. Scenario I featured a single ignition point at
UTM Easting and Northing [437 806.12 m, 4064310.20 m].
The second simulation (denoted “Scenario ITI”") was again
based on average wind records near Taos on April 10, 2019,
but at 2 p.M. where wind velocities are more volatile in both
speed and direction. The differing wind conditions are given in
Table II. Similar to Scenario I, a single ignition point was set
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Fig. 10.  {a) Slope and (b} fuel information at discretized spatial locations

within the simulation testbed.

TABLE 1

LivE aAND DEAD FUEL MOISTURE CONTENTS AT AMBIENT
TEMPERATURE: 25 °C

Fuel Type Moisture
Dead 1-hr 6%
Dead 10-hr 7%
Dead 100-hr B%
Live Herbaceous 60% (2/3 Cured)
Live Woody 90%
TABLE 11

MipFLAME WIND CONDITIONS FOR WILDLAND FIRE SIMULATIONS

Scenario 1 Scenario 1T
Property | (Calm) (Exratic)
Direction SwW [W.SW,S5}
Min. Speed [m/s] 1.79 4.47
Max. Speed [m/s] 3.13 8.05

at UTM Easting and Northing [437806.12 m, 4 064310.20 m]
and supplied to the forecaster, but a second fire (unbeknownst
to the forecaster) was ignited 30 min later at UTM Easting and
Northing [439 100 m, 4064500 m]. Using the given wind,

8 2 i

04

Rate of Spread [m's|
2 9
in m

-
-

Fig. 11. Effect of midflame wind speed on (a) fire's head rate of spread and
(b} flame length.

fuel, and slope conditions, a single instance of the MTT
algorithm was run for both scenarios over a simulation time
of 2 hours. By discretizing a fire perimeter’s location and
associated flame heights at timesteps of 30 s, we, respectively,
characterize the “ground-truth™ fires of Scenarios 1 and II at
any time & as ﬂ.f”' and ﬂ.fln. The fire perimeters at increasing
times for both scenarios are shown in Fig. 12. The reasoning
behind two simulated ground-truth fires (and, therefore, two
separate estimation simulations) was to contrast the wildfire
characterization performance of both estimations between:
1) correct environmental inputs for Scenario I and 2} incorrect
environmental inputs for Scenario II. For Scenario 11, these
faulty environmental inputs were incorporated by supplying
the forecaster with a maximum wind speed that was too low
(6.7 m/s instead of 8.05 m/s) and the assumption that the wind
direction in each location would not change from a northeast
heading. The locations and times of ignition for the fires in
both scenarios were not provided to the estimation algorithm.

A simulated wireless network of 200 temperature sensors
was randomly distributed across the landscape in a uniform
manner, each of which reported ambient temperature readings
based on the simulated radiative heating induced by nearby
fire front locations at each timestep. Six aerial sensors were
deployed from a charging base at UTM Easting and Northing
[433000 m, 4066000 m] in cascading release order and sur-
veyed the environment at a constant elevation of 120 m. Each
vision agent observed a simulated image I®(i, j) comprised
of pixel variables drawn from the true state’s corresponding
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to autonomously charge before continuing its surveillance
tasks. It was assumed that all temperature and vision agents
can communicate their information from any position to a
central ground station located near the aerial agent’s charging
base without latency or bandwidth limitations, and the esti-
mation procedure was enacted at each timestep according to
Algorithm 1 laid out in Section II-D.

C. Comparative Estimation Performance

The estimation performance metrics derived in Section I1I-A
were computed over all timesteps for the following character-
ization approaches.

1) Temperature Agent Sef: The collection of individual
beliefs m{¥ of all activated temperature sensors within
the sensor network T™® at timestep k provides a primi-
tive depiction of which locations the fire disturbance has
traveled through.

2) DST Combination: Given a set of environmental para-
meters and a network of sensing agents, this estimate is
zenerated through the bidirectional procedure described
in Section II-D. The forecasting step is achieved by
propagating the fire dynamics over a series of 50 Monte
Carlo runs. The belief state estimate at each time is
represented as the matrix of combined mass number
arrays Bg}.

To evaluate the performances of both the temperature set
T® and the evidential estimate B, the mass number arrays
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used were, respectively, mf:}

location (i, j).

1) Representation Error: The representation error £ of
each belief state estimate of both ground-truth fires A" and
ﬂ.E]” is shown in Fig. 13{a) and (b), respectively. In both
scenarios, the performances of the temperature set (red dashed
line) and evidential estimates (black line) are largely indistin-
zuishable early in the simulation, as the fire is relatively small
when it is first observed. However, as the fire disturbance
grows over time, the error of the temperature set increases
substantially more than the evidential estimate. This is due to
the inherent disparity between the two approaches: while the
estimator provides beliefs for all locations, the temperature set
must contend with an expanding boundary. This error trend is
also observed (albeit much less dramatic) for the evidential
estimator in Scenario II. This is likely due to the expanding
fire border as above, as well as the choice of cascading release
order for the drones.

2) Radial Error: The mean radial errors g®) () for both
methods were computed at a confidence threshold value of
T = 0.75 and simulation ending time of 120 min. In general,
these resulis support the patterns exhibited by the comparison
of representation error £*) above and are tabulated in Table I11.

In contrast to the representation error discussed above,
a value of g®(T) = 1 is desired. The low mean radial error

(k)
Mg

and at each applicable
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TABLE III
MEan Rapiar Error g T)

Scenario I Scenario 11
Method | {Calm) {Erratic)
Temperamre Set 0.326 0.226
Evidential Estimator 0.959 1.26

quantities produced by the temperature set are apparent in
Figs. 14 and 15. In situations where no temperature sensor
lies along a ray emanating from the ignition point at an angle
@ [e.g., the northwest perimeter in Fig. 14(a)], then a value
of G®(p, T) = 0 is assigned, which drives down the mean
radial error in the aggregate. Both methods displayed increased
radial error in Scenario II compared to Scenario 1.

IV. CONCLUSION

A review of the results in Section III supports the premise
that has been alluded to throughout this work: that belief
state estimation via evidential reasoning will yield a superior
representation of an evolving wildland fire even when in the
presence of deficient prior beliefs, particularly those caused
by errant wind behaviors and additional ignitions. There are
a number of potential studies that can improve this work as
it currently stands. We have identified three major avenues of
further research.

1) Experimental Validation: There has been substantial
work done already to carry out the estimation procedure
described in this work during a prescribed burn scenario
in order to test its current characterization capabilities.
Undoubtedly, new ideas and further improvements to
address the needs of first responders and fire suppression
personnel will come about from further in-the-field
studies.

2) Vision Agent Improvemenis: During a wildfire event,
there are numerous hazards that can be encountered
by a drone, including thermal radiation, wind gusts,
and airborne obstacles, such as embers or other aerial
agents. Thus, we require autonomously generated paths
for the drones that are robust, time-efficient, and adaptive
to incoming information en route to their assigned
locations. While visible images were modeled in this
work, thermal images (where pixels indicate differences
in infrared radiation) may provide better observations by
eliminating smoke obscuration and the ambiguous pixels
that indicate both fire and vegetation simultaneously.

3) Fire Forecasting Updates: In its current form, the
forecaster is adaptive in the sense that it allows the
propagation of fire from originally unforeseen locations
although the range of inputs that drive the dynamics
of how the fire propagates is invariant throughout the
estimation scenario. In other words, the range of wind
speeds, wind directions, fuel type, and fuel moisture
does not change. In an actual wildfire scenario, however,
wind velocities are dynamic across a complex landscape.
Thus, it will be beneficial to update the fire dynamic
inputs from incoming measurements (e.g., the vision
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sensor can provide images from which the predominant
smoke (i.e., wind) direction is determined).
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