

1 **Perspectives for Using CO₂ as a Feedstock for Biomanufacturing of**
2 **Fuels and Chemicals**

3
4 Elif Kurt¹, Jiansong Qin¹, Alexandria Williams¹, Youbo Zhao², Dongming Xie^{1*}
5

6 ¹ Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA.

7 ² Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA.
8

9 * Corresponding Author: Dr. Dongming Xie, Email: Dongming_Xie@uml.edu, Phone: +1-978-
10 934-3159.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

1 **Abstract**

2 Microbial cell factories offer an eco-friendly alternative for transforming raw materials into
3 commercially valuable products because of their reduced carbon impact compared to conventional
4 industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose
5 and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing
6 carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular
7 proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost
8 as CO₂ during the biosynthesis of regular metabolic necessities. This loss lowers the production
9 yield and compromises the benefit of reducing greenhouse gas emissions – a fundamental
10 advantage of biomanufacturing. This review paper posits the perspectives of using CO₂ from the
11 atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a
12 feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals was addressed
13 under two main strategies. The one-step strategy uses novel metabolic pathway design and
14 engineering approaches to directly fix the CO₂ toward the synthesis of the desired products. Due
15 to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to
16 integrate firstly the electrochemical conversion of the exhausted CO₂ into C₁/C₂ products such as
17 formate, methanol, acetate, and ethanol and a second fermentation process to utilize the CO₂-
18 derived C₁/C₂ chemicals or co-utilize C₅/C₆ sugars and C₁/C₂ chemicals for product formation.
19 The potential and challenges of using CO₂ as a feedstock for future biomanufacturing of fuels and
20 chemicals are also discussed.

21
22 **Keywords:** Metabolic engineering, CO₂ fixation, feedstock, biomanufacturing, electrochemical
23 catalysis, microbial electrosynthesis
24

25
26

1. Introduction

2 Carbon emission to our ecosystem and its accumulation in its highly oxidized state, carbon dioxide
3 (CO_2), is a primary contributing factor to global climate change [1]. Since the 1960s, the total CO_2
4 emissions have rapidly increased, with a net annual escalation rate of 2.11% in recent years [2].
5 The push for carbon neutrality necessitates reimagining our feedstock sources. Over 90% of our
6 chemicals and fuels are manufactured from fossil feedstocks, driving the need to transition towards
7 a more circular industry model. G20 economies have implemented carbon emission taxes ranging
8 from \$3 to \$60 per ton to incentivize CO_2 capture from industrial processes [3]. The cost of carbon
9 capture varies based on the CO_2 source [4]. This suggests that, in some countries, obtaining CO_2 at
10 zero cost may be possible. Therefore, exploring the potential of capturing and utilizing CO_2 is
11 essential to mitigate the global warming challenge.

12 Photosynthesis is the natural way to capture CO_2 from the atmosphere and fix it into sugars or
13 carbohydrates, which can then be used as the feedstocks for microbial cells to produce fuels and
14 chemicals by green plants and algae. Therefore, biomanufacturing is considered more sustainable
15 than chemical manufacturing with petroleum-based feedstocks. However, the production of
16 biomass through the photosynthesis process still suffers the challenge of high-cost processing and
17 low energy efficiency [5]. While photosynthesis is a marvel of nature, its energy efficiency seldom
18 surpasses 3%, constraining its industrial applicability. Besides, using agricultural crops to provide
19 feedstocks for biomanufacturing poses a sustainability challenge as it hinders food production and
20 threatens biodiversity when natural areas are used for agricultural purposes.

21 Sugars such as glucose are the most widely used substrate for biomanufacturing in laboratory and
22 industrial settings for historical and practical reasons. However, employing glucose may repress
23 gene expression and specific biosynthetic pathways for certain biomanufacturing products. In most
24 cases, glucose may also cause several limitations in cell metabolism, resulting in carbon loss as
25 CO_2 [6]. This is particularly noticeable when the product of interest requires long synthetic routes
26 from the starting carbon source when it has chemical properties distinct from the substrate or when
27 unfavorable substrates are used, ultimately leading to low product yield [7].

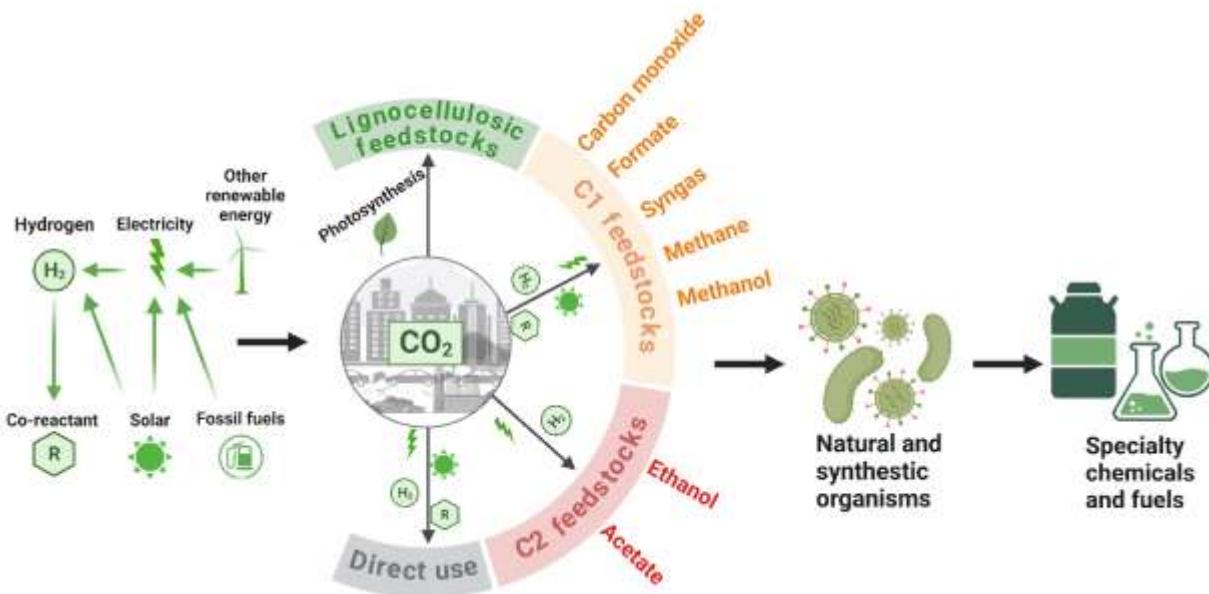
28 Despite the predominant dependence of current industrial biomanufacturing processes on carbon-
29 intensive carbohydrate substrates, including the C_5/C_6 sugars such as xylose and glucose derived
30 from cellulosic biomass, it is noteworthy to acknowledge that the feedstock and raw materials
31 significantly contribute to the overall cost of biomanufacturing [8]. Reducing the cost can be
32 achieved by using more economical raw materials and designing new microbial cell factories that
33 can efficiently utilize alternative feedstocks. Some microorganisms exhibit the inherent capability
34 or possess the potential to metabolize C_1 and C_2 substrates [9]. These C_1 substrates, comprising
35 CO_2 , carbon monoxide (CO), methane (CH_4), methanol (CH_3OH), and formate (CHOO^-) [10], and
36 C_2 substrates, comprising mainly ethanol and acetate [11], hold the gains of being inexpensive,
37 naturally abundant, and straightforward manufacturing along with their abundant availability as
38 by-products and industrial wastes [9]. Owing to the worldwide attention to continuous conversion
39 of greenhouse gases, specifically CO_2 [12] to recover its diminished economic worth, scientists
40 have a special interest in designing innovative CO_2 fixation ways in microbial entities, thereby
41 assisting them in the synthesis of crucial substrate precursors (C_1 and C_2 chemicals) having the
42 inherent capability to serve as biomanufacturing substrate in numerous processes [13,14].

43 However, the utilization of CO_2 -derived C_1/C_2 chemicals for biomanufacturing is challenged by
44 the inefficiency of conversion into desired bioproducts by native microorganisms, resulting in

1 relatively lower productivity, limited energy availability and deprived carbon yield, as compared
2 with the utilization of C₅/C₆ sugars [14]. To address the associated challenges, major efforts have
3 been made in the field of synthetic biology and metabolic engineering to evolve both natural
4 microbes [15] and/or heterologous microorganisms by engineering the pathways or enzymes to
5 improve their C₁ and C₂ substrate-utilizing capabilities [14,16-19]. Such interventions may range
6 from enhancing native pathways to integrating entirely novel ones crafted from a deep
7 understanding of metabolic networks and enzymology to improve carbon fixation efficiency [19].

8 Furthermore, as we delve into microbial fermentation for carbon fixation, we stumble upon its
9 nuanced challenges. One of the pivotal concerns is the significant carbon loss, especially in the
10 format of CO₂ during microbial fermentation [20,21], which comprises the advantageous of using
11 biomanufacturing as one of the major efforts in reducing greenhouse gas emission [22]. Therefore,
12 recycling the exhausted CO₂ back to the microbial fermentation process is also critical to the
13 success of biomanufacturing.

14 This review aims to investigate the perspectives for using CO₂ as a feedstock for biomanufacturing.
15 First, the one-step strategy is discussed, which uses novel metabolic pathway design in microbes
16 and engineering approaches to directly fix CO₂ and convert it into desired fermentation products.
17 Due to the limitation of the efficiency of one-step CO₂ fixation, we further discuss the two-step
18 strategy, which aims to integrate a first electrochemical fixation of CO₂ into C₁/C₂ products such
19 as formate, methanol, acetate, and ethanol and a second fermentation unit co-fed with the original
20 C₅/C₆ sugars and the CO₂-derived C₁/C₂ chemicals. The great potentials and challenges of using
21 CO₂ as a feedstock for future biomanufacturing of various fermentation products are discussed.
22 An overview of the CO₂ conversion approaches and using CO₂-derived C₁/C₂ chemicals for
23 biomanufacturing of common products is shown in **Figure 1**.


24

25

26

27

28

1

2 **Figure 1.** An overview of the CO_2 conversion approaches and using CO_2 -derived C_1/C_2 chemicals for
3 biomanufacturing of common products. Energy conversion and sources used in the conversion are
4 summarized on the left. After CO_2 is converted from inorganic to organic carbon substrates, various
5 valuable chemicals can be biomanufactured through natural and synthetic microorganisms. The figure was
6 generated using Biorender.

7

8 2. State-of-the-art of Current Technologies

9 The conversion of CO_2 into value-added chemicals using microbes as biocatalysts is an exciting
10 field of research with the potential to revolutionize biomanufacturing processes [23]. For using CO_2
11 as the feedstock for biomanufacturing, both one-step and two-step strategies can be applied. **Table**
12 **1** summarizes the general strategies for fixation of CO_2 for biomanufacturing. The one-step
13 strategy uses the native or engineered pathways to directly fix CO_2 and convert it into desired
14 fermentation products, typically with multiple carbons. Since CO_2 has the lowest energy format,
15 producing high-value chemicals with a higher energy format require extra energy, this can be
16 achieved by either plants, algae, or cyanobacteria via photosynthesis process by using light as the
17 energy source or by other microorganisms with cofeeding higher energy-intensive chemicals such
18 as hydrogen gas. The two-step strategy uses a hybrid electrochemical and biochemical conversion
19 approach to fix CO_2 and convert it to the desired fermentation products at higher yield and
20 efficiency, where the first step uses an electrochemical catalysis process to convert CO_2 into C_1/C_2
21 chemicals, followed by a second fermentation step to further convert C_1/C_2 chemicals into desired
22 products by native or engineered microorganisms.

23

Table 1. General strategies for biotechnological fixation of CO₂.

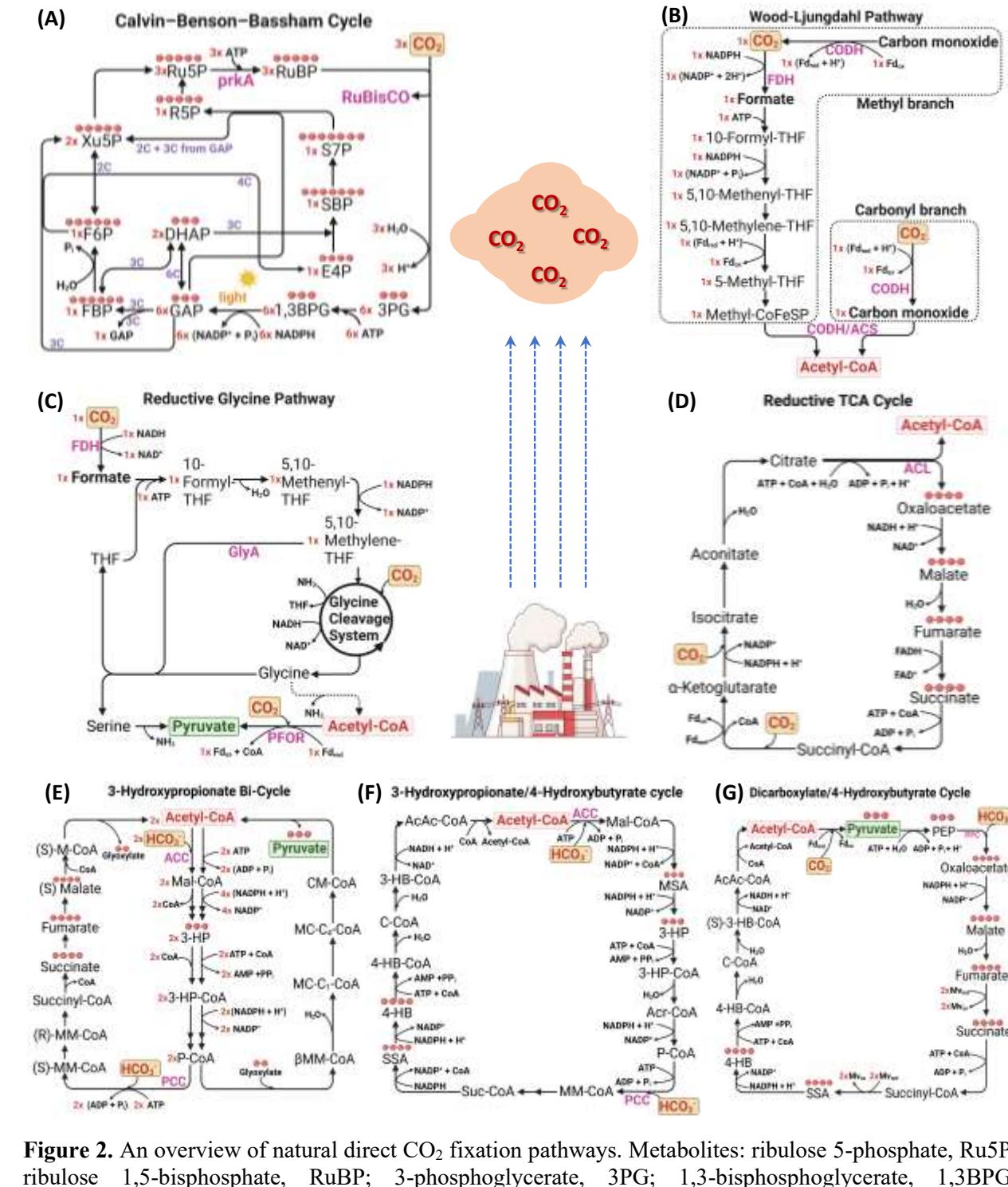
Methods	Major steps and overall reaction of CO ₂ fixation	
One-step/Direct CO ₂ fixation & conversion	<ul style="list-style-type: none"> Calvin-Benson-Bassham (CBB) Cycle: 3CO₂ + 12 ATP → GAP (→ ½ Glucose) Wood-Ljungdahl Pathway (WLP): 2CO₂ + CoA + 4H⁺ + 4e⁻ → Acetyl-CoA + 2H₂O Reductive Glycine Pathway (rGlyP): 3CO₂ + 3H₂ → Pyruvate Reductive Tricarboxylic Acid Cycle (rTCA): 2CO₂ + CoA + 2ATP → Acetyl-CoA 3-Hydroxypropionate (3HP) Bi-Cycle: 2CO₂ + 2ATP → Glyoxylate; CO₂ + Glyoxylate + ATP → Pyruvate 3-Hydroxypropionate/4-Hydroxybutyrate (HP/HB) Cycle: 2CO₂ (HCO₃⁻) + CoA + 4ATP → Acetyl-CoA Dicarboxylate/4-Hydroxybutyrate (DC/HB) Cycle: 2CO₂ (HCO₃⁻) + CoA + 3ATP → Acetyl-CoA 	
Two-step CO ₂ fixation & conversion	Step 1 (electrochemical catalysis): CO ₂ + H ₂ O + electricity → C ₁ /C ₂ chemicals	Step 2 (biomanufacturing): C ₁ /C ₂ → biofuels and chemicals
	<ul style="list-style-type: none"> CO₂ + 2H₂O + electricity → CH₃OH + 1.5O₂ CO₂ + H₂O + electricity → HCOOH + 0.5O₂ 2CO₂ + 3H₂O + electricity → C₂H₅OH + 3O₂ 2CO₂ + 2H₂O + electricity → CH₃COOH + 2O₂ CO₂ + electricity → CO + 0.5O₂ CO₂ + 2H₂O + electricity → CH₄ + 2O₂ 	<ul style="list-style-type: none"> Direct use of C₁/C₂: C₁/C₂ → fuels/chemicals + biomass Cofeeding C₁/C₂ and C₅/C₆ sugars: C₁/C₂ + C₅/C₆ sugars → fuels/chemicals+ biomass

2.1. One-Step Strategy – Direct Conversion

Internal carbon sequestration has taken many different forms throughout history. Even before the evolution of eukaryotic plants utilizing photosynthesis and light to convert CO₂ and energy from light to compose simple sugars, single-celled organisms had already developed mechanisms to capture atmospheric CO₂ and transform it into essential compounds for the cell's development. These primitive mechanisms, especially those in microorganisms like acetogens and methanogens, have shown to be highly efficient, utilizing unique proteins and metabolic pathways for carbon sequestration [1]. Furthermore, microorganisms, especially microalgae and cyanobacteria, exhibit significant advantages over higher plants in their capacity for CO₂ fixation as they can yield higher solar energy retention and the potential for year-round growth compared to their more complex plant counterparts [24]. While microalgae are well-recognized for their CO₂ fixation capabilities, bacteria present advantages that cannot be overlooked [25]. Microalgae cultivation can be subject to biocontamination over prolonged use from fungal and bacterial species and often run into issues pertaining to even distribution of sun exposure over larger microalgae ponds due to their preferred growth environments, vastly limiting their ability to be utilized on an industrial scale without major alternations to the water infrastructure the microalgae is grown on. Bacteria and some yeasts, on the other hand, have been widely used in biotechnology industry due to inherent compatibility to produce chemicals and their rapid growth rates and life cycles. Further, they are more inclined to

1 accept DNA during genetic modification in the form of plasmids and genomic alternations. This
2 ability allows bacteria and yeast to have DNA introduced into their cells of enzymes to complete
3 metabolic pathways previously incompletely represented in the cells and allow production of
4 specialized products, including bio-alcohols and essential fatty acids. Through this
5 biotechnological approach, CO₂ can be directly converted into value-added products, offering an
6 advantage over traditional methods like catalytic conversion, which demand energy-intensive
7 conditions [23].

8 In this section, we will provide an overview of the one-step strategy for directly using CO₂ as the
9 feedstock for biomanufacturing, which includes (1) natural CO₂ fixation pathways, (2) synthetic
10 CO₂ fixation pathways, (3) host selection and reducing power required for biomanufacturing with
11 CO₂, and (4) using microbial electrosynthesis to utilize CO₂ for biomanufacturing.


12

13 2.1.1. Natural CO₂ fixation pathways

14 Several pathways facilitate the assimilation of atmospheric CO₂ into organic materials, as shown
15 in **Figure 2**. Among all natural CO₂ fixation pathways, the Calvin-Benson-Bassham (CBB) cycle
16 dominates, and is responsible for 90% of global CO₂ uptake [26]. Additionally, pathways such as
17 the Wood-Ljungdahl (WLP), reductive glycine pathway (rGlyP), reductive tricarboxylic acid
18 (rTCA) cycle, 3-hydroxypropionate bi-cycle (HP), 3-hydroxypropionate/4-hydroxybutyrate
19 (HP/HB) cycle, and dicarboxylate/4-hydroxybutyrate (DC/HB) cycle play significant roles in CO₂
20 utilization [27]. These processes, predominantly in autotrophic microorganisms, often lead to vital
21 metabolites like pyruvate or acetyl-CoA, each with unique energy efficiency concerning ATP
22 consumption [28].

23 2.1.1.1. Common natural CO₂ fixation cycles

24 **Calvin-Benson-Bassham (CBB) Cycle:** The CBB cycle stands as the premier identified CO₂
25 biofixation route and remains the primary carbon fixation method in nature. Since it shares
26 numerous metabolites and enzymes with the pentose phosphate pathway (PP pathway), leading to
27 its alternate naming as the reductive PP pathway. Found in a variety of organisms such as plants,
28 algae, cyanobacteria, and specific chemoautotrophic microorganisms, this cycle fundamentally
29 operates through the enzymatic action of ribulose-1,5-bisphosphate carboxylase/oxygenase
30 (RuBisCO). While RuBisCO's central role in the CBB cycle is undeniable, its efficiency is often
31 questioned. This enzyme catalyzes the transformation of ribulose 1,5-bisphosphate (RuBP) into 3-
32 phosphoglycerate (3-PGA), but its efficiency is occasionally halved due to its tendency to favor
33 O₂ during photorespiration [29]. Known for its limited catalytic activity, RuBisCO's O₂ preference
34 over CO₂ is complicating endeavors aimed at engineering it for enhanced kinetics largely due to
35 the intricate nature of its substrate-binding pocket [30]. However, there are successful efforts to
36 enhance the cycle's efficiency have centered on engineering RuBisCO. For instance, a
37 heterologous cyanobacterial RuBisCO, was successfully overexpressed in *Ralstonia eutropha*
38 (*Cupriavidus necator*), bolstering autotrophic growth and CO₂ fixation capabilities [31].
39 Furthermore, a comprehensive in vitro examination of 143 RuBisCO enzyme activities unveiled a
40 promising type-II RuBisCO variant from *Gallionella* sp., which is iron oxidizing
41 chemolithotrophic bacteria [32]. In another recent study, 10 copies of RuBisCO was introduced by
42 a delta-integration strategy into xylose-utilizing *Saccharomyces cerevisiae* and resulted in a 17%
43 increase in ethanol yield and a 7% decrease in CO₂ emission [33]. Such advancements underscore
44 the potential to amplify CO₂ assimilation rates by harnessing superior RuBisCO variants.

1

2 **Figure 2.** An overview of natural direct CO_2 fixation pathways. Metabolites: ribulose 5-phosphate, Ru5P;
3 ribulose 1,5-bisphosphate, RuBP; 3-phosphoglycerate, 3PG; 1,3-bisphosphoglycerate, 1,3BPG;
4 glyceraldehyde 3-phosphate, GAP; fructose 1,6-bisphosphate, FBP; fructose 6-phosphate, F6P; xylulose 5-
5 phosphate, Xu5P; dihydroxyacetone phosphate, DHAP; erythrose 4-phosphate, E4P; sedoheptulose 1,7-
6 bisphosphate, SBP; sedoheptulose 7-phosphate, S7P; ribose 5-phosphate, R5P; tetrahydrofolate, THF; (3S)-
7 citramalyl-CoA, CM-CoA; mesaconyl-C4-CoA, MC-C4-CoA; mesaconyl-C1-CoA, MC-C1-CoA; beta-
8 methylmalyl-CoA, β MM-CoA; propionyl-CoA, P-CoA; 3-hydroxypropionyl-CoA, 3-HP-CoA; 3-
9 hydroxypropionate, 3-HP; malonyl-CoA, Mal-CoA; (S)-methylmalonyl-CoA, S-

1 MM-CoA; (R)-methylmalonyl-CoA, R-MM-CoA; acetoacetyl-CoA, AcAc-CoA; acryloyl-CoA, Acr-CoA;
2 crotonyl-CoA, C-CoA; 4-hydroxybutyrate, 4-HB; 4-hydroxybutyryl-CoA, 4-HB-CoA; succinate
3 semialdehyde, SSA; (S)-3-hydroxybutyryl-CoA, (S) 3-HB-CoA; malonate semialdehyde, MSA;
4 phosphoenolpyruvate, PEP. Enzymes: Ribulose-1,5-bisphosphate carboxylase, RuBisCo;
5 phosphoribulokinase, prkA; carbon monoxide dehydrogenase, CODH; acetyl CoA synthase, ACS; formate
6 dehydrogenase, FDH; serine hydroxymethyltransferase, GlyA; pyruvate synthase, PFOR; ATP-citrate lyase,
7 ACL; acetyl-CoA carboxyltransferase, ACC; propionyl-CoA carboxylase, PCC; phosphoenolpyruvate
8 carboxylase, PPC. Multi-step reactions are presented by continuous arrows. Special parts of WLP are shown
9 dashed arrows. The figure was created with BioRender.

10

11 **Wood-Ljungdahl Pathway (WLP):** The WLP, referred to as the reductive acetyl-CoA (rAc-CoA)
12 pathway, is an exemplar of efficient non-photosynthetic carbon fixation. Requiring only one ATP
13 molecule to produce pyruvate is notably more energy-conserving than the CBB cycle, which
14 expends seven ATPs for the same result [5]. The WLP, primarily recognized in acetogens, operates
15 exclusively under anaerobic conditions [34]. Microbes utilizing the rAC-CoA pathway often
16 produce acetate or methane as end products [35]. Recently, Jang et al. constructed a *Clostridium*
17 *acetobutylicum* strain to install heterologous WLP carbonyl branch genes from *Clostridium*
18 *difficile* and performed CO₂ fixation and increased biobutanol production [36].

19 **Reductive Glycine Pathway (rGlyP):** The initial CO₂ assimilation steps in WLP parallel the
20 reductive glycine pathway (rGlyP), which was first proposed synthetic, then found to be natural
21 [37], wherein rGlyP, instead, employs glycine cleavage/synthase system (GCS) to incorporate CO₂
22 and ammonium into 5,10-methylene-THF to produce l-glycine and recycle THF back [28].
23 Highlighting their potential in microbial CO₂ utilization, the WLP and the rGlyP stand out for their
24 ATP efficiency in carbon fixation [38]. The most important advantage of the rGly pathway over
25 WLP is that rGlyP can be operate both in aerobic and anaerobic microorganisms [39]. Strategies
26 such as overexpressing the essential enzymes can further augment CO₂ assimilation efficiency.
27 For instance, *Eubacterium limosum*, when introduced with the GCS, exhibited an improved growth
28 rate and acetate production [40]. Taking it further, even industrial microbes like *Pseudomonas*
29 *putida* was engineered to assimilate CO₂ and other C₁-chemicals such as formate and methanol by
30 introducing heterologous expression of the core-modules of rGlyP [41]. With the help of adaptive
31 laboratory evolution, a rGlyP-introduced formatotrophic *E. coli* strain was further developed to
32 utilize CO₂ and formate as sole carbon sources [42].

33 **Reductive Tricarboxylic Acid Cycle (rTCA):** Initially discovered in the green sulfur bacterium
34 *Chlorobium limicola*, the rTCA functions as the reverse counterpart to the traditional TCA (or
35 Krebs cycle), primarily in strictly anaerobic or microaerobic autotrophic eubacteria [43]. Although
36 studies on the rTCA cycle's application in metabolic engineering remain limited, emerging
37 research, such as one involving *E. coli*, has shown promising results in recycling CO₂ and
38 optimizing the production of acetate and ethanol [44].

39 **2.1.1.2.** Less common natural CO₂ fixation cycles

40 **3-Hydroxypropionate (3HP) Bi-Cycle:** The 3HP bi-cycle, or Fuchs-Holo bicycle, was first
41 discovered in the thermophilic phototrophic bacterium *Chloroflexus aurantiacus* [45]. This cycle
42 is considered unique due to its two cyclic CO₂ assimilation pathways that collaboratively share
43 initial reactions for CO₂ assimilation, forming a complex bicyclic system. The 3HP bicycle
44 consumes approximately 2.3 mol ATP to reduce 1 mole of CO₂ to pyruvate, similar to the CBB

1 cycle [46]. The 3HP bi-cycle's key enzymes, such as propionyl-CoA synthase and malonyl-CoA
2 reductase, have been leveraged to construct efficient cell factories for 3-hydroxypropionic acid
3 [47]. Recently, the details of this uncommon mechanism have been revealed in filamentous
4 anoxygenic phototrophs. Mesaconyl-CoA C₁-C₄ CoA transferase is found to catalyze the
5 intramolecular CoA-transfer, which can be used for enzyme engineering to produce value-added
6 chemicals [48].

7 **3-Hydroxypropionate/4-Hydroxybutyrate (HP/HB) Cycle and Dicarboxylate/4-**
8 **Hydroxybutyrate (DC/HB) Cycle:** Remarkably, the HP/HB and DC/HB cycles, prevalent in
9 certain archaea, demonstrate higher energy efficiency in anaerobic environments, with the DC/HB
10 cycle being particularly efficient, requiring only 1.6 mol ATP to reduce one mol CO₂ to pyruvate
11 [46]. From an evolutionary perspective, the capability of the 3HP bicycle and the HP/HB cycle to
12 assimilate bicarbonate rather than CO₂ is notable. This adaptability likely stems from the higher
13 intracellular concentration of bicarbonate compared to CO₂. This feature and oxygen tolerance
14 potentially contribute to their evolutionary survival [49]. From an application standpoint, there have
15 been attempts to harness these pathways for biotechnological purposes. (S)-3-hydroxybutyryl-
16 CoA dehydrogenase, which is one of the important enzymes of the HP/HB cycle, has been
17 characterized, and different enzymes from *Nitrosopumilus maritimus* and *Metallosphaera sedula*
18 were compared to explore the enzymatic differences in these processes within the DC/HB and
19 HP/HB cycles, which helps protect marine habitats [50]. However, attempts to fully recreate and
20 utilize these pathways in common microbial hosts like *E. coli* have faced challenges [5].

21
22 **2.1.2. Synthetic CO₂ fixation pathways**
23 Synthetic CO₂ fixation pathways have garnered significant attention as potential alternatives to
24 enhance carbon assimilation efficiency, transcending the inherent constraints observed in natural
25 pathways. The focus lies in developing pathways with optimized thermodynamic and kinetic
26 properties while overcoming difficulties associated with key enzymes like RuBisCO [30,32]. One
27 noteworthy example is the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH)
28 cycle. Assembled using 17 enzymes derived from nine distinct organisms, the CETCH cycle has
29 displayed a greater rate of CO₂ fixation and a reduced ATP requirement compared to the CBB
30 cycle [26]. Its efficiency is partly attributed to the use of the enoyl-CoA carboxylase/reductase
31 enzyme, which showcases high carboxylation activity. However, translating the in vitro success
32 of the CETCH cycle into in vivo applications remains a challenge [49]. To overcome this challenge,
33 the same group developed a new pathway called the HydrOxyPropionyl-CoA/Acrylyl-CoA
34 (HOPAC) cycle, which consists of 11 enzymes from six different organisms and is similar to the
35 natural 3HP cycle but with the introduction of new in-between reactions to increase the ATP
36 efficiency to 33% [51].

37 Another synthetic CO₂ assimilation route is the Gnd-Entner-Doudoroff (GED) pathway. By
38 inducing specific gene deletions in *E. coli*, researchers demonstrated the energy-efficient reductive
39 carboxylation of ribulose-5-phosphate via this pathway. Despite its potential, the complete cyclic
40 GED pathway has only been partially shown *in vivo* [52]. Another advancement was made when
41 researchers synthesized starch from CO₂ and hydrogen in a cell-free system. This process coined
42 the artificial starch anabolic pathway (ASAP), comprised 11 core reactions, and showcased an
43 impressive CO₂-to-starch conversion rate. This rate was approximately 8.5 times faster than starch
44 synthesis observed in corn [53]. Since pathway length also generates problems for energy

1 efficiency, novel pathways like the POAP cycle and the ICE-CAP pathway have been proposed
2 [54]. The POAP cycle, comprising merely four steps, potentially offers a more streamlined and
3 efficient approach to carbon sequestration. The ICE-CAP pathway, on the other hand, utilizes CO₂
4 alongside high-energy C1 compounds, such as methanol or formaldehyde, obviating the need for
5 ATP and cofactors like NAD(P)H [55].

6 One computational study, utilizing a repository of around 5,000 known enzymes, unveiled the
7 Malonyl-CoA-Oxaloacetate-Glyoxylate (MOG) pathways. These proposed pathways, which
8 display ATP efficiency over the conventional CBB, might be revolutionary. They use rapid
9 carboxylases and are oxygen-tolerant. However, some enzymes in MOG pathways are thermally
10 sensitive, and their end-product, glyoxylate, when integrated into central metabolism, could revert
11 to CO₂, causing this study performed only in *in silico* [56]. Nevertheless, designing and
12 implementing synthetic pathways isn't without its challenges. When introduced into diverse
13 microbes, these synthetic pathways can disrupt the metabolic balance, necessitating further
14 optimization to realign central metabolic fluxes. Despite this, the capabilities of these synthetic
15 pathways, especially when combined with other technological advancements like biocompatible
16 semiconductor materials or cell-free systems, offer promising avenues for the future of carbon
17 sequestration and utilization [57].

18

19 **2.1.3. Host selection and reducing power**

20 **2.1.3.1. CO₂-fixing autotrophs and synthetic hosts**

21 Microorganisms that can synthesize organic substances by fixing inorganic carbon, leveraging
22 energy from either light or inorganic chemicals, are classified as autotrophs. Depending on their
23 energy source, these autotrophs bifurcate into two groups: photoautotrophs, which harness energy
24 via photosynthesis, and chemoautotrophs, which extract energy from chemical reactions [58].

25 Photoautotrophs, such as cyanobacteria and microalgae, derive energy from photosynthesis. These
26 organisms house photosynthetic pigments, allowing them to harness energy from light and water
27 [59]. Notably, they assimilate CO₂ primarily via the Calvin-Benson-Bassham (CBB) cycle. Due to
28 their superior solar energy utilization and rapid growth rates compared to terrestrial plants, they
29 have gained considerable attention as potential bio-production platforms [60]. Cyanobacterial
30 strains like *Synechocystis* spp. and *Synechococcus* spp., for instance, have made significant strides
31 in metabolic engineering, that these advancements enable them to produce valuable chemicals
32 [61,62]. Furthermore, certain eukaryotic microalgae have been explored for lipid and alkane
33 production, though their genetic manipulation is somewhat restricted due to limited transformation
34 efficiencies and genetic tool availability [63].

35 On the other hand, chemoautotrophs, including certain bacteria, obtain energy through chemical
36 reactions. A prominent example is the hydrogen oxidizing bacteria *Cupriavidus necator*, which
37 can oxidize substances like H₂ [64] or formate [65]. This bacterium is known for its ability to
38 naturally accumulate polyhydroxybutyrate (PHB), a precursor for bioplastics, comprising up to 70%
39 of its biomass [66]. Furthermore, genetic engineering has expanded its repertoire to produce
40 chemicals such as branched-chain alcohols and alkanes [67,68]. Another chemoautotroph of interest
41 is *Acidithiobacillus ferrooxidans*, which can absorb electrons from Fe²⁺ or directly from a cathode
42 in bioelectrochemical systems [69].

1 Acetogens represent another subset of chemoautotrophs, which are strictly anaerobic bacteria and
2 use specifically WLP. Certain acetogens, like *Clostridium ljungdahlii*, *Clostridium*
3 *autoethanogenum*, and *Acetobacterium woodii*, are naturally equipped to produce chemicals such
4 as acetate, ethanol, and 2,3-butanediol [70]. Genetic tools have been applied to acetogens to expand
5 their production portfolio, with some species even being utilized for large-scale industrial
6 applications [71]. Yet, their ATP regeneration capacity poses challenges in producing ATP-
7 intensive products.

8 In heterotrophic hosts, organisms like *E. coli* and *S. cerevisiae* do not initially possess functional
9 CO₂ fixation pathways or photosystems. However, scientific endeavors have partially succeeded
10 in transplanting such systems into these hosts, thus ushering in a mixotrophic mode of nutrition
11 [72]. Shifting the spotlight to synthetic autotrophic microorganisms, model organisms like *E. coli*,
12 *Saccharomyces cerevisiae*, and *Corynebacterium glutamicum* have been engineered to metabolize
13 CO₂. For instance, *E. coli* has been engineered to fix CO₂ by co-expressing RuBisCO,
14 phosphoribulokinase, and FDH, using formate as a reducing agent [73]. On the other hand, *S.*
15 *cerevisiae*, despite the successful expression of RuBisCO from *Cupriavidus necator*, it has failed
16 to grow on sole CO₂ [74]. Recent advances have also demonstrated that autotrophic production
17 platforms can effectively integrate autotrophic and heterotrophic hosts, melding their beneficial
18 traits. A notable instance involves the non-engineered autotrophic acetogen *Sporomusa ovata*
19 paired with engineered *E. coli* strains. *S. ovata*, harnessing semiconductor nanowires, fixes CO₂
20 and excretes acetate – a substrate-engineered *E. coli* strains that can produce valuable compounds
21 like n-butanol or PHB under aerobic conditions, up to 52% of acetate-to-product yield was reported
22 for PHB production by *E. coli* [75]. Similarly, another two-reactor system combines the
23 thermophilic acetogen *Moorella thermoacetica* and yeast *Yarrowia lipolytica*, where the former's
24 acetate output serves as a feedstock for the latter, engineered for increased lipid synthesis [76].
25 Such systems still need improvement converting CO₂ into valuable end products, achieving
26 sustainable energy conversion efficiencies.

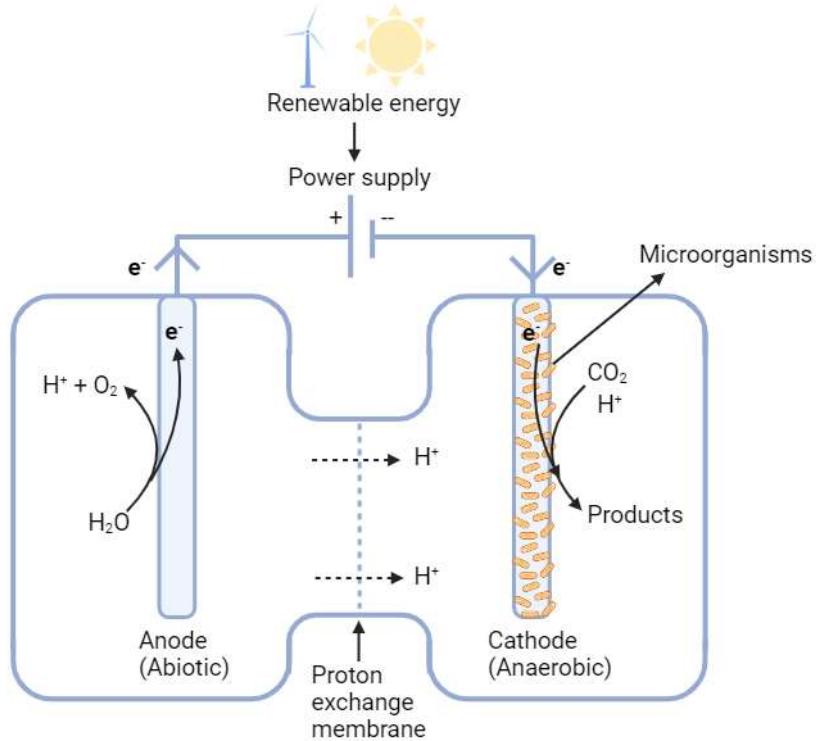
27 Successfully applying microbial hosts with CO₂ fixation capabilities depends on deeply
28 understanding their physiology, biochemistry, and genetics. Both photoautotrophic and
29 chemoautotrophic microbes offer unique opportunities for bio-production, with advances in
30 genetic tools and metabolic engineering paving the way for more efficient autotrophic cell factories.
31 These microbial systems, in combination with advances in metabolic engineering, hold immense
32 potential to revolutionize the sustainable production of value-added compounds.

33

34 **2.1.3.2. Energy supplies for microbial CO₂ fixation**

35 Reducing powers such as NAD(P)H, FADH, ferredoxin red (Fd_{RED}), and menaquinol serve as
36 driving forces in microbial CO₂ fixation which is pivotal for metabolism. Regeneration of these
37 reducing powers entails the extraction of high-energy electrons from either organic and/or
38 inorganic compounds, or light. Light remains the most prevalent energy source utilized by
39 photoautotrophs like plants, algae, and photosynthetic microorganisms [77]. Photosystems I and II
40 (PS I and PS II) are the primary photo-reaction complexes in photolithotrophic organisms like
41 plants, algae, and cyanobacteria [78]. They absorb light wavelengths ranging from 400 to 700 nm,
42 facilitating the photocatalytic splitting of water to produce ATP and NADPH, thereby providing
43 the requisite energy for CO₂ fixation [79]. PS I absorbs light and uses it to excite a low-energy
44 electron from chlorophyll, which then produces Fd_{RED} and eventually NADPH. PS II compensates

1 for the electron extracted from PS I by a subsequent electron transfer, originally sourced from a
2 water-splitting reaction [78]. Recently, *Chroococcidiopsis thermalis* has demonstrated growth in
3 far-red light through specialized photosystems, highlighting the potential for engineering increased
4 efficiency in light utilization [80]. However, there's an inherent energy loss of around 60% in the
5 electron transfer between PS I and II, limiting the efficiency of this system [81]. Efforts to address
6 this inefficiency include the integration of artificial photosensitizers, such as the incorporation of
7 cadmium sulfide nanoparticles with *Moorella thermoaceticato* facilitate the photosynthesis of
8 acetic acid from CO₂ [82].


9 On the other hand, chemolithotrophs utilize inorganic compounds to extract high-energy electrons
10 for regenerating their reducing powers. The hydrogen-oxidizing bacteria, for instance, employ
11 hydrogenases to consume H₂ and regenerate reducing powers. These hydrogenases come in two
12 known varieties: membrane-bound, which uptake hydrogen to produce ATP, and soluble NAD-
13 reducing hydrogenases, which produce NADH [83,84]. For example, *E. coli* possesses membrane-
14 bound hydrogenases, with Hyd-1 or Hyd-2 catalyzing hydrogen uptake to generate ATP [85].
15 *Ralstonia eutropha*, a natural hydrogen-utilizing autotroph, has been studied for its hydrogenase-
16 driven ATP and NADH generation, which, expressed as in the soluble hydrogenase form in *E. coli*,
17 have shown promise in enhancing intracellular NADH levels [86]. As another example for
18 inorganic compounds to exploit high-energy electrons, iron-oxidizing bacteria oxidize Fe²⁺ ions
19 to generate NADH [87]. Meanwhile, nitrifying bacteria like ammonia-oxidizing bacteria and
20 nitrite-oxidizing bacteria obtain high-energy electrons by oxidizing nitrogen compounds [88,89].
21 Notably, sulfur-oxidizing bacteria, derive their electrons from the oxidation of various sulfur
22 compounds through intricate pathways to regenerate reducing powers such as menaquinol, NADH,
23 and Fd_{RED} [90]. A smaller group of bacteria focuses on the oxidation of PO₃³⁻ to PO₄³⁻, using
24 phosphite dehydrogenase to transfer electrons and regenerate NADH [91].

25 In summary, microbial CO₂ fixation relies heavily on various pathways to regenerate essential
26 reducing powers, utilizing light and chemicals as energy sources. Whether through photosystems
27 in photoautotrophs or hydrogenases in chemolithotrophs, these microorganisms have developed
28 diverse mechanisms to ensure efficient CO₂ fixation, underpinning their importance in the planet's
29 carbon cycle. To regenerate more reducing power, using renewable electricity can also be one of
30 the options for both keeping the carbon neutral environment and regenerate more reducing power,
31 as mentioned in detail in the next subsection.

32

33 2.1.4. Microbial electrosynthesis

34 As shown in **Figure 3**, microbial electrosynthesis (MES) is an innovative bioelectrochemical
35 approach that leverages electroactive microorganisms to convert renewable electrical energy into
36 value-added products [92,93]. Rooted in bioelectrochemical systems (BES) principles, MES offers
37 a sustainable route to harness CO₂ for the synthesis of biofuels and commodity chemicals, some
38 of which include methane, acetate, formic acid, and ethanol, among others, potentially mitigating
39 the detrimental impacts of CO₂ emissions [94]. At its core, MES operates by utilizing a biofilm on
40 an electrode as a catalyst, which contrasts with traditional methods that employ chemical catalysts
41 [23].

Figure 3. A brief summary of the mechanism of microbial electrosynthesis that can be used for one-step CO₂ fixation and conversion (remade from the reference of [95]). The figure was created with BioRender.

The MES architecture is intricate [96]. The anodic chamber operates abiotically, where water undergoes splitting to generate protons, electrons, and oxygen. Electrons generated in this chamber are channeled towards the biocathode via an external circuit when an external voltage is applied to the electrochemical cell. Conversely, electrophilic bacteria, primarily acetogens, inhabit the cathodic chamber, which maintains anaerobic, biotic conditions. CO₂ acts as an electron acceptor in the MES system, undergoing fixation and conversion at the cathode [97]. Certain electroactive microbes have demonstrated the ability to shuttle electrons intra- and extra-cellularly in this environment [98]. Herein, specialized microbes like *Sporomusa* species and engineered strains of *Clostridium* have exhibited the potential to generate biofuels directly from CO₂ [99,100]. A classic example demonstrates an acetate production rate of 142.2 mg/L/d and a carbon conversion efficiency of 84% when utilizing enriched mixed homoacetogenic bacteria [101]. Notably, other microbes such as *Clostridium scatologenes* ATCC 25,775 employ the WLP pathway for CO₂ fixation, generating acetic acid, butyric acid, and ethanol by using H₂ as reducing power [102].

The true potential of MES lies in its scalability and flexibility. The efficiency and spectrum of products from MES can be influenced by adaptive measures like improved electrode materials, specialized bioreactor designs, and genetically engineered biocatalysts [103]. Indeed, bioreactor optimization, which included strategies like increasing biomass retention and media dilution rate, showcased an acetate production with a titer of 13.5 g/L [104]. Beyond acetate, MES also promises the generation of other valuable bioproducts like butyrate, caproate, and polyhydroxybutyrate (PHB) [105-107].

1 However, MES also faces challenges for more wide applications. Current systems grapple with
2 issues like low CO₂ conversion rates, high energy input, and the nuances of maintaining effective
3 microbial communities [108]. Fortunately, recent innovations have exhibited promise to enhance
4 system efficiency. For instance, thermal conditions have been found to influence these processes;
5 *Moorella thermoautotrophica* exhibited an enhanced rate of acetate and formate production at
6 55°C as opposed to 25°C [109]. The microbes' biodiversity in MES also plays a pivotal role in its
7 efficiency. Notably, autotrophic sulfate-reducing bacteria (SRM) have displayed potential as
8 excellent biocatalysts, elevating the performance of BES in CO₂ fixation [110]. These bacteria hold
9 the potential to improve hydrogen production and water sulfate removal. In a recent study, a co-
10 culture of *Desulfopila corrodens* and *Methanococcus maripaludisco* magnified methane
11 production twenty-fold compared to *M. maripaludisco* alone [111]. Electro-catalyst-assisted MES
12 systems have been developed with electrical-biological hybrid cathodes to improve product rates
13 and variety. Here, Zn-based electrodes have outperformed others; one system achieved an acetic
14 acid production rate of 1.23 g/L [112].

15 Overall, the CO₂ bioelectrorefinery concept, as heralded by MES, is an embodiment of a circular
16 bioeconomy, envisioning an integration of CO₂ capture, renewable energy, and sustainable
17 production of chemicals and fuels [113]. While strides have been made, the commercial realization
18 of MES awaits advancements in electrode materials, microbial communities, and process
19 optimization to rival traditional biomass-based processes. Nevertheless, the trajectory of MES
20 research promises a sustainable and innovative path to a cleaner, greener future [114].

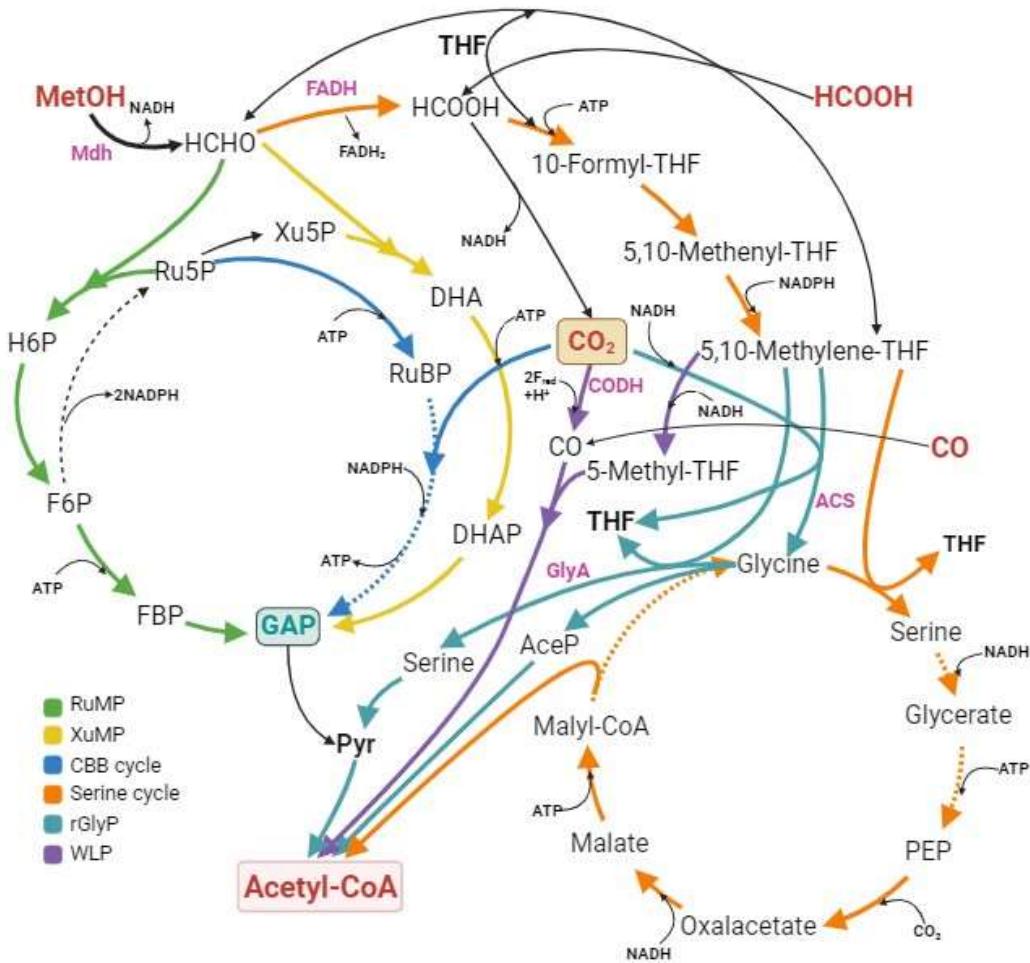
21

22 **2.2. Two-Step Strategy – Fixing CO₂ into C₁/C₂ Chemicals via Electrochemical Catalysis 23 and Converting C₁/C₂ Chemicals into Bioproducts via Biomanufacturing**

24 The two-step/indirect CO₂ fixation and conversion strategy takes the advantages of the current
25 advances from both electrochemical CO₂ fixation into C₁/C₂ chemicals and the synthetic biology
26 to further convert the derived C₁/C₂ chemicals into the fuels, chemicals, and pharmaceuticals via
27 biomanufacturing process. A primary advantage of these substrates is their non-competitive nature
28 with alimentary resources, which contributes to an economically sustainable framework while
29 diminishing carbon efflux into the biosphere [115]. Nevertheless, it has been widely studied that
30 the C₁/C₂ substrates can be produced from CO₂ via an electrochemical catalysis process [116],
31 which uses renewable electricity from solar, wind, or hydraulic power to capture and fix CO₂ into
32 specific C₁/C₂ products at high yield and selectivity. This two-step CO₂ fixation and conversion
33 approach can potentially reduce the dependence on fossil oil-based fuels and chemicals and
34 mitigate the impact of greenhouse gas emissions on the environment [117].

35 **2.2.1. Using CO₂-derived C₁ chemicals for biomanufacturing**

36 One-carbon (C₁) substrates like CO and CH₄ are gaseous C₁ substrates from industrial wastes like
37 steel mills and biomass gasification, while liquid C₁ substrates, formate, and methanol, are derived
38 from CO₂ or waste gas conversions [118]. As the direct CO₂ splitting into CO and oxygen is a
39 thermodynamically unfavorable reaction due to the stability of CO₂ at ambient temperatures, the
40 response demands a large amount of energy for initiation [119]. Although this reaction was
41 attempted to be feasible by membrane reactor systems by lowering the energy input, the conversion
42 rates are too low to be efficient at an industrial scale. Moreover, conversion efficiencies might
43 cause futile separation of the resultant products, CO and O₂, to handle at higher temperatures [120].


1 Initiatives have been undertaken to capture CO₂ and transform it catalytically into a range of high-
2 value products by employing hydrogenation and oxidation processes. However, these chemical
3 conversions of C₁ compounds pose significant challenges, including costly catalysts, extreme
4 conditions such as high temperatures (around 450°C) and pressures (approximately 30 MPa), and
5 the emission of hazardous by-products such as carbon monoxide. These factors contribute to the
6 overall expense and unsustainability of the technology [121].

7 The liquid C₁ substrates are advantageous as they're storable and fully soluble, supporting higher
8 production. Microbes can transform C₁ substrates into products like alcohols, acids, and plastic
9 components. Specific bacteria can process CO₂ or CH₄ and create multi-carbon compounds [122].
10 Some also use formate and methanol, which are essential in the C₁ pathway [118]. In the following
11 section, natural autotrophs and industrial strains that have been engineered to fix CO₂ and recent
12 advances in molecular biology and metabolic engineering for creating more effective CO₂ fixation
13 pathways will be discussed. Typical C₁ chemical fixation pathways are shown in **Figure 4**.

14

15 **2.2.1.1. Carbon monoxide**

16 Carbon monoxide (CO) is a relatively rare gas in the atmosphere, but novel electrochemical CO₂
17 conversion approaches can effectively produce CO from CO₂ [123]. Waste gases from industrial
18 processes partially oxidizing carbon-containing compounds or gasifying waste streams can also
19 yield CO [5]. The co-electrolysis of CO₂ and H₂O can also produce CO. One of the primary
20 concerns of using CO is its high toxicity and difficulty in detection because it is colorless, odorless,
21 and tasteless [124]. Although CO has the potential to impair oxygen transport and mitochondrial
22 function in many organisms, it can be an advantageous carbon and energy source for a
23 phylogenetically diverse array of bacteria and archaea known as carboxydrotrophs [125].
24 Carboxydrotrophs have evolved to assimilate CO using carbon monoxide dehydrogenase (CODH),
25 which catalyzes CO oxidation to CO₂, providing reducing power to the cell and employing either
26 molybdenum (for aerobes) or nickel (for anaerobes) as essential metal cofactors to facilitate
27 electron transport [126,127].

Figure 4. Typical C₁ utilization pathways. Metabolites: ribulose 5-phosphate, Ru5P; hexulose 6-phosphate, H6P; glyceraldehyde 3-phosphate, GAP; fructose 6-phosphate, F6P; fructose 1,6-bisphosphate, FBP; xylulose 5-phosphate, Xu5P; dihydroxyacetone, DHA; ribulose-1,5-bisphosphate, RuBP; tetrahydrofolate, THF; 3-phosphoglycerate, 3PG; 1,3-diphosphoglycerate, 1,3DPG; phosphoenolpyruvate, PEP; pyruvate, Pyr. Enzymes: carbon monoxide dehydrogenase, CODH; acetyl CoA synthase, ACS; membrane-bound methane monooxygenase, pMMO; cytoplasmic methane monooxygenase, sMMO; alcohol oxidase, Aox; methanol dehydrogenase, Mdh; formaldehyde dehydrogenase, FADH; formate dehydrogenase, FDH; serine hydroxymethyltransferase, GlyA; Ribulose-1,5-bisphosphate carboxylase, RuBisCo. Multi-step reactions are presented by dashed arrows. Special parts of WLP are shown in faded dashed arrows in the related color. The figure was created with BioRender.

In aerobic carboxydotrophs, the generated CO₂ is typically assimilated via the Calvin–Benson–Bassham (CBB) cycle to produce biomass. Aerobic CO oxidation, which is more exothermic and possesses higher free energy ($\Delta G_0 = -514$ kJ) than anaerobic CO oxidation ($\Delta G_0 = -174$ kJ), is advantageous for synthesizing ATP-intensive complex products, thereby facilitating higher ATP availability and resulting in increased biomass concentrations [128]. Recent studies have shown the potential of aerobic production of complex molecules, such as the production of C₁₅ sesquiterpene (E)- α -bisabolene from synthesis gas (syngas), a composite of CO, H₂, CO₂, and trace amounts of

1 impurities such as H₂S and NH₃—in *Hydrogenophaga pseudoflava*, although there are challenges
2 due to the potentially explosive mixture of O₂ and CO [129].

3 Anaerobic carboxydrotrophs predominantly employ the WLP pathway, also known as the reductive
4 acetyl-CoA pathway, for CO and CO₂ assimilation [127]. The WLP bifurcates into two branches:
5 the carbonyl branch, which reduces CO₂ to CO, and the methyl branch, which transforms CO₂ into
6 formate and its subsequent products. This pathway has garnered significant attention in
7 biotechnological research and genetic and metabolic engineering, particularly in relation to
8 acetogens, microorganisms that use the WLP as their signature pathway [130]. Despite some
9 progress, it remains challenging to demonstrate growth in CO and nonacetogenic hosts. Initial
10 attempts failed to demonstrate CODH/acetyl CoA synthase (ACS) activity in *E. coli* by expressing
11 genes from *Morella thermoacetica* [131]. Success was later achieved following the incubation of
12 ACS in NiCl₂ solution, although growth using CO as a substrate remained elusive. One major
13 obstacle is the inadequate intracellular conditions and genetic framework of traditional hosts, such
14 as *E. coli* or yeast, which limits the production and assembly of essential cofactors and sensitive
15 metal centers [123]. As a different strategy, hosts and gene sources with closer phylogenetic
16 relationships have been employed. In recent study, a group of genes from *Clostridium ljungdahlii*,
17 responsible for encoding CODH/ACS, in conjunction with a methylenetetrahydrofolate reductase
18 gene from *E. coli*, were integrated into *C. acetobutylicum* [132]. This reconstruction enabled
19 functional WLP, thereby underscoring the crucial role played by metal clusters. Another study
20 demonstrated increased CO oxidation rates (3.1-fold) through overexpression of the endogenous
21 CODH/ACS complex in *Eubacterium limosum* [133]. In addition, specific adaptive laboratory
22 evolution attempts in CODH or ACS have been proven to enhance the activity of the CODH/ACS
23 complex for CO oxidation, showing higher growth and CO gas uptake rates [134]. Nonetheless,
24 despite these advancements, the complete transformation of non-acetogenic microorganisms into
25 carboxydrotrophs requires further research.

26

27 **2.2.1.2. Methane**

28 Methane (CH₄) is a potent greenhouse gas, ubiquitous in natural and shale gas reserves.
29 Anthropogenic methane sourced from human activities, including landfills, agricultural practices
30 such as animal livestock emissions, paddy rice cultivation, coal mining, and wastewater treatment,
31 contributes significantly to global warming [135]. According to estimates from the Environmental
32 Defense Fund, at least 25% of present-day global warming is attributable to anthropogenic CH₄
33 emissions. This is a significant concern because CH₄, over the initial two decades following its
34 release into the atmosphere, exhibits a warming effect over 80 times greater than CO₂ [136].
35 Consequently, cultivating CH₄ for biotechnological applications has dual implications: it not only
36 enhances its value beyond traditional uses, such as generating heat or electricity (termed
37 revalorization), but also plays a pivotal role in curbing greenhouse gas emissions.

38 CH₄ assimilation is initiated by converting methane monooxygenase (MMO) to methanol.
39 Methanotrophs, organisms capable of metabolizing methane exclusively as their carbon source in
40 oxygen-rich and oxygen-deprived environments, have two separate versions of MMO. One is a
41 soluble intracellular variant (sMMO), and the other is a particulate form attached to the membrane
42 (pMMO) [137]. Once methanol is produced, it undergoes further oxidation to form formaldehyde.
43 This compound can then be broken down into CO₂, which involves specific enzymes, notably
44 formaldehyde dehydrogenase and formate dehydrogenase [138]. Some intermediate formate or

1 formaldehyde is integrated via serine or ribulose monophosphate (RuMP) cycles, serving as a
2 carbon source in the biomass. Formaldehyde is utilized in the RuMP cycle, transforming it into
3 hexulose-6-phosphate and later into ribulose-5-phosphate to complete the cycle. Through the
4 (tetrahydromethanopterin) H4MPT pathway, formaldehyde undergoes a conversion process to
5 become formate. Meanwhile, the serine cycle incorporates formate through the (tetrahydrofolate)
6 H4F pathway and finally converts serine into glycine to close the cycle [139].

7 sMMO is recognized for its extensive substrate specificity; however, high copper concentrations
8 may adversely affect its performance. Conversely, pMMO, owing to its proximity to the
9 membrane, has superior accessibility to methane compared to sMMO. The linkage of pMMO with
10 the membrane indicates its ability to accelerate catalysis in CH₄ oxidation mechanisms [140]. The
11 phenomenon of anaerobic CH₄ oxidation first came to light within microbial consortia. In these
12 communities, the transition of methane to CO₂ was paired with the reduction of specific elements,
13 such as sulfate, nitrate, nitrite, iron, or manganese [141-144]. However, owing to difficulties in
14 obtaining pure cultures, all methanotrophs identified to date are aerobic bacteria [145].
15 Methanotrophs have been metabolically engineered to yield value-added chemicals from CH₄,
16 such as lactate, succinate, and astaxanthin [146]. Despite the slower development and growth rates
17 of methanotrophs, non-native hosts, such as *Escherichia coli*, offer promising potential for CH₄
18 utilization owing to a deeper understanding of their physiology and established metabolic
19 engineering systems [147].

20 Utilizing industrially relevant strains, such as *E. coli*, for methane bioconversion is a promising
21 strategy because of its superior growth rate, in-depth understanding of its physiology, wide range
22 of system/synthetic tools available, and well-established metabolic engineering system for value-
23 added products. However, achieving the full activity expression of methane monooxygenase
24 (MMO) in non-native hosts has proven to be a substantial challenge, thus far, largely unsuccessful
25 [148]. Protein engineering endeavors have used P450 monooxygenase as an alternative to MMO
26 for converting methane to methanol; however, these attempts have garnered very limited success
27 [149,150]. The only progress made includes the expression of the β-subunit of pMMO in *E. coli*,
28 albeit with merely detectable activity [151]. This underscores that the principal challenge in
29 synthesizing methanotrophs in non-native hosts depends on the functional expression of the
30 enzyme responsible for methane oxidation. Despite these obstacles, recent breakthroughs have led
31 to promising outcomes. For example, the β-subunit of pMMO and the catalytic domains of pMMO
32 from *Methylococcus capsulatus* have been effectively expressed as soluble enzymes in *E. coli*. By
33 reassembling these enzymes in a framework built from apoferitin particles, a pMMO-mimetic
34 enzyme particle was generated. This assembly exhibits in vitro methanol production kinetics that
35 rival those of native pMMO [152]. Additionally, heterologous expression of sMMO from *M.*
36 *capsulatus* and the GroESL chaperone CH₄ was converted to acetone in an *E. coli* strain previously
37 engineered for methanol-based acetone production [153]. These advances indicate the proof-of-
38 concept and feasibility of synthetic microbes for CH₄ bioconversion, suggesting that further strain
39 engineering could significantly enhance the conversion rates and yields, potentially fulfilling the
40 industrial potential of microbial CH₄ bioconversion.

41

42 2.2.1.3. *Methanol*

43 As of 2018, the worldwide methanol (CH₃OH) production capacity stood at around 100 million
44 metric tons annually, demonstrating a steady increase in the capacity to convert CH₄ into methanol

1 and a concurrent decrease in methanol prices [154]. Today, methanol's cost is already comparable
2 to glucose, an outcome largely influenced by its production predominantly from natural gas, crude
3 oil, and coal via methods such as steam reforming of natural gas, biomass-derived synthesis gas,
4 or through hydrogenation of CO₂; thus making its price (\$150-300/ton) generally lower than that
5 of sugar (\$300-400/ton) [9,10,155]. Methanol, significantly more reduced than most sugars, is an
6 attractive substrate or co-substrate alongside sugars for producing various metabolites, including
7 alcohols, carboxylic acids, fatty acids, and hydrocarbons, given its high reductivity. It boasts a
8 reduction degree of six per carbon, compared to glucose's four, denoting that methanol possesses
9 50% more electrons per carbon atom, thus housing a high energy content. This abundance of
10 electrons can be harnessed to boost product yields in fermentations, further accentuating
11 methanol's appeal as a substrate [156].

12 Among all identified native methylotrophy groups, aerobic methylotrophy is the largest,
13 encompassing both prokaryotic and eukaryotic forms, represented by well-studied bacteria such
14 as *Bacillus methanolicus* and the *Methylobacterium extorquens*, as well as certain yeast species
15 like *Pichia pastoris* [157]. These aerobic methylotrophs employ two key methanol utilization
16 pathways. The initial pathway involves the oxidation of methanol to formaldehyde, facilitated by
17 three classes of oxidoreductases, each distinguished by their electron acceptors: PQQ-dependent
18 methanol dehydrogenases (MDHs), NAD⁺-dependent MDHs, O₂-dependent alcohol oxidases
19 (AODs) [158]. The first two are primarily found in methylotrophic bacteria, while the latter is
20 characteristic of methylotrophic yeasts [159]. NAD⁺-dependent MDHs stand out for their ability to
21 use a universal cofactor, NAD⁺, to transfer electrons for metabolite production, creating reducing
22 equivalents of NADH. O₂-dependent AODs, identified mainly in yeasts, convert methanol into
23 hydrogen peroxide and formaldehyde [160]. The second pathway entails the incorporation of
24 formaldehyde into central carbon metabolism via one of three identified assimilation pathways in
25 aerobic methylotrophs: the xylulose monophosphate (XuMP) cycle (as known as
26 dihydroxyacetone (DHA) cycle), the RuMP cycle, and the serine cycle. The XuMP pathway
27 predominantly occurs in yeasts, while the RuMP and serine pathways are observed in *B.*
28 *methanolicus* and *M. extorquens*, respectively [161,162]. The serine pathway stands out for its
29 carbon efficiency, fixing 3 mol CO₂ and merging 3 mol formaldehyde to produce 3 mol acetyl-
30 CoA, although it is also the most ATP-costly. In contrast, the RuMP pathway exhibits the highest
31 energy efficiency, generating 2 mol of NADH and 1 mol of ATP per mole of acetyl-CoA. The
32 XuMP pathway, meanwhile, yields 2 mol of NADH but consumes 1 mol of ATP per mole of
33 acetyl-CoA produced [163].

34 Anaerobic methylotrophy is mainly limited to methanogenic archaea and acetogenic bacteria, with
35 the latter gaining interest due to their metabolic capacity for high acetate or butyrate production
36 [164]. In methylotrophic acetogens, the methyl-THF produced by the methyltransferase system
37 enters the WLP pathway to generate cell mass and conserve energy [165]. The WLP consists of
38 two separate branches, the methyl, and the carbonyl, each handling one CO₂ molecule. In the
39 methyl branch, CO₂ converts to formate, which merges with auxiliary tetrahydrofolate and reduces
40 to the methyl group of tetrahydrofolates, a precursor for the methyl group of acetyl-CoA.
41 Conversely, in the carbonyl branch, CO₂ transforms to CO, merging with methyl-THF from
42 methanol to produce acetyl-CoA via the CO dehydrogenase/acetyl-CoA synthase (CODH/ACS)
43 [166]. This resultant acetyl-CoA can be used for pyruvate synthesis, biomass production, or acetate
44 generation, enabling ATP production [58]. With higher energy efficiency in converting methanol
45 to biomass or products than aerobic methylotrophs, anaerobic acetogens can also assimilate other
46 C₁-compounds such as CO₂ and CO due to the presence of the WLP pathway. This methanol

1 assimilation also involves CO₂ fixation, making acetogens attractive platform microbes for
2 methanol bioconversion [122].

3 Native methylotrophs hold the potential for generating high-value chemicals from methanol, but
4 methanol assimilation rates curb the efficiency [167]. Expanding these rates to produce target
5 compounds is an insistent need. While the limited availability of genetic tools poses a challenge,
6 the strides made in synthetic biology now enable the development of these tools to engineer native
7 methylotrophs [168]. For example, *B. methanolicus* was modified to generate L-lysine by
8 implementing the CRISPRi system [169]. Similarly, *M. extorquens* has been enabled to produce
9 itaconate by heterologously introducing the cis-aconitic acid decarboxylase gene from *Aspergillus*
10 *terreus* [170]. For the aerobic methylotrophs, intermediate metabolite formaldehyde accumulation
11 may cause cellular toxicity due to the macromolecule interactions [171]. Anaerobic acetogens are
12 favorable to avoid formaldehyde toxicity since methanol is directly assimilated through WLP [158].
13 Similarly, methanol assimilation is conducted within the peroxisome in methylotrophic yeasts, and
14 this might have an advantage over other microbes in keeping the formaldehyde away from other
15 cell components [9]. For example, *P. pastoris* could produce free fatty acids with superior
16 efficiency from methanol by boosting the availability of precursors and cofactors and minimizing
17 the build-up of formaldehyde through optimized methanol metabolism engineering [172]. Another
18 known methylotrophic yeast, *Ogataea polymorpha* growth, was also restrained by formaldehyde
19 formation. Engineering pentose phosphate (PP) and gluconeogenesis pathways and further ALE
20 efforts overcome those problems and implemented efficient free fatty acid production with a titer
21 of 15.9 g/L [173]. Nonetheless, genetically modifying and engineering native methylotrophs
22 requires more effort due to constraints like the insufficient understanding of cellular metabolic
23 pathways and a confined set of genetic tools for such engineering [165].

24 Initiatives have been directed toward creating synthetic methylotrophs to navigate the above-
25 mentioned challenges. For instance, by integrating the heterologous methanol assimilation
26 pathway from *B. methanolicus* MGA3 into *Bacillus subtilis*, a methanol-dependent engineered
27 strain that can process 4.09 g/L methanol was produced [174]. In addition to integrating natural
28 methanol-utilization pathways into non-native hosts, unique enzymatic conversions have been
29 employed in synthetic pathway development, boosting the potential for methanol conversion into
30 valuable compounds [175]. Nevertheless, the performance of synthetic methylotrophs falls short of
31 those observed in native methylotrophs. For example, when comparing growth and acetate
32 production from methanol between the most efficient synthetic methylotrophic *Escherichia coli*
33 and *Eubacterium limosum*, it was evident that both growth and product yield was markedly lower
34 in *E. coli* than in *E. limosum* [176]. As a different strategy, Nguyen et al. employed a
35 comprehensive, genome-scale approach that incorporated mutagenesis, ¹³C tracer analysis, flux
36 balance examination, and comparative transcriptomic and metabolomic studies to present the
37 metabolism of *Methylotuvimicrobium alcaliphilum* by implementing robust in silico and in vivo
38 methodologies illuminated the mechanism behind efficient methanol consumption and
39 formaldehyde resilience [177].

40 Significant advances have been made recently in synthetic methylotrophy in model organisms like
41 *E. coli*, with the groundwork laid by pinpointing the most likely genes for methanol metabolism
42 from methylotrophs: *mdh*, *hps*, and *phi*. Isotopic incorporation tests with ¹³C-methanol resulted in
43 a 40% label integration into central carbon metabolites, notably hexose 6-phosphate (H6P), in *E.*
44 *coli* expressing these three genes, confirming the functionality of the RuMP pathway established
45 by Hps and Phi [178]. By physically co-localizing crucial enzymes like Mdh, Hps, and Phi into a

1 unified complex, methanol oxidation, and formaldehyde assimilation were enhanced, resulting in
2 a 50-fold rise in methanol to F6P conversion [179]. Once these methanol assimilation pathways
3 were set up, research efforts shifted to tackle the complexities of utilizing methanol as the sole
4 carbon source for *E. coli* growth and energy. One significant issue is the cofactor imbalance, as
5 methanol oxidation through Mdh is impeded when the cellular NADH to NAD⁺ ratio rises [180].
6 A 3.6-fold enhancement in methanol to formaldehyde conversion was achieved by linking this
7 step to an NADH consumption cycle [179]. Alternatively, the concentration of cellular NADH was
8 decreased by removing maldh that encodes NAD⁺-dependent malate dehydrogenase, which
9 mimicked the strategy used by natural methylotrophs to reduce TCA cycle activity [181]. Another
10 common strain, *S. cerevisiae*, has been explored by performing ALE on laboratory strain CEN.PK,
11 which has an uncharacterized transcriptional regulator Ygr067cp. It was found that deletion of
12 alcohol oxidation (ADH2) and acetyl-CoA synthetase (ACS1) had severely hindered the growth
13 on methanol [182]. On the other hand, the exact methanol assimilation mechanism in *S. cerevisiae*
14 is still unknown. Beside conventional host, a nonconventional yeast *Yarrowia lipolytica* has also
15 been engineered for methanol utilization by introducing RuMP and XuMP pathway genes and
16 ALE efforts [183]

17

18 **2.2.1.4. Formate**

19 Formate (CHOO⁻) is a valuable biotechnology substrate because of its high solubility in water and
20 polar solvents, a higher degree of reduction than CO₂ and CO, and non-flammability [184]. Despite
21 being less abundant than methanol, rapid advancements in synthesis technology, particularly in
22 electrochemical, photochemical, and catalytic methods, promise to increase its availability.
23 Economic efficiency is also improving, with cost predictions suggesting that formate can compete
24 with glucose as feedstock [185].

25 Microbial formate assimilation employs two primary strategies naturally. The first oxidizes
26 formate to CO₂, extracting and reducing the power that supports carbon fixation and provides the
27 cell with energy [186]. This process is ideally supported by formate due to its low reduction
28 potential [187]. The known carbon-fixation pathways facilitating formatotrophic growth through
29 complete formate oxidation include the ATP-costly CBB cycle (i.e., reductive pentose phosphate
30 pathway) [188] and the highly ATP-efficient, albeit oxygen-sensitive, WLP (i.e., reductive acetyl-
31 CoA pathway) [189]. Despite the latter path is energetically most efficiently utilize formate, product
32 variability and anaerobic growth conditions may limit for use in biotechnological applications
33 [162,190].

34 The second strategy adopted by microbes to utilize formate as the only carbon source entails the
35 fusion of formate with another intermediary metabolic product, though a portion may still undergo
36 oxidation to furnish the cell with reduction potential and energy [191]. Formate is combined with
37 tetrahydrofolate (THF) to promote such growth, using energy from ATP hydrolysis, resulting in
38 formyl-THF. This compound is then transformed into methylene-THF. Methylene-THF
39 contributes its formaldehyde component to glycine, generating serine, which changes into
40 glycinate. Subsequently, conversions result in the regeneration of acetyl-CoA, which can be either
41 a biomass or valuable product precursor. While the serine pathway's capability to directly
42 incorporate formate, and oxygen insensitivity, it still consumes three ATP to produce one acetyl-
43 CoA from one formate molecule, which causes a kinetic inefficiency [17,186].

1 In formate bioconversion, it has been suggested that exchanging these inefficient formate
2 assimilation pathways, with ATP-efficient alternatives could improve yield and energy efficiency.
3 The rGly pathway was suggested as a most convenient alternative to the other ATP-infeasible and
4 low-biomass-yielded carbon fixation pathways [192]. One such experiment involved replacing the
5 CBB cycle *Cupriavidus necator* with the reductive glycine pathway (rGly), which, despite
6 requiring further improvements, could convert formate into valuable chemicals offers a
7 streamlined process that bypasses costly formate separation and prevents harmful formate
8 accumulation [193]. Recently, Sánchez-Andrea et al. [194] showed the sulfate-reducing bacterium
9 *Desulfovibrio desulfuricans* (strain G11), which can utilize sulfate and hydrogen as energy
10 sources, harness an autotrophic (and formatotrophic) carbon fixation mechanism through the
11 reductive glycine (rGly) pathway and using formate. Its pathway coincides with the WLP route,
12 starting from CO₂/CO and producing 5,10-methylene-THF. Then, under the action of the glycine
13 cleavage/synthase system (GCS), a process that includes CO₂, NH₃, and 5,10-methylene-THF,
14 glycine is synthesized and undergoes further assimilation into pyruvate and biomass [9]. GCS was
15 also introduced to *Clostridium pasteurianum* to create non-model industrial host by heterologous
16 expression and anaerobic formate utilization was successfully demonstrated [195].

17 As a common industrial strain, *E. coli* was employed a lot to achieve the most optimal formate
18 utilizer strain. rGly pathway, one of the most promising pathway, was introduced into *E. coli*
19 together with the serine-threonine cycle to develop a double-direction strategy, and formate was
20 used both as an intermediate (endogenous) and as a carbon source (exogenous) [196]. Then the
21 same group further developed their strategy and applied all homologous and heterologous
22 expressions possible to produce the whole glycine and serine the cell needs from formate and CO₂
23 [197]. Another approach was proposed to improve obstacles in the previous work ([196]), by
24 introducing the THF cycle and reverse glycine cleavage (gcv) pathway together and to obtain a
25 final strain that could utilize both formic acid (FA) and CO₂ [198]. As a next step, they engineered
26 *E. coli* by solving the NADPH generation problem by optimizing cytochrome bo3 and bd-I
27 ubiquinol oxidase levels to acquire full growth on sole FA and CO₂ and as high OD600 as 7.38 in
28 450 h [199].

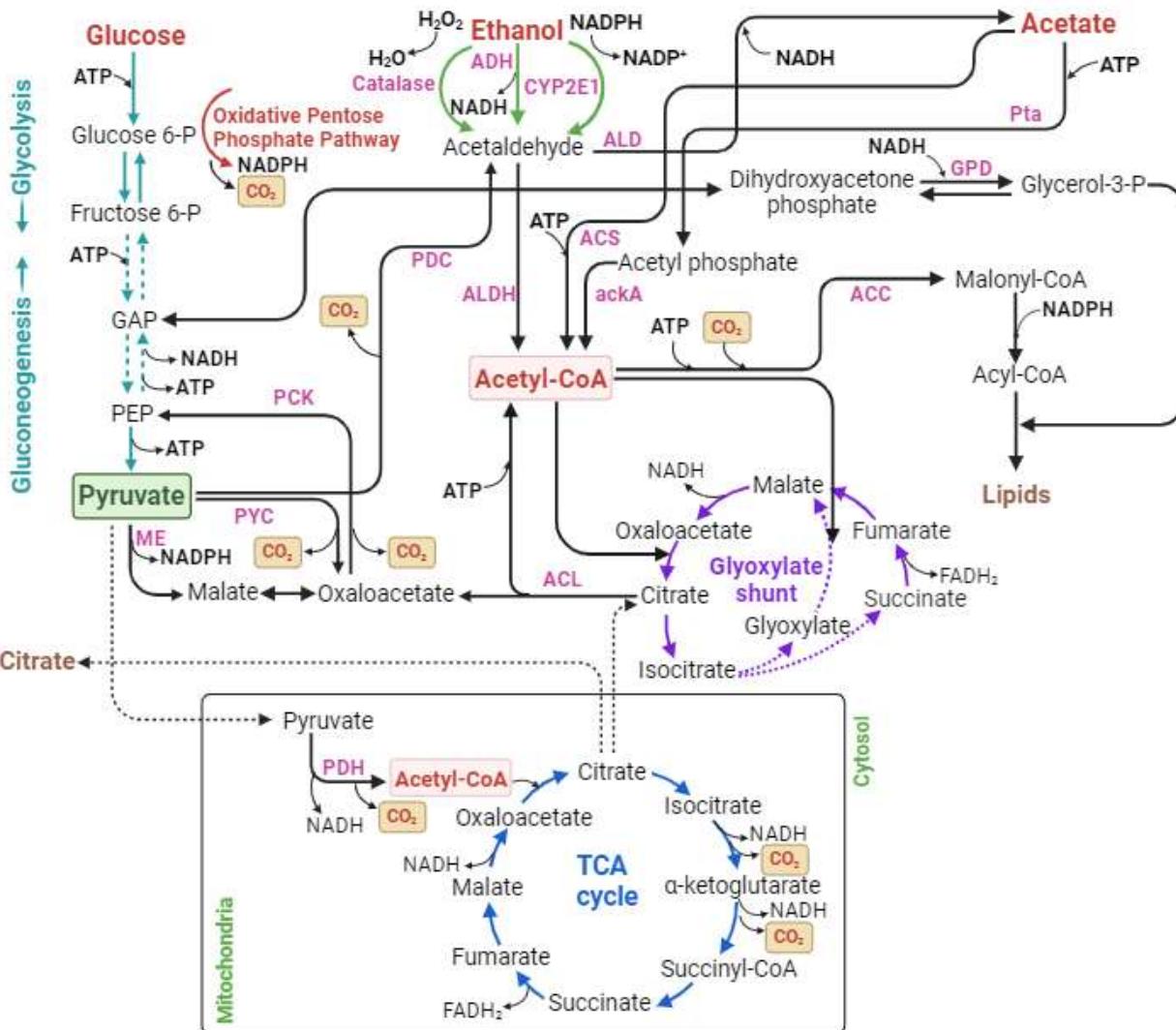
29 Developing autotrophic organisms in formate utilization is also an important goal. For instance,
30 Tashiro et al. used an electrochemical-biological system to reduce CO₂ into formate in the first
31 place and synthesized L-serine from formate using GCS-introduced *E. coli* [200]. Gleizer et al.
32 obtained an *E. coli* strain which has CBB established to utilize formate to cover metabolic activities
33 and uses CO₂ as sole carbon source [73]. They employed ALE to convert modified strain from
34 heterotroph to full autotroph in chemostat. In another study, *E. coli* has been successfully
35 engineered to grow on formate via the rGly pathway. Further ALE boosted the biomass yield of
36 the engineered *E. coli* strain to 2.3 g CDW/mol formate and halved the doubling time [201]. rGly
37 pathway was also employed in *S. cerevisiae* to increase tolerance (up to 500 mM) against formate
38 by overexpression of only native enzymes [202].

39 It is claimed that formate assimilation pathways of natural formatotrophs remain suboptimal for
40 biotechnological applications and present limitations compared to industrially optimized strains,
41 such as *S. cerevisiae* and *E. coli*, due to the costlier cultivation requirements, slower growth rates,
42 higher sensitivity to environmental conditions, challenges in genetic manipulation due to less
43 understood metabolic networks, and lacking optimization techniques. [14]. Despite these
44 limitations, certain species, like *Acetobacterium woodii*, show the potential to bridge this gap.
45 Recently, studies highlighted that *A. woodii*, when cultivated solely with formate as the carbon and

1 energy source, demonstrated greater efficiency and speed in transforming formate to acetate than
2 when using gaseous substrates [203,204]. This research also undertook a comparative analysis of
3 the energy efficiencies of various acetogens and other microbes, such as formatotrophs or
4 engineered strains capable of utilizing formate or methanol, during the growth and product
5 formation on C₁ or sugar substrates. The results revealed that acetogens displayed superior energy
6 efficiency across all substrates tested, specifically C₁ substrates, with formate demonstrating even
7 more significant energy potential than gaseous substrates [70]. Among the acetogens, *Eubacterium*
8 *limosum* emerged as promising biocatalysts for transforming formate into acetate, primarily
9 producing acetate, during formate-fueled growth [205].

10 While industrially utilized microbes demonstrate enhanced yield potential and genetic
11 manipulability than above-mentioned nonconventional organisms, cytotoxicity associated with
12 elevated formate concentrations poses a formidable challenge [206]. The tolerance threshold for
13 formate varies widely among organisms and is mainly dictated by formate dehydrogenase activity
14 [118]. For instance, *Escherichia coli* encounters significant growth disruption at formate
15 concentrations exceeding 100 mM, indicating minimal formate dehydrogenase activity [207].
16 Conversely, organisms such as *Saccharomyces cerevisiae*, which exhibit heightened formate
17 dehydrogenase activity, endure and capitalize on elevated formate concentrations, underscoring
18 the differential formate tolerance across diverse organisms [208]. Besides, formate consumption
19 can lead to a slight increase in medium pH, and the resulting alcohols can be toxic to certain
20 microbes at high concentrations, potentially damaging the cell membrane and inhibiting glycolytic
21 enzymes [209]. Therefore, strategies such as metabolic, evolutionary, and rational engineering,
22 proven effective for other inhibitory feedstock compounds or fermentation products, could
23 enhance microbial resilience to formate toxicity [201,210,211].

24


25 **2.2.2. Using CO₂-derived C₂ chemicals for biomanufacturing**

26 C₂ chemicals, mainly ethanol and acetate, have garnered interest as alternative substrates for
27 biomanufacturing, especially in the production of biofuels, pharmaceuticals, and biopolymers
28 [212]. One of the key challenges in utilizing C₂ chemicals as substrates in biomanufacturing is the
29 need to expand and engineer the native metabolic pathways of microorganisms to efficiently
30 convert these substrates into value-added products. This is achieved through various metabolic
31 engineering strategies, such as overexpressing native or heterologous enzymes, redirecting carbon
32 flux, and eliminating competing pathways [5]. The common C₂ chemical assimilation pathways
33 are shown in **Figure 5**.

34 **2.2.2.1. Acetate**

35 Acetate (CH₃COO⁻) typically denotes the disassociated form of acetic acid (CH₃COOH), holds
36 significant economic value for biomanufacturing, and the production volume worldwide is
37 expected to be approximately 24.5 million metric tons annually by the year 2025 [11]. Its cost
38 ranges between \$350-450 per ton, making it slightly more economical than traditional sugars like
39 glucose, which cost about \$500 per ton [213]. The acetate production, with around 75% of it
40 accomplished through chemical catalysis, encompasses methods such as methanol carbonylation,
41 ethylene oxidation, and alkane oxidation [214]. Additional methods for acetate synthesis include
42 the hydrolysis of lignocellulosic biomass, anaerobic digestion, syngas fermentation, and microbial

1 electrosynthesis. One of the green sides of these routes is using waste streams. For instance,
2 lignocellulosic biomass and anaerobic digestion could leverage waste biomass and industrial or
3 agricultural wastes as substrates. Furthermore, processes like syngas fermentation, microbial
4 electrosynthesis and chemical catalysis utilize CO₂ as their primary raw material in C₁ gas
5 conversion [215]. This highlights the considerable potential of using acetate as potential feedstock
6 regarding environmental friendliness and sustainability, particularly pertinent to achieving carbon
7 neutrality.

Figure 5. Common C₂ chemical assimilation pathways. Metabolites: Glyceraldehyde 3-phosphate, GAP; phosphoenolpyruvate, PEP. Enzymes: acetyl-CoA carboxylase, ACC; alcohol dehydrogenase, ADH; aldehyde dehydrogenase, ALD; acetaldehyde dehydrogenase, ALDH; acetyl-CoA synthetase, ACS; cytochrome P₄₅₀2E1, CYP2E1; ATP-citrate lyase, ACL; glycerol-3-phosphate dehydrogenase, GPD; malic enzyme, ME; pyruvate dehydrogenase complex, PDC; phosphoenolpyruvate carboxykinase, PCK; pyruvate carboxylase, PYC; pyruvate kinase, PYK. Multi-step reactions are presented by dashed arrows in related color. Black dashed arrows represent metabolite transfer. The Figure was created with BioRender.

1 The process of utilizing and metabolizing acetate for biochemical production starts with the
2 transportation of acetate from the external environment into the cell, continues with the
3 assimilation of acetate to acetyl-CoA, and at the end, the chemicals formatted from acetyl-CoA.
4 The acidity level within the moderately basic cellular fluid, typically with a pH value between 7.5
5 and 7.6, significantly exceeds the pKa value of HAc. Thus, acetic acid increases intracellular
6 acidity to some extent by dividing into an acetate anion (Ac^-) and a hydrogen ion (H^+) [11]. Acetic
7 acid can be toxic to cells, even at concentrations less than 5 g/L [214]. Other than the toxicity and
8 proton imbalance, there are more theories explaining the inhibitory effect of acetate on cell growth.
9 These include (i) alterations in membrane permeability and integrity; (ii) changes in amino acid
10 metabolism, where weak acids hinder the use of specific amino acids and the production of
11 methionine, leading to the buildup of toxic cysteine; and (iii) induced programmed cell death,
12 where high-concentration acetate causes accumulation of reactive oxygen species and impairs
13 energy metabolism in mitochondria, leading to chromatin and nuclear DNA denaturation and
14 subsequent programmed cell death [216].

15 When microorganisms utilize acetate as the sole carbon source, it is first converted to acetyl-CoA,
16 primarily achieved through two enzymatic routes. The first route involves the formation of an
17 intermediate, acetyl-adenosine monophosphate (acetyl-AMP), which subsequently converts to
18 acetyl-CoA [214]. This pathway requires two moles of ATP due to forming AMP and ADP,
19 marking it as a more energetically expensive route. On the other hand, the acetate kinase-
20 phosphotransacetylase (AckA-Pta) catalyzes acetate to acetyl-phosphate first and then converts it
21 to acetyl-CoA. It represents a reversible mechanism allowing bidirectional conversion between
22 acetate and acetyl-CoA. This pathway consumes only one mole of ATP, making it less energy-
23 demanding than the ACS pathway. Nevertheless, the ACS pathway possesses a high affinity for
24 acetate, around 35 times higher than the AckA-Pta pathway, thus playing a critical role in efficient
25 acetate assimilation, particularly in low-acetate conditions. Besides, despite its role in acetate
26 production and consumption, the AckA-Pta pathway exhibits a lower affinity for acetate, primarily
27 contributing to acetate production overconsumption [11].

28 An alternative route exists in certain bacteria, such as *Pseudomonas sp.* and acetic acid bacteria,
29 involving the enzyme succinyl-CoA: acetate CoA-transferase (SCACT). This mechanism
30 eliminates ATP consumption, using succinyl-CoA to convert acetate into acetyl-CoA. Therefore,
31 the SCACT pathway is a significant supplement or alternative to the ACS and AckA-Pta pathways,
32 especially under conditions where these two are non-functional or absent. These acetate
33 assimilation pathways, including aerobic and anaerobic mechanisms, are widespread across
34 several microbial species and constitute the first step of acetate metabolism [214]. Understanding
35 these metabolic routes and their energetic requirements enriches our knowledge of microbial
36 physiology and aids in industrial biotechnology applications by optimizing acetate metabolism in
37 host organisms like *E. coli* [217].

38 Acetyl-CoA, derived from acetate, plays a pivotal role as a precursor for extending carbon length,
39 and it is primarily incorporated into two metabolic pathways: the tricarboxylic acid (TCA) cycle
40 or the glyoxylate shunt, leading to an increase from C₂ to C₄ carbon compounds. Notably, the
41 glyoxylate shunt significantly impacts cell growth when acetate is utilized as the primary carbon
42 source. This pathway divides isocitrate into glyoxylate and succinate via isocitrate lyase (ICL).
43 Following this, glyoxylate is transformed into malate using another acetyl-CoA molecule [218].
44 Both succinate and malate are crucial to the TCA cycle, being further oxidized to form fumarate
45 and oxaloacetate (OAA), which aid energy generation and higher carbon compound synthesis.

1 Within the TCA cycle, the transition from isocitrate to α -ketoglutarate, facilitated by isocitrate
2 dehydrogenase (IDH), represents an essential step that vies with ICL, thereby affecting carbon flux
3 distribution. Both the glyoxylate shunt and the TCA cycle play a crucial role in acetate absorption
4 due to their role in energy generation and carbon movement [219].

5 Nevertheless, acetate is less preferable to glucose as a carbon source when generating ATP and
6 NADPH for most acetate-utilizing bacteria. It is worth noting that acetate yields a significantly
7 lower energy content, with 10 ATPs per mol, compared to 38 ATPs per mol for glucose [220].
8 Consequently, acetate's low energy content might be a limiting factor for its absorption and cell
9 growth. Given that ATP or NADPH is required for most chemical synthesis from acetate, ensuring
10 efficient energy supplementation through metabolic engineering or other techniques is vital for
11 acetate assimilation and biochemical production. To manufacture biochemicals effectively from
12 acetate, certain traits are indispensable in these strains: a high level of acetate tolerance, improved
13 activation of acetate to acetyl-CoA, enhanced acetate assimilation, and efficient chemical
14 production [221].

15 In recent years, various microbes have been metabolically engineered to create biochemicals, with
16 acetate serving as the carbon source, producing various substances, including acids, alcohols,
17 esters, and other chemicals. In the context of C₂-biomanufacturing, the use of acetate as a feedstock
18 has been extensively researched, including native acetogens and genetically modified organisms,
19 can utilize acetate. These include strains such as *E. coli* [222], *Corynebacterium glutamicum* [223],
20 *Pseudomonas putida* [224], *S. cerevisiae* [225], *Cryptococcus curvatus* [226], *Rhodotorula glutinis*
21 [227], *Yarrowia lipolytica* [228], and *Aspergillus oryzae* [229], among others. Besides, over 20 value-
22 added chemicals have been produced, with acetate as the main carbon source. Notable examples
23 include poly(3-hydroxybutyrate) (PHB) [230], aromatic amino acids [231], lipids [232], acetate esters
24 [233], and natural products such as isoprenoids that are derived from acetyl-CoA [234]. However, a
25 significant challenge in using acetate is its low concentration (typically 20-30 g/L) when produced
26 from numerous upstream waste utilization processes. Such dilute feedstock solutions further dilute
27 when added into the microbial culture, potentially leading to a low product titer, particularly in
28 batch operations. In response to this challenge, Xu et al. proposed an innovative approach using a
29 continuous bioreactor with a cell recycling unit to produce triacylglycerides (TAGs), which are
30 intracellular products that accumulate in the bioreactor with host cells such as *Yarrowia lipolytica*
31 [6]. Another known strategy is ALE to increase the acetate tolerance in microorganisms. This leans
32 with the fact that microorganisms produce acetic acid during glucose fermentation and consume
33 this acetic acid when carbon is limited. This consumption may be increased by adding suitable
34 acetic acid salts to balance pH, which makes candidate organisms tolerate and consume acetate
35 more [219].

36

37 **2.2.2.2. Ethanol**

38 Ethanol (C₂H₅OH), a simple alcoholic compound has a broad range of applications spanning
39 various industries, including chemical, food, medical, and health. It represents an economically
40 viable raw material. Nonetheless, its primary sources, such as corn, are starch-based, raising
41 concerns due to their competition with food production and considerable CO₂ emissions during
42 processing. The compound can be generated from renewable sources such as biomass
43 fermentation, using sugars, starch, or cellulose as raw materials [235]. It has been established in
44 product manufacturing of beverages, flavors, fuels, dyes, disinfectants, antifreeze, and paint [236].

1 Despite its versatile utilization, the exploration of ethanol as a metabolic engineering feedstock is
2 not yet thoroughly investigated [237].

3 The conversion of ethanol into productive biochemical pathways typically ensues through two
4 main mechanisms. The initial route involves the enzymatic action of alcohol dehydrogenase and
5 acetaldehyde dehydrogenase, transforming ethanol into acetaldehyde and subsequently into acetyl-
6 CoA. Alternatively, a route more prevalent in eukaryotes, such as *S. cerevisiae*, initiates the
7 transformation of ethanol to acetate using acetaldehyde as an intermediary, which is then
8 integrated into acetyl-CoA. Microbial species like *Clostridium acetobutylicum* and *E. coli*
9 predominantly utilize the former pathway, whereas in *S. cerevisiae*, the oxidation of ethanol to
10 acetaldehyde is facilitated by alcohol dehydrogenase enzymes, specifically Adh2 or Adh4. This
11 acetaldehyde is then converted to acetate via aldehyde dehydrogenase enzymes, namely Ald4 and
12 Ald5. These processes generate NADH, which is crucial for ATP regeneration, thus providing a
13 higher theoretical yield from ethanol than acetate for reducing product production. However, a
14 significant caveat is that ethanol assimilation can be heat-intensive and oxygen-dependent,
15 potentially amplifying the overall production expenditure [9,238].

16 In some synthetic hosts like *E. coli*, metabolic engineering has been deployed to optimize ethanol
17 assimilation. This includes the manipulation of the acetaldehyde dehydrogenase and alcohol
18 dehydrogenase enzymes for efficient ethanol growth [239]. These engineered strains can be further
19 refined to produce valuable products like polyhydroxy butyrate (PHB) or prenol from ethanol [230].
20 Ethanol can also be utilized as the sole or co-substrate with glucose to produce valuable
21 compounds like the artemisinin precursor in *S. cerevisiae* [240]. Further strategies have explored
22 the genetic modification of *E. coli* strains for ethanol utilization. These modifications often
23 introduce ethanol catabolism pathways into *E. coli*, such as those found in *Aspergillus nidulans*
24 [241]. By expressing different alcohol dehydrogenases and aldehyde dehydrogenases in *E. coli*,
25 there's potential for efficient ethanol utilization and production of value-added products from
26 ethanol [239]. One example is introducing a two-step ethanol utilization pathway (EUP) into *E. coli*
27 has shown promising results in generating polyhydroxy butyrate (PHB), an acetyl-CoA-derived
28 product [237]. The engineered strain demonstrated robust growth on ethanol as the sole carbon
29 source. It produced 1.1 g/L of PHB from 10 g/L of ethanol in 96 h with supplementation of a small
30 amount of amino acids. To expand the range of potential acetyl-CoA-derived compounds from
31 ethanol, this EUP was coupled with a prenol biosynthetic pathway. The resulting strain produced
32 24 mg/L of prenol from a medium containing ten g/L of ethanol in 48 h. As an exciting new
33 approach, C2-biomanufacturing using ethanol as the sole carbon source has opened the possibility
34 of producing acetyl-CoA-derived Significantly, this strategy has led to a higher theoretical yield
35 for producing acetyl-CoA-derived chemicals from ethanol than other sources. For example, the
36 PHB yield from ethanol was 2-fold higher than that from acetate [230]. Further technological
37 developments and metabolic engineering strategies will likely enhance these processes, making
38 CO₂-derived ethanol an abundant, renewable, and affordable substrate to fuel ethanol-based
39 fermentation processes [242].

40 Taking together, both C₁ and C₂ chemicals derived from the electrochemical fixation of CO₂ can
41 serve as the carbon and energy sources for further biomanufacturing with various microorganisms.
42 The major biochemical reactions to generate ATP from the most common C₁/C₂ substrates are
43 summarized in **Table 2**, which may potentially provide guidance for further pathway design and
44 bioconversion yield predictions in future.

1 **Table 2.** ATP balance for the most common C₁ and C₂ chemicals, calculated regarding **Figure 4 and 5.**

Substrate	Key enzyme	Major biochemical reactions			Eq. ATP/substrate
		Reaction 1	Reaction 2	Reaction 3	
CO ₂	N/A	CO ₂ + RuBP + 2NADPH + 2ADP + 2Pi → 2GAP + 2NADP + 2ATP	N/A	N/A	3.3
CO	N/A	CO + 5-Methyl-THF → AcCoA	N/A	N/A	6.0
Methane (CH ₄)	N/A	CH ₄ + O ₂ + NADH → HCHO + NAD	HCHO + Xu5P + ATP → 2GAP + ADP + Pi	N/A	8.7
Methanol (CH ₃ OH or MeOH)	RuMp	MeOH + NADH → HCHO + NAD	HCHO + Ru5P + ATP → 2GAP + ADP + Pi	2GAP + 8ADP + Pi + 8NAD → 2AcCoA + 8ATP + 8NADH + 2CO ₂	8.7
	XuMp		HCHO + Xu5P + ATP → 2GAP + ADP + Pi	N/A	9.2
	Serine		HCHO + FAD + 3ATP + 2NADPH + 2NADH + Glycine + CO ₂ → AcCoA + FADH ₂ + 3ADP + 2NADP + 2NAD + Glyoxylate	N/A	-6.0
Formate (HCOOH)	CBB	HCOOH + NAD → CO ₂ + NADH	RuBP + CO ₂ + 2NADPH + 2ADP + Pi → 2GAP + 2NADP + 2ATP	2GAP + 8ADP + Pi + 8NAD → 2AcCoA + 8ATP + 8NADH + 2CO ₂	9.2
		HCOOH + ATP → 10-Formyl-THF + NADPH + NADH + CO ₂ + FADH ₂ → AcCoA + NADP + NAD + FAD		N/A	5.0
Acetate (CH ₃ COOH or OAc)	Pta/ackA	OAc + ATP → ADP + AcP	AcP + CoA → AcCoA + pi	N/A	11
	ACS	OAc + ATP + CoA → AcCoA + AMP + PPi	N/A	N/A	11
Ethanol (CH ₃ CH ₂ OH or EtOH)	CYP2E1	EtOH + NADPH + H + O ₂ → MeCHO + NADP + H ₂ O	MeCHO + NADH → NAD + OAc	OAc + ATP → ADP + AcP; AcP + CoA → AcCoA + pi	5
				OAc + ATP + CoA → AcCoA + AMP + PPi	5

	ADH	EtOH + NAD \rightarrow MeCHO + NADH		OAc + ATP \rightarrow ADP + AcP; AcP + CoA \rightarrow AcCoA + pi	11
				OAc + ATP + CoA \rightarrow AcCoA + AMP + Ppi	11
	Catalase	EtOH + H ₂ O ₂ \rightarrow MeCHO + H ₂ O		OAc + ATP \rightarrow ADP + AcP; AcP + CoA \rightarrow AcCoA + pi	8
				OAc + ATP + CoA \rightarrow AcCoA + AMP + Ppi	8

1

2

3 2.2.3. Biomanufacturing with syngas via gas fermentation

4 In addition to the CO₂-derived liquid C₁/C₂ chemicals that can be used as the alternative feedstock
 5 for biomanufacturing of fuels and chemicals, synthesis gas, or syngas, which consists of carbon
 6 monoxide (CO), hydrogen (H₂), carbon dioxide (CO₂), nitrogen (N₂), and some higher
 7 hydrocarbons can also be used as an economical feedstock option. The percentage of CO in syngas
 8 can range between 5 to 60%, and the gas can be steam reformed to enrich the H₂ content [243]. CO
 9 can be obtained from CO₂ via electrochemical conversion and H₂ can be produced as a product of
 10 electrolysis process with water. Syngas can also be produced from biomass gasification, an
 11 endothermic process that occurs at temperatures of 750–800 °C and utilizes materials like
 12 lignocellulosic biomass and municipal solid waste as feedstocks [244,245]. Despite its promise, the
 13 process has some drawbacks. It requires a considerable input of heat energy, and the feedstock
 14 must maintain a degree of homogeneity for efficient operation [246]. Heterogeneous feedstocks can
 15 lead to wide variations in product composition, necessitating pre-treatment and post-treatment
 16 steps that can escalate operational costs [247]. Conversely, the thermochemical process involves
 17 gasifying carbonaceous materials into syngas and converting it into biofuels [248]. Syngas can be
 18 converted to diesel, methanol, or ethanol using the Fischer-Tropsch (FT) process, which uses
 19 chemical catalysts. Still, this method requires high temperatures and pressures, making it less
 20 feasible [247]. Another option is using microbial catalysts to convert syngas into a variety of
 21 products, like alcohols and carboxylic acids, at milder conditions [249,250].

22 However, each of these platforms presents unique advantages and disadvantages. Biochemical
 23 conversion, for example, struggles with high production costs and energy demands. On the other
 24 hand, the thermochemical conversion process, while capable of utilizing all biomass components
 25 (including lignin), faces challenges like gas-liquid mass transfer limitation, low productivity, and
 26 elevated production costs [251]. Combining the two conversion processes, such as electrochemical
 27 conversion CO₂ into CO, biomass gasification, and syngas fermentation, could be a solution to
 28 these problems. Syngas fermentation, compared to Fischer-Tropsch Synthesis (FTS), is seen as a
 29 superior option due to its operational flexibility, end product variety, and cost-effectiveness. This
 30 technology could serve as a sustainable way of supplying feedstock for fermentation. Integrating
 31 gasification with syngas fermentation could bring together the benefits of thermochemical (full
 32 conversion of lignocellulosic biomass) and biochemical (flexibility in CO/H₂ ratio of the substrate

1 and end products) technologies, mitigating the complexity of pre-treatment steps and the high
2 enzyme and operational costs of biomass valorization [252]. This approach has potential to be
3 directly implemented in industries that release high levels of exhaust gases, like steel
4 manufacturing, oil refining, and petrochemistry.

5 However, syngas fermentation processes still have challenges to overcome, such as bacterial
6 biomass washout, low gas solubility, and limited mass transfer rates at the gas-liquid interface.
7 These challenges demand further research and innovation to boost microbial activity or limit the
8 exposure of microorganisms to excessive shear stress, ultimately reducing operational costs [253].
9 Microbial conversion of CO₂, H₂, and CO₂ to acids and alcohols via acetogenic bacteria operates
10 via the reductive acetyl-CoA or WLP, as mentioned in earlier sections. These biological methods
11 offer several advantages such as high tolerance to trace contaminants, high product specificity, and
12 being sustainable, environmentally friendly, and cost-effective [254]. Despite these obstacles, gas
13 fermentation offers a promising route for sustainable fuel production and waste recycling. It
14 provides feedstock flexibility, non-food biomass utilization, and total carbon utilization, including
15 lignin from woody biomass, offering significant advantages over sugar fermentation. Moreover, if
16 the process limitations can be overcome, gas fermentation could provide a more selective, robust,
17 flexible, and cost-effective option than the thermocatalytic Fischer-Tropsch synthesis, suggesting
18 it's a promising technology for mitigating global warming and fulfilling increased liquid fuel
19 demand, especially in transportation [255].

20 **2.2.4. Current attempts to industrialize microbial CO₂ fixation**

21 The dream of establishing a CO₂-based biorefinery is a long-standing challenge. The rise in CO₂,
22 primarily due to anthropogenic activities, has significant ecological impacts. There's a pressing
23 demand to develop technologies for sustainable capture and utilization of CO₂. In this regard,
24 renewable energy generation and usage have garnered significant interest in achieving a carbon-
25 neutral environment. Microbial fermentation is one of the best ways to reach this aim and use of
26 CO₂-based feedstocks as substrates has been extensively explored to produce various valuable
27 products. These include food ingredients like alternative proteins, lipids, starch, nutraceuticals,
28 specialty chemicals such as flavors and fragrances, pharmaceuticals, agrochemicals like plant
29 hormones, and bioenergy sources, including fuels and hydrogen [256]. Various methods like
30 biological CO₂ conversion using microbes, chemo-catalytic CO₂ conversion via organic or
31 inorganic catalysts, light-induced or electrocatalytic CO₂ conversion, and catalytic hydrogenation
32 of CO₂ have demonstrated the capability to convert CO₂ into bio-based products [257]. However,
33 from a large-scale perspective, none of these methods can merely resolve CO₂ capture and usage
34 problems.

35 LanzaTech has successfully deployed gas fermentation technology to produce carbon-intelligent
36 products ranging from monomeric and polymeric materials to fragrances, solvents, chemicals, and
37 fuels [258]. They produce substrates like acetone, ethanol, and lactate from waste syngas and flue
38 gas using acetogens and autotrophic bacteria, where CO₂, CO, and H₂ serve as carbon and reducing
39 energy sources [255]. LanzaTech's partnerships include major industrial players like Shougang
40 Group's Jingtang Steel Mill, Arcelor Mittal Steel Company, Indian Oil Corporation, Tata Steel
41 Europe, and more, demonstrating its global reach and impact [259]. Additionally, LanzaTech's
42 work extends to converting CO₂ to acetone and isopropanol at an industrial pilot scale [71] and
43 producing starch in the form of amylose and amylopectin in a cell-free system [53]. Similarly, the
44 Siemens Energy and Evonik partnership established the world's first fully automated CO₂
45 electrolyzer in 2020, producing syngas to make butanol and hexanol with *Clostridium* strain in a

1 2,000 L bioreactor. This project aims to produce 10,000 tons of butanol annually using 25,000 tons
2 of CO₂ [260].

3 High-profile CO₂ capture projects have been developed in Italy, Germany, New Zealand, the
4 Netherlands, the United Kingdom, Canada, China, and the USA. These initiatives underscore the
5 global effort to harness CO₂ for sustainable industrial applications [23]. Numerous start-up
6 companies including Air Protein Inc. [261], Deep Branch Biotechnology Ltd. [262], Kiverdi [263],
7 Solar Foods [264], and NovoNutrients [265], are notable in biotechnological CO₂ utilization for
8 producing protein and food ingredients. The success of these ventures hinges on various factors,
9 including the cost of hydrogen, feedstock availability, market size, and growth rates. Continuous
10 technological development, economies of scale, supportive policies, and market incentives, are
11 crucial for advancing biotechnological utilization and valorization of CO₂.

12 **3. Challenges and Future Perspectives**

13 **3.1. Challenges for Biomanufacturing with Direct Fixation of CO₂**

14 The conversion of inorganic carbon (CO₂) into organic compounds offers a promising strategy to
15 mitigate the greenhouse effect and furnish sustainable resources. This method has potential
16 implications for addressing climate change and utilizing CO₂ as an economical substrate for
17 producing fuels, chemicals, food ingredients, pharmaceuticals, and industrial materials. The rapid
18 advances in chemical, electrochemical, and biotechnological research methods and tools indicate
19 the imminent identification of novel carbon-fixing enzymes and pathways, which makes it feasible
20 for directly fixing and converting CO₂ into desired fuels or chemical products. However, despite
21 these discoveries, the current natural or engineered carbon fixation systems are plagued by
22 inefficiencies and a lack of adaptability for genetic modifications, making them inadequate for
23 industrial applications. There are several major challenges to be addressed before the one-step or
24 direct fixation of CO₂ strategy can be applied in large scale applications for high-yield production
25 of fuels and chemicals from CO₂:

- 26 1) Only low energy utilization efficiency can be achieved when light is used as the energy source
27 to fix CO₂. Green plants, algae, and certain bacteria are capable of using sunlight via the
28 photosynthesis process to capture and fix CO₂ into carbohydrates, but at low energy efficiency,
29 with less than 1% of the sunlight energy stored in the biosynthesized chemicals [5,266].
- 30 2) Energy-intensive chemicals such as H₂ gas can be used to fix CO₂ and providing the reducing
31 power to convert CO₂ into desired carbohydrate products, but there are concerns of extra
32 material cost, technical challenges of using gas for fermentation, increased process complexity,
33 and operating safety due to the use of H₂ gas or similar energy-intensive materials.
- 34 3) A very limited number of microbial hosts, genetic manipulation methods and tools, and
35 pathway engineering strategies are available for more generalized applications of direct CO₂
36 fixation and conversion. Many synthetic pathways for direct CO₂ fixation face major
37 challenges, such as enzymes with toxicity to host cells or with non-compatible optimum
38 temperatures. Innovations such as the allyl-CoA carboxylase/reductase, which boasts an
39 activity rate 37 times that of the CBB cycle, show promise in addressing this [26]. Introducing
40 mechanisms to concentrate carbon also seems to be a viable strategy to enhance the carbon
41 flux in these pathways. With synthetic biology's progress, exploring and designing novel
42 pathways might be the key. Predictions even suggest that certain pathways, like those using

1 phosphoenolpyruvate carboxylase, could potentially offer 2 to 3 times the carbon fixation rate
2 of the Calvin cycle [56].

3 4) Microbial electrosynthesis (MES) can be used to produce certain fuels or valuable organic
4 acids [92-94] by utilizing a biofilm on an electrode as a catalyst to directly reduce CO₂ to the
5 products [23], but the species of the microorganisms and the categories of the fuels and
6 chemicals that can be produced are very limited. Acetate is the current major product and its
7 production titer and yield are still too low, which significantly increases the downstream
8 recovery cost [267]. In addition, there is strict requirement for the materials that can be used for
9 cathode. More challenges for further process design and scale-up are expected for large-scale
10 applications in future [267].

11

12 **3.2. Challenges for Biomanufacturing with CO₂-Derived C₁/C₂ Chemicals**

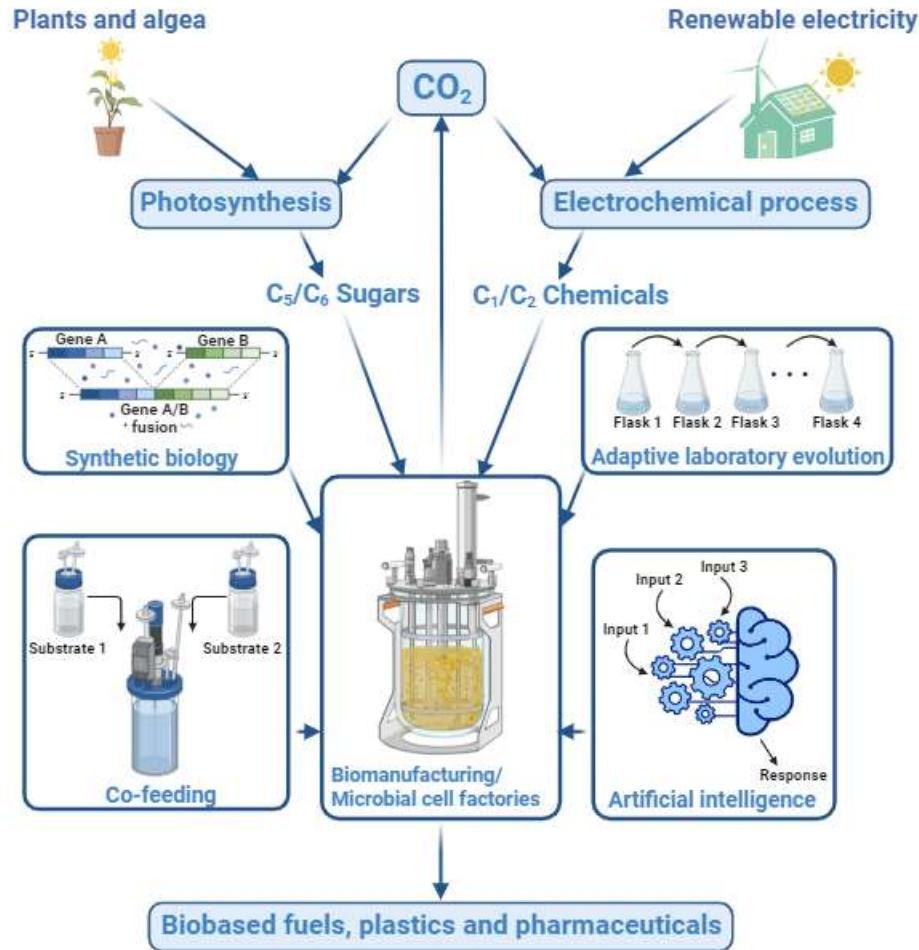
13 Due to the overall low energy efficiency and/or product yield from the biomanufacturing process
14 with one-step/direct CO₂ fixation, the two-step CO₂ fixation and conversion strategy is considered
15 more promising for future biomanufacturing of various fuels and chemicals, which uses C₁/C₂
16 substrates derived from CO₂ via electrochemical catalysis. However, there are also several major
17 challenges need to be addressed:

18 1) Mass transfer challenges limits the microbial fermentation productivity when the CO₂-derived
19 C₁ gases, such as CO or CH₄, are used as the substrate. Metabolic engineering strategies for
20 using appropriate microorganisms to metabolize the C₁ gases are also to be established and
21 further optimized. In addition, safety concerns are also another challenge that may limit the
22 use of CO for biomanufacturing.

23 2) Though formic acid and acetic acid can be used as the substrate for biomanufacturing, most
24 current electrochemical catalysis processes can only fix CO₂ into the form of formate or acetate
25 salts in aqueous solution, which need to be further treated with acid and base and go through a
26 complicated purification process to obtain the acid products so that they can be fed into the
27 bioreactor for microbial fermentation. There has been progress in electrochemically fix CO₂
28 into nearly pure formic acid [268], but the productivity needs to be further improved for large
29 scale application. Comparing to the electrochemical reduction of CO₂ into formic acid,
30 converting CO₂ into acetic acid at high yield is still a challenge [269].

31 3) Direct feeding too much formic acid or acetic acid into a bioreactor may cause sudden acidic
32 pH spikes in fermentation and kill the microbial cells. Therefore, new formic/acetic acid
33 feeding strategies should be developed to avoid/minimize pH spikes in a bioreactor while
34 providing enough substrate(s) for cell growth and product formation [270,271].

35 4) Methanol and ethanol can be used as fermentation substrates with high energy densities, but
36 high concentrations of the alcohol substrates may cause toxicity to the microbial cells. In
37 addition, further metabolic engineering strategies for efficient assimilation of methanol and/or
38 ethanol should be explored for significantly higher product yield.


39

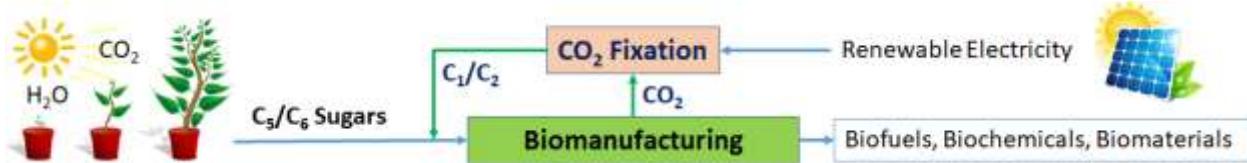
40 **3.3. Future Perspectives for Biomanufacturing with CO₂**

41 The overuse of fossil oil-based or -derived fuels, chemicals, and materials has led to increased
42 carbon emissions, which becomes one of the major contributors to global climate change.

1 Biomanufacturing with renewable or waste feedstocks is considered as a promising and sustainable
2 route to replace the current petrochemical methods for producing all fuels, chemicals, and
3 materials that are needed in our daily life. Feedstock or raw materials, typically obtained from
4 land-based biomass in the format of starch, sugars, and fats, contribute to a significant portion of
5 the biomanufacturing product cost. Using CO₂ or CO₂-derived chemicals as biomanufacturing
6 feedstock not only reduces the material cost, but also contributes to the global effort in reducing
7 carbon emissions and achieving the carbon-neutral or -negative goal. While significant progresses
8 have been achieved to demonstrate the feasibility of using one-step or two-step strategies for
9 biomanufacturing with CO₂, major challenges and technical barriers still exist, as described earlier.
10 **Figure 6** shows a brief summary of using various methods that have been developed or will be
11 developed for using CO₂ as feedstock for biomanufacturing. The following research efforts and
12 perspectives will be expected in future:

- 13 1) Using advanced synthetic biology to create new microbial cell factories to utilize CO₂ and
14 CO₂-derived chemicals for high-yield biomanufacturing: Researchers are now at the forefront
15 of devising more efficient synthetic systems. This involves engineering pivotal enzymes and
16 transferring whole or partial carbon fixation pathways into heterotrophic cells, enabling them
17 to perform carbon fixation. A testament to these efforts includes the creation of pathways like
18 the MCG pathway and the CETCH cycle using different carboxylases [26]. Although the
19 enhancement in carbon fixation rate remains modest, these innovations may lead to designing
20 more adept systems. Host selection also serves a challenge to keep CO₂ fixation sustainable.
21 For example, most CO₂-fixing microbes cannot tolerate high CO₂ concentrations, necessitating
22 research into strains that can endure and efficiently process higher levels of CO₂ or CO₂-
23 derived substrates. Adaptive laboratory evolution (ALE) methods may be applied to help
24 develop more robust production strains that are suitable for large scale applications.
- 25 2) Using artificial intelligence (AI) to guide the discoveries of new strains, metabolic pathways,
26 enzymes, and fermentation process controls that may lead to complete bioconversion of CO₂
27 or CO₂-derived substrates [272-274]: This may also help discover new valuable products that
28 may be produced from the pathways using CO₂ or having CO₂ as the major intermediates.
29 More advanced process, such as continuous biomanufacturing with extremely high yield and
30 productivity, can also be developed [8].
- 31 3) Exploring a cofeeding strategy that uses a mixed C₁ and C₂ substrates for biomanufacturing:
32 Current electrochemical reduction of CO₂ focuses on maximizing the production of a single
33 C₁/C₂ product at high yield and selectivity. However, the microbial cells may be capable of
34 using a mixed C₁ and C₂ feed for producing a desired fermentation product. This may help
35 relieve the burden in the electrochemical catalysis system and significantly reduce its cost.
36 More strain engineering and fermentation process development work should be conducted to
37 use a medium or feed with mixed C₁/C₂ substrates, including methanol, formic acid, ethanol,
38 and acetic acid, for various biomanufacturing purposes. A joint research effort between the
39 electrochemists, biologists, and chemical engineers are expected to achieve the goal.

1


2 **Figure 6.** A brief summary of various methods for using CO₂ as feedstock for biomanufacturing. All these
 3 methods serve promising approach to fix CO₂ more efficiently and obtain desired product by carbon-neutral
 4 or -negative biomanufacturing [162,272].

5

6 4) Developing an advanced process control strategy based on online monitoring/measurements
 7 of dissolved CO₂ in aqueous medium, exhausted CO₂ in off-gas flow, and the cellular redox
 8 levels: Technologies for measuring dissolved CO₂ in liquid and gas-phase CO₂ have been well
 9 established and become commercially available. Monitoring redox cofactor (NAD/NADH,
 10 NADP/NADPH, FAD/FADH₂) balance has also been investigated and demonstrated
 11 capability for advanced fermentation control to further improve the biomanufacturing yield
 12 [275-277]. In particular, nutrient-induced metabolic shift for high productivity and low-waste
 13 generation has been demonstrated in cultures of various cell lines and products. However, as
 14 the cells rapidly respond to culture conditions, it is crucial to closely monitor their metabolism
 15 for a controlled balance between the target metabolic pathway and unfavorable consequences.
 16 In particular, during biosynthesis of bioproducts from CO₂-derived C₁/C₂ substrates, additional
 17 reduction power (NADH, NADPH, FADH₂) has to be supplied to produce compounds whose
 18 degree of reduction is higher than that of the substrate [278,279]. Therefore, adjusting the
 19 metabolic status and pathways for improved NADH/NADPH in microbial cells is an effective
 20 method to enhance the biosynthesis of many bioproducts [278,280,281]. Besides, other

1 parameters like temperature (to consider O₂ and CO₂ solubility), pH (regarding the host
2 optimal pH), dissolved oxygen, and total inorganic carbon should be optimized for reaching
3 higher yields [282,283].

4 5) Developing a novel biomanufacturing platform that can produce fuels and chemicals from
5 sugars at zero or near zero life cycle carbon emissions via in-situ CO₂ recycling: Most
6 microbial fermentation processes that use C₅/C₆ sugars as substrates have nearly 50% or more
7 carbon loss due to the need for metabolizing a portion of the sugar substrate into CO₂ to
8 generate energy (ATP) and cofactors for cell growth and biosynthesis. To date, there has been
9 very rare research aiming for biomanufacturing with direct recycling of the exhausted CO₂.
10 The capturing and fixation of CO₂ into C₁/C₂ chemicals can be achieved via similar
11 electrochemical catalysis processes [116,284]. There are several trials to combine
12 electrochemical reduction of CO₂ and the fermentation of its reduced products. However, there
13 is still a long way to go for the optimization of this combined system to work effectively [285].
14 The developed new biomanufacturing platform should employ newly engineered strains that
15 can co-utilize C₅/C₆ sugars and CO₂-derived C₁/C₂ chemicals for producing the desired
16 fermentation products as shown in **Figure 7**. Recycling the exhausted CO₂ back to
17 fermentation not only avoid/minimize the CO₂ release from the biomanufacturing processes,
18 but also maximize the use of the renewable feedstocks for significantly higher product yield.

19
20 **Figure 7.** A conceptual diagram for a novel biomanufacturing platform that can produce fuels and
21 chemicals from C₅/C₆ sugars at zero or near zero life cycle carbon emissions via in-situ CO₂ recycling.
22

23 4. Conclusion

24 This review summarized the most recent advancements and strategies in CO₂ fixation and
25 conversion into industrially valuable chemicals. The path to efficient CO₂ fixation is fraught with
26 challenges, ranging from biological to technical. Nonetheless, the rapid advancements in synthetic
27 biology and multi-disciplinary collaborations offer a promising future for the field. Addressing
28 these challenges will provide avenues for sustainable resource generation and significantly
29 contribute to climate change mitigation. Continued research and innovation are vital to bring these
30 promising laboratory-level techniques to commercial reality and industrially available candidates
31 in addressing GHG emissions.

32 33 Acknowledgement

34 The authors would like to thank the financial support from the US. National Science Foundation
35 (Award No. 2133660) and NIH/NCCIH (Award No. 2R44AT010840).
36

1 **Author Contributions:**

2 Conceptualization, E.K. and D.X.; writing—original draft preparation, E.K., J.Q., A.W., and D.X.;
3 writing—review and editing E.K., J.Q., Y.Z., and D.X.; supervision, D.X.; project administration,
4 D.X.; funding acquisition, D.X. and Y.Z. All authors have read and agreed to the published version
5 of the manuscript.

6

7 **Conflicts of Interest:**

8 No conflicts of interest are declared by the authors.

9

10 **References**

1. Lemaire, O.N.; Jespersen, M.; Wagner, T. CO₂-Fixation Strategies in Energy Extremophiles: What Can We Learn From Acetogens? *Frontiers in Microbiology* **2020**, *11*, doi:10.3389/fmicb.2020.00486.
2. Hossain, M.F. Extreme Level of CO₂ Accumulation into the Atmosphere Due to the Unequal Global Carbon Emission and Sequestration. *Water, Air, & Soil Pollution* **2022**, *233*, 105, doi:10.1007/s11270-022-05581-1.
3. Bhat, P. Carbon needs to cost at least \$100/tonne now to reach net zero by 2050: Reuters poll. **2021**.
4. Baylin-Stern, A.; Berghout, N. Is carbon capture too expensive? *IEA, Paris* **2021**.
5. Claassens, N.J.; Sousa, D.Z.; Dos Santos, V.A.; de Vos, W.M.; van der Oost, J. Harnessing the power of microbial autotrophy. *Nat Rev Microbiol* **2016**, *14*, 692-706, doi:10.1038/nrmicro.2016.130.
6. Park, J.O.; Liu, N.; Holinski, K.M.; Emerson, D.F.; Qiao, K.; Woolston, B.M.; Xu, J.; Lazar, Z.; Islam, M.A.; Vidoudez, C. Synergistic substrate cofeeding stimulates reductive metabolism. *Nature Metabolism* **2019**, *1*, 643-651.
7. Liao, J.C.; Mi, L.; Pontrelli, S.; Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. *Nature Reviews Microbiology* **2016**, *14*, 288-304.
8. Xie, D. Continuous biomanufacturing with microbes — upstream progresses and challenges. *Current Opinion in Biotechnology* **2022**, *78*, 102793, doi:<https://doi.org/10.1016/j.copbio.2022.102793>.
9. Zhang, C.; Ottenheim, C.; Weingarten, M.; Ji, L. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. *Front Bioeng Biotechnol* **2022**, *10*, 874612, doi:10.3389/fbioe.2022.874612.
10. Schrader, J.; Schilling, M.; Holtmann, D.; Sell, D.; Filho, M.V.; Marx, A.; Vorholt, J.A. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. *Trends in Biotechnology* **2009**, *27*, 107-115, doi:10.1016/j.tibtech.2008.10.009.
11. Kiefer, D.; Merkel, M.; Lilge, L.; Henkel, M.; Hausmann, R. From acetate to bio-based products: underexploited potential for industrial biotechnology. *Trends in Biotechnology* **2021**, *39*, 397-411.
12. Peter, S.C. Reduction of CO₂ to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. *ACS Energy Letters* **2018**, *3*, 1557-1561, doi:10.1021/acsenergylett.8b00878.

1 13. Gomez Vidales, A.; Bruant, G.; Omanovic, S.; Tartakovsky, B. Carbon dioxide conversion to C1
2 - C2 compounds in a microbial electrosynthesis cell with in situ electrodeposition of nickel and
3 iron. *Electrochimica Acta* **2021**, *383*, 138349,
4 doi:<https://doi.org/10.1016/j.electacta.2021.138349>.

5 14. Bae, J.; Jin, S.; Kang, S.; Cho, B.-K.; Oh, M.-K. Recent progress in the engineering of C1-
6 utilizing microbes. *Current Opinion in Biotechnology* **2022**, *78*, 102836,
7 doi:<https://doi.org/10.1016/j.copbio.2022.102836>.

8 15. Iguchi, H.; Yurimoto, H.; Sakai, Y. Interactions of Methylotrophs with Plants and Other
9 Heterotrophic Bacteria. *Microorganisms* **2015**, *3*, 137-151, doi:10.3390/microorganisms3020137.

10 16. Chou, A.; Lee, S.H.; Zhu, F.; Clomburg, J.M.; Gonzalez, R. An orthogonal metabolic framework
11 for one-carbon utilization. *Nature Metabolism* **2021**, *3*, 1385-1399, doi:10.1038/s42255-021-
12 00453-0.

13 17. Yu, H.; Liao, J.C. A modified serine cycle in *Escherichia coli* converts methanol and CO₂ to two-
14 carbon compounds. *Nature Communications* **2018**, *9*, 3992, doi:10.1038/s41467-018-06496-4.

15 18. Chen, F.Y.H.; Jung, H.-W.; Tsuei, C.-Y.; Liao, J.C. Converting *Escherichia coli* to a Synthetic
16 Methylotroph Growing Solely on Methanol. *Cell* **2020**, *182*, 933-946.e914,
17 doi:<https://doi.org/10.1016/j.cell.2020.07.010>.

18 19. Antonovsky, N.; Gleizer, S.; Noor, E.; Zohar, Y.; Herz, E.; Barenholz, U.; Zelcbuch, L.; Amram,
19 S.; Wides, A.; Tepper, N.; et al. Sugar Synthesis from CO₂ in *Escherichia coli*. *Cell* **2016**, *166*,
20 115-125, doi:<https://doi.org/10.1016/j.cell.2016.05.064>.

21 20. Xia, P.-F.; Zhang, G.-C.; Walker, B.; Seo, S.-O.; Kwak, S.; Liu, J.-J.; Kim, H.; Ort, D.R.; Wang,
22 S.-G.; Jin, Y.-S. Recycling Carbon Dioxide during Xylose Fermentation by Engineered
23 *Saccharomyces cerevisiae*. *ACS Synthetic Biology* **2017**, *6*, 276-283,
24 doi:10.1021/acssynbio.6b00167.

25 21. Xi, Y.-l.; Chen, K.-q.; Li, J.; Fang, X.-j.; Zheng, X.-y.; Sui, S.-s.; Jiang, M.; Wei, P. Optimization
26 of culture conditions in CO₂ fixation for succinic acid production using *Actinobacillus*
27 *succinogenes*. *Journal of Industrial Microbiology and Biotechnology* **2011**, *38*, 1605-1605,
28 doi:10.1007/s10295-011-0952-5.

29 22. Zhang, Q.; Nurhayati; Cheng, C.-L.; Nagarajan, D.; Chang, J.-S.; Hu, J.; Lee, D.-J. Carbon
30 capture and utilization of fermentation CO₂: Integrated ethanol fermentation and succinic acid
31 production as an efficient platform. *Applied Energy* **2017**, *206*, 364-371,
32 doi:<https://doi.org/10.1016/j.apenergy.2017.08.193>.

33 23. Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in microbial CO₂ fixation and conversion
34 to value-added products. *Chemical Engineering Journal* **2020**, *390*, 124584,
35 doi:<https://doi.org/10.1016/j.cej.2020.124584>.

36 24. Morales, M.; Sánchez, L.; Revah, S. The impact of environmental factors on carbon dioxide
37 fixation by microalgae. *FEMS Microbiology Letters* **2018**, *365*, fnx262,
38 doi:10.1093/femsle/fnx262.

39 25. Ray, S.; Abraham, J.; Jordan, N.; Lindsay, M.; Chauhan, N. Synthetic, Photosynthetic, and
40 Chemical Strategies to Enhance Carbon Dioxide Fixation. *C* **2022**, *8*, doi:10.3390/c8010018.

41 26. Schwander, T.; Schada von Borzyskowski, L.; Burgen, S.; Cortina, N.S.; Erb, T.J. A synthetic
42 pathway for the fixation of carbon dioxide in vitro. *Science* **2016**, *354*, 900-904.

43 27. Santos Correa, S.; Schultz, J.; Lauersen, K.J.; Soares Rosado, A. Natural carbon fixation and
44 advances in synthetic engineering for redesigning and creating new fixation pathways. *Journal of*
45 *Advanced Research* **2023**, *47*, 75-92, doi:<https://doi.org/10.1016/j.jare.2022.07.011>.

46 28. Choi, K.R.; Ahn, Y.-J.; Lee, S.Y. Bacterial conversion of CO₂ to organic compounds. *Journal of*
47 *CO₂ Utilization* **2022**, *58*, 101929, doi:<https://doi.org/10.1016/j.jcou.2022.101929>.

48 29. Erb, T.J.; Zarzycki, J. A short history of RubisCO: the rise and fall (?) of Nature's predominant
49 CO₂ fixing enzyme. *Current Opinion in Biotechnology* **2018**, *49*, 100-107,
50 doi:<https://doi.org/10.1016/j.copbio.2017.07.017>.

1 30. Flamholz, A.I.; Prywes, N.; Moran, U.; Davidi, D.; Bar-On, Y.M.; Oltrogge, L.M.; Alves, R.;
 2 Savage, D.; Milo, R. Revisiting Trade-offs between Rubisco Kinetic Parameters. *Biochemistry*
 3 **2019**, *58*, 3365-3376, doi:10.1021/acs.biochem.9b00237.

4 31. Li, Z.; Xin, X.; Xiong, B.; Zhao, D.; Zhang, X.; Bi, C. Engineering the Calvin–Benson–Bassham
 5 cycle and hydrogen utilization pathway of *Ralstonia eutropha* for improved autotrophic growth
 6 and polyhydroxybutyrate production. *Microbial cell factories* **2020**, *19*, 1-9.

7 32. Davidi, D.; Shamshoum, M.; Guo, Z.; Bar-On, Y.M.; Prywes, N.; Oz, A.; Jablonska, J.;
 8 Flamholz, A.; Wernick, D.G.; Antonovsky, N.; et al. Highly active rubiscos discovered by
 9 systematic interrogation of natural sequence diversity. *The EMBO Journal* **2020**, *39*, e104081,
 10 doi:<https://doi.org/10.15252/embj.2019104081>.

11 33. Park, S.; Park, B.-R.; Jeong, D.; Park, J.; Ko, J.K.; Kim, S.-J.; Kim, J.-S.; Jin, Y.-S.; Kim, S.R.
 12 Functional expression of RuBisCO reduces CO₂ emission during fermentation by engineered
 13 *Saccharomyces cerevisiae*. *Process Biochemistry* **2023**, *134*, 286-293,
 14 doi:<https://doi.org/10.1016/j.procbio.2023.10.013>.

15 34. Martin, W.F. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution
 16 of biological energy conservation. *FEBS Letters* **2012**, *586*, 485-493,
 17 doi:<https://doi.org/10.1016/j.febslet.2011.09.031>.

18 35. Pu, X.; Han, Y. Promotion of Carbon Dioxide Biofixation through Metabolic and Enzyme
 19 Engineering. *Catalysts* **2022**, *12*, doi:10.3390/catal12040399.

20 36. Jang, Y.-S.; Kim, W.J.; Im, J.A.; Palaniswamy, S.; Yao, Z.; Lee, H.L.; Yoon, Y.R.; Seong, H.J.;
 21 Papoutsakis, E.T.; Lee, S.Y. Efforts to install a heterologous Wood-Ljungdahl pathway in
 22 *Clostridium acetobutylicum* enable the identification of the native tetrahydrofolate (THF) cycle
 23 and result in early induction of solvents. *Metabolic Engineering* **2023**, *77*, 188-198,
 24 doi:<https://doi.org/10.1016/j.ymben.2023.04.005>.

25 37. Orsi, E.; Nikel, P.I.; Nielsen, L.K.; Donati, S. Synergistic investigation of natural and synthetic
 26 C1-trophic microorganisms to foster a circular carbon economy. *Nature Communications* **2023**,
 27 *14*, 6673, doi:10.1038/s41467-023-42166-w.

28 38. Claassens, N.J.; Satanowski, A.; Bysani, V.R.; Dronsell, B.; Orsi, E.; Rainaldi, V.; Yilmaz, S.;
 29 Wenk, S.; Lindner, S.N. Engineering the reductive glycine pathway: a promising synthetic
 30 metabolism approach for c1-assimilation. In *One-Carbon Feedstocks for Sustainable
 31 Bioproduction*; Springer: 2022; pp. 299-350.

32 39. Gonzales, J.N.; Matson, M.M.; Atsumi, S. Nonphotosynthetic Biological CO₂ Reduction.
 33 *Biochemistry* **2019**, *58*, 1470-1477, doi:10.1021/acs.biochem.8b00937.

34 40. Song, Y.; Lee, J.S.; Shin, J.; Lee, G.M.; Jin, S.; Kang, S.; Lee, J.-K.; Kim, D.R.; Lee, E.Y.; Kim,
 35 S.C. Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl pathways for
 36 autotrophic growth of *Clostridium drakei*. *Proceedings of the National Academy of Sciences*
 37 **2020**, *117*, 7516-7523.

38 41. Bruinsma, L.; Wenk, S.; Claassens, N.J.; Martins dos Santos, V.A.P. Paving the way for synthetic
 39 C1 - Metabolism in *Pseudomonas putida* through the reductive glycine pathway. *Metabolic
 40 Engineering* **2023**, *76*, 215-224, doi:<https://doi.org/10.1016/j.ymben.2023.02.004>.

41 42. Kim, S.; Giraldo, N.; Rainaldi, V.; Machens, F.; Collas, F.; Kubis, A.; Kensy, F.; Bar-Even, A.;
 42 Lindner, S.N. Optimizing *E. coli* as a formatotrophic platform for bioproduction via the reductive
 43 glycine pathway. *Frontiers in Bioengineering and Biotechnology* **2023**, *11*,
 44 doi:10.3389/fbioe.2023.1091899.

45 43. Steffens, L.; Pettinato, E.; Steiner, T.M.; Eisenreich, W.; Berg, I.A. Tracking the Reversed
 46 Oxidative Tricarboxylic Acid Cycle in Bacteria. *Bio Protoc* **2022**, *12*, e4364,
 47 doi:10.21769/BioProtoc.4364.

48 44. Chen, C.-H.; Tseng, I.-T.; Lo, S.-C.; Yu, Z.-R.; Pang, J.-J.; Chen, Y.-H.; Huang, C.-C.; Li, S.-Y.
 49 Manipulating ATP Supply Improve in situ CO₂ recycling by reductive TCA cycle in engineered
 50 *Escherichia coli*. *3 Biotech* **2020**, *10*, doi:<https://doi.org/10.1007/s13205-020-2116-7>.

1 45. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of
2 life? *Annu Rev Microbiol* **2011**, *65*, 631-658, doi:10.1146/annurev-micro-090110-102801.

3 46. Erb Tobias, J. Carboxylases in Natural and Synthetic Microbial Pathways. *Applied and*
4 *Environmental Microbiology* **2011**, *77*, 8466-8477, doi:10.1128/AEM.05702-11.

5 47. Zhang, Y.; Su, M.; Chen, Y.; Wang, Z.; Nielsen, J.; Liu, Z. Engineering yeast mitochondrial
6 metabolism for 3-hydroxypropionate production. *Biotechnology for Biofuels and Bioproducts*
7 **2023**, *16*, 64, doi:10.1186/s13068-023-02309-z.

8 48. Min, Z.; Zhang, X.; Wu, W.; Xin, Y.; Liu, M.; Wang, K.; Zhang, X.; He, Y.; Fan, C.; Wang, Z.;
9 Xu, X. Crystal Structure of an Intramolecular Mesoacyl-Coenzyme A Transferase From the 3-
10 Hydroxypropionic Acid Cycle of Roseiflexus castenholzii. *Frontiers in Microbiology* **2022**, *13*,
11 doi:10.3389/fmicb.2022.923367.

12 49. Liu, Z.; Wang, K.; Chen, Y.; Tan, T.; Nielsen, J. Third-generation biorefineries as the means to
13 produce fuels and chemicals from CO₂. *Nature Catalysis* **2020**, *3*, 274-288, doi:10.1038/s41929-
14 019-0421-5.

15 50. Liu, L.; Schubert, D.M.; Könneke, M.; Berg, I.A. (S)-3-Hydroxybutyryl-CoA Dehydrogenase
16 From the Autotrophic 3-Hydroxypropionate/4-Hydroxybutyrate Cycle in *Nitrosopumilus*
17 *maritimus*. *Frontiers in Microbiology* **2021**, *12*, doi:10.3389/fmicb.2021.712030.

18 51. McLean, R.; Schwander, T.; Diehl, C.; Cortina, N.S.; Paczia, N.; Zarzycki, J.; Erb, T.J. Exploring
19 alternative pathways for the in vitro establishment of the HOPAC cycle for synthetic
20 CO₂ fixation. *Science Advances* **2023**, *9*, eadh4299,
21 doi:doi:10.1126/sciadv.adh4299.

22 52. Satanowski, A.; Dronsell, B.; Noor, E.; Vögeli, B.; He, H.; Wichmann, P.; Erb, T.J.; Lindner,
23 S.N.; Bar-Even, A. Awakening a latent carbon fixation cycle in *Escherichia coli*. *Nature*
24 *Communications* **2020**, *11*, 5812, doi:10.1038/s41467-020-19564-5.

25 53. Cai, T.; Sun, H.; Qiao, J.; Zhu, L.; Zhang, F.; Zhang, J.; Tang, Z.; Wei, X.; Yang, J.; Yuan, Q.
26 Cell-free chemoenzymatic starch synthesis from carbon dioxide. *Science* **2021**, *373*, 1523-1527.

27 54. Xiao, L.; Liu, G.; Gong, F.; Zhu, H.; Zhang, Y.; Cai, Z.; Li, Y. A minimized synthetic carbon
28 fixation cycle. *ACS Catalysis* **2021**, *12*, 799-808.

29 55. Liu, J.; Zhang, H.; Xu, Y.; Meng, H.; Zeng, A.-P. Turn air-captured CO₂ with methanol into
30 amino acid and pyruvate in an ATP/NAD (P) H-free chemoenzymatic system. *Nature*
31 *Communications* **2023**, *14*, 2772.

32 56. Bar-Even, A.; Noor, E.; Lewis, N.E.; Milo, R. Design and analysis of synthetic carbon fixation
33 pathways. *Proceedings of the National Academy of Sciences* **2010**, *107*, 8889-8894.

34 57. Liu, Z.; Shi, S.; Ji, Y.; Wang, K.; Tan, T.; Nielsen, J. Opportunities of CO₂-based biorefineries
35 for production of fuels and chemicals. *Green Carbon* **2023**, *1*, 75-84,
36 doi:<https://doi.org/10.1016/j.greanca.2023.09.002>.

37 58. Humphreys, C.M.; Minton, N.P. Advances in metabolic engineering in the microbial production
38 of fuels and chemicals from C1 gas. *Current Opinion in Biotechnology* **2018**, *50*, 174-181,
39 doi:<https://doi.org/10.1016/j.copbio.2017.12.023>.

40 59. Kato, Y.; Inabe, K.; Hidese, R.; Kondo, A.; Hasunuma, T. Metabolomics-based engineering for
41 biofuel and bio-based chemical production in microalgae and cyanobacteria: A review.
42 *Bioresource Technology* **2022**, *344*, 126196.

43 60. Farrokh, P.; Sheikhpour, M.; Kasaeian, A.; Asadi, H.; Bavandi, R. Cyanobacteria as an eco-
44 friendly resource for biofuel production: a critical review. *Biotechnology progress* **2019**, *35*,
45 e2835.

46 61. Ramey, C.J.; Barón-Sola, A.n.; Aucoin, H.R.; Boyle, N.R. Genome engineering in cyanobacteria:
47 where we are and where we need to go. *ACS synthetic biology* **2015**, *4*, 1186-1196.

48 62. Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: current status, challenges,
49 and optimization of a sustainable and renewable industry for biofuels, feed, and other products.
50 *Microbial cell factories* **2018**, *17*, 1-21.

1 63. Gimpel, J.A.; Henríquez, V.; Mayfield, S.P. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. *Frontiers in microbiology* **2015**, *6*, 1376.

2 64. Liu, C.; Colón, B.C.; Ziesack, M.; Silver, P.A.; Nocera, D.G. Water splitting–biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis. *Science* **2016**, *352*, 1210-1213.

3 65. Li, H.; Opgenorth, P.H.; Wernick, D.G.; Rogers, S.; Wu, T.-Y.; Higashide, W.; Malati, P.; Huo, Y.-X.; Cho, K.M.; Liao, J.C. Integrated electromicrobial conversion of CO₂ to higher alcohols. *Science* **2012**, *335*, 1596-1596.

4 66. Nybo, S.E.; Khan, N.E.; Woolston, B.M.; Curtis, W.R. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. *Metabolic Engineering* **2015**, *30*, 105-120, doi:<https://doi.org/10.1016/j.ymben.2015.04.008>.

5 67. Lu, J.; Brigham, C.J.; Gai, C.S.; Sinskey, A.J. Studies on the production of branched-chain alcohols in engineered *Ralstonia eutropha*. *Applied microbiology and biotechnology* **2012**, *96*, 283-297.

6 68. Bi, C.; Su, P.; Müller, J.; Yeh, Y.-C.; Chhabra, S.R.; Beller, H.R.; Singer, S.W.; Hillson, N.J. Development of a broad-host synthetic biology toolbox for *Ralstonia eutropha* and its application to engineering hydrocarbon biofuel production. *Microbial cell factories* **2013**, *12*, 1-10.

7 69. Kernan, T.; Majumdar, S.; Li, X.; Guan, J.; West, A.C.; Banta, S. Engineering the iron-oxidizing chemolithoautotroph *Acidithiobacillus ferrooxidans* for biochemical production. *Biotechnology and bioengineering* **2016**, *113*, 189-197.

8 70. Lee, H.; Bae, J.; Jin, S.; Kang, S.; Cho, B.-K. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. *Frontiers in Microbiology* **2022**, *13*.

9 71. Liew, F.E.; Nogle, R.; Abdalla, T.; Rasor, B.J.; Canter, C.; Jensen, R.O.; Wang, L.; Strutz, J.; Chirania, P.; De Tissera, S. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. *Nature biotechnology* **2022**, *40*, 335-344.

10 72. Yoon, J.; Oh, M.-K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. *Bioresource technology* **2022**, *344*, 126307.

11 73. Gleizer, S.; Ben-Nissan, R.; Bar-On, Y.M.; Antonovsky, N.; Noor, E.; Zohar, Y.; Jona, G.; Krieger, E.; Shamshoum, M.; Bar-Even, A. Conversion of *Escherichia coli* to generate all biomass carbon from CO₂. *Cell* **2019**, *179*, 1255-1263. e1212.

12 74. Kim, S.R.; Kim, S.-J.; Kim, S.-K.; Seo, S.-O.; Park, S.; Shin, J.; Kim, J.-S.; Park, B.-R.; Jin, Y.-S.; Chang, P.-S.; Park, Y.-C. Yeast metabolic engineering for carbon dioxide fixation and its application. *Bioresource Technology* **2021**, *346*, doi:<https://doi.org/10.1016/j.biotech.2021.126349>.

13 75. Liu, C.; Gallagher, J.J.; Sakimoto, K.K.; Nichols, E.M.; Chang, C.J.; Chang, M.C.; Yang, P. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. *Nano letters* **2015**, *15*, 3634-3639.

14 76. Hu, P.; Chakraborty, S.; Kumar, A.; Woolston, B.; Liu, H.; Emerson, D.; Stephanopoulos, G. Integrated bioprocess for conversion of gaseous substrates to liquids. *Proceedings of the National Academy of Sciences* **2016**, *113*, 3773-3778.

15 77. Meng, X.; Liu, L.; Chen, X. Bacterial photosynthesis: state-of-the-art in light-driven carbon fixation in engineered bacteria. *Current Opinion in Microbiology* **2022**, *69*, 102174, doi:<https://doi.org/10.1016/j.mib.2022.102174>.

16 78. Johnson, M.P. Photosynthesis. *Essays Biochem* **2016**, *60*, 255-273, doi:10.1042/ebc20160016.

17 79. Zhou, J.; Zhang, F.; Meng, H.; Zhang, Y.; Li, Y. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. *Metabolic engineering* **2016**, *38*, 217-227.

18 80. Nürnberg, D.J.; Morton, J.; Santabarbara, S.; Telfer, A.; Joliot, P.; Antonaru, L.A.; Ruban, A.V.; Cardona, T.; Krausz, E.; Boussac, A. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. *Science* **2018**, *360*, 1210-1213.

1 81. Work, V.H.; D'Adamo, S.; Radakovits, R.; Jinkerson, R.E.; Posewitz, M.C. Improving
2 photosynthesis and metabolic networks for the competitive production of phototroph-derived
3 biofuels. *Current Opinion in Biotechnology* **2012**, *23*, 290-297.

4 82. Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for
5 solar-to-chemical production. *Science* **2016**, *351*, 74-77.

6 83. Teng, Y.; Xu, Y.; Wang, X.; Christie, P. Function of biohydrogen metabolism and related
7 microbial communities in environmental bioremediation. *Frontiers in microbiology* **2019**, *10*,
8 106.

9 84. Lubitz, W.; Ogata, H.; Rudiger, O.; Reijerse, E. Hydrogenases. *Chemical reviews* **2014**, *114*,
10 4081-4148.

11 85. Sargent, F. The model [NiFe]-hydrogenases of *Escherichia coli*. *Advances in microbial
12 physiology* **2016**, *68*, 433-507.

13 86. Lamont, C.M.; Sargent, F. Design and characterisation of synthetic operons for biohydrogen
14 technology. *Archives of Microbiology* **2017**, *199*, 495-503.

15 87. White, G.F.; Edwards, M.J.; Gomez-Perez, L.; Richardson, D.J.; Butt, J.N.; Clarke, T.A.
16 Mechanisms of bacterial extracellular electron exchange. *Advances in microbial physiology* **2016**,
17 68, 87-138.

18 88. Van Kessel, M.A.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op den Camp, H.J.; Kartal, B.;
19 Jetten, M.S.; Lücker, S. Complete nitrification by a single microorganism. *Nature* **2015**, *528*,
20 555-559.

21 89. Kuyper, M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. *Nature
22 Reviews Microbiology* **2018**, *16*, 263-276.

23 90. Wang, R.; Lin, J.-Q.; Liu, X.-M.; Pang, X.; Zhang, C.-J.; Yang, C.-L.; Gao, X.-Y.; Lin, C.-M.; Li,
24 Y.-Q.; Li, Y. Sulfur oxidation in the acidophilic autotrophic *Acidithiobacillus* spp. *Frontiers in
25 microbiology* **2019**, *9*, 3290.

26 91. Figueira, I.; Coates, J. Microbial phosphite oxidation and its potential role in the global
27 phosphorus and carbon cycles. *Advances in Applied Microbiology* **2017**, *98*, 93-117.

28 92. Butler, C.S.; Lovley, D.R. How to sustainably feed a microbe: strategies for biological production
29 of carbon-based commodities with renewable electricity. *Frontiers in Microbiology* **2016**, *7*,
30 1879.

31 93. Chen, H.; Simoska, O.; Lim, K.; Grattieri, M.; Yuan, M.; Dong, F.; Lee, Y.S.; Beaver, K.;
32 Weliatte, S.; Gaffney, E.M. Fundamentals, applications, and future directions of
33 bioelectrocatalysis. *Chemical Reviews* **2020**, *120*, 12903-12993.

34 94. Bajracharya, S.; Srikanth, S.; Mohanakrishna, G.; Zacharia, R.; Strik, D.P.; Pant, D.
35 Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future
36 prospects. *Journal of Power Sources* **2017**, *356*, 256-273.

37 95. Liu, Z.; Xue, X.; Cai, W.; Cui, K.; Patil, S.A.; Guo, K. Recent progress on microbial
38 electrosynthesis reactor designs and strategies to enhance the reactor performance. *Biochemical
39 Engineering Journal* **2023**, *190*, 108745, doi:<https://doi.org/10.1016/j.bej.2022.108745>.

40 96. Bhagchandani, D.D.; Babu, R.P.; Sonawane, J.M.; Khanna, N.; Pandit, S.; Jadhav, D.A.; Khilari,
41 S.; Prasad, R. A comprehensive understanding of electro-fermentation. *Fermentation* **2020**, *6*, 92.

42 97. Zhen, G.; Lu, X.; Kumar, G.; Bakonyi, P.; Xu, K.; Zhao, Y. Microbial electrolysis cell platform
43 for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges
44 and future perspectives. *Progress in Energy and Combustion Science* **2017**, *63*, 119-145.

45 98. Das, S.; Ghangrekar, M. Value added product recovery and carbon dioxide sequestration from
46 biogas using microbial electrosynthesis. **2018**.

47 99. Gong, Y.; Ebrahim, A.; Feist, A.M.; Embree, M.; Zhang, T.; Lovley, D.; Zengler, K. Sulfide-
48 driven microbial electrosynthesis. *Environmental science & technology* **2013**, *47*, 568-573.

49 100. Leang, C.; Ueki, T.; Nevin, K.P.; Lovley, D.R. A genetic system for *Clostridium ljungdahlii*: a
50 chassis for autotrophic production of biocommodities and a model homoacetogen. *Applied and
51 environmental microbiology* **2013**, *79*, 1102-1109.

1 101. Mohanakrishna, G.; Vanbroekhoven, K.; Pant, D. Impact of dissolved carbon dioxide
2 concentration on the process parameters during its conversion to acetate through microbial
3 electrosynthesis. *Reaction Chemistry & Engineering* **2018**, *3*, 371-378.

4 102. Liu, H.; Song, T.; Fei, K.; Wang, H.; Xie, J. Microbial electrosynthesis of organic chemicals from
5 CO₂ by Clostridium scatologenes ATCC 25775 T. *Bioresources and Bioprocessing* **2018**, *5*, 1-
6 10.

7 103. Bajracharya, S.; Yuliasni, R.; Vanbroekhoven, K.; Buisman, C.J.; Strik, D.P.; Pant, D. Long-term
8 operation of microbial electrosynthesis cell reducing CO₂ to multi-carbon chemicals with a
9 mixed culture avoiding methanogenesis. *Bioelectrochemistry* **2017**, *113*, 26-34.

10 104. Gildemyn, S.; Verbeeck, K.; Slabbinck, R.; Andersen, S.J.; Prévoteau, A.; Rabaey, K. Integrated
11 Production, Extraction, and Concentration of Acetic Acid from CO₂ through Microbial
12 Electrosynthesis. *Environmental Science & Technology Letters* **2015**, *2*, 325-328,
13 doi:10.1021/acs.estlett.5b00212.

14 105. Sciarria, T.P.; Batlle-Vilanova, P.; Colombo, B.; Scaglia, B.; Balaguer, M.D.; Colprim, J.; Puig,
15 S.; Adani, F. Bio-electrorecycling of carbon dioxide into bioplastics. *Green Chemistry* **2018**, *20*,
16 4058-4066.

17 106. Jourdin, L.; Raes, S.M.; Buisman, C.J.; Strik, D.P. Critical biofilm growth throughout unmodified
18 carbon felts allows continuous bioelectrochemical chain elongation from CO₂ up to caproate at
19 high current density. *Frontiers in Energy Research* **2018**, *6*, 7.

20 107. Batlle-Vilanova, P.; Ganigue, R.; Ramió-Pujol, S.; Baneras, L.; Jiménez, G.; Hidalgo, M.;
21 Balaguer, M.D.; Colprim, J.; Puig, S. Microbial electrosynthesis of butyrate from carbon dioxide:
22 Production and extraction. *Bioelectrochemistry* **2017**, *117*, 57-64.

23 108. Chu, N.; Hao, W.; Wu, Q.; Liang, Q.; Jiang, Y.; Liang, P.; Ren, Z.J.; Zeng, R.J. Microbial
24 Electrosynthesis for Producing Medium Chain Fatty Acids. *Engineering* **2022**, *16*, 141-153,
25 doi:<https://doi.org/10.1016/j.eng.2021.03.025>.

26 109. Yu, L.; Yuan, Y.; Tang, J.; Zhou, S. Thermophilic *Moorella thermoautotrophica*-immobilized
27 cathode enhanced microbial electrosynthesis of acetate and formate from CO₂.
28 *Bioelectrochemistry* **2017**, *117*, 23-28.

29 110. Agostino, V.; Rosenbaum, M.A. Sulfate-reducing electroautotrophs and their applications in
30 bioelectrochemical systems. *Frontiers in Energy Research* **2018**, *6*, 55.

31 111. Deutzmann, J.S.; Spormann, A.M. Enhanced microbial electrosynthesis by using defined co-
32 cultures. *The ISME journal* **2017**, *11*, 704-714.

33 112. Jiang, Y.; Chu, N.; Zhang, W.; Ma, J.; Zhang, F.; Liang, P.; Zeng, R.J. Zinc: A promising
34 material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon
35 dioxide. *Water research* **2019**, *159*, 87-94.

36 113. Lee, S.Y.; Oh, Y.-K.; Lee, S.; Fitriana, H.N.; Moon, M.; Kim, M.-S.; Lee, J.; Min, K.; Park,
37 G.W.; Lee, J.-P.; Lee, J.-S. Recent developments and key barriers to microbial CO₂
38 electrobiorefinery. *Bioresource Technology* **2021**, *320*, 124350,
39 doi:<https://doi.org/10.1016/j.biortech.2020.124350>.

40 114. Karthikeyan, R.; Singh, R.; Bose, A. Microbial electron uptake in microbial electrosynthesis: a
41 mini-review. *Journal of Industrial Microbiology and Biotechnology* **2019**, *46*, 1419-1426.

42 115. Liu, N.; Santala, S.; Stephanopoulos, G. Mixed carbon substrates: a necessary nuisance or a
43 missed opportunity. *Current Opinion in Biotechnology* **2020**, *62*, 15-21,
44 doi:<https://doi.org/10.1016/j.copbio.2019.07.003>.

45 116. Costentin, C.; Robert, M.; Savéant, J.-M. Catalysis of the electrochemical reduction of carbon
46 dioxide. *Chemical Society Reviews* **2013**, *42*, 2423-2436, doi:10.1039/C2CS35360A.

47 117. Wood, J.C.; Yuan, Z.; Virdis, B. Towards carbon neutral chemicals production: Opportunities for
48 combining fermentation with electrochemical processes. *Current Opinion in Electrochemistry*
49 **2023**, *37*, 101177, doi:<https://doi.org/10.1016/j.coelec.2022.101177>.

1 118. Cotton, C.A.R.; Claassens, N.J.; Benito-Vaquerizo, S.; Bar-Even, A. Renewable methanol and
2 formate as microbial feedstocks. *Current Opinion in Biotechnology* **2020**, *62*, 168-180,
3 doi:<https://doi.org/10.1016/j.copbio.2019.10.002>.

4 119. Mustafa, A.; Lougou, B.G.; Shuai, Y.; Wang, Z.; Tan, H. Current technology development for
5 CO₂ utilization into solar fuels and chemicals: A review. *Journal of Energy Chemistry* **2020**, *49*,
6 96-123, doi:<https://doi.org/10.1016/j.jecchem.2020.01.023>.

7 120. Rayne, S. Thermal Carbon Dioxide Splitting: A Summary of the Peer-Reviewed Scientific
8 Literature. *Nature Precedings* **2008**, doi:10.1038/npre.2008.1741.2.

9 121. Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO₂
10 utilisation: Current status, challenges and future prospects. *Chemical Engineering Journal* **2021**,
11 *409*, 128138, doi:<https://doi.org/10.1016/j.cej.2020.128138>.

12 122. Bae, J.; Song, Y.; Lee, H.; Shin, J.; Jin, S.; Kang, S.; Cho, B.-K. Valorization of C1 gases to
13 value-added chemicals using acetogenic biocatalysts. *Chemical Engineering Journal* **2022**, *428*,
14 131325, doi:<https://doi.org/10.1016/j.cej.2021.131325>.

15 123. Liew, F.; Martin, M.E.; Tappel, R.C.; Heijstra, B.D.; Mihalcea, C.; Köpke, M. Gas
16 Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and
17 Chemicals from Waste and Renewable Feedstocks. *Frontiers in Microbiology* **2016**, *7*,
18 doi:10.3389/fmicb.2016.00694.

19 124. Herranz, J.; Pătru, A.; Fabbri, E.; Schmidt, T.J. Co-electrolysis of CO₂ and H₂O: From electrode
20 reactions to cell-level development. *Current Opinion in Electrochemistry* **2020**, *23*, 89-95,
21 doi:10.1016/j.coelec.2020.05.004.

22 125. King, G.M.; Weber, C.F. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria.
23 *Nature Reviews Microbiology* **2007**, *5*, 107-118, doi:10.1038/nrmicro1595.

24 126. Can, M.; Armstrong, F.A.; Ragsdale, S.W. Structure, Function, and Mechanism of the Nickel
25 Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. *Chemical Reviews* **2014**, *114*,
26 4149-4174, doi:10.1021/cr400461p.

27 127. Oelgeschlager, E.; Rother, M. Carbon monoxide-dependent energy metabolism in anaerobic
28 bacteria and archaea. *Arch Microbiol* **2008**, *190*, 257-269, doi:10.1007/s00203-008-0382-6.

29 128. Takors, R.; Kopf, M.; Mampel, J.; Bluemke, W.; Blombach, B.; Eikmanns, B.; Bengelsdorf, F.R.;
30 Weuster-Botz, D.; Dürre, P. Using gas mixtures of CO, CO₂ and H₂ as microbial substrates: the
31 do's and don'ts of successful technology transfer from laboratory to production scale. *Microbial
32 Biotechnology* **2018**, *11*, 606-625, doi:<https://doi.org/10.1111/1751-7915.13270>.

33 129. Grenz, S.; Baumann, P.T.; Rückert, C.; Nebel, B.A.; Siebert, D.; Schwentner, A.; Eikmanns, B.J.;
34 Hauer, B.; Kalinowski, J.; Takors, R.; Blombach, B. Exploiting *Hydrogenophaga pseudoflava* for
35 aerobic syngas-based production of chemicals. *Metabolic Engineering* **2019**, *55*, 220-230,
36 doi:<https://doi.org/10.1016/j.ymben.2019.07.006>.

37 130. Diender, M.; Stams, A.J.; Sousa, D.Z. Pathways and Bioenergetics of Anaerobic Carbon
38 Monoxide Fermentation. *Front Microbiol* **2015**, *6*, 1275, doi:10.3389/fmicb.2015.01275.

39 131. Roberts, D.L.; James-Hagstrom, J.E.; Garvin, D.K.; Gorst, C.M.; Runquist, J.A.; Baur, J.R.;
40 Haase, F.C.; Ragsdale, S.W. Cloning and expression of the gene cluster encoding key proteins
41 involved in acetyl-CoA synthesis in *Clostridium thermoaceticum*: CO dehydrogenase, the
42 corrinoid/Fe-S protein, and methyltransferase. *Proc Natl Acad Sci U S A* **1989**, *86*, 32-36,
43 doi:10.1073/pnas.86.1.32.

44 132. Fast Alan, G.; Papoutsakis Eleftherios, T. Functional Expression of the *Clostridium ljungdahlii*
45 Acetyl-Coenzyme A Synthase in *Clostridium acetobutylicum* as Demonstrated by a Novel In
46 Vivo CO Exchange Activity En Route to Heterologous Installation of a Functional Wood-
47 Ljungdahl Pathway. *Applied and Environmental Microbiology* **2018**, *84*, e02307-02317,
48 doi:10.1128/AEM.02307-17.

49 133. Kang, H.; Park, B.; Oh, S.; Pathiraja, D.; Kim, J.-Y.; Jung, S.; Jeong, J.; Cha, M.; Park, Z.-Y.;
50 Choi, I.-G.; Chang, I.S. Metabolism perturbation Caused by the overexpression of carbon
51 monoxide dehydrogenase/Acetyl-CoA synthase gene complex accelerated gas to acetate

1 conversion rate of *Eubacterium limosum* KIST612. *Bioresource Technology* **2021**, *341*, 125879, doi:<https://doi.org/10.1016/j.biortech.2021.125879>.

2

3 134. Jin, S.; Kang, S.; Bae, J.; Lee, H.; Cho, B.-K. Development of CO gas conversion system using
4 high CO tolerance biocatalyst. *Chemical Engineering Journal* **2022**, *449*, 137678, doi:<https://doi.org/10.1016/j.cej.2022.137678>.

5

6 135. Karakurt, I.; Aydin, G.; Aydiner, K. Sources and mitigation of methane emissions by sectors: A
7 critical review. *Renewable Energy* **2012**, *39*, 40-48, doi:<https://doi.org/10.1016/j.renene.2011.09.006>.

8

9 136. (EDF), E.D.F. Reducing methane will help hit the brakes on runaway global warming. *EDF
10 Voices blog* 6/2/2023.

11

12 137. Semrau, J.D.; DiSpirito, A.A.; Yoon, S. Methanotrophs and copper. *FEMS Microbiology Reviews*
13 **2010**, *34*, 496-531, doi:10.1111/j.1574-6976.2010.00212.x.

14

15 138. Sahoo, K.K.; Goswami, G.; Das, D. Biotransformation of Methane and Carbon Dioxide Into
16 High-Value Products by Methanotrophs: Current State of Art and Future Prospects. *Front
17 Microbiol* **2021**, *12*, 636486, doi:10.3389/fmicb.2021.636486.

18

19 139. Park, S.-y.; Kim, C.-g. Application and development of methanotrophs in environmental
20 engineering. *Journal of Material Cycles and Waste Management* **2019**, *21*, 415-422, doi:[10.1007/s10163-018-00826-w](https://doi.org/10.1007/s10163-018-00826-w).

21

22 140. Ge, X.; Yang, L.; Sheets, J.P.; Yu, Z.; Li, Y. Biological conversion of methane to liquid fuels:
23 Status and opportunities. *Biotechnology Advances* **2014**, *32*, 1460-1475, doi:<https://doi.org/10.1016/j.biotechadv.2014.09.004>.

24

25 141. Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.;
26 Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating
27 anaerobic oxidation of methane. *Nature* **2000**, *407*, 623-626.

28

29 142. Beal, E.J.; House, C.H.; Orphan, V.J. Manganese-and iron-dependent marine methane oxidation.
30 *Science* **2009**, *325*, 184-187.

31

32 143. Haroon, M.F.; Hu, S.; Shi, Y.; Imelfort, M.; Keller, J.; Hugenholtz, P.; Yuan, Z.; Tyson, G.W.
33 Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. *Nature*
34 **2013**, *500*, 567-570.

35

36 144. Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.; Schreiber,
37 F.; Dutilh, B.E.; Zedelius, J.; de Beer, D. Nitrite-driven anaerobic methane oxidation by oxygenic
38 bacteria. *Nature* **2010**, *464*, 543-548.

39

40 145. Lee, O.K.; Hur, D.H.; Nguyen, D.T.N.; Lee, E.Y. Metabolic engineering of methanotrophs and its
41 application to production of chemicals and biofuels from methane. *Biofuels, Bioproducts and
42 Biorefining* **2016**, *10*, 848-863, doi:<https://doi.org/10.1002/bbb.1678>.

43

44 146. Hwang, I.Y.; Nguyen, A.D.; Nguyen, T.T.; Nguyen, L.T.; Lee, O.K.; Lee, E.Y. Biological
45 conversion of methane to chemicals and fuels: technical challenges and issues. *Applied
46 Microbiology and Biotechnology* **2018**, *102*, 3071-3080, doi:10.1007/s00253-018-8842-7.

47

48 147. Dürre, P.; Eikmanns, B.J. C1-carbon sources for chemical and fuel production by microbial gas
49 fermentation. *Current Opinion in Biotechnology* **2015**, *35*, 63-72, doi:<https://doi.org/10.1016/j.copbio.2015.03.008>.

50

51 148. Nguyen, A.D.; Lee, E.Y. Engineered Methanotrophy: A Sustainable Solution for Methane-Based
52 Industrial Biomanufacturing. *Trends in Biotechnology* **2021**, *39*, 381-396, doi:<https://doi.org/10.1016/j.tibtech.2020.07.007>.

53

54 149. Zilly, F.E.; Acevedo, J.P.; Augustyniak, W.; Dege, A.; Häusig, U.W.; Reetz, M.T. Tuning a
55 P450 Enzyme for Methane Oxidation. *Angewandte Chemie International Edition* **2011**, *50*, 2720-
56 2724, doi:<https://doi.org/10.1002/anie.201006587>.

57

58 150. Meinholt, P.; Peters, M.W.; Chen, M.M.Y.; Takahashi, K.; Arnold, F.H. Direct Conversion of
59 Ethane to Ethanol by Engineered Cytochrome P450 BM3. *ChemBioChem* **2005**, *6*, 1765-1768,
60 doi:<https://doi.org/10.1002/cbic.200500261>.

1 151. Balasubramanian, R.; Smith, S.M.; Rawat, S.; Yatsunyk, L.A.; Stemmler, T.L.; Rosenzweig, A.C.
2 Oxidation of methane by a biological dicopper centre. *Nature* **2010**, *465*, 115-119.

3 152. Kim, H.J.; Huh, J.; Kwon, Y.W.; Park, D.; Yu, Y.; Jang, Y.E.; Lee, B.-R.; Jo, E.; Lee, E.J.; Heo,
4 Y. Biological conversion of methane to methanol through genetic reassembly of native catalytic
5 domains. *Nature Catalysis* **2019**, *2*, 342-353.

6 153. Bennett, R.K.; Nyaradzo, D.; Michael, D.; Stephanie, J.; Kelley, H.; Baolong, Z.; Noah, H.;
7 Derek, G.; Elizabeth, C.; Eleftherios, T.P. Expression of soluble methane monooxygenase in
8 Escherichia coli enables methane conversion. *bioRxiv* **2021**, 2021.2008.2005.455234,
9 doi:10.1101/2021.08.05.455234.

10 154. Raili, K.; Markku, H.; Pekka, O. Methanol-Managing greenhouse gas emissions in the production
11 chain by optimizing the resource base. *AIMS Energy* **2018**, *6*, 1074-1102,
12 doi:10.3934/energy.2018.6.1074.

13 155. Du, X.-L.; Jiang, Z.; Su, D.S.; Wang, J.-Q. Research Progress on the Indirect Hydrogenation of
14 Carbon Dioxide to Methanol. *ChemSusChem* **2016**, *9*, 322-332,
15 doi:<https://doi.org/10.1002/cssc.201501013>.

16 156. Whitaker, W.B.; Sandoval, N.R.; Bennett, R.K.; Fast, A.G.; Papoutsakis, E.T. Synthetic
17 methylotrophy: engineering the production of biofuels and chemicals based on the biology of
18 aerobic methanol utilization. *Current Opinion in Biotechnology* **2015**, *33*, 165-175,
19 doi:<https://doi.org/10.1016/j.copbio.2015.01.007>.

20 157. Chen, A.Y.; Lan, E.I. Chemical Production from Methanol Using Natural and Synthetic
21 Methylotrophs. *Biotechnology Journal* **2020**, *15*, 1900356,
22 doi:<https://doi.org/10.1002/biot.201900356>.

23 158. Pfeifenschneider, J.; Brautaset, T.; Wendisch, V.F. Methanol as carbon substrate in the bio-
24 economy: Metabolic engineering of aerobic methylotrophic bacteria for production of value-
25 added chemicals. *Biofuels, Bioproducts and Biorefining* **2017**, *11*, 719-731.

26 159. Antoniewicz, M.R. Synthetic methylotrophy: strategies to assimilate methanol for growth and
27 chemicals production. *Current opinion in biotechnology* **2019**, *59*, 165-174.

28 160. Yurimoto, H.; Sakai, Y. Methylotrophic yeasts: current understanding of their C1-metabolism
29 and its regulation by sensing methanol for survival on plant leaves. *Current Issues in Molecular
30 Biology* **2019**, *33*, 197-210.

31 161. Ledesma-Amaro, R.; Nicaud, J.M. Metabolic Engineering for Expanding the Substrate Range of
32 *Yarrowia lipolytica*. *Trends Biotechnol* **2016**, *34*, 798-809, doi:10.1016/j.tibtech.2016.04.010.

33 162. Lv, X.; Yu, W.; Zhang, C.; Ning, P.; Li, J.; Liu, Y.; Du, G.; Liu, L. C1-based biomanufacturing:
34 Advances, challenges and perspectives. *Bioresource Technology* **2023**, *367*, 128259,
35 doi:<https://doi.org/10.1016/j.biortech.2022.128259>.

36 163. Zhan, C.; Li, X.; Yang, Y.; Nielsen, J.; Bai, Z.; Chen, Y. Strategies and challenges with the
37 microbial conversion of methanol to high-value chemicals. *Biotechnology and Bioengineering*
38 **2021**, *118*, 3655-3668, doi:<https://doi.org/10.1002/bit.27862>.

39 164. Kremp, F.; Müller, V. Methanol and methyl group conversion in acetogenic bacteria:
40 biochemistry, physiology and application. *FEMS Microbiology Reviews* **2021**, *45*, fuaa040,
41 doi:10.1093/femsre/fuaa040.

42 165. Gregory, G.J.; Bennett, R.K.; Papoutsakis, E.T. Recent advances toward the bioconversion of
43 methane and methanol in synthetic methylotrophs. *Metabolic Engineering* **2022**, *71*, 99-116,
44 doi:<https://doi.org/10.1016/j.ymben.2021.09.005>.

45 166. Song, Y.; Bae, J.; Shin, J.; Jin, S.; Kang, S.; Lee, H.; Cho, S.; Cho, B.-K. Systems Biology on
46 Acetogenic Bacteria for Utilizing C1 Feedstocks. In *One-Carbon Feedstocks for Sustainable
47 Bioproduction*; Springer: 2022; pp. 57-90.

48 167. Bennett, R.K.; Steinberg, L.M.; Chen, W.; Papoutsakis, E.T. Engineering the bioconversion of
49 methane and methanol to fuels and chemicals in native and synthetic methylotrophs. *Current
50 Opinion in Biotechnology* **2018**, *50*, 81-93, doi:<https://doi.org/10.1016/j.copbio.2017.11.010>.

1 168. Wang, J.; Qin, R.; Guo, Y.; Ma, C.; Wang, X.; Chen, K.; Ouyang, P. Engineering the native
2 methylotrophs for the bioconversion of methanol to value-added chemicals: current status and
3 future perspectives. *Green Chemical Engineering* **2023**, *4*, 199-211,
4 doi:<https://doi.org/10.1016/j.gce.2022.10.005>.

5 169. Schultenkämper, K.; Gütle, D.D.; López, M.G.; Keller, L.B.; Zhang, L.; Einsle, O.; Jacquot, J.-P.;
6 Wendisch, V.F. Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of
7 *Bacillus methanolicus* by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression
8 by CRISPR Interference. *Frontiers in Microbiology* **2021**, *12*.

9 170. Lim, C.K.; Villada, J.C.; Chalifour, A.; Duran, M.F.; Lu, H.; Lee, P.K. Designing and
10 engineering *Methylorubrum extorquens* AM1 for itaconic acid production. *Frontiers in*
11 *Microbiology* **2019**, *10*, 1027.

12 171. Chen, F.Y.-H.; Jung, H.-W.; Tsuei, C.-Y.; Liao, J.C. Converting *Escherichia coli* to a synthetic
13 methylotroph growing solely on methanol. *Cell* **2020**, *182*, 933-946. e914.

14 172. Cai, P.; Wu, X.; Deng, J.; Gao, L.; Shen, Y.; Yao, L.; Zhou, Y.J. Methanol biotransformation
15 toward high-level production of fatty acid derivatives by engineering the industrial yeast *Pichia*
16 *pastoris*. *Proceedings of the National Academy of Sciences* **2022**, *119*, e2201711119.

17 173. Gao, J.; Li, Y.; Yu, W.; Zhou, Y.J. Rescuing yeast from cell death enables overproduction of fatty
18 acids from sole methanol. *Nature Metabolism* **2022**, *4*, 932-943, doi:10.1038/s42255-022-00601-
19 0.

20 174. Gao, B.; Zhao, N.; Deng, J.; Gu, Y.; Jia, S.; Hou, Y.; Lv, X.; Liu, L. Constructing a methanol-
21 dependent *Bacillus subtilis* by engineering the methanol metabolism. *Journal of Biotechnology*
22 **2022**, *343*, 128-137.

23 175. Zhu, T.; Zhao, T.; Bankefa, O.E.; Li, Y. Engineering unnatural methylotrophic cell factories for
24 methanol-based biomanufacturing: Challenges and opportunities. *Biotechnology advances* **2020**,
25 *39*, 107467.

26 176. Sanford, P.A.; Woolston, B.M. Synthetic or natural? Metabolic engineering for assimilation and
27 valorization of methanol. *Current Opinion in Biotechnology* **2022**, *74*, 171-179.

28 177. Nguyen, A.D.; Park, J.Y.; Hwang, I.Y.; Hamilton, R.; Kalyuzhnaya, M.G.; Kim, D.; Lee, E.Y.
29 Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs
30 grown on methane and methanol. *Metabolic Engineering* **2020**, *57*, 1-12,
31 doi:<https://doi.org/10.1016/j.ymben.2019.10.004>.

32 178. Müller, J.E.; Meyer, F.; Litsanov, B.; Kiefer, P.; Pothoff, E.; Heux, S.; Quax, W.J.; Wendisch,
33 V.F.; Brautaset, T.; Portais, J.-C. Engineering *Escherichia coli* for methanol conversion.
34 *Metabolic engineering* **2015**, *28*, 190-201.

35 179. Price, J.V.; Chen, L.; Whitaker, W.B.; Papoutsakis, E.; Chen, W. Scaffoldless engineered enzyme
36 assembly for enhanced methanol utilization. *Proceedings of the National Academy of Sciences*
37 **2016**, *113*, 12691-12696.

38 180. Woolston, B.M.; King, J.R.; Reiter, M.; Van Hove, B.; Stephanopoulos, G. Improving
39 formaldehyde consumption drives methanol assimilation in engineered *E. coli*. *Nature*
40 *communications* **2018**, *9*, 2387.

41 181. Meyer, F.; Keller, P.; Hartl, J.; Gröninger, O.G.; Kiefer, P.; Vorholt, J.A. Methanol-essential
42 growth of *Escherichia coli*. *Nature communications* **2018**, *9*, 1508.

43 182. Espinosa, M.I.; Gonzalez-Garcia, R.A.; Valgepea, K.; Plan, M.R.; Scott, C.; Pretorius, I.S.;
44 Marcellin, E.; Paulsen, I.T.; Williams, T.C. Adaptive laboratory evolution of native methanol
45 assimilation in *Saccharomyces cerevisiae*. *Nature Communications* **2020**, *11*, 5564,
46 doi:10.1038/s41467-020-19390-9.

47 183. Wang, G.; Olofsson-Dolk, M.; Hansson, F.G.; Donati, S.; Li, X.; Chang, H.; Cheng, J.; Dahlin, J.;
48 Borodina, I. Engineering Yeast *Yarrowia lipolytica* for Methanol Assimilation. *ACS Synthetic*
49 *Biology* **2021**, *10*, 3537-3550, doi:10.1021/acssynbio.1c00464.

1 184. Jiang, W.; Hernandez Villamor, D.; Peng, H.; Chen, J.; Liu, L.; Haritos, V.; Ledesma-Amaro, R.
2 Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. *Nat Chem Biol*
3 **2021**, *17*, 845-855, doi:10.1038/s41589-021-00836-0.

4 185. Yishai, O.; Lindner, S.N.; Gonzalez de la Cruz, J.; Tenenboim, H.; Bar-Even, A. The formate bio-
5 economy. *Current Opinion in Chemical Biology* **2016**, *35*, 1-9,
6 doi:<https://doi.org/10.1016/j.cbpa.2016.07.005>.

7 186. Bar-Even, A.; Noor, E.; Flamholz, A.; Milo, R. Design and analysis of metabolic pathways
8 supporting formotrophic growth for electricity-dependent cultivation of microbes. *Biochimica et*
9 *Biophysica Acta (BBA)-Bioenergetics* **2013**, *1827*, 1039-1047.

10 187. Bar-Even, A.; Flamholz, A.; Noor, E.; Milo, R. Thermodynamic constraints shape the structure of
11 carbon fixation pathways. *Biochimica et Biophysica Acta (BBA)-Bioenergetics* **2012**, *1817*, 1646-
12 1659.

13 188. Grunwald, S.; Mottet, A.; Grousseau, E.; Plassmeier, J.K.; Popović, M.K.; Uribelarrea, J.-L.;
14 Gorret, N.; Guillouet, S.E.; Sinskey, A. Kinetic and stoichiometric characterization of
15 organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous
16 cultures. *Microbial Biotechnology* **2015**, *8*, 155-163, doi:<https://doi.org/10.1111/1751-7915.12149>.

17 189. Qiao, W.; Xu, S.; Liu, Z.; Fu, X.; Zhao, H.; Shi, S. Challenges and opportunities in C1-based
18 biomannufacturing. *Bioresource Technology* **2022**, *364*, 128095,
19 doi:<https://doi.org/10.1016/j.biortech.2022.128095>.

20 190. Claassens, N.J.; He, H.; Bar-Even, A. Synthetic Methanol and Formate Assimilation Via Modular
21 Engineering and Selection Strategies. *Current Issues in Molecular Biology* **2019**, *33*, 237-248,
22 doi:10.21775/cimb.033.237.

23 191. Bar-Even, A. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic
24 Pathways. *Biochemistry* **2016**, *55*, 3851-3863, doi:10.1021/acs.biochem.6b00495.

25 192. Claassens, N.J. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. *Trends*
26 *in Biotechnology* **2021**, *39*, 327-329, doi:<https://doi.org/10.1016/j.tibtech.2021.02.005>.

27 193. Claassens, N.J.; Bordanaba-Florit, G.; Cotton, C.A.; De Maria, A.; Finger-Bou, M.; Friedeheim,
28 L.; Giner-Laguarda, N.; Munar-Palmer, M.; Newell, W.; Scarinci, G. Replacing the Calvin cycle
29 with the reductive glycine pathway in Cupriavidus necator. *Metabolic Engineering* **2020**, *62*, 30-
30 41.

31 194. Sánchez-Andrea, I.; Guedes, I.A.; Hornung, B.; Boeren, S.; Lawson, C.E.; Sousa, D.Z.; Bar-
32 Even, A.; Claassens, N.J.; Stams, A.J.M. The reductive glycine pathway allows autotrophic
33 growth of *Desulfovibrio desulfuricans*. *Nature Communications* **2020**, *11*, 5090,
34 doi:10.1038/s41467-020-18906-7.

35 195. Hong, Y.; Arbter, P.; Wang, W.; Rojas, L.N.; Zeng, A.-P. Introduction of glycine synthase
36 enables uptake of exogenous formate and strongly impacts the metabolism in *Clostridium*
37 *pasteurianum*. *Biotechnology and Bioengineering* **2021**, *118*, 1366-1380,
38 doi:<https://doi.org/10.1002/bit.27658>.

39 196. Yishai, O.; Goldbach, L.; Tenenboim, H.; Lindner, S.N.; Bar-Even, A. Engineered assimilation of
40 exogenous and endogenous formate in *Escherichia coli*. *ACS Synthetic Biology* **2017**, *6*, 1722-
41 1731.

42 197. Yishai, O.; Bouzon, M.; Döring, V.; Bar-Even, A. In vivo assimilation of one-carbon via a
43 synthetic reductive glycine pathway in *Escherichia coli*. *ACS synthetic biology* **2018**, *7*, 2023-
44 2028.

45 198. Bang, J.; Lee, S.Y. Assimilation of formic acid and CO₂ by engineered *Escherichia coli* equipped
46 with reconstructed one-carbon assimilation pathways. *Proceedings of the National Academy of*
47 *Sciences* **2018**, *115*, E9271-E9279.

48 199. Bang, J.; Hwang, C.H.; Ahn, J.H.; Lee, J.A.; Lee, S.Y. *Escherichia coli* is engineered to grow on
49 CO₂ and formic acid. *Nature Microbiology* **2020**, *5*, 1459-1463.

50

1 200. Tashiro, Y.; Hirano, S.; Matson, M.M.; Atsumi, S.; Kondo, A. Electrical-biological hybrid system
2 for CO₂ reduction. *Metabolic engineering* **2018**, *47*, 211-218.

3 201. Kim, S.; Lindner, S.N.; Aslan, S.; Yishai, O.; Wenk, S.; Schann, K.; Bar-Even, A. Growth of *E.*
4 *coli* on formate and methanol via the reductive glycine pathway. *Nature chemical biology* **2020**,
5 *16*, 538-545.

6 202. Machens, F.; Messerschmidt, K.; Bar-Even, A. Core Catalysis of the Reductive Glycine Pathway
7 Demonstrated in Yeast. *ACS Synthetic Biology* **2019**, *8*, 911-917.

8 203. Neuendorf, C.S.; Vignolle, G.A.; Derntl, C.; Tomin, T.; Novak, K.; Mach, R.L.; Birner-
9 Grünberger, R.; Pflügl, S. A quantitative metabolic analysis reveals *Acetobacterium woodii* as a
10 flexible and robust host for formate-based bioproduction. *Metabolic Engineering* **2021**, *68*, 68-85,
11 doi:<https://doi.org/10.1016/j.ymben.2021.09.004>.

12 204. Moon, J.; Dönig, J.; Kramer, S.; Poehlein, A.; Daniel, R.; Müller, V. Formate metabolism in the
13 acetogenic bacterium *Acetobacterium woodii*. *Environmental Microbiology* **2021**, *23*, 4214-4227,
14 doi:<https://doi.org/10.1111/1462-2920.15598>.

15 205. Wood, J.C.; Marcellin, E.; Plan, M.R.; Virdis, B. High methanol-to-formate ratios induce butanol
16 production in *Eubacterium limosum*. *Microbial Biotechnology* **2022**, *15*, 1542-1549,
17 doi:<https://doi.org/10.1111/1751-7915.13963>.

18 206. Nicholls, P. Formate as an inhibitor of cytochrome c oxidase. *Biochemical and biophysical
19 research communications* **1975**, *67*, 610-616.

20 207. Warnecke, T.; Gill, R.T. Organic acid toxicity, tolerance, and production in *Escherichia coli*
21 biorefining applications. *Microbial Cell Factories* **2005**, *4*, 25, doi:10.1186/1475-2859-4-25.

22 208. Overkamp, K.M.; Kötter, P.; van der Hoek, R.; Schoondermark-Stolk, S.; Luttk, M.A.; van
23 Dijken, J.P.; Pronk, J.T. Functional analysis of structural genes for NAD⁺-dependent formate
24 dehydrogenase in *Saccharomyces cerevisiae*. *Yeast* **2002**, *19*, 509-520.

25 209. Litty, D.; Müller, V. Butyrate production in the acetogen *Eubacterium limosum* is dependent on
26 the carbon and energy source. *Microbial Biotechnology* **2021**, *14*, 2686-2692,
27 doi:<https://doi.org/10.1111/1751-7915.13779>.

28 210. Du, C.; Li, Y.; Xiang, R.; Yuan, W. Formate dehydrogenase improves the resistance to formic
29 acid and acetic acid simultaneously in *Saccharomyces cerevisiae*. *International Journal of
30 Molecular Sciences* **2022**, *23*, 3406.

31 211. Babel, W. The Auxiliary Substrate Concept: From simple considerations to heuristically valuable
32 knowledge. *Engineering in Life Sciences* **2009**, *9*, 285-290,
33 doi:<https://doi.org/10.1002/elsc.200900027>.

34 212. Nielsen, J.; Keasling, Jay D. Engineering Cellular Metabolism. *Cell* **2016**, *164*, 1185-1197,
35 doi:<https://doi.org/10.1016/j.cell.2016.02.004>.

36 213. Lim, H.G.; Lee, J.H.; Noh, M.H.; Jung, G.Y. Rediscovering Acetate Metabolism: Its Potential
37 Sources and Utilization for Biobased Transformation into Value-Added Chemicals. *Journal of
38 Agricultural and Food Chemistry* **2018**, *66*, 3998-4006, doi:10.1021/acs.jafc.8b00458.

39 214. Kim, Y.; Lama, S.; Agrawal, D.; Kumar, V.; Park, S. Acetate as a potential feedstock for the
40 production of value-added chemicals: Metabolism and applications. *Biotechnology Advances*
41 **2021**, *49*, 107736, doi:<https://doi.org/10.1016/j.biotechadv.2021.107736>.

42 215. Mutyala, S.; Kim, J.R. Recent advances and challenges in the bioconversion of acetate to value-
43 added chemicals. *Bioresource Technology* **2022**, *364*, 128064,
44 doi:<https://doi.org/10.1016/j.biortech.2022.128064>.

45 216. Wang, S.; Sun, X.; Yuan, Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel
46 production: a review. *Bioresource Technology* **2018**, *258*, 302-309.

47 217. Kutscha, R.; Pflugl, S. Microbial Upgrading of Acetate into Value-Added Products-Examining
48 Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches. *Int J Mol
49 Sci* **2020**, *21*, doi:10.3390/ijms21228777.

1 218. Zhou, S.; Lama, S.; Jiang, J.; Sankaranarayanan, M.; Park, S. Use of acetate for the production of
2 3-hydroxypropionic acid by metabolically-engineered *Pseudomonas denitrificans*. *Bioresource*
3 *Technology* **2020**, *307*, 123194, doi:<https://doi.org/10.1016/j.biortech.2020.123194>.

4 219. Seong, W.; Han, G.H.; Lim, H.S.; Baek, J.I.; Kim, S.-J.; Kim, D.; Kim, S.K.; Lee, H.; Kim, H.;
5 Lee, S.-G.; Lee, D.-H. Adaptive laboratory evolution of *Escherichia coli* lacking cellular
6 byproduct formation for enhanced acetate utilization through compensatory ATP consumption.
7 *Metabolic Engineering* **2020**, *62*, 249-259, doi:<https://doi.org/10.1016/j.ymben.2020.09.005>.

8 220. Gong, G.; Wu, B.; Liu, L.; Li, J.; Zhu, Q.; He, M.; Hu, G. Metabolic engineering using acetate as
9 a promising building block for the production of bio-based chemicals. *Engineering Microbiology*
10 **2022**, *2*, 100036, doi:<https://doi.org/10.1016/j.engmic.2022.100036>.

11 221. Deng, Y.; Ma, N.; Zhu, K.; Mao, Y.; Wei, X.; Zhao, Y. Balancing the carbon flux distributions
12 between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in
13 *Escherichia coli*. *Metabolic engineering* **2018**, *46*, 28-34.

14 222. Lama, S.; Kim, Y.; Nguyen, D.T.; Im, C.H.; Sankaranarayanan, M.; Park, S. Production of 3-
15 hydroxypropionic acid from acetate using metabolically-engineered and glucose-grown
16 *Escherichia coli*. *Bioresource Technology* **2021**, *320*, 124362.

17 223. Chang, Z.; Dai, W.; Mao, Y.; Cui, Z.; Zhang, Z.; Wang, Z.; Ma, H.; Chen, T. Enhanced 3-
18 hydroxypropionic acid production from acetate via the malonyl-CoA pathway in
19 *Corynebacterium glutamicum*. *Frontiers in Bioengineering and Biotechnology* **2022**, *9*, 808258.

20 224. Yang, S.; Li, S.; Jia, X. Production of medium chain length polyhydroxyalkanoate from acetate
21 by engineered *Pseudomonas putida* KT2440. *Journal of Industrial Microbiology and*
22 *Biotechnology* **2019**, *46*, 793-800.

23 225. Wei, N.; Quarterman, J.; Kim, S.R.; Cate, J.H.; Jin, Y.-S. Enhanced biofuel production through
24 coupled acetic acid and xylose consumption by engineered yeast. *Nature communications* **2013**,
25 *4*, 2580.

26 226. Huang, X.-f.; Shen, Y.; Luo, H.-j.; Liu, J.-n.; Liu, J. Enhancement of extracellular lipid
27 production by oleaginous yeast through preculture and sequencing batch culture strategy with
28 acetic acid. *Bioresource Technology* **2018**, *247*, 395-401.

29 227. Gong, G.; Zhang, X.; Tan, T. Simultaneously enhanced intracellular lipogenesis and β -carotene
30 biosynthesis of *Rhodotorula glutinis* by light exposure with sodium acetate as the substrate.
31 *Bioresource technology* **2020**, *295*, 122274.

32 228. Chen, L.; Yan, W.; Qian, X.; Chen, M.; Zhang, X.; Xin, F.; Zhang, W.; Jiang, M.; Ochsenreither,
33 K. Increased lipid production in *Yarrowia lipolytica* from acetate through metabolic engineering
34 and Cosubstrate fermentation. *ACS synthetic biology* **2021**, *10*, 3129-3138.

35 229. Kövilein, A.; Umpfenbach, J.; Ochsenreither, K. Acetate as substrate for l-malic acid production
36 with *Aspergillus oryzae* DSM 1863. *Biotechnology for Biofuels* **2021**, *14*, 1-15.

37 230. Sun, S.; Ding, Y.; Liu, M.; Xian, M.; Zhao, G. Comparison of glucose, acetate and ethanol as
38 carbon resource for production of poly (3-hydroxybutyrate) and other acetyl-CoA derivatives.
39 *Frontiers in bioengineering and biotechnology* **2020**, *8*, 833.

40 231. Jo, M.; Noh, M.H.; Lim, H.G.; Kang, C.W.; Im, D.-K.; Oh, M.-K.; Jung, G.Y. Precise tuning of
41 the glyoxylate cycle in *Escherichia coli* for efficient tyrosine production from acetate. *Microbial*
42 *Cell Factories* **2019**, *18*, 1-9.

43 232. Xu, J.; Liu, N.; Qiao, K.; Vogg, S.; Stephanopoulos, G. Application of metabolic controls for the
44 maximization of lipid production in semicontinuous fermentation. *Proc Natl Acad Sci U S A*
45 **2017**, *114*, E5308-E5316, doi:10.1073/pnas.1703321114.

46 233. Tashiro, Y.; Desai, S.H.; Atsumi, S. Two-dimensional isobutyl acetate production pathways to
47 improve carbon yield. *Nature communications* **2015**, *6*, 7488.

48 234. Yang, J.; Nie, Q. Engineering *Escherichia coli* to convert acetic acid to β -caryophyllene.
49 *Microbial cell factories* **2016**, *15*, 1-9.

1 235. Lam, F.H.; Turanlı-Yıldız, B.; Liu, D.; Resch, M.G.; Fink, G.R.; Stephanopoulos, G. Engineered
2 yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. *Science
3 Advances* **2021**, *7*, eabf7613.

4 236. Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M.-F.; Lidén, G.; Zacchi, G. Bio-ethanol—the
5 fuel of tomorrow from the residues of today. *Trends in biotechnology* **2006**, *24*, 549-556.

6 237. Liang, H.; Ma, X.; Ning, W.; Liu, Y.; Sinskey, A.J.; Stephanopoulos, G.; Zhou, K. Constructing
7 an ethanol utilization pathway in *Escherichia coli* to produce acetyl-CoA derived compounds.
8 *Metabolic Engineering* **2021**, *65*, 223-231, doi:<https://doi.org/10.1016/j.ymben.2020.11.010>.

9 238. Liu, Y.; Bai, C.; Liu, Q.; Xu, Q.; Qian, Z.; Peng, Q.; Yu, J.; Xu, M.; Zhou, X.; Zhang, Y.; Cai, M.
10 Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived
11 drugs in Crabtree-negative yeast. *Metabolic Engineering* **2019**, *54*, 275-284,
12 doi:<https://doi.org/10.1016/j.ymben.2019.05.001>.

13 239. Cao, Y.; Mu, H.; Guo, J.; Liu, H.; Zhang, R.; Liu, W.; Xian, M.; Liu, H. Metabolic engineering of
14 *Escherichia coli* for the utilization of ethanol. *J Biol Res (Thessalon)* **2020**, *27*, 1,
15 doi:10.1186/s40709-020-0111-0.

16 240. Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.;
17 Tsuruta, H.; Melis, D.J.; Owens, A. Production of amorphadiene in yeast, and its conversion to
18 dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. *Proceedings of the
19 National Academy of Sciences* **2012**, *109*, E111-E118.

20 241. Felenbok, B.; Flippini, M.; Nikolaev, I. Ethanol catabolism in *Aspergillus nidulans*: a model
21 system for studying gene regulation. **2001**.

22 242. Ricci, L.; Seifert, A.; Bernacchi, S.; Fino, D.; Pirri, C.F.; Re, A. Leveraging substrate flexibility
23 and product selectivity of acetogens in two-stage systems for chemical production. *Microbial
24 Biotechnology* **2023**, *16*, 218-237, doi:<https://doi.org/10.1111/1751-7915.14172>.

25 243. Couto, N.; Rouboa, A.; Silva, V.; Monteiro, E.; Bouziane, K. Influence of the biomass
26 gasification processes on the final composition of syngas. *Energy procedia* **2013**, *36*, 596-606.

27 244. Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art
28 overview. *Journal of Energy Chemistry* **2016**, *25*, 10-25.

29 245. Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the gasification
30 performance of biomass: A review on biomass gasification process conditions, optimization and
31 economic evaluation. *Renewable and Sustainable Energy Reviews* **2016**, *53*, 1333-1347.

32 246. Griffin, D.W.; Schultz, M.A. Fuel and chemical products from biomass syngas: a comparison of
33 gas fermentation to thermochemical conversion routes. *Environmental progress & sustainable
34 energy* **2012**, *31*, 219-224.

35 247. Daniell, J.; Köpke, M.; Simpson, S.D. Commercial biomass syngas fermentation. *Energies* **2012**,
36 *5*, 5372-5417.

37 248. Akhtar, A.; Krepl, V.; Ivanova, T. A combined overview of combustion, pyrolysis, and
38 gasification of biomass. *Energy & Fuels* **2018**, *32*, 7294-7318.

39 249. Phillips, J.R.; Huhnke, R.L.; Atiyeh, H.K. Syngas fermentation: a microbial conversion process
40 of gaseous substrates to various products. *Fermentation* **2017**, *3*, 28.

41 250. Lemgruber, R.d.S.P.; Valgepea, K.; Tappel, R.; Behrendorff, J.B.; Palfreyman, R.W.; Plan, M.;
42 Hodson, M.P.; Simpson, S.D.; Nielsen, L.K.; Köpke, M. Systems-level engineering and
43 characterisation of *Clostridium autoethanogenum* through heterologous production of poly-3-
44 hydroxybutyrate (PHB). *Metabolic engineering* **2019**, *53*, 14-23.

45 251. Pavan, M.; Reinmets, K.; Garg, S.; Mueller, A.P.; Marcellin, E.; Köpke, M.; Valgepea, K.
46 Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts
47 towards a circular economy. *Metabolic Engineering* **2022**, *71*, 117-141,
48 doi:<https://doi.org/10.1016/j.ymben.2022.01.015>.

49 252. Pala, L.P.R.; Wang, Q.; Kolb, G.; Hessel, V. Steam gasification of biomass with subsequent
50 syngas adjustment using shift reaction for syngas production: An Aspen Plus model. *Renewable
51 Energy* **2017**, *101*, 484-492.

1 253. Gunes, B. A critical review on biofilm-based reactor systems for enhanced syngas fermentation
2 processes. *Renewable and Sustainable Energy Reviews* **2021**, *143*, 110950,
3 doi:<https://doi.org/10.1016/j.rser.2021.110950>.

4 254. Stoll, I.K.; Boukis, N.; Sauer, J. Syngas Fermentation to Alcohols: Reactor Technology and
5 Application Perspective. *Chemie Ingenieur Technik* **2020**, *92*, 125-136,
6 doi:<https://doi.org/10.1002/cite.201900118>.

7 255. Köpke, M.; Simpson, S.D. Pollution to products: recycling of 'above ground' carbon by gas
8 fermentation. *Current Opinion in Biotechnology* **2020**, *65*, 180-189.

9 256. Marcellin, E.; Angenent, L.T.; Nielsen, L.K.; Molitor, B. Recycling Carbon for Sustainable
10 Protein Production Using Gas Fermentation. *Current Opinion in Biotechnology* **2022**, *76*,
11 doi:<https://doi.org/10.1016/j.copbio.2022.102723>.

12 257. Onyeaka, H.; Ekwebelem, O.C. A review of recent advances in engineering bacteria for enhanced
13 CO₂ capture and utilization. *International Journal of Environmental Science and Technology*
14 **2023**, *20*, 4635-4648, doi:10.1007/s13762-022-04303-8.

15 258. Fackler, N.; Heijstra, B.D.; Rasor, B.J.; Brown, H.; Martin, J.; Ni, Z.; Shebek, K.M.; Rosin, R.R.;
16 Simpson, S.D.; Tyo, K.E.; et al. Stepping on the Gas to a Circular Economy: Accelerating
17 Development of Carbon-Negative Chemical Production from Gas Fermentation. *Annual Review
18 of Chemical and Biomolecular Engineering* **2021**, *12*, 439-470, doi:10.1146/annurev-
19 chembioeng-120120-021122.

20 259. Nesbitt, E.R. Using waste carbon feedstocks to produce chemicals. *Industrial Biotechnology*
21 **2020**, *16*, 147-163.

22 260. Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical photosynthesis involving
23 CO₂ electrolysis and fermentation. *Nature Catalysis* **2018**, *1*, 32-39.

24 261. Air Protein. Available online: <https://www.airprotein.com/> (accessed on 11/19/2023).

25 262. Deep Branch Biotechnology. Available online: <https://deepbranch.com/> (accessed on
11/19/2023).

26 263. Kiverdi. Available online: <https://www.kiverdi.com/> (accessed on 11/19/2023).

27 264. Solar Foods. Available online: <https://solarfoods.com/science/> (accessed on 11/19/2023).

28 265. NovoNutrients. Available online: <https://www.novonutrients.com/> (accessed on 11/19/2023).

29 266. Burlacot, A.; Dao, O.; Auroy, P.; Cuiné, S.; Li-Beisson, Y.; Peltier, G. Alternative photosynthesis
30 pathways drive the algal CO₂-concentrating mechanism. *Nature* **2022**, *605*, 366-371,
31 doi:10.1038/s41586-022-04662-9.

32 267. Das, S.; Diels, L.; Pant, D.; Patil, S.A.; Ghargrekar, M.M. Review—Microbial Electrosynthesis:
33 A Way Towards The Production of Electro-Commodities Through Carbon Sequestration with
34 Microbes as Biocatalysts. *Journal of The Electrochemical Society* **2020**, *167*, 155510,
35 doi:10.1149/1945-7111/abb836.

36 268. Fan, L.; Xia, C.; Zhu, P.; Lu, Y.; Wang, H. Electrochemical CO₂ reduction to high-concentration
37 pure formic acid solutions in an all-solid-state reactor. *Nature Communications* **2020**, *11*, 3633,
38 doi:10.1038/s41467-020-17403-1.

39 269. Ahmad, W.; Koley, P.; Dwivedi, S.; Lakshman, R.; Shin, Y.K.; van Duin, A.C.T.; Shrotri, A.;
40 Tanksale, A. Aqueous phase conversion of CO₂ into acetic acid over thermally transformed MIL-
41 88B catalyst. *Nature Communications* **2023**, *14*, 2821, doi:10.1038/s41467-023-38506-5.

42 270. Xu, J.; Liu, N.; Qiao, K.; Vogg, S.; Stephanopoulos, G. Application of metabolic controls for the
43 maximization of lipid production in semicontinuous fermentation. *Proceedings of the National
44 Academy of Sciences* **2017**, *114*, E5308-E5316, doi:doi:10.1073/pnas.1703321114.

45 271. Cao, M.; Tran, V.G.; Qin, J.; Olson, A.; Mishra, S.; Schultz, John C.; Huang, C.; Xie, D.; Zhao,
46 H. Metabolic engineering of oleaginous yeast *Rhodotorula toruloides* for overproduction of
47 triacetic acid lactone. *Biotechnology and Bioengineering* **2022**, *119*, 2529-2540,
48 doi:<https://doi.org/10.1002/bit.28159>.

49 272. Lawson, C.E.; Martí, J.M.; Radivojevic, T.; Jonnalagadda, S.V.R.; Gentz, R.; Hillson, N.J.;
50 Peisert, S.; Kim, J.; Simmons, B.A.; Petzold, C.J.; et al. Machine learning for metabolic
51

1 engineering: A review. *Metabolic Engineering* **2021**, *63*, 34-60,
2 doi:<https://doi.org/10.1016/j.ymben.2020.10.005>.

3 273. Helmy, M.; Smith, D.; Selvarajoo, K. Systems biology approaches integrated with artificial
4 intelligence for optimized metabolic engineering. *Metab Eng Commun* **2020**, *11*, e00149,
5 doi:10.1016/j.mec.2020.e00149.

6 274. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool,
7 K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with
8 AlphaFold. *Nature* **2021**, *596*, 583-589, doi:10.1038/s41586-021-03819-2.

9 275. Duncan, J.D.; Setati, M.E.; Divol, B. Redox cofactor metabolism in *Saccharomyces cerevisiae*
10 and its impact on the production of alcoholic fermentation end-products. *Food Research
11 International* **2023**, *163*, 112276, doi:<https://doi.org/10.1016/j.foodres.2022.112276>.

12 276. Bloem, A.; Sanchez, I.; Dequin, S.; Camarasa, C. Metabolic Impact of Redox Cofactor
13 Perturbations on the Formation of Aroma Compounds in *Saccharomyces cerevisiae*. *Applied and
14 Environmental Microbiology* **2016**, *82*, 174-183, doi:doi:10.1128/AEM.02429-15.

15 277. Liu, C.-G.; Xue, C.; Lin, Y.-H.; Bai, F.-W. Redox potential control and applications in
16 microaerobic and anaerobic fermentations. *Biotechnology Advances* **2013**, *31*, 257-265,
17 doi:<https://doi.org/10.1016/j.biotechadv.2012.11.005>.

18 278. Hou, J.; Scalcinati, G.; Oldiges, M.; Vemuri, G.N. Metabolic impact of increased NADH
19 availability in *Saccharomyces cerevisiae*. *Appl Environ Microbiol* **2010**, *76*, 851-859,
20 doi:10.1128/aem.02040-09.

21 279. Qiao, K.; Wasylenko, T.M.; Zhou, K.; Xu, P.; Stephanopoulos, G. Lipid production in *Yarrowia
22 lipolytica* is maximized by engineering cytosolic redox metabolism. *Nature Biotechnology* **2017**,
23 *35*, 173-177, doi:10.1038/nbt.3763.

24 280. Kim, J.-E.; Jang, I.-S.; Sung, B.H.; Kim, S.C.; Lee, J.Y. Rerouting of NADPH synthetic pathways
25 for increased protopanaxadiol production in *Saccharomyces cerevisiae*. *Scientific Reports* **2018**,
26 *8*, 15820, doi:10.1038/s41598-018-34210-3.

27 281. Qiao, K.; Imam Abidi, S.H.; Liu, H.; Zhang, H.; Chakraborty, S.; Watson, N.; Kumaran
28 Ajikumar, P.; Stephanopoulos, G. Engineering lipid overproduction in the oleaginous yeast
29 *Yarrowia lipolytica*. *Metabolic Engineering* **2015**, *29*, 56-65,
30 doi:<https://doi.org/10.1016/j.ymben.2015.02.005>.

31 282. Kajla, S.; Kumari, R.; Nagi, G.K. Microbial CO₂ fixation and biotechnology in reducing
32 industrial CO₂ emissions. *Archives of Microbiology* **2022**, *204*, 149, doi:10.1007/s00203-021-
33 02677-w.

34 283. Tharak, A.; Katakojwala, R.; Kajla, S.; Venkata Mohan, S. Chemolithoautotrophic reduction of
35 CO₂ to acetic acid in gas and gas-electro fermentation systems: Enrichment, microbial dynamics,
36 and sustainability assessment. *Chemical Engineering Journal* **2023**, *454*, 140200,
37 doi:<https://doi.org/10.1016/j.cej.2022.140200>.

38 284. Zhang, X.; Guo, S.-X.; Gandionco, K.A.; Bond, A.M.; Zhang, J. Electrocatalytic carbon dioxide
39 reduction: from fundamental principles to catalyst design. *Materials Today Advances* **2020**, *7*,
40 100074, doi:<https://doi.org/10.1016/j.mtadv.2020.100074>.

41 285. Stöckl, M.; Claassens, N.J.; Lindner, S.N.; Klemm, E.; Holtmann, D. Coupling electrochemical
42 CO₂ reduction to microbial product generation – identification of the gaps and opportunities.
43 *Current Opinion in Biotechnology* **2022**, *74*, 154-163,
44 doi:<https://doi.org/10.1016/j.copbio.2021.11.007>.

45