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Abstract

Marginal structural models (MSMs) estimate the causal effect of a time-varying
treatment in the presence of time-dependent confounding via weighted regression.
The standard approach of using inverse probability of treatment weighting (IPTW)
can lead to high-variance estimates due to extreme weights and be sensitive to model
misspecification. Various methods have been proposed to partially address this, in-
cluding truncation and stabilized-IPTW to temper extreme weights and covariate
balancing propensity score (CBPS) to address treatment model misspecification. In
this paper, we present Kernel Optimal Weighting (KOW), a convex-optimization-
based approach that finds weights for fitting the MSM that optimally balance time-
dependent confounders while simultaneously penalizing extreme weights, directly ad-
dressing the above limitations. We further extend KOW to control for informative
censoring. We evaluate the performance of KOW in a simulation study, comparing
it with IPTW, stabilized-IPTW, and CBPS. We demonstrate the use of KOW in
studying the effect of treatment initiation on time-to-death among people living with
human immunodeficiency virus and the effect of negative advertising on elections in
the United States.

Keywords: causal inference, optimization, covariate balance, time-dependent treatments,
marginal structural models
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1 Introduction

Marginal structural models (MSMs) offer a successful way to estimate the causal effect of a

time-varying treatment on an outcome of interest from longitudinal data in observational

studies (Robins, 2000; Robins et al., 2000). For example, they have been used to esti-

mate the optimal timing of HIV treatment initiation (HIV-Causal Collaboration, 2011), to

evaluate the effect of hormone therapy on cardiovascular outcomes (Hernán et al., 2008),

and to evaluate the impact of negative advertising on election outcomes (Blackwell, 2013).

The increasing popularity of MSMs among applied researchers derives from their ability to

control for time-dependent confounders, which are confounders that are affected by pre-

vious treatments and affect future ones. In particular, as shown by Robins et al. (2000)

and Blackwell (2013), standard methods, such as regression or matching, fail to control

for time-dependent confounding, introducing post-treatment bias. In contrast, MSMs con-

sistently estimate the causal effect of a time-varying treatment via inverse probability of

treatment weighting (IPTW), which controls for time-dependent confounding by weighting

each subject under study by the inverse of their probability of being treated given co-

variates, i.e., the propensity score (Rosenbaum and Rubin, 1983), mimicking a sequential

randomized trial. In other words, IPTW creates a hypothetical pseudo-population where

time-dependent confounders are balanced over time.

Despite their wide range of applications, the usage of these methods in observational

studies may be jeopardized by their considerable dependence on positivity. This assumption

requires that, at each time period, the probability of being assigned to the treatment,

conditional on the history of treatment and confounders, is not 0 or 1 (Robins, 2000).

Even if positivity holds theoretically, when propensities are close to 0 or 1, it can be

practically violated. Practical positivity violations lead to extreme and unstable weights,
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which in turn yield very low precision and misleading inferences (Kang and Schafer, 2007;

Robins et al., 1995; Scharfstein et al., 1999). In addition, MSMs using IPTW are highly

sensitive to misspecification of the treatment assignment model, which can lead to biased

estimates (Kang and Schafer, 2007; Lefebvre et al., 2008; Cole and Hernán, 2008).

Various statistical methods have been proposed in an attempt to overcome these chal-

lenges. To deal with extreme weights, several authors (Cole and Hernán, 2008; Xiao et al.,

2013) have suggested truncation, whereby outlying weights are replaced with less extreme

ones. Santacatterina et al. (2019) proposed to use shrinkage instead of truncation as a

more direct way to control the bias-variance trade-off. Robins et al. (2000) recommended

the use of stabilized-IPTW (sIPTW) where inverse probability weights are normalized

by the marginal probability of treatment. To control for misspecification of the treatment

assignment model, Imai and Ratkovic (2015) proposed to use the covariate balance propen-

sity score (CBPS), which instead of plugging in a logistic regression estimate of propensity

into IPTW finds the logistic model that balances covariates via the generalized method of

moments. The method tries to balance the first moment of each covariate even if a logistic

model is misspecified (Imai and Ratkovic, 2014).

In this paper, we present and apply Kernel Optimal Weighting (KOW), which pro-

vides weights for fitting an MSM that optimally balance time-dependent confounders while

controlling for precision. Specifically, by solving a quadratic optimization problem over

weights, the proposed method directly minimizes imbalance, defined as the sum of dis-

crepancies between the weighted observed data and the counterfactual of interest over all

treatment regimes, while penalizing extreme weights.

This extends the kernel optimal matching method of Kallus (2016) and Kallus et al.

(2018) to the longitudinal setting and to dealing with time-dependent confounders, where,

similarly to regression and matching, it cannot be applied without introducing post-treatment
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bias.

The proposed method has several attractive characteristics. First, by optimally balanc-

ing time-dependent confounders while penalizing extreme weights, it leads to better accu-

racy, precision, and total error. In particular, in the simulation study presented in Section

5, we show that the mean squared error (MSE) of the estimated effect of a time-varying

treatment obtained by using KOW is lower than that obtained by using IPTW, sIPTW, and

CBPS in all considered simulated scenarios. Second, differently from Imai and Ratkovic

(2015), where the number of covariate balancing conditions grows exponentially in the

number of time periods, KOW only needs to minimize a number of discrepancies that

grows linearly in the number of time periods. This feature leads to a lower computational

time of KOW compared with CBPS when the total number of time periods increases, as

shown in our simulation study in Section 5.2.3 and in our study on the effect of negative

advertising on election outcomes in Section 7.2. Third, by optimally balancing covariates,

KOW mitigates the effects of possible misspecification of the treatment model. In Section

5, we show that KOW is more robust to model misspecification compared with the other

methods. Fourth, KOW can balance non-additive covariate relationships by using kernels,

which generalize the structure of conditional expectation functions, and does not restrict

weights to follow a fixed logistic (or other parametric) form. In Section 5, we show how

KOW compares favorably with the aforementioned methods in all nonlinear scenarios, and

in Section 7.2 we use KOW to balance non-additive covariate relationships estimating the

effect of negative advertising on election outcomes. Fifth, KOW can be easily generalized

to other settings, such as informative censoring. We do just that in Section 6 and, in Sec-

tion 7.1, we use this extension to study the effect of human immunodeficiency virus (HIV)

treatment on time to death among people living with HIV. Finally, KOW can be solved by

using off-the-shelf solvers for quadratic optimization.
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In the next section, we briefly introduce the literature of MSMs (Section 2). In Section

3 we develop and define KOW. We then discuss some practical guidelines on the use of

KOW (Section 4). In Section 5 we report the results of a simulation study aimed at

comparing KOW with IPTW, sIPTW, and CBPS. In Section 6, we extend KOW to control

for informative censoring. We then present two empirical applications of KOW in medicine

and political science (Section 7). We offer some concluding remarks in Section 8.

2 Marginal structural models for longitudinal data

In this section, we briefly review MSMs (Robins, 2000; Robins et al., 2000). Suppose we

have a simple random sample with replacement of size n from a population. For each unit

i = 1, . . . , n and time period t = 1, . . . , T , we denote the binary time-varying treatment

variable by Ait, with Ait = 0 meaning not being treated at time t and Ait = 1 being treated

at time t, and time-dependent confounders Xit. We denote by Ait = {Ai1, . . . , Ait} the

treatment history up to time t and by X it = {Xi1, . . . , Xit} the history of confounders

up to time t. Xi1 represents the time-invariant confounders, i.e., confounders that do not

depend on past treatments. We denote by at and xt possible realizations of the treatment

history Ait and the confounder history X it, respectively. We use 1[·] to denote the indicator

so that 1
[
Ait = at

]
is the variable that is 1 if Ait = at and 0 otherwise. To streamline

notation, we will refer to AiT as Ai, aT as a, X iT as X i, and to xT as x. For each

unit i = 1, . . . , n, we denote by Yi the outcome variable observed at the end of the study.

Using the potential outcome framework (Imbens and Rubin, 2015), we denote by Yi(a) the

potential outcome we would see if we were to apply the treatment regime a ∈ A to the

ith unit, where A = {0, 1}T is the space of treatment regimes. Throughout, we drop the

subscripts i on these variables to refer to a generic unit.
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We impose the assumptions of consistency, non-interference, positivity and sequential

ignorability (Imbens and Rubin, 2015; Hernán and Robins, 2010). Consistency and non-

interference (also known as SUTVA; Rubin, 1980) can be encapsulated in that the potential

outcomes are well-defined and the observed outcome corresponds to the potential outcome

of the treatment regime applied to that unit, i.e., Y = Y (A). As previously introduced,

positivity states that, for each time t = 1, . . . , T , the probability of being treated at time

t conditioned on the treatment history up to time t − 1 and the confounder history up to

time t, is not 0 or 1, i.e.,

0 < P(At = 1 | At−1, Xt) < 1 ∀ t ∈ {1, . . . , T}, (1)

Sequential ignorability states that the potential outcome Y (a) is independent of treatment

assignment at time t, given the treatment history up to time t − 1 and the confounder

history up to time t. Formally, sequential ignorability is defined as

Y (a) ⊥⊥ At | At−1, X t ∀ t ∈ {1, . . . , T}. (2)

An MSM is a model for the marginal causal effect of a time-varying treatment regime

on the mean of Y , that is,

E [Y (a)] = g(a,β), (3)

where g(a,β) is some known function class parametrized by β. For example, a commonly

used MSM is based on additive effects with a common coefficient: g(a,β) = β1+β2

∑T

t=1 at,

where the parameter β2 is the causal parameter of interest. Usually, β is computed

by a weighted regression of the outcome on the treatment regime alone using weighted

least squares (WLS), i.e., minβ

∑n

i=1Wi(Yi − g(Ai,β))
2, and Wald confidence intervals

are constructed using robust (sandwich) standard errors (Freedman, 2006; Robins, 2000;

Hernán et al., 2001). In order to consistently estimate β, the weights W1:n = (W1, . . . ,Wn),
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must account for the non-randomness of the treatment assignment mechanism, i.e., the con-

founding. Robins (2000) showed that the set of inverse probability weights and stabilized

inverse probability weights achieve this objective. These weights are defined as follows,

W IPTW
i = w(Ai, Xi), w(a, x) =

T∏

t=1

ht(at)

P(At = at | At−1 = at−1, X t = xt)
, (4)

where ht(at) is a known function of treatment history. The set of inverse probability weights

is obtained by setting ht(at) = 1, while the set of stabilized inverse probability weights is

obtained by setting ht(at) = P(At = at | At−1 = at−1). To estimate weights of the form

of eq. (4), one first estimates the conditional probability models using either paramet-

ric methods such as logistic regression or other machine learning methods (Karim et al.,

2017; Gruber et al., 2015; Karim and Platt, 2017) and then these estimates are plugged

in directly into eq. (4) to derive weights, which are then plugged into the WLS. Stabi-

lized weights seek to attenuate the variability of inverse probability weights by normalizing

them by the marginal probability of treatment. Since the additional factor is a function of

treatment regime alone, it does not affect the consistency of the WLS if the MSM is well

specified. Both sets of weights, however, rely on plugging in an estimate of a probability

into the denominator, meaning that when the true probability is even modestly close to 0,

any small error in estimating it can translate to very large errors in estimating the weights

and to estimated weights that are extremely variable. Furthermore, both sets of weights

rely on the correct specification of the conditional probability models used to estimate the

weights in eq. (4).

To overcome this issue, Imai and Ratkovic (2015) proposed to estimate weights of the

form of eq. (4) that improve balance of confounders by generalizing the covariate balancing

propensity score (CBPS) methodology. Instead of plugging in probability estimates based

on logistic regression, CBPS uses the generalized method of moments to find the logistic
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regression model that if plugged in would lead to weights, WCBPS
i , that approximately solve

a subset of the moment conditions that the true inverse probability weights, eq. (4), satisfy.

Differently than IPTW, sIPTW and CBPS, in the next Section, we characterize imbal-

ance as the discrepancies in observed average outcomes due to confounding, consider their

worst case values, and use quadratic optimization to obtain weights that directly optimize

the balance of time-invariant and time-dependent confounders over all possible weights

while controlling precision.

3 Kernel Optimal Weighting

In this Section we present a convex-optimization-based approach that obtains weights

that minimize the imbalance due to time-dependent confounding (i.e., maximize balance

thereof) while controlling precision. Toward that end, in Section 3.1, we provide a defini-

tion of imbalance. Specifically, we define imbalance as the sum of discrepancies between

the weighted observed data and the unobserved counterfactual of interest over all treatment

regimes. Since this imbalance depends on unknown functions, in Section 3.2 we consider

the worst case imbalance, which guards against all possible realizations of the unknown

functions. We also show that the worst case imbalance has the attractive characteristic

that the number of discrepancies considered grows linearly in the number of time peri-

ods and not exponentially like the number of treatment regimes. We finally show how to

minimize this quantity while controlling precision using kernels, reproducing kernel Hilbert

space (RKHS) and off-the-shelf solvers for quadratic optimization (Sections 3.3-3.4).

9



3.1 Defining imbalance

Consider any population weights W = w(A,X), where w(·) is a function that depends

on the treatment and confounder histories. In this Section, we will show that, under

consistency and assumptions (1)–(2), we can decompose the difference between the weighted

average outcome among the a-treated units, E[W1[A = a]Y ], and the average potential

outcome of a, E[Y (a)], into a sum over time points t of discrepancies involving the values

of treatment and confounder histories up to time t.

To build intuition we start by explaining this decomposition in the case of two time

periods T = 2. Assuming consistency and assumptions (1)–(2), for each a = (a1, a2) ∈ A,

we can decompose the weighted average outcome among the a-treated units as follows:

E[W1[A = a]Y ] = E[W1[A1 = a1]1[A2 = a2]E[Y (a) | A1, A2, X1, X2]] (5)

= E[W1[A1 = a1]1[A2 = a2]E[Y (a) | A1, X1, X2]]

= E[W1[A1 = a1]E[Y (a) | A1, X1, X2]] + δ(2)a2
(W, g

(2)
a )

= E[W1[A1 = a1]E[Y (a) | X1]] + δ(2)a2
(W, g

(2)
a )

= E[Y (a)] + δ(1)a1
(W, g

(1)
a ) + δ(2)a2

(W, g
(2)
a )

= E[Y (a)] +
2∑

t=1

δ(t)at
(W, g

(t)
a ),

where the first equality follows from iterated expectation, the second from sequential ig-

norability, the fourth from iterated expectation and sequential ignorability and the third

and fifth from the following definitions, which exactly capture the difference between the
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two sides of the third and fifth equalities,

δ(2)a2
(W,h(2)) = E

[
W1[A2 = a2]h

(2)(A1, X1, X2)
]
−E

[
Wh(2)(A1, X1, X2)

]
(6)

g
(2)
a (A1, X1, X2) = 1[A1 = a1]E [Y (a) | A1, X1, X2]

δ(1)a1
(W,h(1)) = E

[
W1[A1 = a1]h

(1)(X1)
]
−E

[
h(1)(X1)

]

g
(1)
a (X1) = E [Y (a) | X1] .

Note our use of h(t) as a generic dummy function and g
(t)
a as a specific function that depends

on the particular (unknown) distribution of X t, At−1, Y (a).

This gives a definition of discrepancy, δ
(t)
at (W,h(t)), where the subscript at ∈ {0, 1} refers

to the treatment assigned at time t, W = w(A,X) is a population weight, and h(t) is a given

function of interest of the treatment and confounder history up to t, At−1, Xt. The function

g
(t)
a is one such function. In particular, for every a1 ∈ {0, 1}, the quantity δ

(1)
a1 (W,h(1)) is

the discrepancy between the h(1)-moments of the baseline confounder distribution in the

weighted a1-treated population and of the distribution in the whole population. Simi-

larly, for every a2 ∈ {0, 1}, δ(2)a2 (W,h(2)) is a discrepancy in the h(2)-moment of treatment

and confounder histories at the start of time step 2. What we have shown above is how

these discrepancies directly relate to the difference between weighted averages of observed

outcomes and true averages of unknown counterfactuals of interest. Specifically, we have

shown that when we measure these discrepancies with respect to the specific function g
(t)
a ,

then their sum gives that difference.

We can extend this decomposition to general horizons T ≥ 1. Let us define the same

discrepancies for any time t ≥ 3 as

δ(t)at
(W,h(t)) = E

[
W1[At = at]h

(t)(At−1, Xt)
]
−E

[
Wh(t)(At−1, X t)

]
,

g
(t)
a (At−1, X t) = 1[At−1 = at−1]E

[
Y (a) | At−1, X t

]
.
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The following result gives the general decomposition of the difference between weighted

average of observed outcomes and true average of counterfactuals as the sum of T discrep-

ancies, one for every time step:

Theorem 1. Under assumptions (1)–(2), for each a ∈ A = {0, 1}T ,

E

[
W1[A = a]Y

]
−E [Y (a)] =

T∑

t=1

δ(t)at
(W, g

(t)
a ).

Based on the results of Theorem 1, it is clear that if we want the difference between

average counterfactual outcomes and average weighted factual outcomes to be small for all

treatment regimes a then we should seek weights W that make

δa(W, ga) =

T∑

t=1

δ(t)at
(W, g

(t)
a )

small for all a, where we write h = (h(1), . . . , h(T )) for any set of T functions.

The empirical counterparts to δ
(t)
at (W,h(t)) are the sample moment discrepancies for a

given set of sample weights W1:n:

δ̂(t)at
(W1:n, h

(t)) =
1

n

n∑

i=1

(Wi1[Ait = at]−Wi)h
(t)(Ai,t−1, Xit), ∀t ≥ 2,

δ̂(1)a1
(W1:n, h

(1)) =
1

n

n∑

i=1

Wi1[Ai1 = a1]h
(1)(Xi1)−

1

n

n∑

i=1

h(1)(Xi1),

δ̂a(W1:n, h) =
T∑

t=1

δ̂(t)at
(W1:n, h

(t)).

(7)

Thus, we will seek samples weights W1:n that make δ̂a(W1:n, ga) small for all treatment

regimes a. Toward that end, for any set of given functions (ha)a∈A, we define imbalance of

a set of weights W1:n as the average squared discrepancy over treatment regimes:

IMB(W1:n; (ha)a∈A) =
1

|A|

∑

a∈A

δ̂
2

a(W1:n, ha). (8)
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The particular imbalance of interest is given when we consider ha = ga. One way to control

this imbalance, IMB(W1:n; (ga)a∈A), and consequently control the empirical discrepancies

of interest, δ̂a(W1:n, ga), is by using inverse probability weights. If known, these weights

make this quantity a sample average of mean-zero variables and thus close to zero for large

n. However, the difficulties are that (a) even mild practical violations of positivity can lead

to large variance of each of these terms and (b) we need to correctly estimate the sequential

propensities.

Differently, we will seek to find weights that directly minimize imbalance. There are two

main challenges in this task. The first challenge is that the imbalance of interest depends

on some unknown functions ga. The second is that the number of treatment regimes grows

exponentially in the number of time periods. In the next Section we show how the proposed

methodology overcomes these two challenges.

3.2 Worst case imbalance

To overcome the fact that we do not actually know the functions ga on which imbalance

IMB(W1:n; (ga)a∈A) depends, we will guard against all possible realizations of the unknown

functions. Specifically, since δ̂a(W1:n, ga) scales linearly with ga, we will consider its mag-

nitude relative to that of ga. We therefore need to define a magnitude. In particular, let

us define

‖h‖ =
√

‖h(1)‖2(1) + · · ·+ ‖h(T )‖2(T ),

where ‖ · ‖2(t) are some given extended seminorms on functions from the space of time-

dependent confounders and treatment histories up to time t to the space of outcomes.

Compared to a norm, an extended seminorm may also assign the values of 0 and ∞ to

nonzero elements but must still satisfy triangle inequality and absolute homogeneity. We
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will discuss specific choices of such seminorms ‖ · ‖2(t) in Section 3.4.

Given these, we can define the worst case discrepancies,

∆(t)
at
(W1:n) = sup

h(t)

δ̂
(t)
at (W1:n, h

(t))

‖h(t)‖(t)
= sup

‖h(t)‖(t)≤1

δ̂(t)a1
(W1:n, h

(t)).

Note that ∆
(t)
at (W1:n) depends only on the treatment at time t, at, and not the whole

treatment regime, a.

Then the worst case imbalance is given by

B2(W1:n) = sup
‖ha‖≤1 ∀a∈A

IMB(W1:n; (h
(t)

a )a∈A)

= sup
ha, a∈A

1

|A|

∑

a∈A

δ̂
2

a(W1:n, ha)

‖ha‖2

=
1

2

T∑

t=1

(∆
(t)
0 (W1:n)

2 +∆
(t)
1 (W1:n)

2).

(9)

What is important to note is that this shows that the discrepancies of interest are essentially

the same regardless of the particular treatment regime trajectory a. That is, to control the

discrepancies for all trajectories a for all possible realizations of ga, at any time point t,

we are only concerned with the discrepancies of histories At−1, Xt for those units treated

at time t, At = 1, and for those not, At = 0. So, while the number of treatment regimes

grows exponentially in the number of periods, we need only to keep track of and minimize a

number of discrepancies growing linearly in the number of periods T . By eliminating each

of these linearly-many imbalances, any time-dependent confounding would necessarily be

removed, as shown by Theorem 1. In Section 5.2.3, we show how this feature also translates

to favorable computational time when dealing with many time periods.
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3.3 Minimizing imbalance while controlling precision

We can obtain minimal imbalance by minimizing B2(W ). However, to control for extreme

weights we propose to regularize the weight variables W1:n. We therefore wish to find

weights that minimizes B2(W1:n) plus a penalty for deviations from uniform weighting.

Formally, we want to solve

min
W1:n∈W

B2(W1:n) + λ‖W1:n − e‖22, (10)

where e is the vector of ones and W = {W1:n : Wi ≥ 0 ∀i} is the space of nonnegative

weights W1:n. The squared distance of the weights from uniform weights here serves as

a convex surrogate for the variance of the resulting MSM (assuming homoskedasticity or

bounded residual variances) and λ in eq. (10) can be interpreted as a penalization parameter

that controls the trade off between imbalance and precision. When λ is equal to zero, the

obtained weights provide minimal imbalance. When λ → ∞, the weights become uniformly

distributed leading to an ordinary least squares estimator for the MSM.

In the next section, we discuss a specific choice of the norm that specified the worst case

discrepancies ∆
(t)
at (W1:n), presented in Section 3.2. Specifically, we show that by choosing

an RKHS to specify the norm, we can express the optimization problem in eq. (10) as a

convex-quadratic function in W1:n, which can be easily solved by using off-the-shelf solvers

for quadratic optimization.

3.4 RKHS and quadratic optimization to optimally balance time-

dependent confounders

An RKHS is a Hilbert space of functions which is associated a kernel (the reproducing

kernel). Specifically, any positive semi-definite kernel K : Z × Z → R on a ground
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space Z defines a Hilbert space given by (the unique completion of) the span of all func-

tions K(z, ·) for z ∈ Z, endowed with the inner product 〈K(z, ·),K(z′, ·)〉 = K(z, z′).

Kernels are widely used in machine learning to generalize the structure of conditional

expectation functions with many applications in statistics (Schölkopf and Smola, 2002;

Berlinet and Thomas-Agnan, 2011; Kallus, 2016, 2018). Commonly used kernels are the

polynomial, Gaussian, and Matérn kernels (Schölkopf and Smola, 2002).

The following theorem shows that if ‖ · ‖(t), the norm that specified the worst case

discrepancies ∆
(t)
at (W1:n), is an RKHS norm given by the kernel Kt, then we can express it

as a convex-quadratic function in W1:n.

Theorem 2. Define the matrix Kt ∈ R
n×n as

Ktij = Kt((Ai,t−1, X it), (Aj,t−1, Xjt))

and note that it is positive semidefinite by definition. Then, if the norm ‖·‖(t) is the RKHS

norm given by the kernel Kt, the squared worst case discrepancies are

∆(1)
a1
(W1:n)

2 =
1

n2
W T

1:nI
(1)
a1

K1I
(1)
a1

W1:n − 2eTK1I
(1)
a1

W1:n + eTK1e,

∆(t)
at
(W1:n)

2 =
1

n2
W T

1:n(I − I(t)at
)Kt(I − I(t)at

)W1:n,

where I is the identity matrix and I
(t)
at is the diagonal matrix with I[Ait = at] in its ith

diagonal entry.

Based on Theorem 2, we can now express the worst case imbalance, B2(W1:n), defined in

eq. (9), as a convex-quadratic function. Specifically, let K◦
t = I

(t)
0 KtI

(t)
0 + I

(t)
1 KtI

(t)
1 , which

is given by setting every entry i, j of Kt to 0 whenever Ait 6= Ajt, and K◦ =
∑T

t=1K
◦
t . We

16



then get that

B2(W1:n) =
1

2

T∑

t=1

(∆
(t)
0 (W1:n)

2 +∆
(t)
1 (W1:n)

2)

=
1

n2

(
1

2
W T

1:nK
◦W1:n − eTK1W1:n + eTK1e

)

.

(11)

Finally, to obtain weights that optimally balance covariates to control for time-dependent

confounding while controlling precision we solve the quadratic optimization problem,

min
W1:n∈W

1

2
W T

1:nK
◦
λW1:n − eTKλW1:n (12)

where K◦
λ = K◦ + 2λI, Kλ = K1 + 2λI. We call this proposed methodology and the result

of eq. (12), Kernel Optimal Weighting (KOW).

4 Practical guidelines

Solutions to the quadratic optimization problem (12) depend on several factors. First,

they depend on the choice of the kernel and its hyperparameters. There are some existing

practical guidelines on these choices (Schölkopf and Smola, 2002; Rasmussen and Williams,

2006), on which we rely as explained below. Second, they depend on the penalization

parameter λ. Finally, solutions to eq. (12) depend on the chosen set of lagged covariates

to include in each kernel. In this section, we introduce some practical guidelines on how to

apply KOW in consideration of these factors.

For each t, the unknown function g
(t)
a (At−1, Xt) has two distinct inputs: the treatment

history and the confounder history. To reflect this structure, we suggest to specify the kernel

Kt as a product kernel, i.e.,

Kt((at−1, xt), (a
′
t−1, x

′
t)) = K(1)

t (at−1, a
′
t−1)K

(2)
t (xt, x

′
t) given a treatment history kernel K(1)

t
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and a confounder history kernel K(2)
t . This simplifies the process of specifying the kernels.

We further suggest that for the treatment history to use a linear kernel involving ℓ lagged

treatments, K(1)
t (at−1, a

′
t−1) =

∑t−1
s=max(1,t−ℓ) asa

′
s, and for the confounder history to use a

polynomial kernel involving the time-invariant confounders and ℓ lagged time-dependent

confounders, K(d)
t (xt, x

′
t) = (1 + θxT

1 x
′
1 + θ

∑t

s=max(2,t−ℓ+1) x
T
t x

′
t)

d, where θ > 0 and d ∈ N

are hyperparameters. We discuss the choice of the number of lags and the hyperparameters

below. In our simulation study in Section 5, we show that the MSE of the MSM-estimated

effect using KOW with a product of linear kernel and a quadratic kernel (d = 2) out-

performs estimates using weights obtained by IPTW, sIPTW and CBPS in all considered

simulated scenarios. We again use this choice of kernels in our empirical applications of

KOW to real datasets in Section 7. Many other choices of kernel are also possible and may

be more appropriate in a particular application, but we suggest the above combination as

a generic and successful recipe.

When using kernels, preprocessing the data is an important step. In particular, normal-

ization is employed to avoid unit dependence and covariates with high variance dominating

those with smaller ones. Consequently, we suggest, beforehand, to scale the covariates

related to the treatment and confounder histories to have mean 0 and variance 1.

To tune the kernels’ hyperparameters and the penalization parameter λ, we follow

Kallus (2016) and use the empirical Bayes approach of marginal likelihood (Rasmussen and Williams,

2006). We postulate a Gaussian process prior g(t) ∼ GP(ct1,Kt(θ)), where ct1 is a constant

function and Kt(θt) is a kernel that depends on some set of hyperparameters θt. For each t,

we then maximize the marginal likelihood of seeing the data Y ∼ N (g(t)(X t, At−1), λt) over

θt, λt, ct and let λ =
∑T

t=1 λt. It would be more correct to consider the marginal likelihood of

observing the partial means of outcomes, but we find that this much simpler approach suf-

fices for learning the right representation of the data (θt) and the right penalization parame-
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ter (λ) and it enables the use of existing packages such as GPML (Rasmussen and Nickisch,

2010). We demonstrate this in the simulations presented in Section 5, and in particular in

Figures 3 and 4 we see that this approach leads to a value of the penalization parameter

that is near that which minimizes the resulting MSE of the MSM over possible parameters.

Another practical concern is how many lagged covariates to include in each of the kernels

Kt. When deriving inverse probability weights, it is common to model the denominator

in eq. (4) by fitting a pooled logistic model (D’Agostino et al., 1990) including only the

time-invariant confounders, X1, the time-dependent confounders at time t, Xt, and the

one-time lagged treatment history, At−1, rather than the entire histories, i.e., logit P(At =

at | At−1 = at−1, X t = xt) = αt + β1At−1 + β2X1 + β3Xt, (Hernán et al., 2001, 2002).

This can be understood as a certain Markovian assumption about the data generating

process which simplifies the modeling when T is large. The same can be done in the

case of KOW, where we may assume that g
(t)
a is only a function of the one-time lagged

treatment, the time-dependent counfounders at time t, and the time-invariant confounders,

i.e., g
(t)
a (At−1, X t) = g

(t)
a (At−1, X1, Xt), and correspondingly let the kernel Kt only depend

on At−1, X1, and Xt. More generally, we can consider including any amount of lagged

variables, as represented by the parameter ℓ in the above specification of the linear and

polynomial kernels. In Section 7.2, we consider an empirical setting where T is small and

specify the kernels using the whole treatment and confounders histories (ℓ = T ). However,

in Section 7.1 we consider a setting where T is large and, following previous approaches

studying the same dataset using IPTW with a logistic model of only the one-time lags

(Hernán et al., 2000, 2001, 2002), we keep only the baseline and one-time-lagged data in

each kernel specification (ℓ = 1).

Certain datasets, such as the one we study in Section 7.1, have repeated observations of

outcomes at each time t = 1, . . . , T . Thus, for each subject, we have T observations to be
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used to fit the MSM. Correspondingly, each observation should be weighted appropriately.

This can be seen as T instances of the weighting problem. For sIPTW, this boils down to

restricting the products in the numerator and denominator of eq. (4) to be only up to t

for each t = 1, . . . , T . Similarly, in the case of KOW, we propose to solve eq. (12) for each

value of t = 1, . . . , T , producing n× T weights, one for each of the outcome observations,

to be used in fitting the MSM. This is demonstrated in Section 7.1.

In the case of a single, final observation of outcome, normalizing the weights, whether

IPTW or KOW, does not affect the fitted MSM as it amounts to multiplying the least-

squares loss by a constant factor. But in the repeated observation setting described above,

normalizing each set of weights for each time period separately can help. Correspondingly,

we can add a constraint to eq. (12) that the mean of the weights must equal one for each

time period separately, which we demonstrate in Section 7.1.

5 Simulations

In this section, we show the results of a simulation study aimed at comparing the bias

and MSE of estimating the cumulative effect of a time-varying treatment on a continuous

outcome by using an MSM with weights obtained by each of KOW, IPTW, sIPTW, and

CBPS.

5.1 Setup

We considered two different simulated scenarios with T = 3 time periods, (1) linear, where

the treatment was modeled linearly, and (2) nonlinear, where it was modeled quadratically.

In both scenarios, we modeled the outcomes nonlinearly so as not to favor our method un-

fairly. We tuned the kernel’s hyperparameters and the penalization parameter as presented
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in Section 4 and computed bias and MSE over 1,000 replications for each of varying sample

sizes, n = 100, . . . , 1,000. In addition, to study the impact of the penalization parameter λ

on bias and MSE, in both scenarios, we fixed the sample size to n = 500 and considered a

grid of 25 values for λ.

For the linear scenario, we drew the data from the following model:

Yi = −1.91 + 0.8
∑T

t=1Ai,t + 0.5
∑3

k=1 Zi,k + 0.05
∑

k 6=m Zi,kZi,m +N(0, 5),

where Zi,k =
∑T

t=1Xi,t,k, Ai,t ∼ binom(π
(L)
i,t ), Xi,t,k ∼ N(Xi,t−1,k + 0.1, 1), k = 1, 2, 3, and

π
(L)
i,t = (1 + exp(−(0.5 + 0.5Ai,t−1 + 0.05Xi,t,1 + 0.08Xi,t,2 − 0.03Xi,t,3

+ 0.2Ai,t−1

∑3
k=1Xi,t,k)))

−1.

For the nonlinear scenario, we drew the data from following model:

Yi = −21.46 + 0.8
∑T

t=1Ai,t + 0.5
∑3

k=1 Zi,k + 0.1(
∑

k 6=mZi,kZi,m) +N(0, 5),

where Zi,k =
∑T

t=1X
2
i,t,k, Ai,t ∼ binom(π

(NL)
i,t ), Xi,t,k ∼ N(Xi,t−1,k + 0.1, 1), k = 1, 2, 3 and

π
(NL)
i,t = (1 + exp(−(0.5 + 0.5Ai,t−1 + 0.05Xi,t,1 + 0.08Xi,t,2 − 0.03Xi,t,3

+ 0.025X2
i,t,1 + 0.04X2

i,t,2 − 0.015X2
i,t,3 + 0.3

∑

k 6=mXi,t,kXi,t,m

+ 0.2Ai,t−1

∑3
k=1Xi,t,k + 0.1Ai,t−1

∑3
k=1X

2
i,t,k

+ 0.05Ai,t−1

∑

k 6=mXi,t,kXi,t,m)))
−1.

The intercepts −1.91 and −21.46 are chosen so the marginal mean of Yi is 0.

In each scenario and for each replication, we computed two sets of KOW weights. We

obtain the first by using the product of two linear kernels (K1), one for the treatment

history and one for the confounder history, and the second by using the product of a linear

kernel for the treatment history and a quadratic kernel for the confounder history (K2).
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As presented in Section 4, we rescaled the variables before inputting them to the kernel

and, for each replication, we tuned λ and the kernels’ hyperparameters by using Gaussian-

process marginal likelihood. We also computed two sets of IPTW and sIPTW weights. We

obtained the first by fitting for each t = 1, 2, 3 a logistic regression model for the treatment

Ai,t conditioned on Ai,t−1, Xi,t and their interactions, which is well-specified for π
(L)
i,t (we

term this the linear specification) and the second by adding all quadratic confounder terms

and their interactions with Ai,t−1 which is well-specified for π
(NL)
i,t (we term this the non-

linear specification). The numerator of sIPTW in either case was obtained by fitting a

logistic regression on the treatment history alone. We obtain the final set of IPTW and

sIPTW weights by multiplying the weights over t as shown in eq. (4). Finally, we computed

two sets of weights using CBPS: one using the covariates as they are (linear CBPS) and one

by augmenting the covariates with all quadratic monomials (non-linear CBPS). We used

the full (non-approximate) version of CBPS.

We computed the causal parameter of interest by using WLS, regressing the outcome on

the cumulative treatment and using weights computed by each of the methods. Specifically,

in the linear scenario, we computed weights using (1) K1 for KOW, the linear specification

for IPTW and sIPTW, and linear CBPS, which we refer to as the correct case, and (2)

K2 for KOW, the nonlinear specification for IPTW and sIPTW, and the nonlinear CBPS,

which we refer to as the overspecified case. In the nonlinear scenario, we again used each

of the above, but refer to the first as the misspecified case and the second as the correct

case. We highlight that these terms may only reflect the model specification for IPTW and

sIPTW, as CBPS does not require a particular specification and the function g
(t)
a need not

necessarily be in the RKHS that either kernel specify.

We used Gurobi and its R interface (Gurobi Optimization, 2018) to solve eq. (10) and

optimize the KOW weights, the MatLab package GPML (Rasmussen and Nickisch, 2010)
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to perform the marginal likelihood estimation of hyperparameters, the R package R.matlab

to call MatLab from within R, the R command glm to fit treatment models for IPTW and

sIPTW, the R package CBMSM for CBPS, and the R command lm to fit the MSM.

5.2 Results

In this section we discuss the results obtained in the simulation study across sample sizes

and across values of the penalization parameter, λ. In summary, the proposed KOW

outperformed IPTW, sIPTW and CBPS with respect to MSE across all sample sizes and

simulation scenarios. An important result is that, in the misspecified case, KOW showed

a lower bias and MSE than that of IPTW, sIPTW and CBPS across all considered sample

sizes.

5.2.1 Across sample sizes

Figure 1 shows bias and MSE of the estimated time-varying treatment effect using KOW

(solid), IPTW (dashed), sIPTW (dotted), and CBPS (dashed-dotted) when increasing the

sample size from n = 100 to n = 1,000. In the linear-correct scenario, IPTW had a lower

bias compared with sIPTW, CBPS and KOW in small samples (top-left panel of Figure

1). However, for larger samples, KOW had a smaller bias compared with IPTW, sIPTW

and CBPS. KOW outperformed IPTW, sIPTW and CBPS in terms of MSE across samples

sizes (top-right panel of Figure 1). KOW outperformed the other methods with regards

of MSE (bottom-right panel of Figure 1) across all sample sizes, in the linear-overspecified

scenario. KOW and sIPTW performed similarly with respect to bias in the nonlinear-

misspecified scenario (top-left panel of Figure 2), while KOW outperformed IPTW, sIPTW

and CBPS with respect to MSE in all sample sizes (top-right panel of Figure 2). KOW,

IPTW and sIPTW had similar bias in the nonlinear-correct scenario (bottom-left panel of
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Figure 2), with KOW outperforming the other methods, with respect of MSE, across all

sample sizes (bottom-right panel of Figure 2). In summary, the MSE obtained by using

KOW was lower than that of IPTW, sIPTW and CBPS across all considered sample sizes.

As the next section shows, the larger biases in some of the cases are driven by the choice

of penalization parameter λ. Here we choose λ with an eye toward minimizing MSE. A

smaller λ, it is shown next, can lead to KOW having both smaller bias and MSE than other

methods, but the total benefit in MSE is smaller.
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Figure 1: Bias and MSE of the estimated time-varying treatment effect using KOW (solid), IPTW

(dashed), sIPTW (dotted) and CBPS (dashed-dotted) when increasing the sample size from n = 100

to n = 1,000 in the linear-correct scenario (top panels) and in the linear-overspecified scenario (bottom

panels).

25



Nonlinear − Misspecified

200 400 600 800 1000

−
3

−
2

−
1

0
1

2
3

4

Sample size

B
ia

s

Nonlinear − Correct

200 400 600 800 1000

−
1

0
1

2
3

Sample size

B
ia

s

200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

Sample size
M

S
E

200 400 600 800 1000

0
2

4
6

Sample size

M
S

E

Figure 2: Bias and MSE of the estimated time-varying treatment effect using KOW (solid), IPTW

(dashed), sIPTW (dotted) and CBPS (dashed-dotted) when increasing the sample size from n = 100 to

n = 1,000, in the nonlinear-misspecified scenario (top panels) and in the nonlinear-correct scenario (bottom

panels).
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5.2.2 Across values of the penalization parameter, λ

Figures 3 and 4 show the ratios of squared biases (left panels) and of MSEs (right panels)

when comparing KOW with IPTW (solid), sIPTW (dashed) and CBPS (dotted) across

different values of λ and n = 500 in the linear and nonlinear scenarios, respectively. Values

above 1 means that KOW had a lower bias or MSE. For zero or small λ, KOW significantly

outperformed IPTW, sIPTW and CBPS with respect to bias. In many cases, the MSE was

also smaller for zero λ. But, the biggest benefit in MSE was seen for larger λ. The peaks

of the right panels represent the points for which λ is optimal, i.e., the MSE of KOW

is minimized. The solid vertical lines on the right panels show the mean values across

replications of the λ value obtained by the procedure described in Section 4 and 5.1 as

done in the previous section. It can be seen that these are very near the points at which

the MSE is minimized. The benefit in MSE both at and around this point was significant

across all scenarios.
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Figure 3: Ratios of squared biases and MSEs comparing KOW with IPTW (solid), sIPTW (dashed)

and CBPS (dotted) across values of λ = 0, . . . , 1500 in the linear-correct scenario (top panels) and in the

linear-overspecified scenario (bottom panels). Ratios above 1 means that KOW had a lower bias or MSE.

Vertical bars show the mean value of λ, across simulations, obtained as described in Section 5.2.1.
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Figure 4: Ratios of squared biases and MSEs comparing KOW with IPTW (solid), sIPTW (dashed) and

CBPS (dotted) across values of λ = 0, . . . , 3,000 in the nonlinear-misspecified scenario (top panels) and in

the nonlinear-correct scenario (bottom panels). Ratios above 1 means that KOW had a lower bias or MSE.

Vertical bars show the mean value of λ=0, . . . , 3,000, across simulations, obtained as described in Section

5.2.1.
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5.2.3 Computational time of KOW

In this section we present the results of a simulation study aimed at comparing the mean

computational time of KOW and CBPS. Compared to sIPTW based on pooled logistic

regression, which is generally very fast, both KOW and CBPS have a nontrivial compu-

tational time that can grow with both the total number time periods T and the number

of covariates (which, for KOW, manifests as the complexity of the kernel functions). For

KOW, the most time-consuming tasks are tuning λ by marginal likelihood and computing

the matrices that define problem (12), which are affected by these two factors, while solving

problem (12) is fast and does not depend on those factors. CBPS computational time is

dominated by inverting a covariance matrix with dimensions increasing exponentially in

T and linearly in the number of covariates. Imai and Ratkovic (2015) also propose using

an approximate low-rank matrix that ignores certain covariance terms to make the matrix

inversion faster.

Here we compare KOW, CBPS with full covariance matrix (CBPS-full), and CBPS with

its low-rank approximation (CBPS-approx) when increasing the number of time periods

and the number of covariates. Specifically, following the linear-correct scenario presented in

Section 5.1, we fixed the sample size equal to n = 100 and randomly generated 100 samples

considering T = 3, . . . , 10, and p = 3, . . . , 8, where p is the total number of covariates Xt

for each t. We fixed the number of covariates to be equal to p = 3 when evaluating the

mean computational times over time periods, while we fixed the number of time periods

to be equal to T = 5 when analyzing over the number of covariates. For each sample, we

computed the KOW weights by solving eq. (12) using kernel K1. We used Gaussian process

marginal likelihood to tune the kernels’ hyperparameters and penalization parameter. We

computed CBPS weights using the linear CBPS as in Section 5.1. We used the R package

rbenchmark to compute the computational time on a PC with an i7-3770 processor, 3.4
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GHz, 8GB RAM and a Linux Ubuntu 16.04 operating system.

Solid lines of Figure 5 represent mean computational times for KOW, dashed for CBPS-

full, and dotted for CBPS-approx. When the number of time periods was relatively small,

the mean computational time of KOW was higher compared with both CBPS methods

(left panel of Figure 5). However, the mean computation time of KOW over time periods

increased linearly while that of both CBPS methods increased exponentially. This is due

to the fact that, as presented in Section 3.1, the number of imbalances that we need to

minimize grows linearly in the number of time periods. The mean computational time

required by KOW when increasing the number of covariates remained constant, while it

increased for both CBPS-full and CBPS-approx, with CBPS-full increasing more rapidly.

In summary, KOW was less affected by the total number of time periods and covariates

compared with CBPS with full and low-rank approximation matrix.

Computing KOW required three steps: tuning the parameters, constructing the ma-

trices for problem (12), and solving problem (12). On average, for T = 3, the first step

required 21% of the total computational time, the second 78.8%, and the last 0.2%. Thus,

solving the optimization problem itself is very fast and is not the bottleneck.

6 KOW with informative censoring

In longitudinal studies, participants may drop out the study before the end of the follow-

up time and their outcomes are, naturally, missing observations. When this missingness

is due to reasons related to the study (i.e., related to the potential outcomes), selection

bias is introduced. This phenomenon is referred to as informative censoring and it is

common in the context of survival analysis where the interest is on analyzing time-to-event

outcomes. Under the assumptions of consistency, positivity, and sequential ignorability of
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Figure 5: Mean computational time in seconds of KOW (solid), CBPS with full covariate matrix (dashed),

and CBPS with the low-rank approximation of the full matrix (dotted) over time periods when n = 100,

p = 3 and T = 2, . . . , 10 (left panel) and over number of covariates, when n = 100, T = 5 and p = 3, . . . , 8

(right panel).

both treatment and censoring, Robins et al. (1999) showed that a consistent estimate of

the causal effect of a time-varying treatment can be obtained by weighting each subject

i = 1, . . . , n at each time period by the product of inverse probability of treatment and

censoring weights. Inverse probability of treatment weights are obtained as presented in

Section 2, while inverse probability of censoring weights are usually obtained by inverting

the probability of being uncensored at time t, given the treatment and confounder history

up to time t (Hernán et al., 2001).
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In this section we extend KOW to similarly handle informative censoring. We demon-

strate that under sequentially ignorable censoring, minimizing the very same discrepancies

as before at each time period, restricted to the units for which data is available, actu-

ally controls for both time-dependent confounding as well as informative censoring. Thus,

KOW naturally extends to the setting with informative censoring.

Let Cit ∈ {0, 1} for t = 1, . . . , T indicate whether unit i is censored in time period t

and let Ci0 = 0. Note that Cit = 1 implies that Ci,t+1 = 1 and that Cit = 0 implies that

Ci,t−1 = 0. All we require is that we (at least) observe outcomes Yi whenever CiT = 0,

Xit whenever Ci,t−1 = 0, and Ait whenever Cit = 0. Note we might observe more, such

as the treatment at time t for a unit with Ci,t−1 = 0, or perhaps only some of the data

after censoring is corrupted, but that is not required. We summarize the assumption of

sequentially ignorable censoring as

Y (a) ⊥⊥ Ct | At, Xt. (13)

Let us redefine

δ(1)a1
(W,h(1)) = E

[
W1[A1 = a1]1[C1 = 0]h(1)(X1)

]
−E

[
h(1)(X1)

]
(14)

g
(1)
a (X1) = E [Y (a) | X1] ,

δ(t)at
(W,h(t)) = E

[
W1[At = at]1[Ct = 0]h(t)(At−1, X t)

]

−E

[
W1[Ct−1 = 0]h(t)(At−1, Xt)

]
, ∀t ≥ 2,

g
(t)
a (At−1, Xt) = 1[At−1 = at−1]E

[
Y (a) | At−1, X t

]
, ∀t ≥ 2.

Similarly to Theorem 1, the following theorem shows that we can write the difference be-

tween the weighted average outcome among the uncensored a-treated units, E
[
W1[A = a]1[CT = 0]Y

]
,

and the true average potential outcome of a, E [Y (a)], as the sum over time points t of

discrepancies involving the values of treatment and confounder histories up to time t.
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Theorem 3. Under assumptions (1)–(2) and (13),

E

[
W1[A = a]1[CT = 0]Y

]
−E [Y (a)] =

T∑

t=1

δ(t)at
(W, g

(t)
a ). (15)

We then define the empirical counterparts to δ
(t)
at (W,h(t)) as before in eq. (7) but limit

ourselves to uncensored units, as in eq. (14). We similarly define imbalance, IMB(W1:n; (g
(t)
a )a∈A),

and the worst case imbalance B2(W1:n), as before in eqs. (8) and (9). Finally, again using

kernels to specify norms, we obtain weights that optimally balance covariates to control

for time-dependent confounding and account for informative censoring while controlling

precision by solving the quadratic optimization problem,

min
W1:n∈W

1

2
W T

1:nK
◦
λW1:n − eTKλW1:n, (16)

where K◦
λ = K◦ + 2λI, Kλ = K1 + 2λI, K◦ =

∑T

t=1K
◦
t ,

K◦
t =

∑

at∈{0,1}
I
(t)
at KtI

(t)
at , Kt ∈ R

n×n is a semidefinite positive matrix defined as Ktij =

Kt((Ai,t−1, Xit), (Aj,t−1, Xjt)), I
(t)
at is the diagonal matrix with I[Ait = at]I[Cit = 0] −

I[Ci,t−1 = 0] in its ith diagonal entry (recall Ci,0 = 0 for all i), and e is the vector of

all ones.

7 Applications

In this section, we present two empirical applications of KOW. In the first, we estimate the

effect of treatment initiation on time to death among people living with HIV (PLWH). In

the second, we evaluate the impact of negative advertising on election outcomes.
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7.1 The effect of HIV treatment on time to death

In this section, we analyze data from the Multicenter AIDS Cohort Study (MACS) to study

the effect of the initiation time of treatment on time to death among PLWH. Indeed, due to

the longitudinal nature of HIV treatment and the presence of time-dependent confounding,

MSMs have been widely used to study causal effects in this domain (Hernán et al., 2000,

2001; HIV-Causal Collaboration et al., 2010; HIV-Causal Collaboration, 2011; Lodi et al.,

2017, among others). As an example of time-dependent confounding, CD4 cell count, a

measurement used to monitor immune defenses in PLWH and to make clinical decisions,

is a predictor of both treatment initiation and survival, as well as being itself influenced

by prior treatments. Recognizing the censoring in the MACS data, Hernán et al. (2000)

showed how to estimate the parameters of the MSM by inverse probability of treatment

and censoring weighting (IPTCW).

Here, we apply KOW as proposed in Section 6 to handle both time-dependent con-

founding and informative censoring while controlling precision. We considered the follow-

ing potential time-dependent confounders associated with the effect of treatment initiation

and the risk of death: CD4 cell count, white blood cell count, red blood cell count, and

platelets. We also identified the age at baseline as a potential time-invariant confound-

ing factor. We considered only recently developed HIV treatments, thus, including in the

analysis only PLWH that started treatment after 2001. The final sample was comprised

of a total of n = 344 people and 760 visits, with a maximum of T = 8 visits per person.

We considered two sets of KOW weights, either obtained by using a product of (1) two

linear kernels, one for the treatment history and one for the confounder history (K1) or

(2) a linear kernel for the treatment history and a polynomial kernel of degree 2 for the

confounder history (K2). We scaled the covariates related to the treatment and confounder

history, and tuned the kernels’ hyperparameters and the penalization parameter by us-
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ing Gaussian processes marginal likelihood as presented in Section 4. Following previous

approaches studying the HIV treatment using IPTCW that modeled treatment and cen-

soring using single time lags (Hernán et al., 2000, 2001, 2002), we included in each kernel

the time-invariant confounders, the previous treatment, At−1, and the time-dependent con-

founders at time t, Xt, instead of the entire histories. As described in Section 4, since we

have repeated observations of outcomes, we compute a set of KOW weights by solving the

optimization problem (16) for each horizon up to T . In addition, as described in Section

4, we constrained the mean of the weights to be equal to one.

We compared the results obtained by KOW with those from IPTCW and stabilized-

IPTCW (sIPTCW). The latter sets of weights were obtained by using a logistic regres-

sion on the treatment history and the aforementioned time-invariant and time-dependent

confounders and using only one time lag for each of the treatment and time-dependent

confounders as done in previous approaches studying the HIV treatment using IPTCW

(Hernán et al., 2000, 2001, 2002). The numerator of sIPTCW was computed by modeling

h(At) in eq. (4) with a logistic regression on the treatment history only using one time

lag. We modeled the inverse probability of censoring weights similarly. The final sets of

IPTCW and sIPTCW weights were obtained by multiplying inverse probability of treat-

ment and censoring weights. We did not compare the results with those of CBPS because

it does not handle informative censoring. In particular, CBPS requires a complete n × T

matrix of observed time-dependent confounders, while in the MACS dataset many entries

are missing.

We estimated the hazard ratio of the risk of death by using a weighted Cox regression

model (Hernán et al., 2000) weighted by KOW, IPTCW, or sIPTCW and using robust

standard errors (Freedman, 2006). We used Gurobi and its R interface to solve eq. (16)

and obtain the KOW weights, the Matlab package GPML to perform the marginal likeli-
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hood estimation of hyperparameters, the R package R.matlab to call MatLab from within

R, the R package ipw (van der Wal et al., 2011) to fit the treatment models for IPTCW

and sIPTCW, and the R command coxph (with robust variance estimation) to fit the out-

come model. It took 13.5 seconds to obtain a solution for KOW. Table 1 summarizes the

result of our analysis. Both KOW (K1) and (K2) showed a significant protective effect

of HIV treatment on time to death among PLWH. IPTCW showed a similar effect but

with lower precision, resulting in a non-significant effect. With similar precision obtained

by KOW, sIPTCW showed a non-significant effect of HIV treatment on time to death.

Whereas analyses based on IPTCW and sIPTCW lead to non-significant and inconsistent

conclusions, the results we obtained by using KOW show that PLWH can benefit from HIV

treatment, as shown in independent randomized placebo-controlled trials (Cameron et al.,

1998; Hammer et al., 1997).
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Table 1: Effect of HIV treatment on time to death.

KOW Logistic

K1 K2 IPTCW sIPTCW

ĤR 0.40* 0.48* 0.14 1.25

SE (0.30) (0.28) (1.15) (0.30)

Note: ĤR is the estimated hazard ratio of the effect

of HIV treatment initiation on time to death. SE

is the estimated robust standard error. Weights were

obtained by using, KOW (K1): a product of two linear

kernels, one for the treatment history and one for the

confounder history; KOW (K2): a product between

a linear kernel for the treatment history and a poly-

nomial kernel of degree 2 for the confounder history;

IPTCW: a logistic regression on the treatment his-

tory and the time-invariant and time-dependent con-

founders (using only one time lag for each of the treat-

ment and time-dependent confounders); sIPTCW:

stabilized IPTCW. * indicates statistical significance

at the 0.05 level.

7.2 The impact of negative advertising on election outcomes

In this section, we analyze a subset of the dataset from Blackwell (2013) to estimate the

impact of negative advertising on election outcomes. Because of the dynamic and longitu-

dinal nature of the problem and presence of time-dependent confounders, MSMs have been

used previously used to study the question (Blackwell, 2013). Specifically, poll numbers are

time-dependent confounders as they might both be affected by negative advertising and

might also affect future poll numbers. We constructed the subset of the data from Blackwell
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(2013) by considering the five weeks leading up to each of 114 elections held 2000–2006 (58

US Senate, 56 US gubernatorial). Differently from Section 7.1 in which the outcome was

observed at each time period, in this analysis, the binary election outcome was observed

only at the end of each five-week trajectory. In addition, all units were uncensored.

We estimated the parameters of two MSMs, the first having separate coefficients for

negative advertising in each time period and the second having one coefficient for the

cumulative effect of negative advertising. Each MSM was fit using weights given by each

of KOW, IPTW, sIPTW, and CBPS (both full and approximate). We used the following

time-dependent confounders: Democratic share of the polls, proportion of undecided voters,

and campaign length. We also used the following time-invariant confounders: baseline

Democratic vote share, proportion of undecided voters, status of incumbency, election year

and type of office. We obtained two sets of KOW weights by using a product of (1) two

linear kernels, one for the history of negative advertising and one for the confounder history

(K1) and (2) a linear kernel for the history of negative advertising and a polynomial kernel

of degree 2 for the confounder history (K2). The kernels were over the complete confounder

history up to time t, Xt, and two time-lags of treatment history, At−1, At−2. We scaled

the covariates and tuned the kernels’ hyperparameters and the penalization parameter by

using Gaussian processes marginal likelihood. We obtained the final set of KOW weights

by solving eq. (12). We compared the results obtained by KOW with those from IPTW,

sIPTW, CBPS-full, and CBPS-approx. To obtain the sets of IPTW, sIPTW, and CBPS

weights, we used logistic models conditioned on the confounder history and two time-lags

from the treatment history. To compute the numerator of sIPTW weights, we used a

logistic regression conditioned only on two time-lags from the treatment history. We used

Gurobi and its R interface to solve eq. (16) and obtain the KOW weights, theMatlab package

GPML to perform the marginal likelihood estimation of hyperparameters, the R package
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R.matlab to call MatLab from within R, the R command glm to fit the treatment models for

IPTW and sIPTW, the R package CBMSM for CBPS, the R command lm to fit the outcome

model, and the R package sandwich to estimate robust standard errors. The computational

time to obtain a solution was equal to 12.6 seconds for KOW, while it was equal to 104

seconds for CBPS-full and 3.8 seconds for CBPS-approx.

Table 2 summarizes the results of our analysis, reporting robust standard errors (Freedman,

2006). The first six rows of Table 2 show the effect of the time-specific negative advertis-

ing. The last two rows present the effect of the cumulative effect of negative advertising.

KOW (K1 and K2) and IPTW showed similar effects, with increased precision when using

KOW except for time 4, in which both methods showed a significant negative effect but

with greater precision when using IPTW. sIPTW, CBPS-full and CBPS-approx showed a

significant negative effect at time 3 with similar precision. No significant results were ob-

tained when considering the cumulative effect of negative advertising. All except sIPTW,

showed a negative cumulative effect. KOW (K1) was the most precise. We conclude that,

the impact of negative advertising in the majority of the time periods and its cumulative

effect on election outcomes are not statistically significant.
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Table 2: Impact of negative advertising on election outcomes.

β̂ KOW Logistic CBPS

SE K1 K2 IPTW sIPTW Full Approx

Intercept 54.54* 53.84* 53.05* 47.46* 51.25* 52.17*

(2.15) (2.38) (2.88) (2.98) (2.70) (2.39)

Negative1 2.43 3.27 4.41 7.62* 5.95* 4.81*

(1.86) (1.86) (2.56) (3.26) (2.49) (2.22)

Negative2 3.73 3.24 5.51* 3.17 3.55 2.65

(2.18) (2.22) (2.38) (3.19) (2.73) (2.42)

Negative3 -2.51 -2.39 -4.37 -8.32* -6.50* -6.31*

(2.34) (2.45) (2.54) (3.84) (3.20) (3.24)

Negative4 -7.16* -7.22* -8.77* 2.34 -3.55 -3.12

(2.57) (2.75) (1.54) (3.11) (3.71) (3.59)

Negative5 -2.75* -1.79 -3.19 -3.62 -1.92 -1.96

(1.42) (1.59) (2.19) (2.59) (1.62) (1.54)

Intercept 51.40* 50.56* 58.29* 42.63* 49.38* 50.28*

(2.45) (2.63) (4.29) (4.15) (2.68) (2.49)

Cumulative -0.59 -0.37 -0.93 1.91 -0.28 -0.41

(0.58) (0.64) (1.57) (1.15) (0.65) (0.77)

Note: β̂ is the estimated effect of negative advertising. SE is the estimated

robust standard error. Weights were obtained by using, KOW (K1): a prod-

uct of two linear kernels, one for the history of negative advertising and one for

the confounder history; KOW (K2): a product between a linear kernel for the

history of negative advertising and a polynomial kernel of degree 2 for the con-

founder history; IPTW: a logistic model conditioned on the confounder history

and two time-lags from the treatment history; sIPTW: stabilized IPTW; CBPS-

full: CBPS with full covariance matrix; CBPS-approx: CBPS with low-rank ap-

proximation. * indicates statistical significance at the 0.05 level.
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8 Conclusions

In this paper we presented KOW, which optimally finds weights for fitting an MSM with the

aim of balancing time-dependent confounders while controlling for precision. That KOW

uses mathematical optimization to directly and fully balance covariates as well as optimize

precision explains the better performance of KOW over IPTW, sIPTW and CBPS observed

in our simulation study. In addition, as shown in Sections 3.2, 5 and 6, the proposed

methodology only needs to minimize a number of discrepancies that grows linearly in the

number of time periods, mitigates the possible misspecification of the treatment assignment

model, allows balancing non-additive covariate relationships, and can be extended to control

for informative censoring, which is a common feature of longitudinal studies.

Alternative formulations of our imbalance-precision optimization problem, eq. (10), may

be investigated. For example, additional linear constraints can be added to the optimization

problem, as shown in the empirical application of Section 7.1, and different penalties can be

considered to control for extreme weights. For instance, in eq. (10), at the cost of no longer

being able to use convex-quadratic optimization, one may directly penalize the covariance

matrix of the weighted least-square estimator rather than use a convex-quadratic surrogate

as we do.

One may also change the nature of precision control. Here, we suggested penalization

in an attempt to target total error. Alternatively, similar to Santacatterina and Bottai

(2018), we may reformulate eq. (10) as a constrained optimization problem where the

precision of the resulting estimator is constrained by an upper bound ξ, thus seeking to

minimize imbalances subject to having a bounded precision. In our convex formulation,

the two are equivalent by Lagrangian duality in that for every precision penalization λ

there is an equivalent precision bound ξ. However, it may make specifying the parameters
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easier depending on the application as it may be easier for a practitioner to conceive of

a desirable bound on precision. There may also be other ways to choose the penalization

parameter. Here we suggested using maximum marginal likelihood but cross validation

based on predicting outcomes and their partial means may also be possible.

The flexibility of our approach is that any of these changes amount to simply modifying

the optimization problem that is fed to an off-the-shelf solver. Indeed, we were able to ex-

tend KOW from the standard longitudinal setting to also handle both repeated observations

of outcomes and informative censoring. In addition to offering flexibility, the optimization

approach we took, which directly and fully minimized our error objective phrased in terms

of covariate imbalances, was able to offer improvements on the state of the art.
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Appendix

Proof of Theorem 1. For clarity, we prove this for T = 2. The extension to T > 2 is by

induction. Under consistency and assumptions (1)–(2), we have

E[W1[A = a]Y ]

= E[W1[A1 = a1]1[A2 = a2]Y (a)] (consistency)

= E[W1[A1 = a1]1[A2 = a2]E[Y (a) | A1, A2, X1, X2]] (iterated expectations)

= E[W1[A1 = a1]1[A2 = a2]E[Y (a) | A1, X1, X2]] (sequential ignorability)

= E[W1[A1 = a1]E[Y (a) | A1, X1, X2]] + δ
(2)
a (W, g

(2)
a ) (definition of δ

(2)
a , g

(2)
a )

= E[W1[A1 = a1]E[Y (a) | A1, X1]] + δ
(2)
a (W, g

(2)
a ) (iterated expectations)

= E[W1[A1 = a1]E[Y (a) | X1]] + δ
(2)
a (W, g

(2)
a ) (sequential ignorability)

= E[E[Y (a) | X1]] + δ
(1)
a (W, g

(1)
a ) + δ

(2)
a (W, g

(2)
a ) (definition of δ

(1)
a , g

(1)
a )

= E[Y (a)] + δ
(1)
a (W, g

(1)
a ) + δ

(2)
a (W, g

(2)
a ) (iterated expectations)
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Proof of Thm. 2. Define Ktij = Kt((Ai,t−1, Xit), (Aj,t−1, Xjt)). Then, by the representer

property of the kernels and by self-duality of Hilbert spaces,

∆(1)
a1
(W1:n)

2 = sup
‖h(1)‖2

(1)
≤1
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δ̂(1)a1
(W1:n, h
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‖h(t)‖2

(t)
≤1

(

δ̂(t)at
(W1:n, h

(t))
)2

= sup‖h(t)‖2
(t)

≤1




1

n

n∑

i=1

(1[At = at]− 1)Wi
︸ ︷︷ ︸

zi

h(t)(Ai,t−1, X it)





2

= sup‖h(t)‖2
(t)

≤1

(

1

n

n∑

i=1

zi〈Kt((Ai,t−1, X it), ·), h
(t)(Ai,t−1, X it)〉

)2

=

∥
∥
∥
∥
∥

1

n

n∑

i=1

ziKt((Ai,t−1, Xit), ·)

∥
∥
∥
∥
∥

2

(t)

=

〈

1

n

n∑

i=1

ziKt((Ai,t−1, Xit), ·),
1

n

n∑

i=1

ziKt((Ai,t−1, Xit), ·)

〉

=
1

n2

n∑

i=1

n∑

j=1

zizjKt((Ai,t−1, X it), (Aj,t−1, Xjt))

=
1

n2

n∑

i=1

n∑

j=1

(WiI[Ait = at]−Wi)(WjI[Ajt = at]−Wj)Ktij

=
1

n2
(I(t)at

W1:n −W1:n)
TKt(I

(t)
at
W1:n −W1:n)

=
1

n2
W T

1:n(I − I(t)at
)Kt(I − I(t)at

)W1:n
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Proof of Theorem 3. For clarity, we prove this for T = 2. The extension to T > 2 is by

induction. Under consistency, assumptions (1)–(2), and assumption (13),

E[W1[A = a]1[C2 = 0]Y ]

= E[W1[A1 = a1]1[A2 = a2]1[C2 = 0]Y (a)] (consistency)

= E[W1[A1 = a1]1[A2 = a2]1[C2 = 0]E[Y (a) | A1, A2, X1, X2, C2, C1]] (iterated expectations)

= E[W1[A1 = a1]1[A2 = a2]1[C2 = 0]E[Y (a) | A1, A2, X1, X2]] (eq. (13))

= E[W1[A1 = a1]1[A2 = a2]1[C2 = 0]E[Y (a) | A1, X1, X2]] (eq. (2))

= E[W1[A1 = a1]1[C1 = 0]E[Y (a) | A1, X1, X2]] + δ
(2)
a (W, g

(2)
a ) (definition of δ

(2)
a , g

(2)
a )

= E[W1[A1 = a1]1[C1 = 0]E[Y (a) | A1, A2, X1, X2]] + δ
(2)
a (W, g

(2)
a ) (eq. (2))

= E[W1[A1 = a1]1[C1 = 0]E[Y (a) | A1, A2, X1, X2, C1, C2]] + δ
(2)
a (W, g

(2)
a ) (eq. (13))

= E[W1[A1 = a1]1[C1 = 0]E[Y (a) | A1, X1, C1]] + δ
(2)
a (W, g

(2)
a ) (iterated expectations)

= E[W1[A1 = a1]1[C1 = 0]E[Y (a) | A1, X1]] + δ
(2)
a (W, g

(2)
a ) (eq. (13))

= E[W1[A1 = a1]1[C1 = 0]E[Y (a) | X1]] + δ
(2)
a (W, g

(2)
a ) (eq. (2))

= E[1[C0 = 0]E[Y (a) | X1]] + δ
(1)
a (W, g

(1)
a ) + δ

(2)
a (W, g

(2)
a ) (definition of δ

(1)
a , g

(1)
a )

= E[Y (a)] + δ
(1)
a (W, g

(1)
a ) + δ

(2)
a (W, g

(2)
a ) (iterated expectations)
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