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Bead-on-fibre morphology in shear-thinning flow
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Thin-film flow down a fibre exhibits rich dynamics and is relevant to applications
such as desalination, fibre coating and fog harvesting. These flows are subject to
instabilities that result in dynamic bead-on-fibre patterns. We perform an experimental
study of shear-thinning flow down fibres using 20 different xanthan gum solutions as our
working liquid. The bead-on-fibre morphology can be oriented either symmetrically or
asymmetrically on the fibre, and this depends upon the surface tension, fibre diameter and
liquid rheology, as defined by the Ostwald power-law index. For highly shear-thinning
liquids, it is possible for the pattern to be complex and exhibit simultaneously both
asymmetric large beads and symmetric small beads in the isolated and convective flow
regimes. We quantify the transition between flow regimes and bead dynamics for the
asymmetric morphology, and compare with Newtonian flow, as it depends upon the
experimental parameters. Finally, the dimensionless bead frequency is shown to scale with
the Bond number for all of our experimental data (symmetric and asymmetric).
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1. Introduction

Thin-film flows on fibres are susceptible to shape-change instabilities that produce
bead-on-fibre patterns, as seen in gas absorption (Chinju, Uchiyama & Mori 2000;
Uchiyama et al. 2003; Griinig et al. 2012; Hosseini et al. 2014), heat exchange (Zeng
et al. 2017; Zeng, Sadeghpour & Ju 2018), microfluidic (Gilet, Terwagne & Vandewalle
2009), moisture-capturing (Labbé & Duprat 2019; Nguyen et al. 2021; Moncuquet et al.
2022), particle-capturing (Sadeghpour et al. 2021), desalination (Sadeghpour et al. 2019)
and fibre-coating technologies. In fibre coating, the liquid coating solution is often
shear-thinning so as to promote spreading at high shear and inhibit uneven coating
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while at rest. This desirable behaviour is used to ensure optimal pigment orientation in
waterborne automotive base coats (Bithne, Woocker & Linzmaier 2009; Lin, Schmelter
& Hintze-Bruening 2021), for quality control in inverse dip coating of optical fibres
(Brasse et al. 2011), and to assist in applying antibacterial nanocomposite coatings (Tang
et al. 2016) to fibre-shaped objects such as straws and toothbrush bristles to protect
against disease transmission. These various applications and the benefits of shear-thinning
behaviour motivate us to explore how shear-thinning affects flow morphology in thin-film
flow down a fibre. We are interested in quantifying experimentally the morphology and
dynamics of bead-on-fibre patterns in thin-film flow of a shear-thinning liquid.

Early experiments on axisymmetric fibre coating focused on fibre withdrawal from a
liquid bath and revealed the emergence of undesired bead-on-fibre patterns (Quéré 1999;
Shen et al. 2002). Kliakhandler, Davis & Bankoff (2001) classified these patterns on a
vertically hung fibre into three primary regimes: (i) isolated, (ii) Plateau—Rayleigh, and
(iii) convective. The isolated and Plateau—Rayleigh regimes have equispaced primary
beads and form steady patterns. The thin film connecting the primary beads destabilizes
into smaller, secondary beads in the isolated regime, but remains uniform in the
Plateau—Rayleigh regime. In the convective regime, increased inertia drives coalescence
between primary beads, resulting in more complex dynamics. Convective patterns are
not equispaced; however, Duprat et al. (2009a, 2011) showed that neighbouring beads
can interact and form natural and forced bound states with preferential bead spacings.
From a stability perspective, the steady patterns in the isolated and Plateau—Rayleigh
regimes result from absolutely unstable base flows, while the convective patterns result
from convectively unstable base flows (Duprat er al. 2007). More recently, researchers
have been interested in the influence of nozzle geometry (Sadeghpour, Zeng & Ju 2017; Ji
et al. 2020), fibre shape (Xie et al. 2021), fluid properties (Smolka, North & Guerra 2008;
Gabbard & Bostwick 2021b) and slip (Haefner ez al. 2015) on bead-on-fibre patterns.

Several models have been proposed to explain the physics governing bead-on-fibre
formation. Kalliadasis & Chang (1994) considered solitary wave solutions and determined
the minimal thickness %, for pulses to grow into drops. Chang & Demekhin (1999) studied
subcritical (h < h,) and supercritical (h > h.) films, and found that growing pulses can
consume smaller, slower pulses, forming ‘coalescence cascades’. An evolution equation
for the interface was derived by Craster & Matar (2006) using the long-wavelength
approximation and provided good predictions for the shape and speed of drops flowing
down a fibre. More recently, models have considered streamwise viscous diffusion
(Ruyer-Quil et al. 2009), slip-enhanced drop formation (Halpern & Wei 2017), disjoining
pressure (Ji ef al. 2019) and thermal gradients (Khanum & Tiwari 2020; Ji et al. 2021).

The literature of thin-film flow of complex fluids down fibres is comparatively
sparse compared to that of Newtonian fluids. Complex fluids exhibit a shear-dependent
viscosity or elasticity, or have multiple constituents and produce new behaviours of
practical importance. For example, Tadmor & Bird (1974) showed that a negative
second normal stress has a centring effect during wire-coating. Boulogne, Pauchard &
Giorgiutti-Dauphiné (2012) performed experiments on shear-thinning and elastic polymer
solutions flowing down a fibre, and derived a dispersion relation for shear-thinning
flow down a fibre, with which they compare predicted to measured growth rates.
Later, Boulogne et al. (2013) showed that worm-like micelle solutions can suppress the
Plateau—Rayleigh instability by forming shear-induced structures. Pradas et al. (2014)
expanded the study of non-Newtonian flow down a fibre by considering shear-thinning and
shear-thickening behaviour of ‘large’ and ‘fast’ solitary waves. In each of these studies
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of shear-dependant liquids, the resulting flow instability was symmetric about the fibre;
Boulogne et al. (2012) did briefly mention observing asymmetric patterns, but these were
not analysed further.

Asymmetric configurations have been observed previously in liquid threads and
bead-on-fibre structures. For example, liquid jets have unstable asymmetric modes below a
critical Weber number We, (Yang 1992), and static droplets on a fibre can have asymmetric
(‘clamshell’) profiles that depend upon the contact angle and volume (Carroll 1984,
1986; McHale, Newton & Carroll 2001; McHale & Newton 2002; Chou et al. 2011).
Recently, we observed asymmetric morphologies in Newtonian flow down a fibre using
high-surface-tension glycerol-water mixtures, with the azimuthal symmetry depending
upon the surface tension and fibre diameter, and the bead properties following scaling
laws much different to the corresponding symmetric patterns (Gabbard & Bostwick
2021a). The asymmetric morphology results in azimuthally asymmetric bead profiles
like the ‘clamshell’ profile observed for static beads on a fibre; however, they are also
axial asymmetric, resulting in a wide range of shapes. Eghbali et al. (2022) performed
experiments on highly viscous Newtonian flow down a fibre, and observed two asymmetric
modes: pearl and whirl. They altered the initial eccentricity of the liquid about the fibre,
showing that the morphology depends on the Bond number Bo and eccentricity, and
rationalized these observations using an energy analysis that showed that shear at the
liquid—gas interface can sustain the whirling mode instability. Non-Newtonian liquids
are ubiquitous in practice, e.g. most common paints are highly shear-thinning (Armelin
et al. 2006). Specifically, shear-thinning behaviour is tailored easily by varying polymer
concentrations, and this has been shown to enhance heat transfer in several systems
(Gingrich, Cho & Shyy 1992; Ebrahimi et al. 2017). Despite this relevance, the literature
on shear-thinning flow on fibres is sparse and has been focused primarily on axisymmetric
flows. Interestingly, non-Newtonian rheology has been shown to induce asymmetric flow
in microfluidic systems (Haward, Hopkins & Shen 2020). Thus we are motivated to explore
how shear-thinning behaviours affect the bead properties (morphology and dynamics) in
thin-film flow on fibres.

We begin this paper by describing our experiment, including the preparation of the
polymer solutions and characterization of their rheology, the experimental protocol, and
data analysis techniques, in § 2. We present our results in § 3, focusing on how shear
thinning affects the bead morphology (§ 3.1), transition between flow regimes (§ 3.2)
and bead dynamics (§ 3.3), contrasting with the Newtonian case studied previously. In
§ 3.4, we show that all of our data can be collapsed using appropriate scalings. In §4,
we propose a physical reason for how shear-thinning produces asymmetric morphologies.
Finally, we make some concluding remarks in § 5, and identify several open questions on
shear-thinning flow down a fibre.

2. Experiment

Experiments were performed by flowing shear-thinning xanthan gum (XG) solution down
a fibre using the set-up shown in figure 1(a). An NE-1000 syringe pump applied the
polymer solution onto a smooth nylon fibre of diameter Dy and length 700 mm through a
circular stainless steel nozzle (1.2 mm diameter) at a constant flow rate Q. The nozzle was
orthogonal to the fibre, which was vertically aligned using a free-hanging weight, pulled
taut, and pinned at top and bottom. The flow rate was in the range Q = 1-310 ml h~!, and
the fibre diameter in Dy = 0.1-0.6 mm.
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Figure 1. (a) Experimental set-up. (b) Sketch of a bead-on-fibre morphology defining the bead height Hj,
fibre diameter Dy, bead spacing A, and bead velocity Vj. (c¢) Bead-on-fibre patterns belong to the isolated,
Plateau—Rayleigh (PR) or convective regimes. (d) Viscosity p against shear rate y for a typical 2500 ppm
xanthan gum (XG) solution overlaid by a best fit to the power-law model for the full shear rate range (dashed
black line), a high shear rate range (solid red line), and a low shear rate range (solid blue line). For all XG
solutions, the estimated power-law exponent increased with shear rate such that n; < n < ny, (i.e. the degree of
shear-thinning decreased as y increased).

Three beading patterns were observed: (i) isolated, (ii) Plateau—Rayleigh, and (iii)
convective, as shown in figure 1(c). These are consistent with those observed for
Newtonian flow down a fibre (Kliakhandler et al. 2001). In all experiments, the regime
transitioned from isolated to Plateau—Rayleigh to convective as the flow rate Q was
increased. The bead dynamics were recorded 550 mm down the fibre (to ensure fully
developed flow) at either 500 fps or 1000 fps using a Phantom VEO 410L high-speed
camera. ImageJ was used for image processing to quantify the bead height Hj, (measured
from the fibre centreline), velocity Vj, and spacing A, as shown in figure 1(b). The bead
frequency is also of practical importance, and we calculated it as f = Vj/A.

2.1. Rheology of XG solutions

Xanthan gum solutions were prepared by dissolving XG (M,, ~ 2 MDa, Tokyo Chemical
Industry, Tokyo, Japan) of concentrations 200-2500 ppm in a glycerol-water mixture
solvent; two glycerol concentrations (60 %w and 80 %w) were used to explore different
solvent viscosities. The solution was covered and placed on a magnetic stirrer for 24 h.
Tween-20 (T20) surfactant (Sigma—Aldrich; CAS: 9005-64-5) was then added to the
solution in concentrations 0.02-4 %w. We note that Dacus et al. (2022) observed that
Tween-20 can affect the rheology of XG solutions in water; however, we observe a
negligible effect on the rheology of our glycerol-water solvents, likely due to their high
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Label  Glycerol/water (%) ¢ (ppm) T20(%) NaCl (%) o (mN m) B (mPa s™) n

1 60/40 2500 4 0 33 814.5 0.53
2 60/40 2000 4 0 33 635.4 0.55
3 60/40 2000 0.1 0 39.6 665.4 0.54
4 60/40 2000 0.02 0 48.4 678.7 0.52
5 60/40 2000 0 0 67.3 601.1 0.53
6 60/40 1500 4 0 32.8 474.4 0.57
7 60/40 700 4 0 31.1 180.1 0.69
8 60/40 600 4 0 32 147.7 0.7

9 60/40 500 4 0 31.2 138.2 0.71
10 60/40 450 4 0 31.3 127.3 0.73
11 60/40 400 4 0 32.6 101.6 0.75
12 60/40 300 4 0 31.8 78.6 0.77
13 60/40 200 4 0 31.8 53.2 0.82
14 80/20 500 4 4 323 914.4 0.93
15 80/20 500 4 3 31.8 840.7 0.91
16 80/20 500 4 2 31.5 564.4 0.89
17 80/20 500 4 1 31.4 449.2 0.87
18 80/20 500 4 0.8 31 237.6 0.86
19 80/20 500 4 0.5 30.7 273.2 0.82
20 80/20 500 4 0 30.6 294.4 0.79

Table 1. Liquid properties for XG solutions tested: surface tension o, and the consistency coefficient 8 and
power-law index n for the Ostwald power-law rheology model.

glycerol concentration (cf. solutions 25 in table 1). Additionally, we note that the presence
of a surfactant can induce Marangoni effects. However, nearly all of our solutions have
surfactant concentration larger than the critical micelle concentration, suggesting the
absence of Marangoni effects, with the potential exception of solutions 3 and 4 (cf. table 1).
Finally, sodium chloride (NaCl) was added in concentrations 0-5 %w to weaken the
shear-thinning behaviour (Wyatt & Liberatore 2009). The solution was mixed until no
streaks or clumps were visible, and then bottled and stored at 2 °C. The solutions were
removed from the cooled environment and allowed to warm to room temperature (*21 °C)
before we measured the rheology or performed experiments.

We used 20 different XG solutions in our experiments, with liquid properties given in
table 1. The surface tension ¢ and density p were measured using an Attension Sigma 702
tensiometer with Wilhelmy plate and density probe, respectively. Here, the surface tension
was in the range 30.64—67.32 mNm™', and the density in 1135.4-1244.2 kg m—>. The
viscosity ; was measured against shear rate y using an Anton Paar MCR 302 rheometer
with a cone geometry over a range of shear rates 10-1000 s~! that encompasses the typical
range for thin-film flow down a fibre (Duprat, Ruyer-Quil & Giorgiutti-Dauphiné 20095;
Boulogne et al. 2012). Figure 1(d) shows a typical viscosity curve u(y) together with

a fit to the Ostwald power-law model & = By"~! (black dashed line), where g is the
consistency coefficient (a measure of the solvent viscosity), and 7 is the power-law index,
a measure of the shear-thinning behaviour with limiting case n = 1 for a Newtonian liquid.
We note that the local estimate of n, calculated about a specific shear rate y, varies greatly
from the global estimate. For example, the blue and red lines in figure 1(d) show the slope
of the viscosity curve at low (blue) and high (red) values of y; n varies greatly in this range
(0.43 <n <0.62).
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To best delineate the role of shear-thinning on the bead properties, we estimate n
and p for each experiment. We do this at steady state, assuming that the low-viscosity
regions control the bead dynamics. This occurs along the fibre—liquid interface, and we
can estimate the shear rate there as y ~ V;,/Hp. The rheology (n and w) can then be
determined through interpolation of the viscosity curve. Herein, when we report our data,
it will be with respect to this viscosity.

3. Results

This section describes our experimental results and shows how the bead symmetry
depends upon the rheology and fibre diameter. We quantify the conditions under which
asymmetric morphologies transition (i) from the isolated to the Plateau—Rayleigh regime,
and (ii) from the Plateau—Rayleigh to the convective regime. For patterns that result from
an absolutely unstable base flow (isolated and Plateau—Rayleigh regimes), we determine
the bead dynamics through the bead velocity Vj, spacing A, and frequency f. Finally, we
attempt to scale our experimental data for both symmetric and asymmetric morphologies.

3.1. Bead symmetry

Figure 2 plots the bead morphology (blue circles for symmetric, red triangles for
asymmetric) as it depends upon n and Dy for all experiments where o < 33.03 mN m~
the insets show each morphology. Here, the bead morphology is determined from the
Plateau—Rayleigh regime — an important distinction on which we will expand shortly.
Two trends are observed: (i) for fixed Dy, decreasing n (increasing shear-thinning) leads
to asymmetry, and (ii) for fixed n, increasing Dy leads to asymmetry, both of which
show that shear-thinning affects bead morphology. The critical power-law index n. for
transition between the two morphologies is a monotonically increasing function of Dy.
This is consistent with our prior results for Newtonian fluids (Gabbard & Bostwick 2021a).
Interestingly, our prior experiments on Newtonian (glycerol) liquids with o ~ 30 mNm™!
exhibited an asymmetric morphology for our largest fibres (Dy > 0.5 mm), whereas our
XG solutions with similar surface tension o are symmetric as n — 1 for Dy = 0.6 mm.
Slight discrepancies are expected when comparing two different mixtures close to a
transition point. Still, the literature on static beads on fibres may provide a simple reason
why this mismatch can occur. McHale et al. (2001) showed that the morphology of a static
Newtonian bead on a fibre depends upon the drop volume V and Dy. In our experiments,
we set Dy, but V is difficult to measure as this requires one to (i) capture a complex bead
geometry at high resolution, and (ii) determine a consistent method for distinguishing the
volume of liquid associated with the bead from that associated with the thin film on the
fibre. This is compounded by the fact that the bead can rotate about the fibre. Here, we
use glycerol-water mixtures as the solvent for our polymer solutions, which are the same
as used in our Newtonian experiments (Gabbard & Bostwick 2021a); however, adding
polymer may slightly affect V, leading to morphology differences near the transition point.

Qualitative evidence suggests that the mechanism responsible for the asymmetric
morphology in shear-thinning flow is different from that in Newtonian flow. Figure 3(a)
shows two examples of beading patterns with asymmetric morphology in the isolated
regime for a Newtonian liquid (glycerol) and a shear-thinning liquid (XG). Here, the
largest bead flows down the fibre, consuming the smaller, static beads below it. The large
bead is asymmetric in both cases; however, the smaller, static beads are asymmetric only
for Newtonian flow. The smaller, shear-thinning beads remain symmetric without flow
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Figure 2. Phase diagram of the bead symmetry as it depends upon the power-law index » and fibre diameter
Dy for all experiments with o < 33.03 mN m~!. Inset images show typical symmetric (blue) and asymmetric
(red) morphologies.
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0.760 s §

Figure 3. (a) Complex bead morphology revealed by contrasting Newtonian and shear-thinning flow in the
isolated regime, noting that the large beads are asymmetric for both cases, but the smaller beads are asymmetric
for Newtonian flow and symmetric for shear-thinning flow due to the absence of shear. (b) An image sequence
of a convective bead pattern showing the large bead transition from symmetric to asymmetric as it consumes
smaller beads, causing it to gain mass, increase speed, and produce the necessary internal shear for symmetry
transition. Note that the white scale bars have a width of 4 mm.

since no shear is produced in the liquid. These observations hold for all Newtonian and
shear-thinning experiments in the isolated flow regime.

A similar phenomenon occurs in the convective regime; however, in this case, the
smaller beads are no longer static. Figure 3(b) shows an image sequence of a large,
shear-thinning bead that transitions from symmetric to asymmetric as it flows down the
fibre consuming smaller beads. Convective interactions allow the large bead to grow and
speed up. After consuming the top, smaller bead in the first image (¢ = 0 s), the large bead
begins to transition to an asymmetric morphology, with subsequent images depicting this
process. Similar to figure 3(a), the smaller beads are symmetric but are now dynamic
and flowing down the fibre at a constant velocity. In both cases, the smaller beads remain
symmetric because there is not enough shear to change their morphology, while the larger
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beads have accumulated enough mass to make this transition occur. Both of these examples
illustrate that the mechanism for the formation of an asymmetric bead morphology in
shear-thinning liquids is shear-dependent, and unique from that observed for Newtonian
liquids. Earlier, we mentioned that we characterized the morphology of each experiment
in the Plateau—Rayleigh regime, and these observations illustrate why: a regime transition
increases the bead size, which increases the shear inside the liquid, potentially altering the
morphology classification. In the Plateau—Rayleigh regime, the beads have uniform size
and speed, and none of the aforementioned complexities occurs.

3.2. Regime transition

Three primary flow regimes are observed for both symmetric and asymmetric
morphologies: (i) isolated, (ii) Plateau—Rayleigh, and (iii) convective. Flows in the isolated
and Plateau—Rayleigh regimes result from an absolute instability and have equispaced
beads flowing down the fibre with a constant velocity. The beads are connected by a thin,
uniform film in the Plateau—Rayleigh regime, whereas in the isolated regime, the thin
film destabilizes into a string of smaller static beads. The convective regime emerges at
higher Q and larger Dy where the base flow is convectively unstable, leading to interactions
between beads. Here, we focus on classifying the transition points between (i) the isolated
and Plateau—Rayleigh regimes, and (ii) the Plateau—Rayleigh (absolute instability) and
convective (convective instability) regimes for the asymmetric morphology, as they depend
on the power-law index n.

The transition between the isolated and Plateau—Rayleigh regimes is important
in coating processes, as the uniform film between beads remains ‘wet’ in the
Plateau—Rayleigh regime, but breaks up into secondary beads in the isolated regime,
resulting in ‘dry’ sections. Figure 4(a) plots the transition flow rate Qys,/pr between
the isolated and Plateau—Rayleigh regimes against n for Dy = 0.4 mm, as it depends
upon the viscosity. Here, Qjso/pg increases with n, and in the n =1 limit, Qo pr
decreases with increasing viscosity p. Since the viscosity u of the shear-thinning solutions
is always smaller than that of the n — 1 limit, Qys/pr increases nonlinearly with n.
Figure 4(b) plots the bead spacing Ajs/pg at the transition between the isolated and
Plateau—Rayleigh regimes against power-law index n for Dy = 0.4 mm. Here, Aj5/pr
decreases as n increases, and this result follows intuition. The transition from the isolated
to Plateau—Rayleigh regimes occurs when the thin film between primary beads does not
have enough time to destabilize into a string of smaller, secondary beads. For Newtonian
flow, the viscosity p is the same in the beads and the thin film connecting them. In
contrast, for shear-thinning flow, the liquid in the thin film has a much lower shear rate
(higher viscosity) than in the primary bead region near the fibre. This increased viscosity
delays secondary breakup, allowing the thin film to persist (equivalently, Plateau—Rayleigh
regime) at lower flow rates Q and for larger A than Newtonian flow.

Next, we focus on the transition between the Plateau—Rayleigh regime, which results
from an absolute instability (Abs), and the convective regime, a result of a convective
instability (Conv). In the Plateau—Rayleigh regime, as Q increases, the interfacial area
available for heat and mass transfer increases. However, increasing Q also leads to
convective patterns, which exhibit less consistent bead dynamics that yield no further
heat or mass transfer benefits. Thus this transition is practically important because it is
typically where optimal heat and mass transfer rates occur. Figure 5(a) plots the transition
flow rate Qaps/conv between the Plateau—Rayleigh and convective regimes against n
for Dy = 0.4 mm. Similar to the transition between the isolated and Plateau—Rayleigh
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Figure 4. Isolated to Plateau-Rayleigh regime transition by plotting (a) the flow rate Qyso/pr and (b) the bead
spacing Ajso/pr against power-law index n for a fixed fibre diameter Dy = 0.4 mm. The marker colour indicates
the characteristic viscosity /.
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Figure 5. Plateau—Rayleigh (Abs) to convective (Conv) regime transition by plotting (a) the flow rate
QOAabs/Conv and (b) the bead spacing Aps/cony against power-law index n for a fixed fibre diameter Dy = 0.4 mm.
The marker colour indicates the characteristic viscosity /.

regimes, increasing n increases Qaps/conv- Figure 5(b) plots the bead spacing Aaps/conv
at the transition between the Plateau—Rayleigh and convective regimes against n for
Dy = 0.4 mm, showing that Aaps/cony decreases as n increases, approaching a constant
bead spacing at n = 1. Two beneficial properties of shear-thinning flow are observed: (i)
the maximum bead frequency, which occurs just before Qaps/conv, 1s Obtained at lower
flow rates Q than Newtonian liquids; and (ii) the bead spacing Aaps/cony can be adjusted
through the power-law index n, whereas for Newtonian liquids it is approximately constant
and independent of viscosity.

3.3. Bead dynamics

The bead dynamics is described by the bead velocity Vj, spacing A, and frequency f.
Previous studies have explored the dynamics of the symmetric morphology (Boulogne
et al. 2012), thus we focus on the asymmetric morphology, presenting data only for
absolutely unstable base flows, i.e. isolated and Plateau—Rayleigh regimes. We focus on
either (i) all absolutely unstable flows or (ii) the absolute—convective transition point. The
absolutely unstable data reflect robust bead dynamics (no convective bead interactions),
desirable for most applications, and the absolute—convective transition points trace the
boundary where these desirable patterns break down.

Shear-thinning affects the bead dynamics of asymmetric morphologies, which we
quantify using three highly shear-thinning n < 0.6 solutions (solutions 1, 2 and 5 in
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Figure 6. Bead dynamics for absolutely unstable flows, plotting (a) the bead velocity V;, and () the frequency
[ against characteristic viscosity u as it depends upon the power-law index n for all highly shear-thinning
experiments (n < 0.6).

table 1) to ensure that the morphology is asymmetric for all solution—fibre combinations.
Figure 6(a) plots the bead velocity V, against the characteristic viscosity w as it depends
upon n for all absolutely unstable flows. The data for each solution follow a similar trend.
For fixed i, increased shear-thinning tends to increase the bead velocity. Increasing the
fibre diameter Dy and decreasing the flow rate Q reduce the bead velocity, the same
as for Newtonian flow. Figure 6(b) plots the bead frequency f against viscosity u as
it depends upon n for all absolutely unstable flow. The absolute—convective transition
point for each experiment is shown as a black diamond. Similar to Newtonian flow, the
maximum frequency f for each experiment occurs just before the transition from absolute
to convective instability, and follows a power-law trend for highly shear-thinning solutions.

Figure 7(a) plots bead velocity V, against viscosity w as it depends upon surface tension
o for all absolutely unstable data. Here, the data follow a similar trend, suggesting that the
surface tension o plays a minimal role in determining V; compared to the viscosity u and
power-law index n. Figure 7(b) plots bead spacing A against fibre diameter Dy as it depends
upon surface tension o at the absolute—convective transition point, showing that o has a
minimal effect on A for Dy, but significantly increases A for small Dy. This observation is
expected since for vanishingly small Dy, we should recover the canonical Plateau—Rayleigh
instability, which is capillary-driven. Thus o plays a role in setting the bead dynamics by
increasing A (and thus decreasing f) when Dy < 0.4 mm. Additionally, o alters the bead
profile. Figure 7(c) plots bead height H), at the absolute—convective transition point against
Dy as it depends upon o, showing that Hj, increases with o. Interestingly, while o plays a
diminishing role in determining A as Dy — 0, o affects H), for all Dy.

The bead frequency f = V,/A is an important property in heat and mass transfer
applications. Until now, we have focused primarily on the bead properties for the
asymmetric morphology. Here, we show that the bead properties for the asymmetric
morphology seen in highly shear-thinning (n < 0.6) flow are similar to those in the
symmetric morphology observed in weakly shear-thinning (n > 0.8) flow. Figure 8 plots
the frequency f against flow rate Q for all absolutely unstable asymmetric (red triangle) and
symmetric (blue circle) data, showing that the data follow a similar linear trend regardless
of morphology, with slope ~1/50. In our previous work, we showed that the bead
frequency for the asymmetric morphology of Newtonian liquids followed a singular linear
trend, but that for the symmetric morphology it did not (Gabbard & Bostwick 2021a).
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Figure 7. (a) Bead velocity V), against viscosity p as it depends upon the surface tension o for all absolutely
unstable data. (b) Bead spacing A and (c) Bead height H), at the absolute—convective transition point against
fibre diameter Dy as it depends upon the surface tension o for 2000 ppm XG solutions.

In contrast to Newtonian flow, shear-thinning flows reveal a symmetry-independent trend
that can be used to estimate frequency f for any flow rate O, independent of Dy, o or
morphology. This is a useful design tool for applications where these properties vary
greatly or are not well known. Coupling this with our earlier observation that the maximum
frequency f occurs at the absolute—convective transition point, bead-on-fibre patterns can
be designed to be absolutely unstable with a desired frequency f for a known n simply by
selecting the proper flow rate Q.

3.4. Scaling the data
We now attempt to collapse our data upon scaling, focusing on the bead frequency. We
begin by using the analysis of Boulogne et al. (2012), who used normal mode perturbations
of the form exp(i(kz — w(k)t)) to derive a dispersion relation w(k) for axisymmetric
shear-thinning flow down a fibre using the planar approximation 4 < Ry, where i and
Ry are the initial film thickness and fibre radius. They calculated the instability growth rate
£2 as the maximum of Im(w (k)):

Q=19 3.1)

4n,0ng:’
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Figure 8. Frequency f against flow rate Q for all symmetric morphologies and highly shear-thinning
asymmetric morphologies (n < 0.6).

where ¢ (in m? s71) is the flow rate associated with the initial flat-film thickness h.
We modify this analysis to account for the volumetric flow rates (in m> s~!) in our
experiments: (i) we replace g (m? s~ with @ (m? s™1); and (ii) we change R/‘}. to R?
to account for the additional length scale. We scale the bead frequency f with the modified
growth rate £2,,,4,

AnfpgR> .
Qfd =00 I — 7 Bo, (3.2)

and define the non-dimensional frequency f = 4nfRJ§ /Q. The Bond number Bo = ,ogR]% /o

appears naturally from this scaling, and accordingly we plot / against Bo for all of our
data (asymmetric and symmetric) in figure 9. The data collapse along a single trend line
(black dashed line) with a power-law fit f ~ Bo!®. The Bond number Bo compares the
two components of pressure acting on the drop, hydrostatic and capillary, and our scaling
analysis shows that the bead dynamics is governed by the competition between the two,
irrespective of n or morphology. This observation simplifies drastically our understanding
of the physics governing shear-thinning flow down a fibre.

4. Discussion

Our experimental results have shown that shear-thinning can produce asymmetric
morphologies, and we are interested in the mechanism responsible for this observation.
Our hypothesis is that asymmetric flow emerges due to variable flow resistance about
the fibre due to an initial asymmetry in the film. This idea is illustrated in the schematic
diagram of figure 10, which depicts the transition from a slightly asymmetric film to
a heavily asymmetric bead. Here, we illustrate the regions of maximum shear stress
(minimum viscosity) by the colour intensity. In figure 10(a), an initial asymmetry causes
a non-uniform shear distribution in the film that results in a gradient in the apparent
viscosity about the fibre. The viscosity is lowest in the thickest portion of the film, and
for sufficient Q and n can produce an azimuthal flow ug, as shown in figure 10(b). Once an
azimuthal flow is initiated, the increased flow to the low-resistance (thickest) region further
increases the viscosity gradient driving the azimuthal flow, resulting in a positive feedback
loop. This process continues until the flow is heavily asymmetric and only a thin, highly
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Figure 9. Dimensionless frequency f against Bond number Bo for symmetric (blue circles) and asymmetric
(red triangles) data. The data are fitted to power laws (dashed line) with associated exponent.
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Figure 10. Schematic of the asymmetric growth of a sheath of shear-thinning fluid, where red indicates regions
of high shear (low viscosity). A slightly asymmetric (@) initial profile causes a shear rate gradient about the
fibre resulting in a region of low resistance (viscosity) at the liquid—fibre interface where the sheath is thickest.
An azimuthal flow ug results, and the film destabilizes into (b) a wavy profile. Azimuthal flow towards the
thickest portion of the sheath further increases the shear rate gradient, resulting in a self-reinforced process that
continues until (¢) a liquid bead protrudes from one side of the fibre, the opposite of a thin, low-shear film.

viscous film remains on the thin side of the fibre, as shown in figure 10(c). Our hypothesis
aligns well with the observation of morphologies with fast-moving asymmetric primary
beads and slow-moving symmetric secondary beads. In Appendix A, we perform a simple
two-dimensional analysis that compares the shear distribution on the thinnest and thickest
regions of an initially asymmetric flow, which further supports our hypothesis.
Newtonian flows also can have an azimuthal shear gradient when the film is initially
asymmetric. However, in this case, the viscosity is independent of shear rate; thus
asymmetry must arise from a different mechanism. Recent work by Eghbali et al.
(2022) showed that shear along the liquid-gas interface of a Newtonian liquid can
sustain asymmetric flows for thick, viscous films flowing down a fibre using an energy
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balance analysis. However, the asymmetry of a Newtonian bead-on-fibre pattern remains
an open topic for investigation, and the mechanism responsible for amplifying and
sustaining it has yet to be determined.

5. Concluding remarks

We performed an experimental investigation of shear-thinning flow down fibres using
20 unique xanthan gum solutions to show how shear-thinning affects bead-on-fibre
morphologies. Asymmetric bead morphologies were observed when either (i)
shear-thinning, as quantified by the power-law index n, or (ii) fibre diameter Dy, were
increased. Qualitative observations show that unlike the asymmetric morphology of
Newtonian liquids (Gabbard & Bostwick 2021a), shear-thinning solutions can exhibit
patterns containing both morphologies; small, static beads may be symmetric, while
larger, faster beads are asymmetric. The asymmetric morphologies of Newtonian and
shear-thinning liquids exhibit the same three flow regimes (isolated, Plateau—Rayleigh,
convective), but shear-thinning significantly decreases the flow rate Q and increases the
bead spacing A at the transition points (i) between the isolated and Plateau—Rayleigh
regimes, and (ii) between the Plateau—Rayleigh and convective regimes. The bead
dynamics for the asymmetric morphology was explored for different n, Q and o, and
compared to the Newtonian case. The maximum bead frequency f (equivalently, minimum
A) occurs at the absolute—convective transition point, similar to the Newtonian case. The
frequencies f of the symmetric and asymmetric morphologies follow a similar trend as
Q increases, which was not observed for Newtonian flow. Finally, we showed that the

dimensionless bead frequency f collapses upon scaling with the Bond number Bo for all
of our experimental data (asymmetric and symmetric).

Our investigation was motivated by the growing popularity of bead-on-fibre patterns
for heat and mass transfer applications and fibre-coating processes that use shear-thinning
paints and coating agents. Specifically, we have shown that shear-thinning reduces the
transition flow rate Q between the isolated and Plateau—Rayleigh regimes. Fibre coating
processes benefit from this shear-thinning effect as highly shear-thinning paints can form
asymmetric bead-on-fibre patterns, which flow faster than symmetric beads, and quickly
shed from the fibre, leaving behind a thin and uniform, axisymmetric coating at minimal
Q. The quicker transition between the isolated and Plateau—Rayleigh regimes is also
beneficial for heat and mass transfer applications where ‘dry’ sections of fibre reduce
efficiency. Similarly, the transition point between absolute (Plateau—Rayleigh regime)
and convective instability also occurs at lower Q for shear-thinning flow. Heat and mass
transfer applications are optimized at this location since, as shown, the bead frequency
f is maximized just before this transition; thus a lower flow rate Q is needed for this
optimization. The bead geometry also affects heat and mass transfer, which we have shown
to depend upon the Bond number Bo, regardless of symmetry. These examples highlight
the many benefits of utilizing shear-thinning flow down a fibre.

Our experimental results provide some insight into the physics governing shear-thinning
bead-on-fibre patterns; however, many questions remain. For example, in fibre-coating,
the coating agent is typically shear-thinning and thixotropic. Here, we have considered
explicitly shear-thinning liquids, but expect thixotropic behaviour to delay secondary
destabilization, e.g. the required flow rate Q for Plateau—Rayleigh patterns. In addition, our
observations show a shear-dependent mechanism for asymmetry that is different from that
observed in Newtonian liquids. However, both are likely to affect shear-thinning liquids.
Determining the boundary between the mechanisms is a valuable next step and will require
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a better understanding of the mechanism resulting in asymmetric patterns in Newtonian
flow down a fibre. Finally, the theory of absolute and convective instability has not been
applied to shear-thinning flow down a fibre despite its practical relevance in application.
Thin-film flow down a fibre exhibits a rich physics that is highly relevant to applications,
and we have shown how shear-thinning behaviour expands upon these complexities, thus
opening new avenues for exploration.
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Appendix A. Two-dimensional analysis of the asymmetry mechanism

We can semi-quantify our qualitative hypothesis for the mechanism of asymmetry. We
begin by following the work of Boulogne et al. (2012) in writing the stress balance for
axisymmetric shear-thinning flow down a fibre:

1 9 (ro.;) _ ap 00y
roar 9z 0z

where o is the stress tensor, p is the pressure, p is the fluid density, and g is gravitational
acceleration. We assume no-slip at the fibre u,(r = Ry) = 0 and no-shear at the liquid—gas
interface (du/dr)(r = Ry + h) = 0, and introduce the following dimensionless variables:
7= (r—Ry)/Ry, h= h/Ry and u; = u;/V, where V = Rf((png)/ﬂ)l/”. The shear rate
can be written as

~ ~ - 1/n
. Oug 1 - ﬁ . r
y=¥‘(1+7(h<1+2> r<1+2>>> ’ (A2)

and the flow rate g is determined by integrating the liquid velocity over the film height:

— P8, (A1)

h
q :/ u(r + 1)dr. (A3)
0

For a given flow rate g, the film thickness / can be determined from (A3) using an iterative
bisection method. Then the shear rate distribution can be determined numerically from
(A2).

Figure 11(a) illustrates flat-film flow down a fibre with two thicknesses h; > h, and
their associated shear rate profiles. The thicker film results in a higher shear rate at
r = Ry, illustrating that the flow is least viscous where the film is thickest. Lower flow
resistance along the thicker portion of the liquid sheath increases flow through that
location, increasing the thickness and amplifying the initially small thickness difference
into a fully asymmetric pattern.

We plot the dimensionless shear rate y against radial position 7 as it depends upon n for
g =1, and g for n = 0.7 in figures 11(b,c), respectively. In all cases, the maximum shear

rate );max occurs at the liquid—fibre interface (¥ = 0) and decreases monotonically to zero
at 7 = h, as shown in the insets. The maximum shear rate increases as n decreases and ¢
increases. Since our experiments show that the asymmetric morphology occurs at small
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Figure 11. (@) Schematic of asymmetric flat-film flow down a fibre showing the shear rate profiles y =

du/dr associated with different thicknesses, where y| > y, for all Ry < r < Ry + h since hy > hy. Plots of

dimensionless shear rate y against dimensionless radius 7 as it depends upon (b) power-law index n for § = 1,
and (c) dimensionless flow rate g for n = 0.7, with maximum shear rates shown as insets for each plot. Plots

of shear rate ratio ); = ]31 / 7;2 against thickness ratio (asymmetry) h= h1/(h1 + h2), as it depends upon (d)
power-law index n for ¢ = 1, and (e¢) dimensionless flow rate g for n = 0.7.

n and large Q, we must determine how the initial thickness difference affects the shear
rate difference through n and g. We do this by defining two ratios to compare the thicker

and thinner films: the shear rate ratio ); = 71/7» and the thickness ratio h=h /(h1 + hy),
where h = 0.5 for symmetric flow. Figure 11(d) plots % against h, as it depends upon n for
g = 1, showing that the shear rate ratio increases with asymmetry h for all n, and increases
faster as n decreases. Thus decreasing n increases the shear rate difference for fixed h

along with increasing the shear-dependence of 1 — the cumulative effect of these produces
heavily asymmetric patterns from shghtly asymmetrlc initial conditions, as observed in

our experlments Flgure 11(e) plots y against h, as it depends upon g for n = 0.7, showing
that y increases with &, and increases faster as g increases. Here, an increased flow rate

Q leads to a greater shear rate difference in an initially asymmetric film, and increases its
ability to amplify into an asymmetric morphology.
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