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Abstract

Direct imaging of supermassive black holes (SMBHs) at event horizon-scale resolutions, as recently done by the
Event Horizon Telescope, allows for testing alternative models to SMBHs such as Kerr naked singularities
(KNSs). We demonstrate that the KNS shadow can be closed, open, or vanishing, depending on the spins and
observational inclination angles. We study the critical parameters where the KNS shadow opens a gap, a distinctive
phenomenon that does not happen with the black hole shadow. We show that the KNS shadow can only be closed
for dimensionless spin a 1.18 and vanishing for a 1.18 for certain ranges of inclination angles. We further
analyze the effective angular momentum of photon orbits to demonstrate the fundamental connections between
light geodesics and the KNS shadow geometry. We also perform numerical general relativistic ray-tracing
calculations, which reproduce the analytical topological change in the KNS shadow, and illustrate other
observational features within the shadow due to the lack of an event horizon. By comparing the geometric features
of the KNS shadow with black hole shadow observations, the topological change in the shadow of KNSs can be
used to test the cosmic censorship hypothesis and KNSs as alternative models to SMBHs.

Unified Astronomy Thesaurus concepts: Kerr black holes (886); Naked singularities (1087); General relativity
(641); Gravitation (661); Geodesics (645)

1. Introduction

The Event Horizon Telescope (EHT) recently resolved the
supermassive black holes (SMBHs) at the center of Messier 87
(M87*) and the Milky Way (Sagittarius A*, or Sgr A*

) at the
event horizon scale (Event Horizon Telescope Collaboration
et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f, 2022a,
2022b, 2022c, 2022d, 2022e, 2022f). The reconstructed black
hole images show a bright asymmetric ring surrounding an
interior brightness depression. These observations were used to
test modified gravity theories and alternative models of galactic
central compact objects by placing constraints on deviations
from the Kerr metric using the size and shape of the SMBH
shadows (Psaltis et al. 2020).

If M87* and Sgr A* are Kerr black holes (KBHs), then they
possess unstable spherical photon orbits, which separate
capture orbits from scattering orbits, thus casting a
shadow (Johannsen & Psaltis 2010). This signature of the
KBH is demonstrated by the radius and circularity of the bright
photon rings shown on the images of M87* and Sgr A*, which
are mostly independent from the accretion profiles and instead
largely dependent on the spacetime surrounding the SMBHs
(Falcke et al. 2000; Johannsen & Psaltis 2011; Event Horizon
Telescope Collaboration et al. 2019a, 2019e, 2019f, 2022a,
2022e, 2022f; Gralla et al. 2019; Narayan et al. 2019;
Bronzwaer & Falcke 2021; Kocherlakota & Rezzolla 2022;
Younsi et al. 2023). While a KBH is a sufficient condition for a
shadow image, the converse is not necessarily true because

other theoretical objects, such as naked singularities with
certain physical parameters, can also project shadowlike
regions without event horizons and photon spheres (Shaikh
et al. 2019; Dey et al. 2021). Thus, the EHT concludes that the
possibility of Sgr A* being a naked singularity cannot be ruled
out based on the shadow-based metric tests (Event Horizon
Telescope Collaboration et al. 2022f).
The weak cosmic censorship conjecture demands that all

singularities from gravitational collapse are expected to be
hidden by event horizons. Evidence for violations of this
conjecture in nature will thereby have important implications
for fundamental physics (Penrose 1969; Wald 1997). There are
multiple valid naked singularity spacetime solutions to the
Einstein field equations with feasible formation mechanisms
from gravitational collapse (Janis et al. 1968; Christodou-
lou 1984; Shapiro & Teukolsky 1991; Joshi et al. 2011;
Crisford & Santos 2017). Among singularity spacetimes
without a horizon, Kerr naked singularities (KNSs) have
emerged as a potential candidate to model SMBH images.
According to the weak cosmic censorship conjecture, a black
hole with mass M and angular momentum J must satisfy the
Kerr bound |a|� 1 to keep the gravitational singularity hidden
by an event horizon, where a= J/M2 is a dimensionless
rotational parameter (Penrose 1969). There are theoretical
arguments that the Kerr bound can be violated in string theory,
and observations of KNSs can provide direct experimental
evidence for string theory (Gimon & Hořava 2009).
The linear instability of KNSs in general relativity (GR), as

demonstrated by Cardoso et al. (2008), Dotti et al. (2008), and
Nakao et al. (2018), motivates theoretical analysis of KNS
shadows as an observational framework to test deviation from
GR. If the EHT or future horizon-scale imaging experiments
detect signatures of KNSs, one or more of the assumptions
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underlying GR must be violated in nature. Studies of KNS
shadows have similar implications as previous research on the
observational signatures of deviation from GR predictions. For
example, Collins & Hughes (2004), Johannsen & Psaltis
(2011), and Rezzolla & Zhidenko (2014) considered observa-
tional signatures of metrics, which are not valid solutions of the
vacuum equations in GR. Jusufi et al. (2020) used observations
of stellar motion in the galactic center and Sgr A* shadow
imaged by the EHT to propose wormhole solutions, many of
which are unstable and/or require stress energy that violates
the energy conditions, as candidates of Sgr A*. Nevertheless,
they still provide rigorous tests of GR with black hole
observations. Similarly, though KNSs are disfavored models
for compact objects, if they can be identified in nature, they
would provide strong observational evidence that GR demands
modifications in the strong-field regime.

There have been many theoretical works on KNSs. The
conversion from KNSs to black holes due to the instability of
their spacetime was demonstrated to be slow enough that
primordial KNSs may exist for a certain range of cosmological
redshifts (Stuchlík et al. 2011). Classification of KNS space-
times based on different characteristics of the spherical photon
orbits was done in Charbulák & Stuchlík (2018). There are
studies on the topological properties of shadows in Kerr
spacetime, including both KBHs and KNSs, which discuss how
spins and observational inclination angles of Kerr compact
objects relate to observable quantities such as the arc length,
angle, curvature radius, and defined distortion parameter of
shadows (Hioki & Maeda 2009; Wei et al. 2019). Tavlayan &
Tekin (2023) argue that observers with face-on inclinations
cannot distinguish between a KNS shadow and a KBH shadow
for a certain range of spins slightly above 1. The interaction
between null orbits and time-like orbits and its observational
consequence were investigated in Charbulák & Stuchlík
(2018). In addition, the effects of a repulsive gravitational
effect near the singularity to the accretion process onto KNSs
were considered in Bambi et al. (2009). Some optical features
of KNSs such as the accretion disks and the spectral lines were
studied (Stuchlík & Schee 2010; Schee & Stuchlík 2013).

KNSs have been considered as black hole mimicker
candidates for recent shadow observations from the EHT. The
shadow of M87* is measured to be very circular, with deviations
from circularity of about 10% or less in terms of the rms distance
from the average radius of the shadow (Event Horizon Telescope
Collaboration et al. 2019a). Meanwhile, Bambi & Freese (2009)
suggest that the analytical apparent shape of KNSs is elliptical or
crescent-like, depending on the observational inclination angle
and spin, which prompted the EHT to rule out the possibility that
M87* is a KNS (Event Horizon Telescope Collaboration et al.
2019f). However, Bambi et al. (2019) refute this claim by
analytically demonstrating that the inferred size and circularity of
the observed shadow of M87* can still be produced by KNSs
with certain quantum effects. Currently, the EHT has not placed
constraints on the circularity of the shadow of Sgr A* because of
substantial observational uncertainties (Event Horizon Telescope
Collaboration et al. 2022f). Even so, future generations of EHT
with added telescopes are expected to measure the circularity of
the shadow of Sgr A* and conduct further tests for deviations
from the Kerr metric (Event Horizon Telescope Collaboration
et al. 2022f), providing another prospect in testing the possibility
that Sgr A* is a KNS. Furthermore, the close proximity of Sgr A*

allows extremely accurate inference of its mass and distance

from Earth, which is important in relating the angular size of its
photon ring with the properties of its shadow, allowing highly
sensitive tests of gravity in the strong-field regime (Psaltis &
Johannsen 2011; Johannsen et al. 2016). Recent studies have
taken advantage of the precise measurements of the mass and
distance of Sgr A* to test a variety of black hole models,
modified theories of gravity, and physically motivated alter-
native candidates of SMBHs including naked singularities
(Kuang et al. 2022; Vagnozzi et al. 2022; Ghosh & Afrin
2023). These analyses have provided strong preliminary
constraints on the different possibilities of the nature of Sgr A*

and suggested promising future directions for further gravity
tests with Sgr A* observations (Event Horizon Telescope
Collaboration et al. 2022a, 2022f).
In this paper, we perform a systematic study of the projection

of the unstable spherical photon orbits surrounding KNSs at
infinity, which we define to be the “shadow.” In Section 2, we
analytically calculate the KNS shadow by separating the
Hamilton–Jacobi equation and analyzing the radial effective
potential. We demonstrate that the KNS shadow can be closed,
open, or vanishing, depending on the spins and observational
inclination angles, and present the critical parameters where the
shadow changes its topology. Furthermore, we analyze the
effective angular momentum of photon orbits to demonstrate
the fundamental connections between light geodesics and the
KNS shadow geometry. In Section 3, we describe our
numerical setup where we integrate null geodesics backward
in time in Cartesian Kerr–Schild spacetime. We then discuss
the observational signatures of KNSs based on our numerical
ray-tracing calculations. We present deflection angles of the
null geodesics to illustrate how the KNS shadow alters due to
different spins and observational inclination angles and
compare between our numerical results and analytical predic-
tions in Section 2. In Section 4, we discuss the implications of
our results in shadow-based metric tests and constraints to
KNSs as alternative models to SMBHs from horizon-scale
imaging like the EHT.

2. Analytical Shadow of KNS

2.1. Unstable Spherical Photon Orbits around KNS

In our study, we use geometric units c=G=M= 1. The
Kerr metric is an axially symmetric, stationary vacuum solution
to the Einstein field equations, which describes uncharged
rotating compact objects, whose mathematical formulation is
derived in Kerr (1963). The line element of the Kerr metric in
Boyer–Lindquist coordinates (t, r, θ, f) is (Boyer &
Lindquist 1967)

ds
Mr

dt
Mar

dt d

d d

2
1

4
sin

sin , 1

2 2 2

2 2 2 ( )

⎛
⎝

⎞
⎠

where

r a cos , 2a2 2 ( )

r a Mr2 , 2b2 2 ( )

r a a sin . 2c2 2 2 2 2( ) ( )

Here, a= J/M2 is a dimensionless spin for a Kerr compact
object with mass M and angular momentum J. For |a|< 1, the
metric describes a KBH; and for |a|> 1, the metric describes a
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KNS. We further consider only a> 0 without loss of
generality.

Because the Kerr metric is stationary and axially symmetric,
there are two Killing vectors Kμ

= (1, 0, 0, 0) and Rμ
=

(0, 0, 0, 1) representing the time and azimuthal translation.
Conserved quantities can be derived from the symmetries of the
physical laws. By projecting the Killing vectors along the
covariant four-momentum vector pμ, we obtain energy E and
angular momentum in the f direction Lz:

E K p p , 3at ( )

L R p p . 3bz ( )

To analyze the spherical photon orbits and the shadow of
KNSs, we employ the Hamilton–Jacobi equation:

S
g

S

x

S

x

1

2
. 4( )

Here, S is the action as a function of the affine parameter λ and
coordinates xμ. The solution to Equation (4) can be separated
into different components that only depend on each of the
Boyer–Lindquist coordinates (Carter 1968):

S Et S r S L . 5r z( ) ( ) ( )

Equations (4) and (5) yield the following equations of
motion for null geodesics for each of the coordinates
(Sharp 1979):

t aE MaL r2 6az ( )

r E R r 6b2 2 2 ( ) ( )

C a E L csc cos 6cz
2 2 2 2 2 2 2( ) ( )

MaEr Mr L2 2 csc , 6dz
2( ) ( )

where the overdots represent derivatives with respect to the
affine parameter λ along the geodesics. The radial equation of
motion is written in terms of the radial effective potential R(r),
which is of major interest in this study (Stewart &
Walker 1973):

R r r r a Q

Mr a Q a Q2 . 7

4 2 2 2

2 2

( ) ( )

[( ) ] ( )

Here, we define impact parameters Φ= Lz/E and Q= C/E2,
where C is the Carter’s constant, a third conserved quantity
discovered from the separability of the Hamilton–Jacobi
equation (Carter 1968). C is relevant to geodesics in the
latitudinal direction. We solve R(r)= dR/dr= 0 for spherical
photon orbits with constant radius r= rp and obtain two sets of
solutions, but only one set of solution is physical and thus
relevant to our study (Teo 2003; Charbulák & Stuchlík 2018):
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These parameters are related to the image plane at infinity
with orthogonal coordinates α and β, which observes the KNS

at a polar inclination angle i (Bardeen et al. 1972):

r
r i

d

dr
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Unstable photon orbits occur when d2R/dr2< 0. On the
equatorial plane of KBHs, the Carter’s constant vanishes, and
there are two unstable solutions outside the event horizon
(Bardeen et al. 1972):

r a2 2 cos
2

3
arccos , 10ph ( ∣ ∣) ( )⎡

⎣
⎤
⎦

where the inner solution rph− and outer solution rph+
correspond to the prograde and retrograde equatorial orbit,
respectively. For non-equatorial orbits, unstable photon orbits
with radii rp exist in the range rph−< rp< rph+, which
distinguish orbits that get captured by the event horizon and
those that can return to infinity. For KNSs, the prograde
equatorial orbit does not exist. The retrograde equatorial orbit
separates between orbits that terminate at the singularity and
those that recede to infinity. Off the equatorial plane, all orbits
that approach the KNS can escape. Unstable photon orbits
surrounding KNSs exist in the range rms< rp< rph, where rms

is the marginally stable radius that satisfies d2R/dr2= 0 and rph
is the equatorial retrograde circular radius (Charbulák &
Stuchlík 2018):

r a1 1 11ams
2 1 3( ) ( )

r a2 2 cosh
1

3
cosh 2 1 . 11bph

1 2( ) ( )⎡
⎣

⎤
⎦

While stable photon orbits with r< rms are normally hidden
inside the event horizon for KBHs, they have physical
significance for KNSs due to the lack of an event horizon.
Nevertheless, bounded photon orbits cannot be seen by distant
observers, so they are irrelevant to our study on the
observational features of KNSs.

2.2. Topological Features of KNS Shadow

The unstable photon orbits with radii rms< rp< rph can be
projected to the image plane at infinity using Equations (8)
and (9). We define this projection to be the shadow of KNSs.
There is a one-to-one correspondence between rp and the (α, β)

coordinates on the image plane. The shadow of a KBH always
has a closed geometry, but the shadow of a KNS might have a
gap due to the nonexistence of the prograde equatorial circular
orbit. The shadow is symmetric with respect to the α axis on
the image plane. Thus, we can determine the geometry of the
shadow for different values of a and i by solving for β(rp)= 0
and count the number of roots in terms of rp, where β is
expressed as a function of rp by substituting Equations 8(a)
and (b) into Equation 9(b), given fixed values of a and i. If
there are two roots, the shadow is closed. If there is one root,
the shadow is open with a gap. If there is no root, the shadow
vanishes. Since β(rp)= 0 is a sextic polynomial, it does not
have an analytical closed-form solution, so we solve this
equation numerically and obtain Figure 1.
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In Figure 1, we translate the root(s) of β(rp)= 0 downward
by rms to illustrate the range of relevant unstable photon orbit
radii above the marginally stable radius for different values of a
and i. As a increases, both rp and rms increase; because rp
increases at a slower pace, the rp–rms curve shifts downward, so
it appears to shift rightward as shown in Figure 1. This shifting
pattern of rp–rms results in the topological change of the KNS
shadow. For a 1.18, there are unstable roots for a range of i
from negative values with small magnitude to 90°, which
guarantees the existence of an unstable root. Using the axial
symmetry of the Kerr metric, the negative roots can be reflected
over the i= 0° axis to represent second roots for small i
(denoted as dotted lines in Figure 1). This means that for
a 1.18, a shadow can be closed for small i or open for larger
i. For a≈ 1.18, the rp–rms curve shifts rightward such that the
unstable root of β(rp)= 0 only occurs for nonnegative i, which
means that there is only one root, representing an open shadow
with a gap. When a 1.18, the rp–rms curve continues to shift
rightward, so there is no unstable root for small i, which
corresponds to the vanishing of the shadow. As a increases, the
minimum i where one unstable root occurs shifts rightward, so
the minimum i for the shadow to exist increases. a≈ 1.18 is an
important critical parameter as it marks the transition between
two, one, or zero unstable roots.

The physical implication of the above analysis is summar-
ized in Figure 2, which shows the parameters of a and i where
the shadow is closed (region A), open (region B), or vanishing
(region C), corresponding to two, one, or zero roots of
β(rp)= 0, respectively. As a decreases toward 1 (maximally
spinning KBH), the maximum i for a closed shadow
asymptotically approaches 90°. This is consistent with the fact
that KBHs have closed shadows. For 1< a 1.18, the shadow
can be closed for smaller i. As a increases toward 1.18, the
maximum i for a closed shadow decreases to zero. For

a 1.18, the shadow is no longer closed due to the significant
frame dragging (Lense–Thirring) effect for larger spins, and the
shadow vanishes for small i. As a increases to infinity, the
minimum i for the shadow to exist increases. The location
(a≈ 1.18, i= 0°) marks the triple point among regions A, B,
and C on the a− i phase space where the topological change in
the KNS shadow occurs. Figures 3 and 4 depict the analytical
KNS shadow by projecting the unstable photon orbits to an
image plane at infinity with orthogonal coordinates α and β for
different values of a and i, according to Equations 8(a) to 9(b).
These figures are consistent with the analytical results in
Figure 2.

2.3. Effective Angular Momentum of Unstable Spherical
Photon Orbits around KNS

The effective angular momentum of unstable photon orbits
Φ= Lz/E, as defined by Equation 8(a) in Section 2.1 can
provide further physical insights into the gap opening and
vanishing behaviors at different spins and inclinations. For
a < 1 (KBH), dΦ/drp < 0 outside the event horizon, so the
maximum Φ for unstable photon orbits max occur at rp= rph−,
the inner equatorial orbit. For a �1 (maximal KBH and KNS),
by setting dΦ/drp= 0 and d2Φ/drp

2
< 0, max occur at rp= rms,

the marginally stable orbit. Thus, by substituting rp= rph− for
a< 1 and rp= rms for a� 1 into Equation 8(a), we can find a
function of max as a function of spin a, as plotted in Figure 5.
As the spin increases, the frame-dragging effects become

stronger so photons that have too much angular momentum
would scatter instead of sustaining a spherical orbit around the
KBH or KNS. Hence, max is a decreasing function of spin a,
which can also be demonstrated mathematically by showing
d max/da < 0 in addition to the physical argument mentioned.

Figure 1. The unstable photon orbit radius rp (root(s) of β(rp) = 0) translated
downward by the marginally stable radius rms for different discrete spins
a = 1.01, 1.05, 1.18, and 1.38 and continuous observational inclination angles
−30°  i < 90°. The solid lines represent unstable root of β(rp) = 0. The plot
uses axial symmetry −i→ i to illustrate the second unstable root, denoted in
dotted lines, for certain values of a and i. The physical implication of the
unstable root(s) in the KNS shadow is demonstrated in Figure 2.

Figure 2. The topological features of KNS shadows for different spins
1 � a � 2.5 and observational inclination angles 0° � i � 90°. Regions A, B,
and C denote that the shadow is closed, open, or vanishing, respectively. A
shadow can only be closed for a  1.18. The maximum i for a closed shadow
(yellow curve) asymptotically approaches 90° as a decreases toward 1. For
a  1.18, a shadow cannot be closed and can vanish for certain ranges of i. As
a increases from 1.18, the minimum i for the shadow to exist (blue curve)
increases.
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It is physically significant to examine when max decreases to 0
where all prograde photon orbits no longer occur. By
substituting rp= rms into Equation 8(a) and setting Φ= 0,

a a3 1 3 0. 122 2 2 3( ) ( )

This results in the critical spin a 6 3 9 1.18crit ,
meaning that prograde photon orbits vanish for a> acrit. Here,
we reproduce the same critical spin where the polar photon
orbits disappear as shown in Charbulák & Stuchlík (2018)
using a different mathematical approach, and we will take a
step further to draw physical connections between photon
orbits and KNS shadow geometry. The unstable photon orbits
projected to the left and right part of the shadows on the image
plane (according to our direction convention) are prograde
(Φ> 0) and retrograde (Φ< 0), respectively. The physical
picture is that the left side of the shadow consists of prograde
photons that travel along the rotational orientation of the KNS
and vice versa. Because α and β, the orthogonal coordinates of
the image plane as defined in Equations 9(a) and (b) in
Section 2.1, are continuous functions of Φ, as Φ changes from
positive to negative values, it smoothly traces out the shadow
from left to right. When a> acrit, the KNS spins too rapidly
such that the prograde photons can no longer sustain spherical

Figure 3. Shadows of KNSs with different spins a and observational inclination angles i. From left to right, the plots correspond to i = 15°, 45°, and 90°, respectively.
In each plot, different colors correspond to different spins, ranging from purple being a = 1 to dark red being a = 1.403 for i = 15° and a = 2 for i = 45° and 90°. The
plots demonstrate that for smaller inclination angles (closer to face-on), the shadow of KNS opens its gap at a greater spin and vanishes at a smaller spin in comparison
to greater inclination angles (closer to edge-on). These features are consistent with the a − i phase space classification in Figure 2. In general, the KNS shadows shift
rightward like KBH shadows; however, for low inclination angles like i = 15°, the shadow vanishes faster than its rightward shifting, so it appears to shift leftward.

Figure 4. Shadows of KNSs with different spins a and observational inclination angles i. From left to right, the plots correspond to a = 1.01, 1.18, and 1.38,
respectively. In each plot, different colors correspond to different inclination angles, ranging from purple being i = 0° (face-on) for the left and central plots and
i = 14° for the right plot to dark red being i = 90° (edge-on). The plots show that a closed shadow is only possible for lower inclination angles and small spins
1 < a  1.18. For a ≈ 1.18, the shadow is open with a gap for all inclination angles. For a  1.18, the shadow vanishes for small inclination angles. These features are
consistent with the a − i phase space classification in Figure 2.

Figure 5. The blue solid line demonstrates maximum Φ for unstable photon
orbits as a function of spin a. The red and black dotted lines correspond to spins
of interest a = 1 and a ≈ 1.18, respectively.
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orbits, so the left side of the shadow vanishes, and the shadow
opens up a gap.

Besides the critical spin, the effective angular momentum of
photon orbits can also physically explain the different trends
we find in our spin-inclination phase space (Figure 2). For a
fixed spin, as the inclination increases from face-on to edge-on,
the photons have greater (in magnitude) effective angular
momentum because it gains motion in the f direction. For a
fixed spin 1< a< acrit, as the inclination increases, the
prograde photon trajectories become more prograde. At some
higher inclination angle, their effective angular momentum
exceeds max so they can no longer sustain spherical orbits
around the KNS. Thus, the shadow opens up its gap at higher
inclinations. For a fixed spin a> acrit, as 0max , retrograde
photon orbits at lower inclination might exceed the max, so the
shadow vanishes. As the inclination increases, the retrograde
photon orbits become more retrograde, so they can resist the
frame-dragging effects and fall below max, allowing them to
orbit the KNS and the shadow to reemerge again. The
connections between the effective angular momentum of
photons and the projected shadows are visualized in
Figures 6 and 7 for different spins and inclinations.

3. Numerical Experiments

3.1. Numerical Method

To confirm our analytical study and obtain better physical
insights, we numerically integrate null geodesics in Kerr
spacetimes and study their deflection angles. We place a KNS
centered at the origin. The KNS has mass M and dimensionless
spin a. We set up an image plane located at a distance 10,000
M away from the KNS at a polar inclination angle i with
respect to the z-axis, defined to be perpendicular to the ring
singularity. The center of the image plane is at the intersection
of this plane with the radial vector originating from the
singularity. The image plane is effectively at infinity with
respect to the KNS, so its orthogonal coordinates α and β are
related to conserved quantities of the photons—energy E,
angular momentum Lz, and Carter’s constant C—by
Equation (9). We arrange the photons in a square grid of
128× 160 light rays in the domain (α, β)ä (− 8M,
8M)× (− 8M, 10M) with a spacing of 0.125M. The setup
of the image plane is visualized in Figure 8.
We initialize the momentum vector k of the photons to be

perpendicular to the image plane and satisfy the condition for

Figure 6. Shadows of KNSs with different spins a and observational inclination angles i. From left to right, the plots correspond to a = 1.01, 1.06, and 1.18,
respectively. In each plot, the shadow shifts from left to right and ranges from i = 15° to i = 75°, with increments of 15°. The colors represent the effective angular
momentum Φ of each spherical photon orbit projected on the image plane and range from Φ = − 8 (retrograde) to Φ = 2 (prograde). Redder and bluer colors represent
higher and lower effective angular momentum, respectively. The plots show that for a fixed spin 1 < a  1.18, the shadows can still be closed for lower inclinations
due to the existence of prograde spherical photon orbits. As the inclination increases, the prograde photon orbits become more prograde. At some higher inclination
angle, their effective angular momentum exceeds max, so they can no longer sustain spherical orbits, and the shadow opens up a gap. At a ≈ 1.18, all prograde
spherical photon orbits no longer exist, so the shadow is always open for all inclinations.

Figure 7. Shadows of KNSs with different spins a and observational inclination angles i. From left to right, the plots correspond to a = 1.37, 1.63, and 1.96,
respectively. In each plot, the shadow shifts from left to right as the inclination angles range from i = 15°, 30°, and 45° for the left, center, and right plots, respectively,
to i = 75°, with increments of 15°. The colors represent the effective angular momentum Φ of each spherical photon orbit projected on the image plane and range from
Φ = −9 (more retrograde) to Φ = −1 (less retrograde). Redder and bluer colors represent higher and lower effective angular momenta, respectively. The plots show
that for a fixed spin a  1.18, as 0max , retrograde photon orbits at lower inclination might exceed max, so the shadow vanishes. As the inclination increases, the
retrograde photon orbits become more retrograde, and their effective angular momentum falls below max, so the shadow reemerges again.
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null geodesics, kμkμ= 0 (Chan et al. 2013). We integrate null
geodesics backwards in affine parameter starting on the image
plane in Cartesian Kerr–Schild coordinates (tKS, x, y, z), whose
Kerr metric is written as (Kerr 1963)

g
Mr

r a z
ℓ ℓ

2
, 13

3

4 2 2
( )

where η= diag(−1, 1, 1, 1) is the Minkowski metric
representing flat spacetime,

ℓ
rx ay

r a

ry ax

r a

z

r
1, , , , 14

2 2 2 2
( )⎛

⎝
⎞
⎠

and the radial component r of the Boyer–Lindquist coordinates
can be implicitly defined in Cartesian Kerr–Schild coordinates:

r a R r a z R x y z0 with . 154 2 2 2 2 2 2 2 2 2( ) ( )

We employ the differential geometry software package
Fadge

7 and the ordinary differential equations solver XAJ.8

Building on top of Google’s GPU-accelerated, composible, and
automatic differentiation package JAX (Frostig et al. 2018),
fadge automatically derives the geodesic equations from
arbitrary metric according to Chan et al. (2018)formulation.
XAJ implements the Runge–Kutta Dormand–Prince 4(5)
method with an adaptive step size control and interpolated
dense output (Press et al. 2002). Along the photon trajectory,
XAJ controls the numerical error by monitoring kμkμ and
ensures the photons remain essentially massless for accurate
ray-tracing calculations.

Although it is expected that quantum gravity effects emerge
as photons travel very close to a gravitational singularity, our
numerical study is purely general relativistic. To avoid any

unphysical result that arises from the mathematical limitations
of GR and demands correction from a theory of quantum
gravity, we terminate the integration if a photon gets too close
to the singularity and the numerical instability becomes
significant. Because we are interested in the behaviors of
unstable spherical photon orbits sufficiently distant from the
singularity, this does not affect our analysis of the shadow of
KNSs. Also, we do not integrate the radiative transfer equation
nor model the emitting plasma around KNSs in this study. We
focus on how null geodesics affect the observational features
for gravitationally lensed images of KNSs.
For different spins a and observational inclination angles i,

we compute the deflection angle of every photon on the
observer’s grid. The deflection angle of a light ray measures the
angular difference between the incoming photon that travels
toward the KNS and the outgoing photon that travels away
from the KNS. For an initial momentum vector ki and a final
momentum vector kf, the deflection angle θd is defined by

k k

k k
cos . 16d

i f

i f

·

∣
( )

From the deflection angle calculations, we compare the
numerical ray-tracing results with the analytical predictions of
the KNS shadow as presented in Section 2.

3.2. Observational Signatures of KNS

From the numerical ray-tracing calculations, we visualize
deflection angles of each light ray on the image plane grid for
different spins a and observational inclination angles i. Figure
9 compares between the analytical shadow computed by
Equations 8(a)–9(b) in Section 2.1 and the numerical shadow
as an illustration of how to recognize the shadow from the
deflection angle visualizations. Given that the outgoing
direction of a photon near an unstable spherical photon orbit
is very sensitive to the impact parameter, its deflection angle
changes rapidly as a function of the impact parameter. As the
shadow is the projection of unstable spherical photon orbits, it
corresponds to the region where light rapidly oscillates between
getting reflected back to the image plane (high deflection angle)
and traveling to the other side of the KNS (low deflection
angle). Figure 10 shows the deflection angle plots on the full
a− i phase space, which reproduces many analytical char-
acteristics of the KNS shadow in Section 2.2.
Figure 10 demonstrates that for 1< a 1.18, the shadow is

closed for lower i. For the critical parameter a≈ 1.18, the
shadow opens its gap for all nonzero inclination angles due to
the significant frame-dragging effect. For a 1.18, the shadow
vanishes for lower i. As the spin increases from a≈ 1.18, the
minimum i for the shadow to exist increases, and the shadow’s
arc shrinks because frame dragging becomes stronger such that
more photons get scattered off instead of orbiting the KNS and
returning to the image plane. The topological transition
between open, closed, and vanishing of the shadow is
consistent with the analytical result shown in Figure 2. In
particular, the triple point (a≈ 1.18, i= 0°) is a notable
prediction from the analytical calculations in Section 2.2
reproduced by our numerical ray-tracing calculations. Gener-
ally, as a and i increase, the shadow shifts rightward similarly
to KBHs with a< 1, except for lower i, where the shadow
vanishes faster than its rightward shifting and appears to shift
leftward.

Figure 8. Schematic diagram of the numerical setup. The orange ring
represents the KNS centered at the origin of the Cartesian Kerr–Schild
coordinate system. The blue square grid represents the image plane, which is
located at a distance 10,000 M away from the KNS at a polar inclination angle
i with respect to the normal of the ring singularity. The image plane is
effectively at infinity with respect to the KNS, so its orthogonal coordinates α
and βare related to the conserved quantities of photons by Equation (9). The
brown circles represent the photons, which are spaced 0.125 M from each other
on a grid of 128 × 160.

7 https://github.com/adxsrc/fadge
8 https://github.com/adxsrc/xaj
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Besides the topological change in the shadow, the absence of
an event horizon also results in other distinctive observational
features for KNSs. For KBHs, the shadow refers to the apparent
boundary that separates between photon orbits that are captured
by the event horizon and those that can escape to infinity
(Falcke et al. 2000). However, because all photons orbits
around KNSs can return to infinity apart for a subset of
retrograde equatorial orbits that terminate at the singularity,
within the KNS shadow, there are interior structures that
behave like mirrors (high deflection angle) where light is
deflected back to the image plane and lens (low deflection
angle) where the region appears transparent to a distant
observer. As a and i increase, these mirrorlike and lenslike
structures appear to shift continuously. A more thorough study
on the topological features of these mirror and lens effects can
further provide constraints on observations of SMBHs.

4. Discussions

In this paper, we demonstrate that the shadow of KNSs,
defined to be the projection of the unstable spherical photon
orbits at infinity, can be closed, open, or vanishing. We
analytically study spin a and observational inclination angle i
where the shadow possesses these features and changes its
topology. We determine that a≈ 1.18 is a critical parameter
where the KNS shadow can no longer be closed, a distinctive
feature that does not happen with the black hole shadow. We
further analyze the effective angular momentum of photon
orbits to reveal more fundamental physical connections
between the light geodesics with the KNS shadow. For
a 1.18, all prograde orbits can no longer sustain spherical
orbits due to the significant frame-dragging effects, so the
shadow cannot be closed. We also demonstrate that for a fixed
spin, as the inclination changes from face-on to edge-on, the
photon orbits gain effective angular momentum (in magnitude),
which can explain many trends in our spin-inclination phase
space (Figure 2). For 1< a 1.18, as the inclination increases,
the prograde orbits become more prograde, and their effective
angular momentum exceeds the maximum amount max that

can sustain spherical orbits, so the shadow opens up a gap. For
a 1.18, the shadow might vanish for lower inclinations
because retrograde photon orbits might exceed 0max . As
the inclination increases, the retrograde orbits become more
retrograde, and their effective angular momentum falls below
max, so the shadow reemerges. Our numerical ray-tracing

calculations reproduce these analytical results and provide
insights into the observational signatures of KNS images due to
gravitational lensing, such as lenslike and mirrorlike structures
inside the shadow on the image plane.
Because of the linear instability of KNSs in GR (Cardoso

et al. 2008; Dotti et al. 2008; Nakao et al. 2018), our analysis of
KNS shadows provides an observational framework to
constrain modified gravity theories. If captured by current or
future horizon-scale observations of compact object shadows,
evidence of KNS signatures can demonstrate violations of one
or more assumptions underlying GR and the cosmic censorship
conjecture. Considering the likelihood that gravitational
singularities are mathematical artifacts of GR and the
incompatibility between GR and quantum mechanics, predicted
observational signatures of KNSs as experimental tests of GR
have valuable implications for fundamental physics. Further-
more, our discussion of KNS shadows can be a springboard to
study perturbations of KNS spacetime and other types of naked
singularities, providing more frameworks to constrain devia-
tions from GR with horizon-scale imaging.
While the current EHT images do not have high enough

dynamical range to place constraints on KNS for M87* and
Sgr A*, future EHT observations with an enhanced array may.
Given that current feature extraction methods from the EHT
focusonly on ringlike features (Christian et al. 2022),
developing image-domain and visibility-domain algorithms to
study open rings, therefore, isimportant for constraining
alternative models of KBHs. The a− i phase space in
Figure 2 can be applied to rule out certain ranges of values
of a and i depending on whether the shadow is closed, open, or
vanishing from shadow-based metric tests of EHT images. In
addition, topological characteristics such as area, curvature

Figure 9. Deflection angle plots on the image plane for spins a = 1.01 and 1.38 and observational inclination angle i = 30° for the numerical ray-tracing calculations
described in Section 3.1. Redder colors represent higher deflection angles for light rays that return to the vicinity of the image plane. Bluer colors represent lower
deflection angles for light rays that travel to the other side of the KNS. The yellow curve represents the analytical shadow computed by Equations 8(a)–9(b) in
Section 2.1. On the deflection angle plot, the numerical shadow corresponds to the region where light rapidly oscillates between high deflection angles and low
deflection angles because the shadow is defined as the projection of unstable spherical photon orbits. Our numerical ray-tracing calculations reproduce the analytical
predictions of the KNS shadow in Section 2.2.
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radius, and distortion of lenslike and mirrorlike regions inside
the shadow might provide more thorough measurements and
constraints of a and i from observations of Kerr compact
objects. The empirical properties of the lens effect are purely
gravitational properties of the spacetime independent of the
accretion astrophysics around KNSs, so it is highly relevant to
astronomical observations. Meanwhile, the observational
signatures of the mirror effect also dependon the emitting
plasma surrounding KNSs. The lack of surface on the KNS
might have repercussions on the behavior of accreting matter
and provide unique signatures, such as the repulsive gravita-
tional effect near the singularity demonstrated in Bambi et al.
(2009). We reserve an exploration of its effects for future
studies. From the topological properties of the shadow, the

lens, and the mirror structures, we can construct a large,
detailed parameter space to compare theoretical predictions of
images and light curves of KNSs with future black hole shadow
observations to test GR and KNSs as potential candidates of
SMBH observations.
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Figure 10. Deflection angle plots on the image plane for different spins a = 1.01, 1.18, 1.38, 1.61, 1.88, and 2.2 (vertical axis) and observational inclination angles
i = 0°, 15°, 30°, 45°, 60°, and 75° (horizontal axis) for the numerical ray-tracing calculations described in Section 3.1. Redder colors represent higher deflection angles
for light rays that return to the vicinity of the image plane. Bluer colors represent lower deflection angles for light rays that travel to the other side of the KNS. The
spins are approximately chosen according to the relation an = 0.01 + 10n/14.7, where n = 0, 1, ..., 5, so that a is evenly spaced in the logarithmic scale. The plots show
that for lower spins 1 < a  1.18, the shadow is closed for lower inclination angles. For a ≈ 1.18, the shadow opens its gap, and for greater spins a  1.18, the
shadow vanishes for lower inclination angles. This topological change in the KNS shadow is consistent with the analytical results in Figure 2.
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