September 12, 2022 12:53

WSPC/S0218-1274

2250174

International Journal of Bifurcation and Chaos, Vol. 32, No. 12 (2022) 2250174 (14 pages)

World Scientific Publishing Company
DOI: 10.1142/S0218127422501747

k-Nearest Neighbor Queues
with Delayed Information

Jamol Pender
School of Operations Research and Information Engineering,
Cornell University, 228 Rhodes Hall, Ithaca, NY 14853
Jip274@cornell.edu

Received ;

Revised

In this paper, we analyze a model called the k-nearest neighbor queue with the possibility of
having delayed queue length feedback. We prove fluid limits for the stochastic queucing model
and show that the fluid limit converges to a system of delay differential equations. Using the
properties of circulant matrices, we derive a closed form expression for the value of the critical
delay, which governs whether the delayed information will induce oscillations or a Hopf

bifurcation in our queueing system.
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1. Introduction

Cloud computing services are pervasive in our
society and are expanding across the world. These
services are supported by very complex infrastruc-
tures in data centers. As demand for cloud com-
puting services continues to increase it is important
to understand how to manage these data centers
so that they do not overload. It is not surprising
that many researchers are now developing new load
balancing algorithms for data center applications.
Since data centers can be modeled well by queue-
ing theory, often researchers use queueing theory to
verify that their algorithms perform well. However,
many data center managers must make the trade
off between using storing information about cur-
rent system state or component of the system load
among several queues. Many algorithms have been
developed to do this in the context of data centers,
telecommunications networks, and even call centers.

In order to achieve load balancing many
authors have analyzed stochastic queueing models
that are modifications of join the shortest queue,
see for example the work by [Mitzenmacher, 2001;

Byers et al., 2004; Xie et al., 2015; Bramson et al.,
2010; Lu ez al., 2011; Bramson et al., 2013; Mukher-
jee et al., 2016; Mukherjee et al., 2018; Mukherjee
et al., 2017; Banerjee et al., 2019; Budhiraja et al.,
2017; Aghajani & Ramanan, 2017; Aghajani et al,,
2015, 2017; Cybenko, 1989; Mitzenmacher, 2016].
Many of these variants of join the shortest queue
allow for joining the shortest among d randomly
selected queues. Selecting only d > 2 queues allows
for less storage of all queue lengths and still achieves
high quality performance.

Our paper is motivated by the load balanc-
ing literature, but is also motivated by the work
in [Dong et al., 2018; Ding et al., 2020] where cus-
tomers have the option to choose which queue they
join based on the queue length they observe in a
delay announcement or smartphone app. The work
of Dong et al. [2018], Ding et al. [2020] explores the
use of the multinomial logit choice model (MNL) as
a probabilistic way for customers to choose which
queue they will join. However, the current literature
assumes two important, but not realistic properties
about the information that customers have when
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making their decision of which queue to join. The
first assumption is that customers have information
about all queues. In the context of telecommunica-
tion systems and data centers, this assumption is
not realistic as it requires a substantial amount of
data storage and knowledge. Thus, it is common in
these settings that a queue might have information
only about its neighbors. The second assumption
is that customers receive information in a real-time
fashion. This is also not realistic as there are many
situations where either the information is delayed
from a technological point of view or the decision
about joining a queue must be made before actually
joining the queue. In both situations, the informa-
tion can be viewed as being delayed.

The queueing model that we present in this
work tackles both of these gaps in the litera-
ture. First we consider a 2k-nearest neighbor set-
up where a customer who will join the ith queue
also knows the queue length of the k neighbors to
the left and k neighbors to right. One might view
this nearest neighbor setup as each queue knowing
some local information about the queues nearest to
it. Second, we consider the fact that the informa-
tion about the queues is delayed and is not given
in real-time. This is important to consider in our
model as the rate of information about the system
is not infinitely fast. Thus, the queue length infor-
mation about the neighbors must be delayed.

We should also mention that our work is closely
related to the work by Mitzenmacher [2000], Ding
et al. [2020], Pender ez al. [2020], Lipshutz &
Williams [2015], Novitzky ez al. [2020], Doldo et al.
[2021] in that these papers either consider choice
model dynamics in the construction of their queue-
ing models or they consider delayed dynamics in the
context of queueing theory. We should also men-
tion that there is recent work by Atar and Lipshutz
[2021] that considers heavy traffic limits for systems
with delayed information. Thus, our work is similar
in this spirit.

Finally, we would like to illustrate how this
work is different from the following papers Pender
et al. [2020], Novitzky et al. [2020], Doldo et al.
[2021]. First our work considers a more general
choice model where the choice function is not lim-
ited to just exponential functions. A second differ-
ence is that we are using the k-nearest neighbors
selection for comparisons. This k-nearest neighbor
selection is more general than the previous situa-
tion where all queues are compared. This k-nearest
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neighbor feature is more practical in physical set-
tings where a comparison to a queue far away is
not possible in reality. As an example, if one thinks
about a grocery store, generally it is not easy to
compare lines that are far away, however, it is easy
to compare lines that are nearby the one you are
in. Thus, in this way the k-nearest neighbor model
is more realistic. Moreover, the k-nearest neighbor
model is also important because in the standard
MNL model, the delay differential equations decou-
ple reduces to analyzing just one dde. However,
this is not the case k-nearest neighbor model and
this model requires a more refined multidimensional
analysis based on circulant matrices.

1.1. Our contributions
This paper makes the following two major
contributions:

First, we develop a new model of k-nearest
neighbor queues, where the information about each
queue length is delayed by a constant A. Second, we
prove fluid limits for a scaled version of the queue
length process and show that the fluid limit is a
delay differential equation. Moreover, we prove the
exact threshold for when oscillations in the queue
length dynamics will occur in this fluid model.

1.2. Organization of the paper

The rest of the paper is organized as follows:

In Sec. 2, we describe and construct the k-
nearest neighbor queueing model. We prove the
fluid limit of the scaled queue length process and
derive an exact threshold where oscillations will
occur if the delay in information is larger than the
threshold. In Sec. 3, we conclude and provide new
directions for future research. Finally, all proofs of
our main results are given in the Appendix.

2. k-Nearest Neighbor Queueing
Model

In this section, we present a new stochastic queueing
model where customers that would arrive to the ith
queue are allowed to also join any of the k neighbors
to the right or to the left of the ith queue. Thus,
any arriving customer will have the option of joining
2k + 1 queues. This choice reflects the fact that
often in load balancing settings, one might not have
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the information of all of the possible queues one
could join since it can be computationally expensive
to store all of this information. In settings where
queue length information is provided to customers
via smartphone apps like in bike-sharing networks
[Schuijbroek et al., 2017; Faghih-Imani et al., 2017]
or waiting times at Disneyland [Nirenberg et al,
2018], a smartphone app will only indicate the near-
est possible queues you can retrieve or return a bike.
Thus, the information that is given to the customer
is limited to the nearest stations to them. Thus,
we begin with N infinite-server queues operating in
parallel, where customers make a choice of which
queue to join by taking the size of the queue length

|

WSPC/S0218-1274

g(Qi(t- A))

2250174

k-Nearest Neighbor Queues with Delayed Information

into account via a customer choice model. In addi-
tion to only being able to know the queue length
of one’s k-nearest neighbors to the left and to the
right, we also add the complication that the queue
length information that is given to the customer is
delayed by a constant A for all of the queues. There-
fore, the queue length that the customer receives is
not in real-time, which is commonly assumed. In
fact, the queue length information that a customer
actually receives is the queue length A time units
in the past.

Thus, in a stochastic context with N queues,
the probability of joining the ith queue is given by
the following expression

, (D

pQ(D), D) =

9(Qi-j(t = A)) + g(Qij(t = A)) + g(Qi(t - A))

j=1

where Q(t) = (Qi(t), Qa(t), ..., Qn(t)). We also
make the following assumptions regarding the
function g(x).

e The function g(x) maps from R, > R./{0}
and is a continuously differentiable function with
a uniformly bounded derivative. Moreover, we
assume the function is strictly nonincreasing.

* 9(grhery) is bounded away from zero Bk B N
and k< 21

e %)< 0,Bx > 0.

It is evident from the above expression that
if the queue length in station /j is larger than the
other queue lengths, then the ith station has a
smaller likelihood of receiving the next arrival. This
decrease in likelihood as the queue length increases
represents the disdain customers have for waiting
in longer lines. Using these probabilities for join-
ing each queue allows us to construct the following
stochastic model for the queue length process of our
N-dimensional system for t > 0

Z ,Qi(t)= Qi(0) + I
a A - pi(Q(s), A)ds
0
z t
- 119 uQi(syds ,
0

where each T1(-) is a unit rate Poisson process and
Qi(s) = ¢i(s) for all sA[-A, 0]. In this model, for

|
the ith queue, we have that

z t
oy Api(Q(s), A)ds ()
0

counts the number of customers that decide to
join the ith queue in the time interval (0, t]. Note
that the rate depends on the queue length at time
t- A and not time t, hence representing the lag in
information. Similarly
z t
¢ uQi(s)ds 3)
0

counts the number of customers that depart the
ith queue having received service from an agent
or server in the time interval (0, t]. However, in
contrast to the arrival process, the service process
depends on the current queue length and not the
past queue length.

2.1.

In this section, we specify some forms for the func-
tion g(x). In the case that g(x) = e %%, we have the
choice model is given by a k-nearest neighbor ver-
sion of the multinomial logit choice model (MNL).
In the MNL choice model, there is an analagous
utility perspective about the choices that customers
make. In fact the utility for being served in the
ith queue with delayed queue length Qi(t - A)

Special cases of the model
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Fig. 1.

is ui(Qi(t - A)) = -9Q;(t - A). Thus, there is
an economic interpretation of the MNL model. We
should also mention that the MNL model has two
important asymptotic regimes, which are of inde-
pendent interest. In the setting where we let the
sensitivity parameter ¢ - 0, we find that our prob-
abilities of choosing a queue to join converge to a
uniform distribution over the k-nearest neighbors.
Moreover, in the setting where we let the sensitiv-
ity parameter & - oo, we find that our probabilities
of choosing a queue to join converge to an indicator
function for shortest queue. If there is a tie, then it
is uniform over those queues that are identical for
the smallest queue length. As a result, we can view
the MNL model outside of those two extremes as
a smoothed and infinitely differentiable approxima-
tion of the join the shortest queue model.

Another function that could be used is the poly-
nomial g(x) = e - This function is commonly
used in the context of utility maximization and is a
version of the Cobb—Douglas family of utlities used
in economics. The interested reader for additional
functions can see the many references in [Hassin &
Haviv, 2003; Hassin, 2016].

Finally, we can also suggest that any tail cdf of
a continuous non-negative distribution could also
work as a potential function for g(x). For example

g(x) = e~ s the tail cdf of a Weibull distribu-

tion. Another distribution potentially is the folded
normal distribution where the tail cdf is given by the

function g(x) = %[erf(%) + erf( %)] forx 2 0
(o) (o)
and where erf() is the error function.

2.2. Fluid scaling and fluid limits

In many service systems, the arrival rate of cus-
tomers is high. For example, in Disneyland there
are thousands of customers moving around the
park and deciding on which ride they should join.

k-nearest neighbor queue with k= 1 (left) and k = 2 (right).

Motivated by the large number of customers, we
introduce the following scaled queue length process
by a parameter n

z

t
Qi(t)= QO0)+ I A-pi(Q"(s), A)ds
0
Z
1 d I~
- EH’ n pQ/(s)ds . @)
0

Note that we write Q?(O) for the initial condi-
tion, however, it really should be interpreted as an
initial function since it will contain all of the infor-
mation needed to know the queue length in the past
A time units. Now by letting the scaling parameter
n go to infinity gives us our first result.

Theorem 1. Let yi(s) be a non-negative Lipschitz
continuous function that knows all of the queue
length values on the interval [-A,0]. Then, if
Q?(s) = Vi(s) almost surely for all sB[-A, 0] and
for all 1 £ i £ N, then the sequence of stochas-
tic processes {Q"(t) = (Q(1), Q' (1), ..., Q] (D}en
converges almost surely and uniformly on compact
sets of time to (q(t) = (q1(t), q2(2), . .., qn(t)) where

qi(t) = A - pi(a(t), A) - ugi(t) ©)

and qi(s) = yi(s) for all s B [-A, 0] and for all
I<is<N.

Proof.  See Appendix.

This result states that as we let n go towards
infinity, the sequence of queueing processes con-
verges to a system of delay differential equations.
Unlike ordinary differential equations, the existence
and uniqueness results for delay differential equa-
tions are much less well known. However, we pro-
vide the result of existence and uniqueness for the
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delay differential system that we analyze in this
paper below.

Theorem 2. Given a non-negative Lipschitz con-
tinuous initial function ¢; : [-A, 0] > R for all
1 < i £ N and a finite time horizon T > (,
there exists a unique Lipschitz continuous function
q(t) = {q(t)}-na<t<T that is the solution to the fol-
lowing delay differential equation

qi(t) = A - pi(q(t), A) - uai(t) (©6)

and qi(s) = ¢i(s) for all s B [-A, 0] and for all
1<is<N.

Proof. The proof of this result can be found in
[Hale, 1971] as our model satisfies the Lipschitz con-
tinuity conditions of the right-hand side.

2.3. Oscillations in the k-nearest
neighbor model

Unlike ordinary differential equations, delay differ-
ential equations are truly infinite dimensional and
the smallest of delays can cause surprising dynam-
ics. Recent work by Pender ez al. [2017] explores
a two-dimensional version of our fluid limit and
uncovers that the two queues can oscillate in equi-
librium when the delay is large enough. Pender et al.
[2017] also characterizes the threshold in terms of
the model parameters and provides an exact for-
mula for the threshold in the two-dimensional case.
However, this analysis is limited and does not imme-
diately generalize to the multidimensional setting.
The main goal of this section is to generalize the
critical delay analysis of Pender ez al. [2017] and
derive the exact threshold for an arbitrary num-
ber of queues. Before we state the formal theorem,
we will need a lemma, which is stated below. This
lemma provides an explicit expression for the sum
of cosines in terms of the Dirichlet kernel. We will
need the lemma for analyzing the stability of the
delay differential equations that arise from our fluid
model.

Lemma 1

> =2

sin = N +
cos(nd) = - l +
n=1 2 2 sin

@)

N o) —
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Proof. Start with the series

Xn
cos(kx). (®)
k=1

fo0= 5+

Then one should multiply both sides of the above
by 2sin(x/2) and use the trigonometric identity

sin(a + b) - sin(a - b)

cos(a)sin(b) = 3 )
to reduce the right-hand side to
_ 1
sin n-+ 3 X . (10)

This completes the proof.

Lemma 2. The equilibrium for the delay differen-
tial system of equation given in Eq. (0) is unique.

Proof. To mathematically verify that this is an
equilibrium for the system of equations, one can
substitute NA—u for gi(t) and gi(t - A) and make the
observation that the time derivatives for all equa-
tions are equal to zero. However, we may be unsure
of whether the equilibrium is unique. We can show
that the equilibrium in our setting is unique by not-
ing that

q(t)= 0 (11)
and setting the equilibrium gj(ee) = ¢;. Thus, for
each i, we have that

A-p(ci, A) = p-ci (12)
This implies that
gle) _ M g(ci)
Ci A xk
g(ci-j) + g(cisj) + g(ci)

j=1
= const. (13)
Now we observe that the function on the left 9 s

0. Therefore, “All
are equal implies that all ¢; terms

a one-to-one function of ¢ ;2
functions g(c—c"')
are equal. This implies that our equilibrium is

unique.

Theorem 3. For the constant delay choice queue-
ing model given in Eq. (6) with arbitrary N > 2,
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the critical delay, Acr(A, u, N), is given by the following

_r
arccos ; .
1151}1an @
ACF(A/ “/ NI k) = F 4 (14)
1 Wiy o 2- w2
where o is given by Mk + 1-
?) ?)
1 2m”
sink+ - 7 —
o A - N0 2 N A
i 7 +
sinnj (2( Du
N
o = — (15) 2k + 1)%g (Qk +
Du

Proof. The first part of the proof is to compute an
equilibrium for the solution to the delay differential
equations. In standard ordinary differential equa-
tions, one sets the time derivative of the differen-
tial equations to zero and solve for the value of the
queue length that makes it zero. This implies that
we set

q,(t) = 0. (16)

This further implies that we need to solve the fol-
lowing N nonlinear delay equations

A pi(q(t), A) = pgi(t) = 0. a7

Sometimes finding the equilibrium is nontrivial in
many nonlinear sygtems. In our system, we algo
have the complication that the differential equa-
tions are delay differential equations and have an
extra complexity. However, in our case, the delay
differential equations given in Eq. (17) are symmet-
ric and this simplifies some of the analysis. In this
case, the N equations converge to the same point
since in equilibrium each queue will receive exactly
1/(2k+1) of the arrivals and the service rates of all
queues are the same. Thus, we have in equilibrium
that forall 1< i< N
B B A

q,'(t— A) = q,'(t) = m as t > oo, (18)
To mathematically verify that this is an equilib-
rium for the system of equations, one can substituteI

ITTk%TW for ¢;(t) and qi(t - A) and make the
observation that the time derivative for all equa-
tions are equal to zero.

Now that we have established the equilibrium
for Eq. (6), we need to understand the stability
of the delay differential equations near the equilib-
rium. The first step in doing this is to set each queue
length to the equilibrium points plus a perturba-
tion. With this in mind, we substitute the following
values for each queue length
(19)

qi(t) = + ui(t).

2k + Du

In this substitution, the u,(t) are perturbations
abCut the equilibrium p°int m By substitut-
ing Eq. (19) into Eq. (6) we obtain the following
equations

Z’i(t) =A-p kT D +u(t), A

A
HuiO = G (20)
Now if we linearize around the point ui(t) = 0,
which is equivalent to performing a Taylor expan-
sion and keeping only the linear terms, we have that
the linearized version of u;(t), which we now defined
as w;(t) solve the following linear delay differential
equations

A A
2kA -g° ———— blk+1)g2c-1 A L —
. + +
i) = CRTDE - ) - CEDE e o)
2k+ 1’9 —— =1 (k+ 1)%g —2
( A TN ! ( A TN
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b(k+y)/2c-1 A - ¢P A
X Gk DIy okt 192
- “Wij(t = A) - - wi(t) 2k + Dy

A A
Aol 2 b(k+1)(2c-1 A — 2
_ Gk DR ay S G DE
A ’ , ) A i
+ _* =1 + SR E—
Ck+ D9 e i ! Ck+ D9 o i
b(k+1)/2c-1 A - ¢° A
- )(, P - A - ) =0 2 + 1 2
This can be written as a matrix system by |
of S, U1, and A as
A -1
A-f — = C=UAU 22
. 7 2k D 22)
w(t) = 3 I -w(t-A) | =ulut, (23)
QCk+ 1)g
2k + Du The matrix C has rank N - 2k and therefore has
A N -2k distinct eigenvalues. The eigenvalues of any
A 90 W real symmetric matrix are real. Thus, the corre-
- ( 2“ Cw(t- A) sponding eigenvalues of our circulant matrix have
Qk+ 1)2g ———— explicit expressions in terms of the roots of unity
QCk+ DHu ie.
-u _/W(t), (21) Aj = Ccot+ 2C1<U)j + 2C2<(JJJ2

where / is an N-dimensional identity matrix and
C is a N-dimensional symmetric circulant matrix.
Circulant matrices are ideal since much is known
about their eigenvalues. Thus, C has the following
representation

=
=

o

(a}

AR
o
N}
(9]
=

[}
o
o

AR
X))

R BRI
[ * 0
o
AR
o
o
[ RN ol )

()
N
a
[y

1 ¢ c1 Co

With the representation of our linearized system in
Eq. (21), we can now exploit the fact that both C
and / can be simultaneously diagonalized. Thus, we
can write both C and / in terms of the eigenvectors
of the matrix C. If we denote S as the orthogo-nal
matrix of the eigenvectors of C and denote A as
diagonal matrix of the eigenvalues of C, then we
have that C and / can both be decomposed in terms

+. 4 2cn/2_1<w;’/2_1 + cn/zw;’/z 24)

for n even, and

Aj = co+ 2ci<wjt 2c2<wj2

+ ...+ 2c(,,_1)/2<w/(.”_1)/2 (25)
for odd n. This can be further simplified by using
the roots of unity identity that

2njk
<wj = cos K, (26)

N
Thus, the jth eigenvalue of the circulant matrix
is given by the following expression

=1+ 2cost UM
m=1
_sin
ke X 1 2nj
- 2 N @7)
7
Sin V
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Using this knowledge of the eigenvalues of the matrix C, we now define, v= U~'w or w = Uv and this
leads us to the following delay differential system for v

w(t) = Uv(t)

A-d A A-d A
= ( 4 lw(t- A) - ( ) “Cw(t- A) - u-Iw(t)
A
2k + 1)g m (2k + 1)zg m
A A-d
- (2k+ ;)“ Iw(t- A) - (2“ 1/\);1 UAU ™ w(t - A) - p-w(b)
2
(k+ DI QK+ 10 o
A (2k+1) Ad (Zkil)
= A“ JUV(t- A) - H L UAUTU(E- A) - - 1UV(D)
2
2k + g kT D 2k + 1)“g ok Di
d (2/<+1) Aed (2kil)
= H_ uwt- A)- A“ UAV(t - A) = w- Uv(b). (28)
2
K+ DI @K+ 1’0

Now by multiplying both sides by U~1 we have the following delay differential system for v

Aol ——— A-d°
(t) = (2k+ DE j-1yv(e-a)- (2k+ DE yav(t- A) - - UL Uw(D)
k+ De ST 2k + 1)%g TR
A A
A ———— AP ————
- Gkt DH - a) - Gkt DB Avit- A) = - 1v(o). (29)
2
k+ 10 5T @+ 1’0

Thus, for the ith entry of the vector v, we have the following delay differential equation

A A
Al ———— Al ————
i) - G- ) - G- 8) = v
2
QK+ g G QK+ D9
Qk+ 1= Ap) A ¢
- ;2“ DE_ve= A) - v, (30)
2
Qk+ g e

where Aj; is the ith diagonal entry of the matrix A. One crucial observation is that this representation
shows that the system of delay equations given in Eq. (30) are uncoupled and can be analyzed individually

2250174-8
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for stability purposes. To finish the proof, we
observe that it only remains to analyze the stability
of the each equation for v.(t). To do this we make
the ansatz v;(t) = et and derive an equation for the
variable r. This yields the following transcendental
equations for r

r=aj-e "8

D

Note that this is the real difference between
ordinary differential equations and delay differential
equations. These types of transcendental equations
do not appear in ordinary differential equations
because A is typically equal to zero in the ordinary
differential equation context. Now we complete the
proof by analyzing our transcendental equation for
r. If we substitute r = iw, we obtain two equations
for the real and imaginary parts respectively using
Euler’s identity

_“'

cos(wA) = g

I

sin(wA) = - )

I

(32)

(33)

Now by squaring both sides and adding the two
equations together we arrive at the following
equation

(U + w?)

o

cos?(wA) + sin®(wA) = 1 =

(34)

By moving all terms of Eq. (34) that do not involve
w to the right, we can isolate an expression for w.

Example with A = .45, N=5, k=1, »=10, p=1

solution y

— Q,

— Q) | |
— Q,
— Q

T
0 2 4 6 8 10 12 14 16 18 20

Fig. 2.
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Thus, solving for w, we arrive at the following
expression

q
w =

2_ 2
a? - 2.

(35)

Using this expression for w, we can finally invert
Eq. (32) since it does not contain w on the right-
hand side unlike Eq. (33) to solve for the critical
value of A. We find that our threshold A is equal to

arccos ﬁ
Al (AN k)= g4 (36)
cr az _ uz
i

Thus our proof is complete.

Theorem 3 provides a local characterization of
the oscillation behavior of an arbitrary queueing
system with N queues. If the delay A is larger
than the critical delay A¢r(A, i, N), then we should
expect that the N queues should oscillate in equi-
librium. However, if the delay A is smaller than the
critical delay Acr(A, u, N), then we should expect
that the N queues should converge to the equi-
librium point A and not oscillate around the

equilibrium.

2.4. Numerical results for fluid
limits
In this section, we describe some numerical results

that compare the fluid limits before and after the
critical delay values. On the left of Fig. 2, we plot

Example with A = .48, N=5, k=1, }»=10, u=1
5 T T T T T T T T T

solution y

Acr = 0.468.
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Example with A = .15, N=5, k=1, »=25, p=1

WSPC/S0218-1274 2250174

Example with A = .18, N=5, k=1, »=25, u=1

solution y
o
1

solution y

.......................

Pl , €O . BB 4

T4 SIE RN AR ANEE RERE RARE R
i

3 — Q, 3

— Q,
2 — Q,

2

— Q,

— Q.
1 1 1 1 1 1 1 Il 1 T 1 1 Il 1 1 1 1 1 1 T
0 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 5 6 i 8 9 10

time t time t
Fig. 3. Acr = 0.167.

an example of N 5 queues and we let k = 1.
Since A < Acr = 0.468, we observe that the queues
converge to the equilibrium and the initial oscil-
lations vanish over time. However, on the right of
Fig. 2, we observe that because A > A = 0.468,
the queues oscillate around the equilibrium. More-
over, it is important to note that even though each
queue length oscillates around the equilibrium, the
size of the oscillations are not all equal. Thus, there
is an asymmetry in the size of the oscillations.

In Fig. 3, we plot an example of N = 5 queues
and we let kK = 1, but we increase the arrival rate.
Since A < A = 0.167, we observe that the queues
converge to the equilibrium and the initial oscil-
lations vanish over time. However, on the right of
Fig. 3, we observe that because A > A = 0.167,
the queues oscillate around the equilibrium. More-
over, it is important to note that even though each
queue length oscillates around the equilibrium, the
size of the oscillations are all actually equal this
time. Thus, the size of the oscillations appears to
be symmetric. This is a clear difference from the
previous figures.

3. Conclusion and Future Research

In this paper, we analyze a new N-dimensional
stochastic queueing model that incorporates cus-
tomer choice and delayed queue length information
in a k-nearest neighbor fashion. Our model con-
siders the customer choice as a generalized multi-
nomial logit choice model where the queue length

information given to the customer is delayed by
an amount of size A. We prove fluid limit theo-
rems for our queueing process and show that the
fluid limit is a system of delay differential equa-
tions. We also prove that the resulting fluid limit
can experience a Hopf bifurcation. Using the prop-
erties of circulant matrices, we compute exactly
when this Hopf bifurcation occurs in terms of our
queueing model parameters and verify numerically
our results. Although we consider an infinite server
system, the analysis of multiserver queues like the
Erlang-A queues can also be analyzed in an iden-
tical fashion yielding similar results. In fact, the
results are identical to the infinite server case as
long as the equilibrium does not linger around the
number of servers, see for example [Pender & Ko,
2017; Ko & Pender, 2018].

There are many remaining questions for
research. For one, what if the delay were nonsta-
tionary and not a constant? What if the topology
of the network is more complicated? What if each
queue has a different delay? We intend to answer
these important questions in future work.
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Appendix

Before we begin the proof, we present two lemmas
that are vital to understanding and constructing the
proof via strong approximation theory.

Lemma 3 [Kurtz, 1978]. A standard Poisson pro-
cess {I1(t)}t=0 can be realized on the same probabil-
ity space as a standard Brownian motion {W (t)}t>0
in such a way that the almost surely finite random
variable
@ - t- Wy

log(2 @ t)

Z = sup
t20
has finite moment generating function in the neigh-

borhood of the origin and in particular finite mean.
|

z

Q7(1) - qi(t)

1 t
Q0) - q(0) + _T1% A -p(Q'(s), A)ds -
n 0

WSPC/S0218-1274 2250174

Lemma 4 [Kurtz, 1978]. For any standard Brown-
ian motion {W (t)}ts0 and any > 0, n BN, and T
>0

- Ww)- w

Mz osp s W@~ WO

u,v,snT

nT
Ju-v|

Ju- vl 1+ log

< oo  a.s.

In this section we prove Theorem 1, which
shows the convergence of the scaled queueing pro-
cess to our system of delay differential equations.

Proof of Theorem 1
Proof
z t
Q1) = Q'(0)+ %H,f' A -pi(@7(s), A)ds
0
Z t

1
- EH?’ o uQl(s)ds . (A.1)

First we need to represent the difference of the
scaled stochastic queue length minus the fluid limit.
This is given by the following expressions

Z t
A -pi(a(s), A)ds  Z

0
z

t t
-lme 0 pan(sds + pgisds
n ' 0 ! 0
1 z t z t
=Q"0)- q0)+ =II7 n  A-pi(Q"(s),A)ds - A-pi(Q"(s), A)ds
n 0 0
z t y4 t
x  A-pi(Q(s), A)ds - A-pi(q(s), A)ds
0 0
1 z t z t z t z t
- EH;’ n  uQl(s)ds +  pQl(s)ds- pQl(s)ds+  pgi(s)ds.
0 0 0 0

Now we have a representation of the queue length in terms of centered time changed Poisson processes
and a deterministic part, we can now apply the strong approximations theory to the absolute value of the

difference.
Lz z,
GO (] < 1GO - 6O+ T A-p(Q(s), Ads = A-p(@'(s), M) Z
Z t

£ A-p(@n(s), Ads - A+ pi(a(s), Ads

0 0

Lz z, z, zZ, -
I En,‘-” pQ ()ds - puQ ()5 +  pQ (s)d5-  pgi(s)ds .

0 0 0 0
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By Lemma 3, we have the following strong
approximation representation of the queue length
as

z t
Q= A-pi(QI(s), A)ds
0

a
| Z %V, B

A-pQ(s), Ads
Z, { Z,
- uQl(s)ds- v_B¢ uQ(s)ds
n 0

(A.2)

Using the strong approximation representation,
we now have that the difference between the scaled
queue length and the fluid limit is bounded by

1Q"(®) - ai(®)]

< 1Q(0) - gi(0)/
Z ; + v
L BT Ap(Q(s), Myds
n 0
z t
+ A -pi(QTs), Ads
0

Z,

T A - pi(a(s), A)ds

1 Z ¢
—"L—‘/ndBi HQ; (s)ds
0
Y4 t z t
+ uQN(s)ds-  ugi(s)ds
0 0
+Ologn
n

Now it remains to show that

Z
t
lim sup V1B A -pi(Q'(s), Ads =0
n>et<sT ' o0
(A.3)
and
z t
lim supv!BY  uQi(s)ds = 0. (A4
n>etsT o !
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For the first Brownian motion term we have
that
Z t
lim supvlB9 A -p(Q"(s), A)ds
nSerer N o

) 1
< . . =
< nll»l’ll \/T_B i (A T)

lim B¢ !

g

AT
n

For the second Brownian motion term we have that

Z
lim sup \Llei

t
uQ"(s)ds
n>eotsT 1 0 !

IA

.1

1gn 1,,__B"’,,((CZ”(0)+ A)-p-T)
n oo

lim Bdl A(@Q"O)+A)-pu-T

_ave g

Thus, for every > 0 there exists an n? such
that for all n > nP?

1Q(0) - qi(0)] < (A.5)

Zz

VA
t
supvlBe A p(Qi(s),A)ds s
tsT n 0 4
(A.6)
z t
sup \Ll_Bdi uQ;’(s)ds < (A.7)
tsT 7 0
and
logn
< - A.8
p 3 (A.8)

so that we have
1) - qi(H)]

z, z
< A-pi(QI(s), A)ds -
0

A - pi(a(s), A)ds
0

z, z

+ uQl(s)ds -
0

t
ugi(s)ds + o
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z t

< ) IA-pi(Q"(s), A) = A - pi(a(s), A)] ds
Z

t
+ . [uQi(s) - pqi(s)/ ds + .

Since we assumed that the function g(x) was
continuously differentiable with uniformly bounded
first derivatives, there exists a constant C such that

1Q'(®) - ai®]
z

t

<C sup [Q"(r) - gi(r)/ds +
0 -A<r<s
z t
<C- sup /Q"(r)- q (p/dso
0<rs<s

|
+C- t- sup QU= g(n)] +.

-A<r<0

(A.9)
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Now we exploit the fact that we assumed that
Q(t) = qi(t) for t B [-A, 0] for our initial con-
dition. This assumption yields the following new
bound for the difference of the scaled queue length
and the fluid limit by

z t
@@= g®fs ¢ sup Q- g0t .o

<r<s

(A.10)

Note that the difference between the two equa-
tions above is the interval of the supremum inside
the integral. Now by invoking Gronwall’s lemma in
[Hale, 1969], we have that

sup [Q'(D) - qi(t)] < -eT (A1D)
0<tsT
and since is arbitrary, we can let it go towards

zero and this proves the fluid limit.
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