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Abstract

The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes
in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with
the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage
and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these
frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps
in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of
the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data
obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial
scales in single-frequency observations can be filled in with information from other frequencies. Here we present a
new method of simultaneously reconstructing interferometric images at multiple frequencies along with their
spectral index maps. The method is based on existing regularized maximum likelihood (RML) methods commonly
used for EHT imaging and is implemented in the eht-imaging Python software library. We show results of this
method on simulated ngEHT data sets as well as on real data from the Very Long Baseline Array and Atacama
Large Millimeter/submillimeter Array. These examples demonstrate that simultaneous RML multifrequency
image reconstruction produces higher-quality and more scientifically useful results than is possible from combining
independent image reconstructions at each frequency.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); Astrophysical black holes (98); High
angular resolution (2167); Astronomical techniques (1684); Astronomy image processing (2306); Relativistic jets
(1390); Radio jets (1347); Very long baseline interferometry (1769); Radio interferometry (1346)

1. Introduction

The Event Horizon Telescope (EHT) is a very long baseline
interferometry (VLBI) array operating at 1.3 mm wavelength
(230 GHz) with a nominal resolution of ≈20 μas (The Event
Horizon Telescope Collaboration et al. 2019b). Recent EHT
observations (The Event Horizon Telescope Collaboration
et al. 2019c, 2022b) have produced the first images of two
supermassive black hole sources with resolution on the scale of
their event horizons; in M87* (M≈ 6.5× 109Me; The Event
Horizon Telescope Collaboration et al. 2019a) and Sgr A*

(M≈ 4× 106Me; The Event Horizon Telescope Collaboration
et al. 2022a). In both Sgr A* and M87*, the 230 GHz EHT
images feature a ring with a diameter approximately five times
the projected Schwarzschild radius, consistent with the
predicted size of the “black hole shadow” (The Event Horizon
Telescope Collaboration et al. 2019d, 2022c). In both sources,
EHT total intensity images constrain the black hole mass (The
Event Horizon Telescope Collaboration et al. 2019f, 2022d),

provide tests of the Kerr metric (The Event Horizon Telescope
Collaboration et al. 2019f, 2022f), and constrain potential
scenarios for the physics of accretion and jet launching around
black holes (The Event Horizon Telescope Collaboration
et al. 2019e, 2022e). Linearly polarized EHT images of M87*

(The Event Horizon Telescope Collaboration et al. 2021a)
more strongly constrain the nature of the accretion flow and jet;
they indicate that magnetic fields around M87* are strong
and dynamically important (The Event Horizon Telescope
Collaboration et al. 2021b).
Building on the success of these observations, the proposed

next-generation Event Horizon Telescope (ngEHT) plans to
add ∼10 new telescopes to the EHT. These additional sites will
fill in the EHT’s sparse u− v plane coverage, enhancing
imaging dynamic range and enabling the recovery of faint
features in the M87* jet. Rapid filling of the u− v plane from
these additional sites will also allow for robust imaging of rapid
variability in the accretion flow around Sgr A*. In addition to
adding new sites, the ngEHT will also increase the observing
bandwidth and the range of observed frequencies up to
345 GHz and (potentially) down to 86 GHz (Doeleman et al.
2019; Issaoun et al. 2023).
EHT observations of Sgr A* and M87* have not yet

produced a spatially resolved map of spectral index, the slope
of the image log-intensity as a function of log-frequency. The
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relatively narrow 4 GHz total bandwidth of 2017 EHT
observations at 1.3 mm and a lack of simultaneous observations
at lower frequencies has prevented the creation of spectral
index maps from EHT data thus far. Future ngEHT data sets
with simultaneous, wide-bandwidth observations at 86, 230,
and 345 GHz may enable the robust recovery of resolved
spectral index maps, which will be crucial for constraining the
physics of the accretion flow and jet-launching regions near
these supermassive black holes. Ricarte et al. (2023) studied
spectral index maps of horizon-scale models of both M87* and
Sgr A* and explored how the spectral index encodes
information on the plasma density, temperature, magnetic field
strength, and electron distribution function. These plasma
parameters can vary by orders of magnitude among general
relativistic magnetohydrodynamic (GRMHD) simulation mod-
els that all produce similar 230 GHz images of these sources;
spectral index maps can thus help break degeneracies between
physical parameters and test models in unprecedented detail.

Simultaneous imaging of interferometric data separated in
frequency is not new to interferometry. The CLEAN algorithm
(Högbom 1974) is the standard choice for reconstructing
interferometric images from data. Several CLEAN-based
algorithms that simultaneously use observations at multiple
frequencies to solve for an image and spectral index map have
been developed (Sault & Wieringa 1994; Rau & Cornwell
2011; Offringa & Smirnov 2017) and are implemented in
standard interferometric software.10 The imaging method we
present in this paper is fundamentally different from these
CLEAN-based approaches, however. As a regularized max-
imum likelihood (RML) image reconstruction method (e.g.,
Akiyama et al. 2016; Chael et al. 2018b; The Event Horizon
Telescope Collaboration et al. 2019d), rather than deconvol-
ving point-spread function structure from the multifrequency
images after a Fourier transform of the gridded data, we
forward-model the observed data from an underlying image
model and attempt to find the best fit to the data subject to prior
constraints. Our method for multifrequency RML imaging is a
straightforward adaptation of single-frequency RML imaging
commonly used for EHT image reconstruction; critically, it
allows us to maintain the flexibility of the RML approach in
fitting directly to interferometric “closure quantities,” which are
robust to systematic calibration uncertainties that affect all
millimeter-VLBI data sets.

In this paper, we present a new method for multifrequency
imaging of interferometric data. The method is a simple
extension of the RML approach commonly applied to EHT
data sets. It combines heterogeneous data products observed at
multiple frequencies in a simultaneous fit of a reference
frequency image, spectral index map, and potentially a spectral
curvature map. In Section 2, we review the RML method for
interferometric imaging and present its extension to multi-
frequency imaging used in this paper. In Section 3, we discuss
the implementation of spectral index imaging in the eht-

imaging software package. In Section 4, we present results of
applying the method to simulated ngEHT data sets of different
models of M87*. In Section 5, we present results of applying
the method to real observations from the Very Long Baseline
Array (VLBA) and Atacama Large Millimeter/submillimeter
Array (ALMA). In Section 6 we discuss the results and

potential extensions to the method presented here, and we
conclude in Section 7.

2. Method

2.1. Imaging with Regularized Maximum Likelihood

VLBI arrays like the EHT and ngEHT measure complex
visibilities (Vab) between two widely separated radio telescopes
a and b by correlating the time-series of electric field values
recorded at each location. In the ideal case, this visibility Vab is
a measurement of the Fourier transform of the source image
intensity distribution I(x, y):

˜( ) ( ) ( )( )V I u v I x y e dx dy, , , 1i ux vy
ab

2

where x and y are angular coordinates on the sky, and u and v

are the coordinates of the projected baseline bab between the
sites, measured in wavelengths.
Most methods for reconstructing images from VLBI

measurements use the CLEAN algorithm (Högbom 1974;
Clark 1980). CLEAN makes use of the Fourier relationship
between measured complex visibilities Vab and the source
intensity distribution I(x, y) by first constructing the “dirty
image” from the inverse Fourier transform of the sparse set of
measured complex visibilities, with all unmeasured visibilities
set to zero. The CLEAN algorithm then works in the image
plane by iteratively deconvolving the interferometer “dirty
beam,” or point-spread response function, from the dirty image
to obtain a model image for the underlying source.
By contrast, an increasingly utilized approach for recon-

structing VLBI images from data is the class of RML
algorithms. Instead of attempting to de-convolve artifacts from
an image in the source plane, RML methods forward-model an
interferometric data set d from a trial image I and iteratively
adjust this image to find the best fit to the data while also
satisfying prior constraints on the image structure. RML
methods find the best-fit image by minimizing an objective
function J(I) composed of log-likelihood terms ( ∣ )d I and
“regularizer” terms ( )ISR , which favor or penalize certain
image features (see, e.g., Chael et al. 2018a; The Event Horizon
Telescope Collaboration et al. 2019d):

( ) ( ∣ ) ( ) ( )I d I IJ Slog . 2D R R

data terms regularizers

In Equation (2), the κR and λD terms are hyperparameters that
set the relative weight of the different likelihood and regularizer
terms in the total functional J being minimized. For specific
combinations of likelihood terms ( ), regularizer terms (SR),
and hyperparameters (κD, λR), the RML objective function
Equation (2) can be equivalent to a log-posterior probability
distribution, where λRSR(I) is the log-prior. In general,
however, RML methods freely use combinations of log-
likelihoods, regularizer terms, and hyperparameters; the
objective function J in Equation (2) usually is not a rigorously
defined log-posterior.
Commonly used regularizer terms S(I) for imaging EHT data

sets include image entropy (i.e., the Maximum Entropy
Method, Frieden 1972; Gull & Daniell 1978; Cornwell &
Evans 1985; Narayan & Nityananda 1986), an ℓ1 norm term to
promote spatial sparsity (e.g., Honma et al. 2014; Akiyama
et al. 2017), and image smoothness terms like total variation
(e.g., Rudin et al. 1992; Thiébaut & Young 2017) or total

10 e.g., CASA tclean, https://casadocs.readthedocs.io/en/stable/api/tt/
casatasks.imaging.tclean.html.
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squared variation (e.g., Kuramochi et al. 2018). A full list of the
image regularizers implemented in the eht-imaging RML
code and used in this paper can be found in Chael et al. (2018a)
and The Event Horizon Telescope Collaboration et al. (2019d).

2.2. RML Imaging across Frequency

In this paper we perform a simple extension of the RML
method described above to simultaneously reconstruct images
from data obtained at a set of frequencies {νi}. We denote
observational data products obtained at each frequency νi by di.
These data products at each frequency can be heterogeneous:
they may consist of calibrated complex visibilities V, visibility
amplitudes |V|, closure phases , closure amplitudes A , or
any other product derivable from the interferometric data. Our
goal is to take this set of data {di} and reconstruct the images at
each frequency Ii that best fit both the data and our regularizing
assumptions on the structure of the image and the evolution of
the image with frequency.

Instead of reconstructing images Ii at each frequency
independently, we instead parameterize the images at each
frequency with a log-log Taylor expansion around a reference
image I0 at a chosen reference frequency ν0:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

[ ] ( )I Ilog log log log ... 3i
i i

0
0

2

0

In Equation (3), α is the spectral index map and β is the
spectral curvature map. In this paper we only work with these
first two terms in the expansion, but in principle the same
approach could be used to fit spectral terms at arbitrary order in
the Taylor series around ν0. If we define

[ ] ( )x log , 4i i 0

[ ] ( )y Ilog , 5i i

then we can summarize the expansion Equation (3) to second
order as

[ ] ( )I y x xexp . 6i i i0
2

We employ this image model (Equation (6)) for all multi-
frequency reconstructions in this paper. We occasionally solve
only for the spectral index α and fix the curvature map β= 0.

After defining the image model, we simply extend the
standard RML framework presented in Section 2.1 to produce
simultaneous reconstructions of the reference frequency image
I0, the spectral index map α, and potentially the curvature map
β. To do this, we minimize an expanded objective function:

( ) ( ∣ )

( ) ( ) ( )

( )

I d I

I

J

S S S

, , log

.

7

D i i

I I

0

data terms

regularizers

0

i

In Equation (7), the terms are log-likelihoods that compare
the various data products di obtained at each frequency νi with
the trial image reconstructions Ii at the same frequency. Each
image Ii is a function of the underlying parameters ( )I , ,0

through Equation (6). Critically, the RML method is flexible
regarding data products; each frequency νi can have multiple
log-likelihoods from different, heterogeneous data products
that contribute to the total data constraint for that frequency.

The SI term in Equation (7) represents a regularizing term on
the reference frequency image. This term can have multiple
components, (e.g., maximum entropy, total variation, ℓ1 norm).
Similarly, here we introduce Sα and Sβ regularizers in
Equation (7) as regularizing terms on the spectral index map
α and curvature map β.
We define regularizers on the resolved spectral index and

curvature maps in close analogy with those already developed
for total intensity RML imaging (Section 2.1). In this paper, we
only consider two spectral regularizer terms. The first is an ℓ2

norm term that pushes the index α to a fiducial value in the
absence of data constraints:

( ) ( ) ( )S
N

1
. 8ℓ

l m

lm

,

0
2

2

In Equation (8), the leading factor of the total number of pixels
N is a normalization factor that allows us to use similar
hyperparameter values λα for different-sized images. The
fiducial value α0 may be set to zero, or set to a measurement of
the spectral index of the unresolved source. The same ℓ2 norm
term in Equation (8) can be directly applied to regularize the
spectral curvature map β.
We also use a total variation regularizer on the spectral

index/curvature maps to disfavor large variations in α or β
over small parts of the image:

( )

[( ) ( ) ] ( )

S

N
. 9

l m

l m l m l m l m

TV

beam

,

1, ,
2

, 1 ,
2 1 2

Again, in Equation (9) the factor Θbeam/NΔθ is a normalizing
factor, where Θbeam is the size of the interferometer beam, and
Δθ is the pixel size (cf., The Event Horizon Telescope
Collaboration et al. 2019d, their Equation (35)). In this work,
we only employ STV and Sℓ2 regularizers for both the spectral
index α and spectral curvature β maps, but in principle, the
multifrequency generalization of RML imaging we present
here can support many further regularizers on α and β.
In summary, the multifrequency RML imaging procedure

involves simultaneously solving for the image I0 at a reference
frequency ν0 in addition to the spectral index and spectral
curvature maps α, β by minimizing the objective function J
(Equation (7)). This procedure is a straightforward extension of
the usual total intensity RML framework described in
Section 2.1. It allows us to fit observations taken at many
different reference frequencies or frequency channels simulta-
neously in an image model with a smaller number of degrees of
freedom than in reconstructing images independently at each
frequency; it also allows us to directly regularize the spectral
index map. As a result, it is also straightforward to implement
RML multifrequency imaging in existing RML imaging codes
and scripts developed for the EHT and other interferometric
arrays (e.g., The Event Horizon Telescope Collaboration
et al. 2019d).

3. Implementation in eht-imaging

We implement the RML approach to multifrequency
synthesis described in Section 2 in the eht-imaging Python
software package (Chael et al. 2016, 2018a, 2022).11 The

11 https://github.com/achael/eht-imaging
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eht-imaging package provides routines for RML imaging
of interferometric data in total intensity and polarization,
synthetic data generation, visualization, and analytic model
fitting and parameter exploration. The RML image reconstruc-
tion algorithms in eht-imaging have been used in the
analysis of EHT observations of M87* (The Event Horizon
Telescope Collaboration et al. 2019d, 2021b), Sgr A*

(The
Event Horizon Telescope Collaboration et al. 2022c), 3C279
(Kim et al. 2020), and Centaurus A (Janssen et al. 2021). They
have also been used in imaging VLBI data sets from other
arrays at lower frequencies (e.g., Issaoun et al. 2019, 2021;
Savolainen et al. 2021; Xu et al. 2021; Zhao et al. 2022).

3.1. RML Imaging Data Products

A major advantage of RML methods for high-frequency
VLBI arrays like the EHT and ngEHT is that while CLEAN-
based methods require fully calibrated complex visibility
measurements Vab to generate an initial dirty image, the
general form of the objective function (Equation (2)) allows
RML methods to fit directly to robust data products d derived
from complex visibilities even if the visibilities themselves are
corrupted by systematic errors (e.g., Buscher 1994; Baron et al.
2010; Thiébaut 2013; Bouman et al. 2016; Akiyama et al.
2017; Thiébaut & Young 2017; Chael et al. 2018a). High-
frequency VLBI observations in particular are severely subject
to rapidly varying random phase errors f from propagation
delays through atmospheric turbulence. VLBI measurements
are also corrupted by station-dependent amplitude gain terms G
from errors in the total flux density calibration of different
telescopes in the array. In general, these station-based
systematic effects combine with random thermal noise òab on
a given baseline a− b to produce a measured visibility:

˜( ) ( )( )V G G e I u v, . 10a b
i

ab aba b

Because the most severe systematic effects on the measured
visibility Vab are decomposable into station-based gains G and
phases f on the separate sites a and b, forming certain
combinations of visibilities can cancel out these effects. These
well-known robust “closure” products include the closure
phase ,abc around a baseline triangle:

[ ] ( )V V Varg , 11,abc ab bc ca

and closure amplitudes A ,abcd on station quadrangles:

∣ ∣∣ ∣

∣ ∣∣ ∣
( )A

V V

V V
. 12,abcd

ab cd

ac bd

In RML imaging, we can directly include closure phases and
amplitudes in the RML objective function J(I) by constructing
the appropriate log-likelihoods. In this paper, we use the
likelihood terms defined in Chael et al. (2018a) for the closure
phases ( ∣ )d I and for the logarithms of the closure
amplitudes ( ∣ )d IAlog . The likelihood terms we use neglect
correlations between different closure amplitudes and
phases, but a judicious selection of the minimal subset of
closure quantities to use can minimize these correlations; see
Blackburn et al. (2020) for details.

3.2. Objective Function Minimization and Gradients

To minimize the objective function for multifrequency
imaging (Equation (7)), the eht-imaging software uses
the Limited-Memory BFGS (L-BFGS) gradient descent

algorithm (Byrd et al. 1995) implemented in the Scipy

package (Virtanen et al. 2020). In the L-BFGS algorithm, it is
computationally more efficient to use analytic expressions for
the objective function gradient ∂J/∂I. Chael et al. (2018a)
provided explicit expressions for the gradients of the log-
likelihood terms for EHT data ( Ilog i) and of the various
regularizer terms (∂S/∂Ii). These derivatives are taken with
respect to the image pixels at the frequency νi corresponding to
a given data set. To use these gradients in multifrequency
imaging, we simply need to take the derivative of the image
pixels Ii at a given frequency with respect to our imaged
quantities [y0, α, β], and apply the chain rule. These
derivatives are simply (from Equation (6)):

( )
I

y
I , 13

i
i

0

( )
I

I x , 14
i

i i

( )
I

I x . 15
i

i i
2

Here, we use the same regularizer terms presented for single-
frequency imaging in Chael et al. (2018a) on the reference
image (SI in Equation (7)). The total variation and ℓ2 regularizer
terms we use on the spectral index and spectral curvature map
(Sα and Sβ in Equation (7)) are straightforward generalizations
of corresponding regularizers used on total intensity images in
Chael et al. (2018a), and so the gradients of these terms are
simple to adapt from those already implemented for total
intensity images in eht-imaging.

3.3. Imaging Procedure in eht-imaging

In summary, the quantities we solve for in multifrequency
RML imaging are the logarithm of the reference image y0, the
spectral index map α at the reference frequency ν0, and
potentially the spectral curvature map β (Equation (6)). In
eht-imaging, each of these maps is defined on a fixed,
square n× n grid with pixels of size Δθ. We solve for these
three images simultaneously by minimizing the objective
function Equation (7).
The image pixels in our total intensity reconstructions are

constrained to be nonnegative:

[ ) ( )I 0, . 16i lm,

As a result, we need to enforce some positivity constraint on
the images Ii. We employ the same strategy as in Chael et al.
(2018a) and solve directly for the logarithm of the reference
image y0 (Equation (5)) instead of I0 itself. Conveniently, this
is already the natural parameterization in our spectral expansion
in log-log space (Equation (6)).
In eht-imaging, the pixel arrays at each frequency Ii

parameterize a continuous function via convolution of the pixel
grid with a triangular “pulse” function of width 2Δθ (Bouman
et al. 2016). At each step in the minimization, we generate
synthetic data from the trial images at each frequency using the
nonequispaced fast Fourier transform (Keiner et al. 2009).
All of the real and synthetic data sets considered in this paper

include systematic gain and phase errors at each station that
vary as a function of time. In generating multifrequency RML
reconstructions, we usually begin by constructing likelihoods
from the closure phases ( ) and log closure amplitudes

4

The Astrophysical Journal, 945:40 (23pp), 2023 March 1 Chael et al.



( Alog ); we fit directly to these robust data products through
Equation (7). After generating images and spectral index/
curvature maps from the closure quantities, however, it is often
possible to generate more accurate reconstructions by self-
calibrating the data and re-imaging. The self-calibration (or
“hybrid mapping”) procedure involves solving for the gain
terms G and phase terms f in Equation (10) given a
reconstruction I of the on-sky image I(x, y). Self-calibration
is useful for RML imaging, but essential for CLEAN imaging
of data sets with phase or amplitude errors, as CLEAN requires
calibrated data to generate an initial dirty image for
deconvolution (e.g., Wilkinson et al. 1977; Readhead &
Wilkinson 1978; Readhead et al. 1980; Schwab 1980;
Cornwell & Wilkinson 1981; Pearson & Readhead 1984;
Walker 1995; Cornwell & Fomalont 1999).

In the RML imaging in this paper, we usually self-calibrate
only once to an initial image generated by fitting closure phases
and amplitudes. We then re-image by fitting to the calibrated
visibility amplitudes |V| and closure phases . We assume that
we have good independent measurements of the total flux
density and rescale the closure-only image results (which are
insensitive to total flux) to the correct values before self-
calibrating. Since small errors in the phase calibration can
easily lead to large image artifacts, and since for reasonably
large arrays the phase information contained in closure phases
is a significant fraction of the information in the full complex
visibility phases (Thompson et al. 2017), we do not fit directly
to complex visibilities for most of the reconstructions presented
here (with one exception in Section 5).

To avoid local minima in the objective function, we follow
the procedure introduced in Chael et al. (2018a) and run each
objective function optimization multiple times with different
initial conditions. After finishing one minimization round (from
reaching convergence on the gradient of J or reaching the
maximum number of allowed gradient descent steps), we
restart the optimization from a blurred version of the output
image. This procedure aids in convergence to a global
minimum and helps the imager remove spurious high-
frequency artifacts that are unconstrained by the data.

4. Example Reconstructions: Synthetic ngEHT Data

In this section, we present multifrequency reconstructions of
synthetic GRMHD simulation models of the emission from
M87* as observed by the ngEHT. For ngEHT station locations
and telescope parameters, we use the proposed ngEHT
reference array presented in Issaoun et al. (2023) that was
developed from the site-selection considerations presented in
Raymond et al. (2021). The ngEHT sites we use in generating
synthetic data are summarized in Table 1 and are mapped in
Figure 1.

In Section 4.1 we describe our procedure for generating
synthetic ngEHT data. In Section 4.2 we present reconstruc-
tions of two GRMHD simulation data sets and their spectral
index and curvature maps from observations taken across the
full proposed ngEHT frequency range at 86, 230, and 345 GHz.
In Section 4.3, we present reconstructions of two different
GRMHD data sets and their spectral index maps from four
ngEHT spectral windows clustered near 230 GHz.12

4.1. Generating Synthetic ngEHT Data

In the examples that follow in Section 4, we use the eht-

imaging library to generate synthetic data on ngEHT
baselines. The eht-imaging synthetic data generation code
generates u− v coverage for an interferometric array at a given
observing frequency, samples the Fourier transform on the
appropriate baselines, and adds random thermal noise and
systematic gain and phase errors following Equation (10).13

The thermal noise and gain terms in eht-imaging are
generated from probability distributions defined by the user.
Sophisticated end-to-end VLBI synthetic data generation tools
like SYMBA (Roelofs et al. 2020) can also be used to generate
errors from full modeling of telescope and atmosphere
parameters; given suitable parameter choices, eht-imaging
and SYMBA have been shown to produce equivalent data
sets for imaging purposes (The Event Horizon Telescope
Collaboration et al. 2019d).

Table 1

Locations and Frequency Capabilities of Active EHT Stations and Potential
Additional Stations Planned for the ngEHT

Station Code Location 86 GHz 230 GHz 345 GHz

Existing EHT
sites

ALMA Antofagasta, Chile X X X

APEX Antofagasta, Chile L X X

SMA Hawai’i, USA L X X

JCMT Hawai’i, USA L X X

LMT Puebla, Mexico X X X

SMT Arizona, USA L X X

KP Arizona, USA L X L

NOEMA Pr.-Alpes-Côte
d’Azur, France

X X X

IRAM-
30 m (PV)

Andalusia, Spain X X X

SPT South Pole, Antarctica L X X

GLT Avannaata, Greenland X X X

Potential
ngEHT sites

OVRO California, USA X X X

BAJA Baja California,
Mexico

X X X

BAR California, USA X X X

CNI La Palma, Canary
Islands, Spain

X X X

GAM Khomas, Namibia X X L

GARS Antarctic Peninsula,
Antarctica

X X X

HAY Massachusetts, USA X X X

NZ Canterbury, New
Zealand

X X X

SGO Santiago, Chile X X X

CAT Río Negro, Argentina X X X

Note. The geographical and weather properties of these sites were described in
Raymond et al. (2021). The potential ngEHT station configuration used in this
paper and its 86 GHz capabilities are described in Issaoun et al. (2023).

12 The synthetic data, ground truth simulation images, and eht-imaging

scripts used to produce the reconstructed images in the following sections can
be found at https://github.com/achael/multifrequency_scripts/.

13
eht-imagingʼs synthetic data generation can also add polarimetric

leakage errors and right- and left-circular polarization gain offsets, both of
which are ignored in this work.
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The thermal noise on a given baseline between site a and site
b is

( )
t

1 SEFD SEFD

2
, 17ab

a b

where Δν is the bandwidth, Δt is the integration time, and η is
an efficiency factor relating to the data quantization (for 2 bit
quantization used by the EHT, η= 0.88). In the ngEHT
examples in this section, we assume a bandwidth Δν= 2 GHz
for each ngEHT sub-band, and we use an integration time
Δt= 120 s. The factors SEFDa and SEFDb in Equation (17) are
the “system equivalent flux densities” (SEFDs) of the two
telescopes in the baseline pair.

In synthetic data generation for this paper, we determine
SEFDs for each station as a function of time (rather than
assuming a single fixed value) by following a similar procedure
to Raymond et al. (2021). The effective SEFD at each station is
given by

( )
k T

A
eSEFD

2
, 18

B sys

eff

where τ is the line-of-sight atmospheric opacity at the
observing frequency, Aeff is the effective collecting area of
the telescope,

( ) ( )T T T e1 19sys rx atm

is the system temperature, and Tatm is the temperature of the
atmosphere. We assume receiver temperatures Trx of 40 K at
86 GHz, 50 K at 230 GHz, and 75 K at 345 GHz. We use
historical atmospheric data from the MERRA-2 database
(Gelaro et al. 2017) as inputs to the am radiative transfer code
(Paine 2019), which then provides atmospheric opacity τ and
atmospheric temperature Tatm at each site as a function of
observing frequency. These quantities, along with the collect-
ing area and aperture efficiency of each telescope, determine

the level of source attenuation and station SEFD as a function
of time through Equation (18).
The impact of atmospheric effects on the synthetic data is

most pronounced for 345 GHz observations, where it is
typical for ∼50% of the array to be operating with τ> 1. The
resulting decrease in sensitivity limits the overall number of
detected data points and reduces the signal-to-noise ratio
(S/N) of the data points that are detected, relative to
observations at lower frequencies. We note that for the
ngEHT, it may be possible to use frequency phase transfer
(FPT) techniques (e.g., Rioja & Dodson 2011; Dodson et al.
2017; Rioja & Dodson 2020) to bootstrap atmospheric phase
solutions from lower-frequency observations up to 345 GHz,
thereby substantially extending the coherent integration time
and enabling additional detections (e.g., Issaoun et al. 2023).
However, in this paper we do not simulate observations that
take advantage of FPT techniques.

4.2. ngEHT Case Study: Simultaneous Imaging from
86–345 GHz

In this section we consider two examples of ngEHT data
reconstruction from synthetic observations at 86, 230, and
345 GHz.14 We produce synthetic ngEHT data from two sets of
GRMHD simulation images of M87*; we then reconstruct
images from the multifrequency data using both standard RML
optimization at each frequency independently and using the
multifrequency approach introduced in this paper. We compare
the simultaneously recovered maps of the reference frequency
I0, spectral index α, and spectral curvature β from multi-
frequency imaging to those we compute after-the-fact from
independently reconstructed images. The u− v coverage of the
synthetic ngEHT observations of M87* we use for both source
models in this section is shown in Figure 2.

Figure 1. A potential configuration of the ngEHT array, as described in Issaoun et al. (2023). The current EHT stations are shown in teal, while potential ngEHT
stations are shown in yellow.

14 The synthetic data, ground truth simulation images, and eht-imaging

scripts used to produce the results in the following Sections can be found at
https://github.com/achael/multifrequency_scripts/.
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4.2.1. Chael et al. (2019) Model

We first consider synthetic images of the near-horizon
accretion flow and jet in M87* from a radiative GRMHD
simulation (simulation R17 from Chael et al. 2019). The
simulation was performed using the radiative GRMHD code
KORAL (Saḑowski et al. 2013, 2014, 2017). The simulation is
in the magnetically arrested (MAD) state of black hole
accretion (Igumenshchev et al. 2003; Narayan et al. 2003),
which is favored by polarimetric EHT observations of M87*

(The Event Horizon Telescope Collaboration et al. 2021b). The
black hole spin was set to aå= 0.9375. The electron
distribution was evolved self-consistently in the simulation
under synchrotron cooling and sub-grid heating from magnetic
reconnection, using results from Rowan et al. (2017). We
generated images of the 345, 230, and 86 GHz synchrotron
emission from the simulation using the GR radiative transfer
code grtrans (Dexter 2016).

We present total intensity reconstructions of the simulated
ngEHT data taken from these simulation images in Figure 3,
and we show spectral index reconstructions in Figure 4. In
Figure 3, we compare the simulation images at each frequency
blurred with a 12 μas circular Gaussian kernel (left column) to
eht-imaging reconstructions performed using multifre-
quency synthesis (center) and reconstructions performed
independently at each frequency (right column). The data term
hyperparameters κ and total intensity regularizer hyperpara-
meters λI were fixed to the same values in all cases, both for
each independent single-frequency imaging script as well as in
the multifrequency optimization.

Figure 3 shows that the ngEHT coverage is sufficiently
dense and its sensitivity sufficiently high to recover good
independent reconstructions of structure in M87*ʼs core and
extended jet at both 86 and 230 GHz. At 345 GHz, the
ngEHT’s sensitivity is much lower; as a result, the image
reconstructed independently using 345 GHz data alone
recovers the central ring structure but does not recover the
extended low-brightness emission from the jet.15 However,
when we image all three frequencies simultaneously,

information is shared across the three frequencies, and
structural information from the 86 and 230 GHz observations
can serve as an effective “regularizer” on the 345 GHz
reconstruction. As a result, the reconstruction of the 345 GHz
extended jet emission is much more accurate at high dynamic
range in the multifrequency reconstruction.
Furthermore, while the independent reconstructions at all

three frequencies show evidence for superresolution of
structures smaller than the EHT nominal resolution, this
super-resolving power is enhanced at the lower frequencies in
the multifrequency reconstruction. The 86 GHz simulation
image has an optically thick core but optically thin jet; as a
result, a central brightness depression is visible at 86 GHz. In
this simulation, the 86 GHz central brightness depression is
closely associated with the black hole’s “inner shadow,” or the
lensed image of the event horizon’s boundary in the equatorial
plane (see Chael et al. 2021, Figure 6 therein). This brightness
depression is not clearly resolved by the independent image
reconstruction at 86 GHz. However, the multifrequency
reconstruction accurately resolves the inner shadow feature at
86 GHz by propagating structural information from the higher-
resolution data sets at 230 and 345 GHz.
Figure 4 shows the performance of the two methods

(independent single-frequency RML imaging and multifre-
quency RML imaging) at recovering resolved spectral index
information. Because spectral curvature is significant, the
multifrequency method applied here directly reconstructs both
the spectral index map at the 230 GHz reference frequency (α,
top row of Figure 4) and the spectral curvature (β, second row
of Figure 4). In the bottom two rows, we show maps of the
spectral slope computed between the two pairs of frequencies:
86–230 GHz and 230–345 GHz. In computing spectral index
and curvature maps from the images independently recon-
structed at each frequency (right column of Figure 4), we first
align the images to each other by finding the image shift that
maximizes their cross-correlation.
Independent single-frequency ngEHT imaging can accu-

rately recover some details of the spectral index structure
between 86 and 230 GHz (right column, third row of Figure 4).
The independent reconstructions at these frequencies accurately
reconstruct the positive spectral index from optically thick
material in the accretion disk and the flat or slightly negative

Figure 2. u − v coverage at 86 GHz (left) 230 GHz (center) and 345 GHz (right) for the ngEHT concept array used in this work. The center panel shows the 2017
EHT coverage in black, for reference.

15 The size of the distribution of low-brightness noisy structure in the single-
frequency 345 GHz reconstructions is largely determined by the size of the
initial Gaussian model used to start the RML optimization.
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spectral index of optically thin material in the jet. However, the
images independently reconstructed at the three frequencies do
not well constrain the spectral slope between 230 and 345 GHz
(fourth row) or the spectral curvature map between all three
frequencies (second row). By contrast, the multifrequency
RML reconstruction produces good reconstructions of both the
spectral index α and curvature β across most of the image at
the reference frequency of 230 GHz. As a result, multi-
frequency RML synthesis can recover an accurate map of the
spectral index between 230 and 345 GHz (fourth row), and the
recovered structure in the 86–230 GHz spectral index map
(third row) is more accurate than in the independent
reconstructions, particularly in the extended, low-brightness jet.

The spectral index recovery from multifrequency RML
synthesis is not without artifacts; in particular, an anomalously

high spectral index on the bottom edge of the jet close to the
central black hole is apparent in Figure 4. This error in the
spectral index reconstruction occurs at the jet edge where the
brightness gradient is very steep. In the Appendix, we show
that this artifact can be mitigated by increasing the hyperpara-
meter values λTV on the spectral index total variation
regularizer term in the objective function (Equation (9)). In
RML imaging in general, it is advisable to survey over the
space of hyperparameters to determine which values are best
suited for a particular data set (The Event Horizon Telescope
Collaboration et al. 2019d). Here, we present the reconstruction
in Figure 4 as our fiducial result both because it uses moderate
values of the total variation hyperparameter that we found
worked reasonably well over a large range of synthetic data
sets, and because it presents a cautionary tale that even

Figure 3. Image reconstructions of a radiative MAD GRMHD model of M87* from Chael et al. (2019). Rows from top to bottom show the ground truth images and
ngEHT reconstructions at 86, 230, and 345 GHz. The leftmost column shows the ground truth simulation images blurred with a circular Gaussian kernel with an
FWHM of 12 μas, one-half of the ngEHT nominal resolution at 230 GHz. The second column shows reconstructions of these images from ngEHT data using
multifrequency synthesis, combining information across the three frequency bands. The last column shows images reconstructed independently at each frequency band
from the same data as the images in the second column. Contours indicate successive powers of 1/2 from the peak brightness point in each image.
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Figure 4. Spectral index and curvature maps from reconstructions of the radiative MAD GRMHD model in Figure 3. As in Figure 3, the columns from left to right
correspond to the blurred ground truth simulations, the multifrequency synthesis reconstructions, and the reconstructions done independently at the three frequencies.
The top row shows the spectral index at 230 GHz. The spectral index is fit directly to data in the multifrequency reconstruction; we compute the corresponding index
for the single-frequency reconstructions by fitting a second-order polynomial in log and Ilog for each pixel after imaging. The second row shows the spectral
curvature at 230 GHz obtained in the same way. The third row shows the spectral slope between the 86 GHz and 230 GHz images (derived from fitting a line in log
and Ilog from just those two images), and the final row shows the spectral slope between 230 and 345 GHz derived in the same way.
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improved methods for image or spectral image recovery from
sparse VLBI data sets are not immune to artifacts.

In Table 2, we provide summary reduced-χ2 statistics to
quantify the goodness-of-fit to the data in the single-frequency
and multifrequency image reconstructions in Figure 3. We
present χ2 values comparing the reconstructed images to the
final self-calibrated synthetic data set for the three quantities we
fit to: the log closure amplitudes

Alog
2 , the closure phases 2 ,

and the visibility amplitudes
∣ ∣V
2 .16 For good image recon-

structions, we expect these χ2 terms to be close to unity.
However, since the definitions of the reduced χ2 terms we use
ignore correlations between closure phase and amplitude
measurements and the non-Gaussianity of these quantities at
low S/N, these values should be interpreted with care
(Blackburn et al. 2020). Furthermore, the visibility amplitudes
|V| are adjusted by self-calibrating the station gains to
intermediate image results, so we expect the values of

∣ ∣V
2

reported to be systematically below unity. The results in

Table 2 indicate that all of the image reconstructions in
Figure 3 provide satisfactory fits to the data. Furthermore, there
is no clear difference in the χ2 statistics between the single- and
multifrequency reconstructions; both fit the data well, and
differences between the two reconstructions arise in differences
in the underlying image model and regularizing terms used in
the imaging process.

4.2.2. Mizuno et al. (2021) Model

Figures 5 and 6 show total intensity and spectral index
reconstructions of another GRMHD model of M87* from
Mizuno et al. (2021). The simulation images display the time-
averaged structure across 2000 gravitational times tg (∼2 yr for
M87*). The simulations used the GRMHD code BHAC (Porth
et al. 2017; Olivares et al. 2020) using three layers of adaptive
mesh refinement in logarithmic Kerr–Schild coordinates. The
simulation assumes a black hole spin a

å
= 0.9375. The

simulation was evolved to 30,000 tg; during this time period,
the simulation is well within the MAD state. The radiative
transfer calculations to produce the images in Figure 5 used the
GRRT code BHOSS (Younsi et al. 2012, 2020). The radiative
post-processing assumed a kappa distribution for the emitting
electrons in the jet following Davelaar et al. (2019) and Fromm
et al. (2022), using the results of which to determine the power-
law index (Ball et al. 2018). In order to match the simulation
images to observations, we adjusted the simulation mass
accretion rate to produce an average flux of ≈1.0 Jy at 230 GHz
over a time window from 28,000–30,000 tg appropriate
frequency.
The assumed ngEHT baseline coverage, sensitivity, and

eht-imaging reconstruction scripts for this model were
identical to those used in the reconstructions of the Chael et al.
(2019) model in Figures 3 and 4. The ngEHT reconstructions
of the Mizuno et al. (2021) model in Figures 5 and 6 show
similar features to those seen in the earlier example. While
independent ngEHT imaging can recover details of the core
structure and extended jet emission at 86 and 230 GHz, lower
sensitivity at 345 GHz makes it difficult to extract information
on the extended jet from this frequency alone. When combining
data from all three frequencies in multifrequency synthesis, the
345 GHz reconstruction accurately reproduces the extended jet
structure, and the 86 GHz reconstruction super-resolves the
central brightness depression. The multifrequency reconstruc-
tion accurately recovers both the spectral index map from
86–230 GHz (weakly recovered by independent imaging) and
from 230–345 GHz (not recovered by independent imaging). In
Table 2, we present the reduced-χ2 statistics quantifying the fit
quality for this reconstruction.

4.2.3. Quantifying Reconstruction Fidelity

We can quantify the fidelity of the reconstructions of the two
models presented in Figures 3 and 5 as a function of restoring
beam size (e.g., Chael et al. 2016, Figure 4 therein). For both
GRMHD models, we take the ngEHT multifrequency recon-
struction at each observed frequency (86, 230, and 345 GHz)
and blur the results with circular Gaussian beams of increasing
FWHM size wblur between 0 and 80 μas. For each beam-
convolved reconstruction image, we compute the normalized
rms error (NRMSE) with the unblurred simulation image (the
“ground truth”) at the appropriate frequency. The NRMSE of

Table 2

Reduced χ2 Table for the Simulated Data Sets in Section 4

Source Method Frequency Alog
2

C

2

C ∣ ∣V
2

Chael et al. (2019) M87
Jet (Figure 3)

Single-Frequency 86 GHz 1.04 1.00 0.84

230 GHz 0.98 1.00 0.84
345 GHz 1.11 1.20 0.71

Multifrequency 86 GHz 1.07 1.03 0.88
230 GHz 1.02 1.04 0.88
345 GHz 1.14 1.23 0.69

Mizuno et al. (2021)
M87 Jet (Figure 5)

Single-Frequency 86 GHz 1.06 1.03 0.86

230 GHz 0.98 0.99 0.82
345 GHz 1.30 1.17 0.94

Multifrequency 86 GHz 1.09 1.07 0.90
230 GHz 1.03 1.02 0.88
345 GHz 1.34 1.27 0.86

Ricarte et al. (2023)
MAD (Figure 9)

Single-Frequency 213 GHz 0.98 1.09 0.87

215 GHz 0.97 1.09 0.85
227 GHz 1.01 1.11 0.87
229 GHz 0.96 1.11 0.86

Multifrequency 213 GHz 0.98 1.09 0.84
215 GHz 0.98 1.10 0.84
227 GHz 1.02 1.11 0.84
229 GHz 0.97 1.11 0.84

Ricarte et al. (2023)
SANE (Figure 10)

Single-Frequency 213 GHz 1.15 1.11 0.97

215 GHz 1.04 1.11 0.93
227 GHz 1.03 1.11 0.94
229 GHz 1.04 1.11 0.97

Multifrequency 213 GHz 1.18 1.12 0.89
215 GHz 1.07 1.12 0.89
227 GHz 1.04 1.12 0.88
229 GHz 1.04 1.12 0.88

Note. We provide reduced-χ2 statistics comparing the final self-calibrated data
sets for each frequency band with the final image reconstructions for the data
products used in the fit: log closure amplitudes (

Alog
2 ), closure phases ( 2 ),

and visibility amplitudes (
∣ ∣V
2 ).

16 The exact definitions of the reduced χ2 statistics we report can be found in
Chael et al. (2018a) Equations (21), (19), and (17) for log closure amplitudes,
closure phases, and visibility amplitudes, respectively.
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the blurred reconstruction R compared to the ground truth G is

( )

( )

( )R G

R G

G
NRMSE , , 20

lm

lm lm

lm

lm

2

2

where the sums are over all pixels l, m in both dimensions.
Before computing the NRMSE, we align the images in order to
maximize the normalized cross-correlation between the ground
truth and the reconstruction.17 We plot the resulting NRMSE
values as a function of the restoring beam FWHM size wblur in
Figure 7 for both the single-frequency reconstructions (dashed

lines) and the multifrequency reconstructions (solid lines). For
reference, we also plot the NRMSE of the blurred simulation
image compared against the unblurred ground truth (dotted
lines); the NRMSE of this self-comparison drops to zero at
small beam sizes, while the reconstructions all have nonzero
NRMSE at all beam sizes. For both source models and for all
three frequencies, we first observe that the single-frequency
reconstructions all have larger NRMSE values than the
corresponding multifrequency results at all values of the
blurring kernel FWHM wblur. This result indicates that the
multifrequency reconstruction provides a more accurate
reproduction of the original image than single-frequency
imaging in both models at all three frequencies.
We can look at the beam size wblur of the minimum

NRMSE in Figure 7 as an indication of an optimal blurring
kernel size for the given reconstructions. As discussed in
Chael et al. (2016), RML images may not require a post hoc

Figure 5. Same as Figure 3, but for an M87* jet model from Mizuno et al. (2021) averaged across 2000 M.

17 We use the NRMSE (Equation (20)) instead of the normalized image cross-
correlation (e.g., Equation (15), The Event Horizon Telescope Collaboration
et al. 2019d) for consistency with the plots in Chael et al. (2016) and because
NRMSE is sensitive to total flux offsets between the reconstruction and ground
truth image.
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blurring step if the regularizers are tuned to suppress spurious
high-frequency structure. In this case, the NRMSE curve as a
function of wblur will flatten to its minimum value as
wblur→ 0. In some cases, RML imaging does produce
spurious structure at very high spatial frequencies not

sampled by the interferometer; in these cases, the NRMSE
curve has a prominent minimum at nonzero wblur and
increases at small blurring kernel sizes as wblur→ 0. The
86 GHz multifrequency reconstructions in Figure 7 fall in this
category.

Figure 6. Same as Figure 4, but for the M87* jet model from Mizuno et al. (2021).
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In Figure 7, the NRMSE curves of all methods have minima
at values smaller than the nominal resolution at that frequency:
wbeam<wnominal. If the underlying reconstruction has structure
on small spatial scales, the position of the minimum NRMSE
can indicate that the RML imaging methods are super-resolving
source structure (see also Chael et al. 2016, Figures 4 and 5
therein). However, while the position of the NRMSE minima
provides an indication of the optimal restoring beam size for a
given reconstruction, it is not possible to directly equate this
beam size to a super-resolving scale. For example, the 86 GHz
single-frequency image reconstructions in the left panel of
Figure 7 do not contain significant structure on scales smaller
than ≈20 μas; as a result, they have comparable NRMSE
values for values of wblur between 0 and 20 μas without a
pronounced minimum. Nonetheless, all of the reconstructions
in Figures 3 and 5 do contain features on scales smaller than the
nominal beam at a given frequency, and these features are not
penalized by the NRMSE metric in Figure 7. Thus, while it
remains difficult to precisely quantify the achievable level of
superresolution for a given reconstruction method, taken
together, Figures 3, 5, and 7 indicate that both single- and
multifrequency ngEHT reconstructions are capable of super-
resolving source structure, and that the multifrequency method
generally produces higher-fidelity reconstructions of the under-
lying source.

4.3. ngEHT Case Study: 230 GHz Spectral Index Maps across
the Band

In this section, we consider reconstructions from simulated
ngEHT data taken from two GRMHD models of M87* studied
in Ricarte et al. (2023). In this example, we neglect 86 and
345 GHz observations and focus on the capabilities of the
ngEHT to reconstruct resolved spectral structure over the
narrower frequency band around 1.3 mm. The four ngEHT sub-
bands are centered at 213, 215, 227, and 229 GHz; each has a
bandwidth of 2 GHz. In the left panel of Figure 8, we show the
ngEHT u− v coverage for M87* across these four bands.

Our two source models from Ricarte et al. (2023) are an
MAD simulation with a black hole spin a*=− 0.5 and an
SANE simulation with a*= 0.94. Both models were generated
with the GRMHD code KHARMA (B. Prather et al. 2023, in
preparation; Prather et al. 2021), and synchrotron radiative
transfer was performed with IPOLE (Mościbrodzka &
Gammie 2018). Both models have been scaled to produce
approximately 0.5 Jy in flux at 230 GHz using a purely thermal
electron distribution function. We take the Rhigh parameter
that sets the ion-to-electron temperature ratio in the disk
(Mościbrodzka et al. 2016) to be 160 in the MAD model and
10 in the SANE model. As discussed in Ricarte et al. (2023),
GRMHD models generically have a radially decreasing
spectral index at these frequencies, due to declining optical
depth, magnetic field strength, and temperature. Equivalently,
images grow smaller as frequency increases. Constraining the
amplitude of this radial decline may therefore be useful for
constraining the radial evolution of these plasma parameters,
which can vary by orders of magnitude among different
models.
The right panel of Figure 8 shows the submillimeter spectra

of these models, and indicates the four 1.3 mm sub-bands
considered in this study. In both of these models, the overall
spectral index is negative, as is the curvature, as we expect for
synchrotron sources in the optically thin limit. However, the
spectral curvature is not significant over the range of
frequencies covered by the four 1.3 mm ngEHT sub-bands.
As a result, we fix β= 0 in the reconstructions considered here
and only reconstruct the spectral index map α.
For both models, we generate synthetic data on ngEHT

baselines over the four sub-bands using the procedure
described in Section 4.1. These data contain thermal noise
and systematic amplitude and phase errors. We reconstruct
images at each frequency independently using a standard RML
method, and we also fit the data simultaneously in a
multifrequency reconstruction for a reference frequency image
I0 and spectral index map α. In both cases, we first fit the

Figure 7. (Left) Curves of the normalized rms error (NRMSE; Equation (20)) image fidelity metric with restoring beam size for the ngEHT multifrequency
reconstructions (solid lines) and independent single-frequency reconstructions (dashed lines) at 86, 230, and 345 GHz of the model shown in Figure 3. We compute
the NRMSE by comparing an image reconstruction blurred with a Gaussian kernel of FWHM wblur with the unblurred ground truth image. The dotted lines indicate
the NRMSE obtained by comparing the ground truth image with the blurred version of itself. Vertical lines indicate the nominal resolution (1/∣ ∣u max) of the ngEHT
array at each frequency. (Right) The same as in the left panel, but for the model shown in Figure 5.
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closure amplitude and closure phase data directly to account for
the systematic gain and phase errors. We then self-calibrate the
data to the output image at each frequency and re-image using
the calibrated visibility amplitudes and the closure phases.
Aside from the hyperparameters on the total variation and ℓ2

regularizers on the spectral index map α in Equation (7), we
use the same hyperparameters for the data and regularizer terms
for both the independent frequency reconstructions and the
multifrequency fit.

We show results of this test in Figure 9 (for the MAD model)
and Figure 10 (for the SANE model). In each figure, the left
four columns show the ground truth images or reconstructions
from the simulated ngEHT data for the four sub-bands. The
rightmost column shows the ground truth spectral index map,
the spectral index map fit in the multifrequency reconstruction
(second to last row), and the spectral index map computed from
the independent reconstructions (last row). For the multi-
frequency RML reconstruction, the spectral index map is
obtained directly as an output from the imaging process. For
the ground truth and independent single-frequency reconstruc-
tions, the spectral index is obtained in each pixel through a
linear fit.

In both examples, for both independent imaging at each
frequency and in the multifrequency fit, the recovered total
intensity images reproduce the ground truth image structure
well when blurred with a 12 μas kernel (one-half the nominal
resolution of the ngEHT at 1.3 mm). However, because the full
frequency range considered in this example is only 18 GHz,
even small errors in the recovered intensity in the independent
reconstructions translate to large errors in the recovered
spectral index map. As a result, the spectral index maps
recovered from the independent images do not accurately
reproduce any physically useful information from the ground
truth spectral index distribution at 1.3 mm. In contrast, because
of the combined constraints of the spectral index model
Equation (6) and the regularizing terms on the value and
smoothness of α in Equation (7), the simultaneous multi-
frequency fit of all four data sets is able to accurately recover a
spectral index map similar to the ground truth distribution, even

though the individual images are nearly indistinguishable from
the single-frequency reconstructions by eye.
Note that the poor spectral index map recovery in the single-

frequency reconstructions in Figures 9 and 10 is not a
consequence of image misalignment in the single-frequency
results; we tested several strategies for image alignment, and
we see similar results when we reconstruct images using
complex visibilities in the synthetic data without any
systematic phase or gain errors. Instead, the poor performance
of the spectral index recovery from these single-frequency
reconstructions is due to small errors in the independently
recovered intensity maps at each frequency translating to large
errors in the spectral index over the small bandwidth. In this
example, for context, differences in the image pixel intensities
of only 5% between the smallest and largest frequency in this
example correspond to a spectral slope of 0.7.
In Table 2, we present the reduced-χ2 statistics quantifying

the fit quality for both the MAD (Figure 9) and SANE
(Figure 10) models. As in Section 4, we find that both single-
and multifrequency image reconstructions give χ2 values close
to unity, and we cannot distinguish between the different
reconstruction methods using these goodness-of-fit statistics
alone. In Figure 11 we illustrate the fit to data of the
multifrequency image results for both the MAD and SANE
models by comparing the visibility amplitudes of the data and
reconstructed images across all four bands. We also show the
normalized complex residuals of the reconstructed images
compared to the self-calibrated visibility data; these residuals
appear structureless and consistent with a unit normal
distribution.

5. Example Reconstructions: Real VLBA and ALMA Data

In this section, we present three examples of applying the
simultaneous RML spectral index imaging method described in
this paper to real interferometric data sets. In Section 5.1 we
consider two examples of VLBI spectral index imaging using
MOJAVE data from 8–12 GHz (Hovatta et al. 2014; Lister
et al. 2018). In Section 5.2 we demonstrate the applicability of
the method to larger data sets from connected-element

Figure 8. (Left) u − v coverage of the ngEHT concept array considered here for the four 230 GHz sub-bands at 213, 215, 227, and 229 GHz. (Right) synchrotron
spectra of the two GRMHD simulation models considered here from Ricarte et al. (2023), indicating the points sampled by the four EHT bands.

14

The Astrophysical Journal, 945:40 (23pp), 2023 March 1 Chael et al.



interferometers with a reconstruction of the spectral index
structure of the protoplanetary disk in HL Tau from 2014
ALMA observations between 224 and 350 GHz (ALMA
Partnership et al. 2015).18

5.1. VLBA Imaging of MOJAVE Data Sets

In Figures 12 and 13 we present multifrequency reconstruc-
tions of two jet sources observed at 8.1, 8.4, and 12.1 GHz as
part of the MOJAVE program19 in 2006 July (Hovatta et al.
2014; Lister et al. 2018). In Figure 12 we show image and
spectral index reconstructions for the BL Lac source S5 0212
+73;20 in Figure 13 we show image and spectral index
reconstructions for the blazar NRAO530.21

In both cases, we produced initial images from these data
sets by including only closure amplitudes and closure phases in
the log-likelihood terms in the objective function J

(Equation (7)). We then enforced the total flux density at each
frequency through self-calibration of the visibility amplitudes
using the total flux densities taken from the publicly available
MOJAVE images reconstructed with CLEAN. We then re-
imaged using visibility amplitude and closure phase terms in
the log-likelihood part of the objective function. Throughout,
we included ℓ1 (sparsity) and total variation (smoothness)
regularizers on the reference frequency image (at 8.4 GHz), and
we included a total variation regularizer on the spectral index
map. In both sources, the spectral curvature over the observed
frequency range is minimal, so we reconstructed only the first-
order spectral index map α and set the spectral curvature
term β= 0.
In Figures 12 and 13 we show results for both our

simultaneous eht-imaging RML reconstructions and the
original CLEAN reconstructions presented in Hovatta et al.
(2014), which were preformed independently at the three

Figure 9. Reconstructions of images of a fiducial MAD model of M87* from Ricarte et al. (2023). Columns from left to right show images and reconstructions at 213,
215, 227, and 229 GHz. The rightmost column shows the spectral index fit between the corresponding images in each row. The top row shows the simulation images
at “infinite resolution.” The second column shows the ground truth simulation images blurred to one-half of the ngEHT nominal resolution at 1.3 mm. The third row
shows reconstructions of these images from ngEHT data using multifrequency synthesis, combining information across all four bands. The last row shows images
reconstructed independently at each frequency band from the same data as the images in the third row. Although the independent reconstructions look to be similarly
accurate to the multifrequency reconstruction by eye, small offsets in the images in position and intensity mean they cannot be used to derive a 230 GHz spectral index
map at this scale. By contrast, the multifrequency synthesis approach in this paper accurately recovers the ground truth spectral index from 213–229 GHz.

18 The reduced data and eht-imaging scripts used to produce the
reconstructed images in the following sections can be found at https://
github.com/achael/multifrequency_scripts/.
19 https://www.cv.nrao.edu/MOJAVE/index.html
20 https://www.cv.nrao.edu/MOJAVE/sourcepages/0212+735.shtml
21 https://www.cv.nrao.edu/MOJAVE/sourcepages/1730-130.shtml
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frequencies and then aligned. We convolved the eht-

imaging reconstructions with a circular Gaussian beam
corresponding to the nominal resolution at 8.4 GHz; in
contrast, the original CLEAN results are presented after
convolution with the anisotropic CLEAN beam at 8.1 GHz,
as presented in Hovatta et al. (2014). In Table 3, we present
reduced-χ2 statistics of our multifrequency image reconstruc-
tions for the log closure amplitudes, closure phases, and
visibility amplitudes.

In both sources, our results reproduce essential features of
the original spectral index maps from Hovatta et al. (2014). In
both Figures 12 and 13, there is a clear decline in the spectral
index from positive values to negative values along the jet with
increasing distance from the core. The spectral index map
recovered in our reconstructions of the NRAO 530 observa-
tions (Figure 13) shows more structure on the scales of the
observing resolution than are seen in the reconstructions of S5
0212+735 (Figure 12), including patches of positive spectral
index downstream of the core; similar features are also seen in
the CLEAN reconstructions, though on larger scales corresp-
onding to their larger restoring beam.

The recovered spectral index far from the core in S5 0212
+735 (Figure 12) is more negative in the original CLEAN
reconstructions of these data sets (where it reaches values of

α∼−2.5) than in the eht-imaging reconstruction (where
the lowest values are α∼−1.5). To see if this preference for
larger spectral index values in the extended jet was an artifact
of our imaging choices, we experimented with several choices
of regularizing terms in the objective function (Equation (7)),
including an ℓ2 norm term (Equation (8)) that preferred a
strongly negative spectral index α=−2.5 in the absence of
data constraints. None of these reconstructed images with
different regularizer choices gave substantially different values
for the downstream spectral index in the eht-imaging

reconstructions.

5.2. ALMA Imaging of HL Tau

In Figure 14, we present multifrequency reconstructions of
observations of the protoplanetary disk in HL Tau conducted as
part of the ALMA science verification process22 and published
in ALMA Partnership et al. (2015). We reconstructed multi-
frequency images from the publicly available ALMA data sets
across the four spectral windows in both ALMA Band 6
(centered on 241 GHz) and Band 7 (centered at 324 GHz).

Figure 10. Same as Figure 9, but for a fiducial SANE model of M87*. Note the differences in the underlying emission location and spectral index values from
Figure 9. Spectral index maps can be used as a potential signature of different accretion states in resolved low-luminosity active galactic nucleus images (Ricarte
et al. 2023).

22 https://almascience.nrao.edu/alma-data/science-verification/science-
verification-data
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Before imaging, we reduced the data by averaging the complex
visibilities in frequency across the eight spectral windows and
in time windows of 300 s to reduce the data volume.

In eht-imaging, we fit the eight spectral window data
sets from Band 6 and Band 7 simultaneously to an image
model and spectral index map α (setting the spectral curvature
β= 0). Because the data volume remains much larger than the
VLBI data sets we typically reconstruct with eht-imaging,

for this image reconstruction, we used use complex visibilities
directly in the likelihood terms of the objective function
(Equation (7)) instead of closure quantities. We start with the
initial amplitude and phase calibration provided in the public
ALMA data, but we self-calibrate all eight spectral window
data sets three times to intermediate results during the imaging
process. For regularizing terms in Equation (7), we use
maximum entropy and total variation on the reference image

Figure 11. (Top row) Comparison of the visibility amplitudes of the final self-calibrated data from the MAD model (black) to the model predictions from the final
multifrequency images (magenta) as a function of u − v distance. (Second row) Normalized complex residuals t = (Vsc − Vimage)/σ

2, where Vsc are the self-calibrated
visibilities, and Vimage are the model visibilities predicted by the final multifrequency image fit. We plot ( )tRe in red and ( )tIm in blue as a function of u − v distance.
(Third row) Comparison of the self-calibrated visibility amplitudes to the multifrequency image reconstructions from the SANE model. (Fourth row) Normalized
residuals from the multifrequency image reconstructions of the SANE model.
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(at 287 GHz) as well as total variation on the spectral index
map (Equation (9)) and an ℓ2 norm term on the spectral index
map (Equation (8)) with a fiducial spectral index value α0= 0.

In Figure 14 we present the resulting images (at 230, 287,
and 345 GHz) and the spectral index map from our eht-

imaging reconstruction. We compare our results to the
original images presented in ALMA Partnership et al. (2015),
which were conducted with multifrequency CLEAN imaging in
CASA (Rau & Cornwell 2011).23 In Table 4, we present
reduced-χ2 statistics of our multifrequency image reconstruc-
tions for the complex visibilities from all eight bands, which we
fit directly in this example.

Our results are broadly consistent with the published images
from ALMA Partnership et al. (2015). We obtain a clear
concentric ring structure with distinct gaps between adjacent
rings. In the spectral index maps, these gaps correspond to local
maxima in the spectral index, whereas the bright ring structures
have smaller values of the spectral index. Compared to the
original CLEAN reconstruction, the eht-imaging recon-
struction produces sharper spectral features corresponding to
the intermediate dark rings (rings D3 and D4 in ALMA
Partnership et al. 2015).

The values of the spectral index we recover throughout the
image are somewhat higher than in the original CLEAN
reconstructions from ALMA Partnership et al. (2015). This
discrepancy is likely caused by differences in the overall
amplitude calibration in our reconstructions as compared to the
original CLEAN images. During the eht-imaging proce-
dure, we rescale the total flux density of the intermediate
images used for self-calibration to the total flux density values
reported in Table 1 of ALMA Partnership et al. (2015). This

procedure produces an unresolved spectral index α= 2.74 over
the band from 224–351 GHz, which matches the reported
unresolved spectral index of α= 2.77± 0.13 in ALMA
Partnership et al. (2015). By contrast, the publicly available
multifrequency CLEAN images from the Band 6+7 recon-
struction in ALMA Partnership et al. (2015) have an
unresolved spectral index of only α= 2.36. If we instead set
the total flux density for amplitude calibration in our eht-

imaging procedure to values taken from the multifrequency
CLEAN image, we obtain lower spectral index values
throughout the image that more closely match the publicly
available CLEAN images.

6. Discussion

Our method for multifrequency RML imaging has several
distinct advantages over more commonly used CLEAN-based
algorithms for multifrequency synthesis (Rau & Cornwell 2011;
Offringa & Smirnov 2017). Most importantly, as an RML-
based method, our approach can directly reconstruct images
using robust interferometric “closure” products; the likelihood
terms in the objective function (Equation (7)) can be
constructed with any data product derived from the observa-
tions. In contrast, all CLEAN-based image reconstruction
algorithms require an initial calibration step so that the data can
be inverse-Fourier-transformed to produce a dirty image, and a
poor specification of the initial self-calibration model can lead
to large image errors. In our approach, even when self-
calibration is used, the initial self-calibration model can always
be derived from an initial fit to the most robust data products
(in our case, closure phases and log closure amplitudes). In this
paper, only in the reconstruction of ALMA HL Tau observa-
tions (Figure 14) did we fit directly to complex visibilities at
any stage of the imaging process. The RML method’s ability to

Figure 12. Multifrequency reconstructions of simultaneous VLBA observations of S5 0212+73 taken on 2006 July 7 as part of the MOJAVE program (Hovatta
et al. 2014; Lister et al. 2018). The left three columns show image reconstructions at 8.1, 8.4 and 12.1 GHz, respectively; the rightmost column shows the spectral
index. The top row shows simultaneous eht-imaging reconstructions of all three data sets performed with the method presented in this paper. The bottom row
shows the original CLEAN reconstructions presented in Hovatta et al. (2014). The eht-imaging reconstructions are convolved with a circular Gaussian beam
corresponding to the nominal resolution at 8.4 GHz; the original CLEAN reconstructions are convolved with the fitted CLEAN beam at 8.1 GHz used in Hovatta et al.
(2014). Contours are drawn in steps of 1/2 down from the peak brightness.

23 https://almascience.nrao.edu/almadata/sciver/HLTauBand7/
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fit directly to closure phases and closure amplitudes makes it
naturally suited for imaging millimeter and submillimeter
VLBI data sets. Gain calibration is difficult at these high
frequencies, and atmospheric fluctuations typically make
recovering absolute visibility phase nearly impossible.

When deriving a spectral index map from interferometric
images reconstructed without absolute phase information,
determining the relative alignment of the images is a major
source of systematic error (e.g., Hovatta et al. 2014). We found
that RML multifrequency synthesis performed well in all of the
example data sets reconstructed in this paper without absolute
phase information; the RML imaging process did not introduce
any clear artifacts from image misalignment in any of these
examples. RML multifrequency synthesis effectively enforces
image alignment by the spectral index regularization terms,
which favor spectral index maps without large gradients
(Equation (9)) and where the spectral index remains close to

the unresolved value (Equation (8)). Simultaneous RML
reconstruction does not completely remove the possibility for
image misalignment between frequencies; position offsets may
be a particular problem for poorly resolved images where there
are few common features between frequency bands for the
imager to “lock on” to during image reconstruction.
In addition to enforcing alignment between reconstructed

images at different frequencies, RML multifrequency recon-
structions can obtain higher levels of image “superresolution”
of features finer than the nominal resolution scale than is
possible the corresponding single-frequency reconstructions.
For example, in the ngEHT jet reconstructions in Figure 3,
superresolution is enhanced in the multifrequency reconstruc-
tion by propagating structural information from the 230 GHz
and 345 GHz data to the 86 GHz image, subject to regularizing
constraints on the values and smoothness of the spectral maps.
As a result, the multifrequency 86 GHz reconstruction can
superresolve the central brightness depression around the
central black hole at 86 GHz that are not seen in the single-
frequency reconstruction.
Another advantage to the RML approach for multifrequency

synthesis is its flexibility. RML imaging can be easily adapted
to a specific problem by modifying the objective function
(Equation (7)). The eht-imaging code is adapted to this
flexibility in the method; new likelihood terms or new
regularizing terms can be developed and added to the objective
function with minor alterations to the imaging code. In this
paper, we only use two regularizing functions on the spectral
index and curvature maps that promote similarity to a fiducial
value (Equation (8)) and spatial smoothness (Equation (9)), but
new regularizers may easily be developed for future applica-
tions. For instance, it may be useful to apply prior information
on the spatial variation of the spectral index map with a
maximum-entropy term, or to regularize the spatial power
spectrum of the reference frequency image or spectral
index map.

Figure 13. Same as Figure 12, but for multifrequency reconstructions of simultaneous MOJAVE VLBA observations of NRAO 530 (1730–130) taken on 2006 July 7
(Hovatta et al. 2014; Lister et al. 2018).

Table 3

Reduced χ2 Table for MOJAVE multifrequency RML Image Reconstructions

Source Method Frequency Alog
2

C

2

C ∣ ∣V
2

S5 0212+73
(Figure 12)

Multifrequency 8.1 GHz 1.05 1.17 0.86

8.4 GHz 1.09 1.09 0.88
12.1 GHz 1.32 1.32 1.06

NRAO 530
(Figure 13)

Multifrequency 8.1 GHz 1.08 1.20 0.83

8.4 GHz 0.60 1.41 0.34
12.1 GHz 1.14 1.05 0.85

Note. For the multifrequency reconstructions of S5 0212+73 (Figure 12) and
NRAO530 (Figure 13), we provide reduced-χ2 statistics comparing the final
self-calibrated data sets for each frequency band with the final multifrequency
RML image reconstructions for the data products used in the fit: log closure
amplitudes (

Alog
2 ), closure phases ( 2 ), and visibility amplitudes (

∣ ∣V
2 ).
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The multifrequency RML imaging approach can also be
straightforwardly adapted for polarization imaging (e.g., Chael
et al. 2016). In a forthcoming work, we will present and test a
method for direct rotation-measure synthesis using an exten-
sion of the multifrequency RML techniques presented here. In
this approach, we simultaneously fit images of the total
intensity image I, fractional polarization m, polarization
position angle χ, and rotation measure R to polarimetric
multifrequency data sets (e.g., Brentjens & de Bruyn 2005;
Andrecut et al. 2012; Bell & Enßlin 2012). Measuring and
imaging the rotation measures of radio sources is particularly
important in constraining the geometry of magnetic fields in
relativistic jets (e.g Gabuzda et al. 2004; Hovatta et al. 2012)

and constraining the plasma density in accretion flows (e.g.,
Marrone et al. 2007; Bower et al. 2018).
Despite its flexibility and good performance on simulated

and real data, RML multifrequency imaging also has several
disadvantages to alternative image-reconstruction methods.
The forward-modeling approach can become computationally
inefficient when the number of observed data points is large.
For VLBI arrays like EHT and even the ngEHT, the u− v
coverage is sparse, and the number of observations is small, so
computing the image likelihood terms ( ∣ )d I (and their
gradients) is fast. For observations from connected-element
interferometers like ALMA, the large size of the data vector d
slows down the likelihood and gradient computation; when
imaging ALMA data in eht-imaging, we need to
significantly average the data in time and frequency to enable
image reconstruction in a reasonable time. In contrast, in
CLEAN-based multifrequency imaging methods (Rau &
Cornwell 2011; Offringa & Smirnov 2017), the data is gridded
once and inverse Fourier transformed before CLEANing. As a
result, the size of the data set only affects the speed of this
initial step, and the speed of the iterative steps in the CLEAN
loop are only affected by the image resolution, so CLEAN is
well adapted to very large interferometric data sets.
Another disadvantage of our current RML approach is that

we fit images on a grid with a fixed pixel size; in contrast,
existing CLEAN-based multifrequency methods (Rau &
Cornwell 2011; Offringa & Smirnov 2017) currently employ
multiscale image bases (e.g., Cornwell 2008). As the source
size can change with frequency, multiscale approaches may be
particularly important for simultaneous image reconstruction
over a large range of frequencies. For example, in the ngEHT
M87 reconstructions presented in Figure 3, the 86 GHz
observation is more sensitive to large-scale structure in the

Figure 14.Multifrequency reconstructions of ALMA observations of HL Tau across eight spectral windows in Band 6 and Band 7. The first and third panels show the
reconstruction at 230 (Band 6) and 345 GHz (Band 7), respectively. The second panel shows reconstructions at 287 GHz, the central frequency used in the original
CASA CLEAN multifrequency reconstruction in ALMA Partnership et al. (2015). The fourth column shows the spectral index map. The top row shows the results of
eht-imaging reconstructions performed on the eight spectral window data sets assuming no spectral curvature. The bottom row shows the original CASA CLEAN
reconstructions and spectral index map. Because the released image files from ALMA Partnership et al. (2015) do not include spectral index values outside the masked
region shown, it is not possible to fully reconstruct the 230 and 345 GHz images from the available 287 GHz image and spectral index map.

Table 4

Reduced χ2 Table for the ALMA multifrequency RML Image Reconstruction
in Figure 14

Source Method Frequency
V
2

HL Tau (Figure 14) Multifrequency 224 GHz 1.07
226 GHz 1.05
240 GHz 1.11
242 GHz 1.07
336 GHz 0.95
338 GHz 0.95
345 GHz 1.01
351 GHz 1.05

Note. We provide reduced-χ2 statistics comparing the final self-calibrated data
sets for each frequency band with the final multifrequency RML image
reconstructions for the complex visibilities only, since in this example we fit
directly to complex visibilities instead of closure quantities and visibility
amplitudes.
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extended jet, while the 345 GHz observation is most sensitive
to fine-scale structure in the core close to the black hole. To fit
both of these regimes, we require a large number of pixels
across the image; it would be more efficient to be able to adapt
the pixel resolution to the scale of the structures in these
regions. Furthermore, we may wish to have different resolu-
tions in the reference frequency image and the spectral index
map if, for instance, we have a priori reason to expect the
spectral index to vary more smoothly across the image than the
total intensity image structure. Adding multiscale image bases
to the RML imaging code in eht-imaging will be a key next
step to make the method more widely applicable to interfero-
metric imaging in different regimes, and for more accurate and
efficient imaging across wider frequency bands.

Finally, another key disadvantage of our RML multi-
frequency synthesis technique is that we do not provide any
robust measurement of the uncertainty in the reference
frequency image or in the spectral index map. Traditional
CLEAN imaging methods use the Fourier transform of the
image residuals as an estimate of the image uncertainty or noise
(Högbom 1974; Clark 1980); CLEAN-based multifrequency
synthesis algorithms extend that approach and use the residual
maps at different frequencies to estimate the uncertainty in the
spectral index map (Rau & Cornwell 2011). However, the
residual map is a poor estimate of image uncertainty (and
dynamic range) when the u− v coverage is sparse and when
systematic uncertainty in the amplitude and phase calibration
dominate over thermal noise, as is the case for the EHT (e.g.,
Cornwell & Wilkinson 1981; Pearson & Readhead 1984;
Cornwell & Fomalont 1999; The Event Horizon Telescope
Collaboration et al. 2019d). A better approach in quantifying
uncertainty in an interferometric image is to extend RML
imaging to perform full Bayesian modeling of the image pixels.
Instead of finding just a single maximum of the regularized
likelihood function (Equation (7)), Bayesian inference techni-
ques (e.g., Broderick et al. 2020; Pesce 2021; Arras et al. 2022)
can estimate full posterior probability distributions of the image
pixels when fitting VLBI data sets. These Bayesian imaging
algorithms have already been successfully used in fitting EHT
observations of Sgr A*

(The Event Horizon Telescope
Collaboration et al. 2022c) and M87* (The Event Horizon
Telescope Collaboration et al. 2021a).

7. Conclusion

In this paper, we present a new method for multifrequency
image reconstruction of interferometric data sets. The method
is a straightforward extension (Section 2) of existing RML
imaging approaches now in common use for VLBI imaging
with sparse arrays like the EHT (e.g., The Event Horizon
Telescope Collaboration et al. 2019d, 2022c). We have
implemented the method in the eht-imaging Python
software library (Chael et al. 2016, 2018a). In our method,
all of the existing data likelihood terms and total intensity
image regularizers, imaging options, and calibration strategies
in eht-imaging can also be used directly in multifrequency
synthesis; most importantly, we can still fit simultaneously to
robust closure phases and closure amplitudes in generating
multifrequency reconstructions.

In Section 4 we demonstrated that the method performs well
at recovering spectral image structure from realistic simulated
observations with a next-generation Event Horizon Telescope
(Figure 1) over a wide frequency range from 86–345 GHz.

Simultaneous image reconstruction across frequencies is
critical for robust recovery of spectral index and curvature
information (Figures 4, 6). In addition to naturally aligning
images in reconstructions that may lack absolute phase
information, simultaneous RML imaging can “share” informa-
tion between frequencies and allow data at a given frequency to
serve as an effective regularizer on the reconstruction at another
frequency. We found this propagation of information across the
band to be particularly important in recovering extended jet
structure in simulated ngEHT images of M87* at 345 GHz,
where the S/N is expected to be low (Figures 3, 5).
Simultaneous imaging from 86–345 GHz enhances the image
resolution in 86 GHz images from simulated ngEHT data,
allowing them to superresolve structure finer than the nominal
86 GHz resolution (Figure 7). This superresolution is enough to
directly image the central brightness depression at 86 GHz. We
also demonstrated that simultaneous multifrequency RML
imaging can recover accurate spectral index information even
over the relatively small 18 GHz range between the lowest and
highest ngEHT bands at 1.3 mm (Figures 9, 10).
In Section 5, we demonstrated that our RML method can

successfully reconstruct images and spectral index information
from existing data sets from the VLBI and ALMA. While not
identical to existing CLEAN reconstructions, our image
reconstructions and spectral index maps of MOJAVE jet
sources (Figures 12, 13) and the HL Tau protoplanetary disk
(Figure 14) reproduce the primary spatial and spectral features
seen in prior CLEAN reconstructions. These results indicate
that while RML multifrequency synthesis will be critical for
ngEHT imaging, it also has wide applicability in interfero-
metry. In Section 6 we discussed advantages and disadvantages
of RML imaging for multifrequency image reconstruction. In
future work we will extend our method to polarimetry and
rotation-measure synthesis, and we will adapt it with multiscale
image bases to more efficiently reconstruct structure across a
wide range of spatial scales, such as will be observed by the
ngEHT in M87* and other sources.
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Appendix
Effect of Total Variation Regularization on Spectral

Index Maps

In Section 4.2, we showed that multifrequency RML image
reconstructions perform much better than single-frequency
reconstructions in recovering accurate spectral index informa-
tion from simulated ngEHT data sets of M87*. However,
Figure 4 illustrates that multifrequency RML image reconstruc-
tions may still suffer from artifacts in their spectral index maps.
Specifically, the recovered spectral index map α in Figure 4
features an inaccurate patch of high spectral index on the lower
jet edge.

All image reconstructions from sparse VLBI data sets may
contain errors or artificial features while still being good fits to
the observations. In RML imaging, the presence of these
features may be enhanced or mitigated by the choice of the
hyperparameter values λR in the objective function
(Equation (2)). In Figure 15, we show three alternate
reconstructions of the same data used in Figure 4 where the
imaging procedure is identical except for the values of the
hyperparameters λTV weighting the total variation regularizer
term for the spectral index (STV(α)) and spectral curvature
(STV(α)). Using no total variation regularization results in
many small-scale image artifacts in the spectral index map,
while increasing the values of the hyperparameter λTV,
suppresses small-scale structure and smooths out the spectral
index map.
The fiducial hyperparameter values used in the text in

Figure 4 remove most of the artificial features seen in the zero-
regularizer case, except for the most prominent artifact at the jet
edge. When we increase the value of the hyperparameters
further in the high-TV case, this artifact is eliminated, but some
real variations in the spectral index map across the extended jet
are also suppressed.
Choosing hyperparameters in RML imaging is not trivial. In

the main text, we selected fiducial hyperparameter weights λR
that worked well across a variety of synthetic data sets and
were not fine-tuned to any particular image; we also chose
values that were not too large relative to the data weights κD in
the objective function. In practice, it is useful to survey over
multiple combinations in the hyperparameter space before
settling on final values and to apply hyperparameter values that
work reasonably well on a large number of different synthetic
data sets rather than fine-tuning the hyperparameters to
perfectly reconstruct images from one example (The Event
Horizon Telescope Collaboration et al. 2019d).

Figure 15. Comparison of the recovered spectral index map from multifrequency imaging of the simulation of Chael et al. (2019) presented in Figure 4 with different
values of the hyperparameters λR weighting the total variation terms for spectral index (STV(α)) and spectral curvature (STV(α)) in the objective function. In the left
panel, we show the spectral index map at 230 GHz of the blurred simulation image. In the second panel (“no TV”), we show the reconstruction with both spectral TV
hyperparameters set to zero, λTVα = λTVβ = 0. In the third panel (“Fiducial TV”), we show the reconstruction with the spectral TV hyperparameters set to the fiducial
values used in Section 4.2, λTVα = 20, λTVβ = 30. In the third panel (“High TV”), we show the reconstruction with large values of the spectral TV hyperparameters,
λTVα = λTVβ = 100. All other hyperparameters and settings in the image reconstruction were identical in each reconstruction.
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