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Abstract—The level-k ¢, -Fourier weight of a Boolean function
refers to the sum of absolute values of its level-k Fourier coeffi-
cients. Fourier growth refers to the growth of these weights as k&
grows. It has been extensively studied for various computational
models, and bounds on the Fourier growth, even for the first
few levels, have proven useful in learning theory, circuit lower
bounds, pseudorandomness, and quantum-classical separations.

In this work, we investigate the Fourier growth of certain
functions that naturally arise from communication protocols for
XOR functions (partial functions evaluated on the bitwise XOR
of the inputs = and y to Alice and Bob). If a protocol C computes
an XOR function, then C(z,y) is a function of the parity = @ y.
This motivates us to analyze the XOR-fiber of the communication
protocol C, defined as h(z) := Ep 4[C(z,y)|x Dy = z].

We present improved Fourier growth bounds for the XOR-
fibers of randomized protocols that communicate d bits. For
the first level, we show a tight O(\/E) bound and obtain a
new coin theorem, as well as an alternative proof for the tight
randomized communication lower bound for the Gap-Hamming
problem. For the second level, we show an d°/? -polylog(n) bound,
which improves the previous O(d?) bound by Girish, Raz, and
Tal (ITCS 2021) and implies a polynomial improvement on the
randomized communication lower bound for the XOR-lift of the
Forrelation problem, which extends the quantum-classical gap
for this problem.

Our analysis is based on a new way of adaptively partitioning
a relatively large set in Gaussian space to control its moments in
all directions. We achieve this via martingale arguments and
allowing protocols to transmit real values. We also show a
connection between Fourier growth and lifting theorems with
constant-sized gadgets as a potential approach to prove optimal
bounds for the second level and beyond.

Index Terms—Fourier growth, communication protocol, anal-
ysis of Boolean functions, quantum-classical separation

I. INTRODUCTION

The Fourier spectrum of Boolean functions and their various
properties have played an important role in many areas of
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mathematics and theoretical computer science. In this work,
we study a notion called ¢;-Fourier growth, which captures the
scaling of the sum of absolute values of the level-k Fourier
coefficients of a function. In a nutshell, functions with small
Fourier growth cannot aggregate many weak signals in the
input to obtain a considerable effect on the output. In contrast,
the Majority function, which can amplify weak biases, is an
example of a Boolean function with extremely high Fourier
growth.

To formally define Fourier growth, we recall that every
Boolean function f : {£1}"™ — [—1,1] can be uniquely
represented as a multilinear polynomial

f@y =" 75 [[=
SC[n] €S

o~

where the coefficients of the polynomial f(S5) € R are called
the Fourier coefficients of f, and they satisfy f(S) = E[f(x)-
[1;c5 ] for a uniformly random & € {£1}". The level-k ¢;-
Fourier growth of f is the sum of the absolute values of its
level-k Fourier coefficients,

> |fe)-

Ly (f) =
SC[n]:|S|=k

The study of Fourier growth dates back to the work of
Mansour [1] who used it in the context of learning algorithms.
Since then, several works have shown that upper bounds on
the Fourier growth, even for the first few Fourier levels,
have applications to pseudorandomness, circuit complexity,
and quantum-classical separations. For example:

o A bound on the level-one Fourier growth is sufficient to
control the advantage of distinguishing biased coins from
unbiased ones [2].

o A bound on the level-two Fourier growth already gives
pseudorandom generators [3], oracle separations between
BQP and PH [4], [5], and separations between efficient
quantum communication and randomized classical com-
munication [6].

Meanwhile, Fourier growth bounds have been extensively
studied and established for various computational models,
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including small-width DNFs/CNFs [1], ACY circuits [7], low-
sensitivity Boolean functions [8], small-width branching pro-
grams [9], [10], [11], [12], small-depth decision trees [13],
[14], [15], functions related to small-cost communication
protocols [16], [6], low-degree GF(2) polynomials [17], [3],
[18], product tests [19], small-depth parity decision trees [20],
[21], low-degree bounded functions [22], and more.

For any Boolean function f with outputs in [—1,1], the

level-k Fourier growth Ly j(f) is at most /(7). However, for
many natural classes of Boolean functions, this bound is far
from tight and not good enough for applications. Establishing
better bounds require exploring structural properties of the
specific class of functions in question. Even for low Fourier
levels, this can be highly non-trivial and tight bounds remain
elusive in many cases. For example, for degree-d GF(2)
polynomials (which well-approximate AC’[@®] when we set
d = polylog(n) [23], [24]), while we know a level-one bound
of L1 1(f) < O(d) due to [3], the current best bound for levels
k > 2 is roughly 2°(4%) [17], whereas the conjectured bound
is d°) . Validating such a bound, even for the second level
k = 2, will imply unconditional pseudorandom generators of
polylogarithmic seed length for AC’[@®] [3], a longstanding
open problem in circuit complexity and pseudorandomness.

a) XOR Functions: In this work, we study the Fourier
growth of certain functions that naturally arise from commu-
nication protocols for XOR-lifted functions, also referred to
as XOR functions. XOR functions are an important and well-
studied class of functions in communication complexity with
connections to the log-rank conjecture and quantum versus
classical separations [25], [26], [27], [28], [29].

In this setting, Alice gets an input 2 € {41}" and Bob gets
an input y € {£1}" and they wish to compute f(z®y) where
f is some partial Boolean function and x ®y is in the domain
of f. Here, x ® y denotes the pointwise product of = and y.
Given any communication protocol € that computes an XOR
function exactly, the output C(z,y) of the protocol depends
only on the parity z ® y, whenever f is defined on =z © y.
This gives a natural motivation to analyze the XOR-fiber of a
communication protocol defined below. We note that a similar
notion first appeared in an earlier work of Raz [30].

Definition L.1. Let C : {£1}" x {£1}" — {£1} be
any deterministic communication protocol. The XOR-fiber of
the communication protocol € is the function h: {£1}" —
[—1,1] defined at z € {£1}" as

hz)= E [Cz,y)|z0y=z],

@, y~v
where © is the entrywise product and v is the uniform
distribution over {£1}".

We remark that XOR-fiber is the “inverse” of XOR-lift of
a function: If C computes the XOR function of f, then the
XOR-fiber h of C is equal to f on the domain of f.

In this work, we investigate the Fourier growth of XOR-
fibers of small-cost communication protocols and apply these
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bounds in several contexts. Before stating our results, we first
discuss several related works.

b) Related Works: Showing optimal Fourier growth
bounds for XOR-fibers is a complex undertaking in general
and a first step towards this end is to obtain optimal Fourier
growth bounds for parity decision trees. This is because a
parity decision tree for a Boolean function f naturally gives
rise to a structured communication protocol for the XOR-
function corresponding to f. This protocol perfectly simulates
the parity decision tree by having Alice and Bob exchange
one bit each to simulate a parity query. Moreover, the XOR-
fiber of this protocol exactly computes the parity decision tree.
As such, parity decision trees can be seen as a special case
of communication protocols, and Fourier growth bounds on
XOR-fibers of communication protocols immediately imply
Fourier growth bounds on parity decision trees.

Fourier growth bounds for decision trees and parity decision
trees are well-studied. It is not too difficult to obtain a
level-k bound of O(d)* for parity decision trees of depth
d, however, obtaining improved bounds is significantly more
challenging. For decision trees of depth d (which form a
subclass of parity decision trees of depth d), O’Donnell
and Servedio [13] proved a tight bound of O(\/g) on the
level-one Fourier growth. By inductive tree decompositions,
Tal [14] obtained bounds for the higher levels of the form
L1 ,x(f) < /d*-O(log(n))*—!. This was later sharpened
by Sherstov, Storozhenko, and Wu [15] to the asymptotically

tight bound of Ly x(f) < \/(Z) - O(log(n))*—! using a more
sophisticated layered partitioning strategy on the tree.

When it comes to parity decision trees, despite all the
similarities, the structural decomposition approach does not
seem to carry over due to the correlations between the parity
queries. For parity decision trees of depth d, Blais, Tan,
and Wan [20] proved a tight level-one bound of O(v/d).
For higher levels, Girish, Tal, and Wu [21] showed that
L1 k(f) < \/d*-O(klog(n))2*. These works imply almost
tight Fourier growth bounds on the XOR-fibers of structured
protocols that arise from simulating decision trees or parity
decision trees.

For the case of XOR-fibers of arbitrary determinis-
tic/randomized communication protocols (which do not neces-
sarily simulate parity decision trees or decision trees), Girish,
Raz, and Tal [6] showed an O(d*) Fourier growth! for level-.
For level-one and level-two, these bounds are O(d) and O(d?)
respectively and are sub-optimal — as mentioned previously,
such weaker bounds for parity decision trees are easy to obtain,
while obtaining optimal bounds (for parity decision trees) of
O(+/d) for level one and d - polylog(n) for level two already
requires sophisticated ideas.

The bounds in [6] follow by analyzing the Fourier growth of
XOR-fibers of communication rectangles of measure ~ 2~¢
and then adding up the contributions from all the leaf rect-

Technically, [6] only proved a level-two bound (as it suffices for their
analysis), but a level-k bound follows easily from their proof approach, as
noted by [16]
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angles induced by the protocol. Such a per-rectangle-based
approach cannot give better bounds than the ones in [6], while
they also conjectured that the optimal Fourier growth of XOR-
fibers of arbitrary protocols should match the growth for parity
decision trees.

Showing the above is a challenging task even for the first
two Fourier levels. The difficulty arises primarily since in
the absence of a per-rectangle-based argument, one has to
crucially leverage cancellations between different rectangles
induced by the communication protocol. In the simpler case
of parity decision trees (or protocols that exchange parities),
such cancellations are leveraged in [21] by ensuring k-wise
independence at each node of the tree — this can be achieved
by adding extra parity queries. In a general protocol, the
parties can send arbitrary partial information about their inputs
and correlate the coordinates in complicated ways that such
methods break down. This is one of the key difficulties we
face in this paper.

A. Main Results

We prove new and improved bounds on the Fourier growth
of the XOR-fibers associated with small-cost protocols for
levels k=1 and k£ = 2.

Theorem L2. Ler C : {+1}" x {£1}" — {£1} be a
deterministic communication protocol with at most d bits of
communication. Let h be its XOR-fiber as in Definition I.1.
Then, L.1(h) = O (\/&)

Theorem L3. Let C : {£1}"x{£1}" — {£1} be a determin-
istic protocol communicating at most d bits. Let h be its XOR-
fiber as in Definition I.1. Then, Ly o(h) = O (d®/? log‘s(n)).

Our bounds in Theorems 1.2 and 1.3 extend directly to
randomized communication protocols. This is because L1 i is
convex and any randomized protocol is a convex combination
of deterministic protocols with the same cost. Moreover, we
can use Fourier growth reductions, as described in Subsec-
tion I-B3, to demonstrate that these bounds apply to general
constant-sized gadgets g and the corresponding g-fiber.

Our level-one and level-two bounds improve previous
bounds in [6] by polynomial factors. Additionally, our level-
one bound is tight since a deterministic protocol with d + 1
bits of communication can compute the majority vote of z; -
Y1y -+, Td-Yd, which corresponds to h(z) = MAJ(z1,...,24)
with Ly 1(h) = ©(+/d). Furthermore, as we discuss later in
Subsection [-B, level-one and level-two bounds are already
sufficient for many interesting applications.

In terms of techniques, our analysis presents a key new
idea that enables us to exploit cancellations between different
rectangles induced by the protocol. This idea involves using
a novel process to adaptively partition a relatively large set
in Gaussian space, which enables us to control its k-wise
moments in all directions — this can be thought of as a
spectral notion of almost k-wise independence. We achieve
this by utilizing martingale arguments and allowing protocols
to transmit real values rather than just discrete bits. This notion
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and procedure may be of independent interest. See Section II
for a detailed discussion.

B. Applications and Connections

Our main theorem has applications to XOR functions,
and in more generality to functions lifted with constant-
sized gadgets. In this setting, there is a simple gadget g :
¥ x ¥ — {+£1} and a Boolean function f defined on inputs
z € {%1}". The lifted function f o g is defined on n
pairs of symbols (x1,y1),..., (ZTn,yn) € X X X such that
(fog)(@,y) = f(g9(x1,¥1),-- -, 9(Tn,yn)). The function fog
naturally defines a communication problem where Alice is
given x = (z1,...,2,), Bob is given y = (y1,...,yn), and
they are asked to compute (f o g)(x,y).

Since XOR functions are functions lifted with the XOR gad-
get, our main theorem implies lower bounds on the commu-
nication complexity of specific XOR functions. Additionally,
we also show connections between XOR-lifting and lifting
with any constant-sized gadget. Next, we describe these lower
bounds and connections, with further context.

1) The Coin Problem and the Gap-Hamming Problem: The
coin problem studies the advantage that a class of Boolean
functions has in distinguishing biased coins from unbiased
ones. More formally, let F be a class of n-variate Boolean
functions. Let p € [~1,1] and 75" denote the product
distribution over {£1}" where each coordinate has expectation
p. The Coin Problem asks what is the maximum advantage that
functions in J have in distinguishing ﬂ?" from the uniform
distribution 75"

This quantity essentially captures how well F can ap-
proximate threshold functions, and in particular, the majority
function. The coin problem has been studied for various
models of computation including branching programs [31],
AC® and ACO[ED] circuits [32], [33], product tests [34], and
more. Recently, Agrawal [2] showed that the coin problem is
closely related to the level-one Fourier growth of functions in
J.

Lemma 1.4 ([2, Lemma 3.2]). Assume that F is closed under
restrictions and satisfies L1 1(f) <t for all f € F. Then, for
all pe (—1,1) and f € F,

1

E =Tl

z~w§"

E

zwﬂ?"

[F(2)] - [(2)]

gln(

)t

Note that communication protocols of small cost are closed
under restrictions, so are their XOR-fibers (see [6, Lemma
5.5]). By noting that In (I%Ip\ ~ |p| for small values of p, we
obtain the following corollary.” We also remark that, using the
Fourier growth reductions (see Subsection I-B3), Theorem 1.5
can be established for general gadgets of small size.

2Here we also use the fact that the upper bound O(|p| - v/d) is vacuous
for large enough p as it is larger than 1.
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Theorem L5. Let h be the XOR-fiber of a protocol with total
communication d. Then for all p,

E

®n
P

h()] = E, ()] <0 (Il Vd) .

zZreT ZrYTT

In particular, consider the following distinguishing task:
Alice and Bob either receive two uniformly random strings
in {£1}" or they receive two uniformly random strings in
{#1}" conditioned on their XOR distributed according to 75"
for p = 1/4/n (the latter is often referred to as p-correlated
strings). Theorem 1.5 implies that any protocol communicat-
ing o(n) bits cannot distinguish these two distributions with
constant advantage. This is essentially a communication lower
bound for the well-known Gap-Hamming Problem.

a) The Gap-Hamming Problem: In the Gap-Hamming
Problem, Alice and Bob receive strings z,y € {£1}" re-
spectively and they want to distinguish if (z,y) < —y/n or
(,y) = V/n.

This is essentially the XOR-lift of the Coin Problem with
p = £1/y/n because the distribution of (z,y) conditioned
onx Oy ~ 75" with p —1/y/n and p 1/y/n is
mostly supported on the YES and NO instances of Gap-
Hamming respectively. Thus immediately from Theorem L5,
we derive a new proof for the (n) lower bound on the
communication complexity of the Gap-Hamming Problem.
The proof is deferred to the full version.

Theorem 1.6. The randomized communication complexity of
the Gap-Hamming Problem is (n).

We note that there are various different proofs [35], [36],
[37], [38] that obtain the above lower bound but the per-
spective taken here is perhaps conceptually simpler: (1) Gap-
Hamming is essentially the XOR-lift of the Gap-Majority
function, and (2) any function that approximates the Gap-
Majority function must have large level-one Fourier growth,
whereas XOR-fibers of small-cost protocols have small Fourier
growth.

2) Quantum versus Classical Communication Separation
via Lifting: One natural approach to proving quantum versus
classical separations in communication complexity is via lift-
ing: Consider a function f separating quantum and classical
query complexity and lift it using a gadget g. Naturally, an
algorithm computing f with few queries to z can be translated
into a communication protocol computing f o g where we
replace each query to a bit z; with a short conversation that al-
lows the calculation of z; = g(x;,y;). G66s, Pitassi, and Wat-
son [39] showed that for randomized query/communication
complexity and for various gadgets, this is essentially the best
possible. Such results are referred to as lifting theorems.

Lifting theorems apply to different models of computation,
such as deterministic decision trees [40, 41], randomized
decision trees [39, 42], and more. A beautiful line of work
shows how to “lift” many lower bounds in the query model
to the communication model [40], [41], [43], [44], [45], [26],
[46], [47], [48], [49], [50], [511, [52], [53], [54]. For quantum
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query complexity, only one direction (considered the “easier”
direction) is known: Any quantum query algorithm for f can
be translated to a communication protocol for f o g with
a small logarithmic overhead [55]. It remains widely open
whether the other direction holds as well. However, this query-
to-communication direction for quantum, combined with the
communication-to-query direction for classical, is already suf-
ficient for lifting quantum versus classical separations from the
query model to the communication model.

One drawback of this approach to proving communication
complexity separations is that the state-of-the-art lifting re-
sults [42], [56] work for gadgets with alphabet size at least
n (recall that n denotes f’s input length) and it is a signif-
icant challenge to reduce the alphabet size to O(1) or even
polylog(n). These large gadgets will usually result in larger
overheads in terms of communication rounds, communication
bits, and computations for both parties. As demonstrated next,
lifting with simpler gadgets like XOR allows for a simpler
quantum protocol for the lifted problem.

a) Lifting Forrelation with XOR: The Forrelation func-
tion introduced by [57] is defined as follows: on input z =
(x1,x2) € {£1}" where n is a power of 2,

2
Forr(z) = . (Hzy,x29) ,

where H is the (n/2) x (n/2) (unitary) Hadamard matrix.

Girish, Raz, and Tal [6] studied the XOR-lift of the Forrela-
tion problem and obtained new separations between quantum
and randomized communication protocols. In more detail,
they considered the partial function® Forr o XOR: {£1}" x
{£1}"™ — {£1} defined as

1 Forr(z ®y) >
—1 Forr(z ©y) <

___ 1
2001n(n/2)°

Forr o XOR(z,y) = { h

4001n(n/2)°
and showed that if Alice and Bob use a randomized communi-
cation protocol, then they must communicate at least Q(n'/%)
bits to compute Forr o XOR; while it can be solved by two
entangled parties in the quantum simultaneous message pass-
ing model with a polylog(n)-qubit communication protocol
and additionally the parties can be implemented with efficient
quantum circuits.

The lower bound in [6] was obtained from a second level
Fourier growth bound (higher levels are not needed) on the
XOR-fiber of classical communication protocols. Our level-
two bound strengthens their bound and immediately gives an
improved communication lower bound.

Theorem L7. The randomized communication complexity of
Forr o XOR is Q(n'/3).

Theorem 1.7 above gives an polylog(n) versus Q(n!/3)
separation between the above quantum communication model
and the randomized two-party communication model, im-
proving upon the polylog(n) versus (n'/*) separation from

3We are overloading the notation here: technically, ForroXOR is the XOR-
lift of the partial boolean function which on input z outputs 1 if Forr(x) is
large and —1 if Forr(x) is small.
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[6]. We emphasize that our separations are for players with
efficient quantum running time, where the only prior separation
was shown by the aforementioned work [6]. Such efficiency
features can also benefit real-world implementations to demon-
strate quantum advantage in experiments; for instance, one
such proposal was introduced recently by Aaronson, Buhrman,
and Kretschmer [58]. Without the efficiency assumption, a
better polylog(n) versus Q(y/n) separation is known [59]
(see [6, Section 1.1] for a more detailed comparison). Optimal
Fourier growth bounds of d - polylog(n) for level two, which
we state later in Conjecture 1.8, would also imply such a
separation with XOR-lift of Forrelation.

b) Lifting k-Fold Forrelation with XOR: k-Fold Forrela-
tion [60] is a generalization of the Forrelation problem and
was originally conjectured to be a candidate that exhibits
a maximal separation between quantum and classical query
complexity. In a recent work, [61] showed that the randomized
query complexity of k-Fold Forrelation is Q(n'~1/%), confirm-
ing this conjecture, and a similar separation was proven in [15]
for variants of k-Fold Forrelation. These separations, together
with lifting theorems with the inner product gadget [42],
imply an O(klog(n)) vs Q(n'~1/*) separation between two-
party quantum and classical communication complexity, where
additionally, the number of rounds* in the two-party quantum
protocol is 2 - [k/2].

Replacing the inner product gadget with the XOR gadget
above would yield an improved quantum-classical communi-
cation separation where the gadget is simpler and the number
of rounds required by the quantum protocol to achieve the
same quantitative separation is reduced by half. Bansal and
Sinha [61] showed that for any computational model, small
Fourier growth for the first O(k?)-levels implies hardness of k-
Fold Forrelation in that particular model. Thus, in conjunction
with their results, to prove the above XOR lifting result for the
k-Fold Forrelation problem, it suffices to prove the following
Fourier growth bounds for XOR-fibers.

Conjecture L.8. Let C: {£1}" x {£1}" — {1} be a deter-
ministic communication protocol with at most d bits of com-
munication. Let h be its XOR-fiber as in Definition I.1. Then
for all k € N, we have that Ly (k) < (v/d-poly(k,log(n)))*.

Note that these bounds are consistent with the Fourier
growth of parity decision trees (or protocols that only send
parities) as shown in [21].

We prove the above conjecture for the case £ = 1 and
make progress for the case k& = 2. While our techniques can
be extended to higher levels in a straightforward manner, the
bounds obtained are farther from the conjectured ones. Thus,
we decided to defer dealing with higher levels to future work
as we believe one needs to first prove the optimal bound for
level k£ = 2.

In the next subsection, we give another motivation to study
the above conjecture by showing a connection to lifting

4We remark that for k = 2, this is exactly the XOR-lift of the Forrelation
problem and can even be computed in the quantum simultaneous model, as
shown in [6].
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theorems for constant-sized gadgets.

3) General Gadgets and Fourier Growth from Lifting: Our
main results are Fourier growth bounds for XOR-fibers, which
corresponds to XOR-lifts of functions. To complement this, we
show that similar bounds hold for general lifted functions.

Letg: ¥xX — {£1} be a gadget and C: ¥" x X" — {£1}
be a communication protocol. Define the g-fiber of €, denoted
by Cyg: {£1}" — [-1,1], as

eig(z) =E [@(m,y) ‘g(mivyi) = Zi, V7]7

where « and y are uniform over ¥. We use L; 1(g,d) to
denote the upper bound of the level-k Fourier growth for the
g-fibers of protocols with at most d bits of communication.
Using this notation, the XOR-fiber of C is simply €| xor, and
our main results Theorems 1.2 and 1.3 can be rephrased as

L11(XOR,d) < O (\/&)

and
L1 5(XOR, d) < O (d*/*10g(n)) .

In the full version of our paper, L; (g,d) is related to
L x(XOR,d), and the main takeaway is, in the study of
Fourier growth bounds, constant-sized gadgets are all equiva-
lent.

Theorem 1.9 (Informal). Let g: ¥ x ¥ — {£1} be a
“balanced” gadget. Then

L1 x(XOR, d)
DIy

Theorem 1.9 also proposes a different approach towards
Conjecture 1.8: it suffices to establish tight Fourier growth
bound for g-fibers for some constant-sized (actually, polylog-
arithmic size suffices) gadget g, and then apply the reduction.
The benefit of switching to a different gadget is that we can
perhaps first prove a lifting theorem, and then appeal to the
known Fourier growth bounds of (randomized) decision trees
[14], [15].

As mentioned earlier, lifting theorems show how to simulate
communication protocols of cost d for lifted functions with
decision trees of depth at most O(d) (see e.g., [39]). A
problem at the frontier of this fruitful line of work has been
establishing lifting theorems for decision trees with constant-
sized gadgets. Note that the XOR gadget itself cannot have
such a generic lifting result: Indeed, the parity function serves
as a counterexample. Nevertheless, it is speculative that some
larger gadget works, which suffices for our purposes.” On
the other hand, for lifting from parity decision trees, we do
know an XOR-lifting theorem [26]. However, it only holds
for deterministic communication protocols and has a sextic
blowup in the cost.

Thus, one can see Conjecture 1.8 as either a further moti-
vation for establishing lifting results for decision trees with

< Lik(g,d) < |S|* - L1 x(XOR, d).

3In terms of the separations between quantum and classical communica-
tion, even restricted lifting results for the specific outer function being the
Forrelation function would suffice.
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constant-sized gadgets, or as a necessary milestone before
proving such lifting results.

4) Pseudorandomness for Communication Protocols: We
say G: {1} — {£1}" x {£1}" is a pseudorandom
generator (PRG) for a (randomized) communication protocol
C: {£1}" x {£1}" — [-1, 1] with error ¢ and seed length ¢
if

E [e@y)- E

z,Yy~v r~{£1}¢

[C(G(r))]| <e

[62] showed that for the class of protocols sending at most d
communication bits, there exists an explicit PRG of error 2—d
and seed length n+ O(d) from expander graphs. Note that the
overhead n is inevitable even if the protocol is only sending
one bit, since it can depend arbitrarily on Alice/Bob’s input.
Combining Conjecture 1.8 and the PRG construction from
[17, Theorem 4.5], we would obtain a completely different
explicit PRG for this class with error ¢ and seed length n +
d - polylog(n/e).
a) Paper Organization: An overview of our proofs is
given in Section II. The full version of our paper can be found
at https://arxiv.org/abs/2307.13926.

II. PROOF OVERVIEW

We first briefly outline the proof strategy, which consists of

three main components:

o First, we show that the level-one bound can be charac-
terized as the expected absolute value of a martingale
defined as follows: Consider the random walk induced
on the protocol tree when Alice and Bob are given
inputs 2 and y uniformly from {#1}". Let X x Y'(*)
be the rectangle associated with the random walk at
time t. The martingale process tracks the inner product
(WX®), w(Y D)) where p( X)) = E [z |z e X1]
and p(Y®) = E[y|y € Y] are Alice’s and Bob’s
center of masses.

e Second, to bound the value of the martingale, it is

necessary to ensure that neither X ® nor Y*) become
excessively elongated in any direction during the pro-
tocol execution. To measure the length of X in a
particular direction § € S"~!, we calculate the variance
Var [(z,0) | € X", i.e. the variance of a uniformly
random 2 € X in the direction . If the set is not
elongated in any direction, this can be thought of as a
spectral notion of almost pairwise independence. Such a
notion also generalizes to almost k-wise independence by
considering higher moments.
To achieve the property that the sets are not elongated,
one of the main novel ideas in our paper is to modify the
original protocol to a new one that incorporates additional
cleanup steps where the parties communicate real values
(z, ). Through these communication steps, the sets X (*
and Y are recursively divided into affine slices along
problematic directions.

o Last, one needs to show that the number of cleanup steps
are small in order to bound the value of the martingale
for the new protocol. This is the most involved part of our

proof and requires considerable effort because the cleanup
steps are real-valued and adaptively depend on the entire
history, including the previous real values communicated.

The strategy outlined above also generalizes to level-two
Fourier growth by considering higher moments and sending
values of quadratic forms in the inputs. We also remark that
since we view the sets X (") and Y(*) above as embedded
in R™ and allow the protocol to send real values, it is more
natural for us to work in Gaussian space by doing a standard
transformation. The rotational invariance of the Gaussian space
also seems to be essential for us to obtain optimal level-one
bound without losing additional polylogarithmic factors.

We now elaborate on the above components in detail and
also highlight the differences between the level-one and level-
two settings. For conciseness, in the following overview we
use f < g todenote f = O(g) and f 2 g to denote f = Q(g)
where O and 2 only hide absolute constants.

A. Level-One Fourier Growth

The level-one Fourier growth of the XOR-fiber h is given
by

E [h(2)zi]

z~v

Lualh) = 3 [fln)] = 3
i=1 i=1

n
i=1

To bound the above, it suffices to bound .. 7; -
E[C(x, y)x;y;] for any sign vector n € {£1}". Here for
simplicity we assume 7; = 1 and the probability of reaching
every leaf is ~ 27

a) A Martingale Perspective: To evaluate the quantity
S E[C(x, y)x;y;], consider a random leaf £ of the protocol
and let X, x Yy be the corresponding rectangle. Since the leaf
determines the answer of the protocol, denoted by C(€), the
quantity above equals

E [C(z,y)ziy:]| -

z,y~v

,ZI%[G“) Elz; |z € Xo] - Ely: |y € Y|

[C(£) - (u(Xe), 1(Ye))]
[| ((Xe), n(Ye)) ],

where we define p(Xy) = Elz|x € Xy and p(Ye) =
Ely|y € Yy to be the center of masses of the rectangle.
Our goal is to bound the magnitude of the random variable
z = (u(Xe), 1(Ye))-

We shall show that Eg[|z|] < v/d. Note that |z| can be
as large as d in the worst case — for instance if the first d
coordinates of X, and Y, are fixed to the same value — thus
we cannot argue for each leaf separately.

To analyze it for a random leaf, we first characterize the
above as a martingale process using the tree structure of
the protocol. The martingale process is defined as (z(t)) .
where 2 = (p(X®), u(Y®)) tracks the inner product
between the center of masses p(X®) and p(Y®)) of the
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current rectangle X ) x Y () at step ¢. Denote the martingale
differences by Az = z(t+1) _ 2(") and note that if in the
th step Alice sends a message, then

Al (O, ),

where Ap(X 1) = (X D) — (X ®) is the change in
Alice’s center of mass. A similar expression holds if Bob sends
a message. Then it suffices to bound the expected quadratic

variation since
2
=]

el <
|3 (Az@f“)ﬂ :

>
t=0
where the equality holds due to the martingale property:
E [Az(t+D) | 20 20] =o.

To obtain the desired bound, we need to bound the expected
quadratic variation by O(d). Note that it could be the case
that a single Az(+1) gcales like v/d. For instance, if Bob
first announces his first d coordinates, yi,...,yq, and then
Alice sends a majority of 1 - y1,...,Zq - Y4, then in the last
step Alice’s center of mass p(X (1)) changes by ~ 1/v/d
in each of the first d coordinates, and the inner product with
Bob’s center of mass changes by ~ Vdin a single step.

Such cases make it difficult to directly control the individual
step sizes of the martingale and we will only be able to obtain
an amortized bound. It turns out, as we explain later, that
such an amortized bound on the martingale can be obtained
if Alice and Bob’s sets are not elongated in any direction.
Therefore, we will transform the original protocol into a clean
protocol by introducing real communication steps that slice the
elongated directions. For this, it will be convenient to work in
Gaussian space which also turns out to be essential in proving
the optimal O(+/d) bound.

b) Protocols in Gaussian Space: A communication pro-
tocol in Gaussian space takes as inputs x, y € R"™ where x, y
are independently sampled from the Gaussian distribution ~,,.
One can embed the original Boolean protocol in the Gaussian
space by running the protocol on the uniformly distributed
Boolean inputs sgn(x) and sgn(y) where sgn(-) takes the
sign of each coordinate. Note that any node of the protocol
tree in the Gaussian space corresponds to a rectangle X x Y
where X,Y C R". Abusing the notation and defining their
Gaussian centers of masses as u(X) = Egor, @]z € X]
and p(Y) = Ey~y, [y|y € Y], one can associate the same
martingale (z(t))t with the protocol in the Gaussian space:

20 = (X O), u(¥ ).

It turns out that bounding the quadratic variation of this
martingale suffices to give a bound on Ly 5(h), so we will stick
to the Gaussian setting. We now describe the ideas behind the
cleanup process so that the step sizes can be controlled more
easily.

IL1)

727

¢) Cleanup with Real Communication: The cleanup pro-
tocol runs the original protocol interspersed with some cleanup
steps where Alice and Bob send real values. As outlined
before, one of the goals of these cleanup steps is to ensure
that the sets are not elongated in any direction, in order to
control the martingale steps. In more detail, recall that we
want to control

E [(Az(’f"'l))2 ‘ 20 z(t)}

— B |{Au(X ),y )

20 .,zm}

in the ¢ step where Alice speaks. There are two key under-
lying ideas for the cleanup steps:

¢ Gram-Schmidt Orthogonalization:

At each round, if the current rectangle is X x Y, before
Alice sends the actual message, she sends the inner
product (x, u(Y')) between her input and Bob’s current
center of mass p(Y). This partitions Alice’s set X into
affine slices orthogonal to Bob’s current center of mass
1(Y"). Thus the change in Alice’s center of mass in later
rounds is orthogonal to u(Y") since it only takes place
inside the affine slice.

Recall that the martingale z(®) is the inner product of
Alice and Bob’s center of masses, and Bob’s center of
mass does not change when Alice speaks. The original
communication steps now do not contribute to the mar-
tingale and only the steps where the inner products are
revealed do. In particular, if ¢,y < ¢ are two consecutive
times where Alice revealed the inner product, then the
change in Alice’s center of mass is orthogonal to change
in Bob’s center of mass between time ¢, and ¢. Thus,
conditioned on the rectangle X® x Y *) fixed by the
messages until time ¢, we have, by Jensen’s inequality,

E[(az0+0)2]
_E KAM(X““)L p(y ) — “(Y(tpr“))ﬂ

<E Km (XY, u(r ) - u(Y“vwv>>>2} |

Note that the quantity on the right-hand side above is of
the form (x — E[z], v). In other words, it is the variance
of the random vector « along direction v. To maintain a
bound on this quantity, we introduce the notion of “not
being elongated in any direction”.

« Not elongated in any direction: We define the following
notion to capture the fact that the random vector is not
elongated in any direction: we say that a mean-zero
random vector ' = x — E[x] in R" is A-pairwise clean,
if for every v € R",

E[(2',0)°] < A- Joll%, 112)

or equivalently, the operator norm of the covariance
matrix E[z’z’"] is at most \. This can be considered a

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:51 UTC from IEEE Xplore. Restrictions apply.



spectral notion of almost pairwise independence, since the
pairwise moments are well-behaved in every direction.

If the input distribution conditioned on Alice’s set X ()
is O(1)-pairwise clean, we say that her set is pairwise clean.
Based on the above ideas, after Alice sends the initial message,
if her set is not yet clean, she partitions it recursively by taking
affine slices and transmitting real values. More precisely, while
there is direction # € S™~! violating (I1.2), Alice does a
cleanup of her set by sending the inner product (z, ). This
direction is known to Bob as it only depends on Alice’s current
space. In addition, this cleanup does not contribute to the
martingale in the future because the inner product along this
direction is fixed now.

The resulting protocol is pairwise clean in the sense that
at each step®, Alice’s current set is pairwise clean. Similar
arguments work for Bob.

Let d be the total number of communication rounds in-
cluding all the cleanup steps. Then, by the above argument,
and denoting by (7.,)m and (7)) the indices of the inner
product steps for Alice and Bob, we can ultimately bound

B ()] < B[ T uxm) - wxrmof
) - ey ]
— x|+ fur ],

where again, the last equality follows from the martingale
property. The right hand side above can be bounded by the
expected number of communication rounds E[d] using the
level-one inequality — this inequality bounds the Euclidean
norm of the center of mass of a set in terms of its Gaussian
measure.

d) Expected Number of Cleanup steps: Since the original
communication only consists of d rounds, the analysis essen-
tially reduces to bounding the expected number of cleanup
steps by O(d), which is technically the most involved part of
the proof.

It is implicit in the previous works on the Gap-Hamming
Problem [35], [37] that large sets are not elongated in many
directions: if a set X C R” has Gaussian measure =~ 2~ ¢, then
for a random vector & sampled from X, there are at most m <
d orthogonal directions 61, ..., 6, such that E[(z',0; )2} 1
where ' = x—E[z]. Thisis a consequence of the fact that the
expectation of ¢ = ;" (x',0; )% can be bounded by O(d)
provided that X has measure ~ 27,

The above argument suggests that maybe we can clean
up the set X along these O(d) bad orthogonal directions.
However this is not enough for our purposes: after taking an
affine slice, the set may not be clean in a direction where
it was clean before. Moreover, since the parties take turns
to send messages and clean up, the bad directions will also

SWe remark that the sets are only clean at intermediate steps where a
cleanup phase ends, but we show that because of the orthogonalization step,
the other steps do not contribute to the value of the martingale.
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depend on the entire history of the protocol, including the
previous real and Boolean communication. This adaptivity
makes the analysis more delicate and to prove the optimal
bound we crucially utilize the rotational symmetry of the
Gaussian distribution. Indeed, the fact that a large set is not
elongated in many directions also holds even when we replace
the Gaussian distribution with the uniform distribution on
{£1}", but it is unclear how to obtain an optimal level-one
bound using the latter.

In the final protocol, since the parties only send Boolean bits
and linear forms of their inputs, conditioned on the history of
the martingale, one can still say what the distribution of the
next cleanup (x, 0) looks like, as the Gaussian distribution is
well-behaved under linear projections. We then use martingale
concentration and stopping time arguments to show that the
expected number of cleanup steps is indeed bounded by O(d)
even if the cleanup is adaptive.

We make two remarks in passing: First, we can also prove
the optimal level-one bound using information-theoretic ideas
but they do not seem to generalize to the level-two setting, so
we adopt the alternative concentration-based approach here
and they are similar in spirit. Second, it is possible from
our proof approach (in particular, the approach for level
two described next) to derive a weaker upper bound of
V/d - polylog(n) for the level one while directly working with
the uniform distribution on the hypercube.

B. Level-Two Fourier Growth

We start by noting that the level-two Fourier growth of the
XOR-fiber h is given by

Ly o(h Z ‘h {i,7}) ‘ = E h(z)zizj]’
i#] j
_ Z LE, [C(x, y)z; wjylyj]
i#]

To bound the above, it suffices to bound Z#j Nij -
E[C(x,y)z;x,;y;y;| for any symmetric sign matrix (7;;). For
this proof overview, we assume for simplicity that 7;; = 1.

a) Martingales and Gram-Schmidt Orthogonalization:
Similar to the case of level one, the level-two Fourier growth
also has a martingale formulation. In particular, let X
and Y® be Alice and Bob’s sets at time ¢ as before
and define o(X®) = E [:c @z ’ x € X(t)} ,o(Y®) =

E [y Dy ’ Yy € Y(t)} to be the n X n matrices that represent

the level-two center of masses of the two sets. Here x ® Yy
denotes the tensor product x®y with the diagonal zeroed out.”
To bound the level-two Fourier growth, it suffices to bound the
expected quadratic variation of the martingale (z(t)) , defined
by taking the inner product of the level-two center of masses
z® = (o(X®),0(Y®)) where (-,-) is the inner product
of two matrices viewed as vectors.

THere = ®y is an n X n matrix. We will also interchangeably view n x n
matrices as n2-length vectors.
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To this end, we again move to Gaussian space where the
inputs x,y € R™ and transform the protocol to a clean
protocol. First, we need an analog of the Gram-Schmidt
orthogonalization step — this is achieved in a natural way
by Alice sending inner product <x ®z, O’(Y(t))> with Bob’s
level-two center of mass, and Bob does the same. Note
that Alice and Bob are now exchanging values of quadratic
polynomials in their inputs. Thus, to control the step sizes, we
now need to control the second moment of quadratic forms
which naturally motivates the following spectral analogue of
4-wise independence.

b) 4-wise Cleanup with Quadratic Forms: We say a
random vector = is 4-wise clean with parameter A if the
operator norm of the n? x n? covariance matrix

E{(mm_mmw]) (m@'z)m—]E[:c@'Z)mDT]

is at most A where we view & @  — E[z ® x| as an n
dimensional vector. This is equivalent to saying that for any

2

quadratic form <M , T ® m>,

2

E [<N[7m®m—E[m®m}> ] <ANIMIP, a4
where || M || denotes the Euclidean norm of M when viewed as
a vector. Thus, this allows us to control the second moment of
any quadratic polynomial (and in particular, fourth moments
of linear functions). We note that one can generalize the above
spectral notion to k-wise independence in the natural way by
looking at the covariance matrix of the tensor £,

We say a set is 4-wise clean with parameter \ if (I1.4) is
preserved for all M with zero diagonal®. Combined with this
notion, one can define the cleanup in an analogous way to
the level-one cleanup: While there exists some M € R™*"
violating (II.4), Alice sends the quadratic form <x ® xz, M >
to Bob until her set is 4-wise clean with parameter .

c) Cleanup Analysis via Hanson-Wright Inequalities:
The crux of the proof is to bound the number of cleanup
steps which, together with a similar analysis as in the level-
one case, gives us the desired bound. We show that m < d
cleanup steps suffice in expectation to make the sets 4-wise
clean for A < d - polylog(n). Analogous to (II.1) and (IL.3),
this gives a bound of d3-polylog(n) on the expected quadratic
variation and implies L; »(h) < d3/2 - polylog(n).

Since the parties send values of quadratic forms now, the
analysis here is significantly more involved compared to the
level-one case, even after moving to the Gaussian setting,
where one could previously use the fact that the Gaussian
distribution behaves nicely under linear projections. We rely
on a powerful generalization of the Hanson-Wright inequality
to a Banach-space-valued setting due to Adamczak, Latata,
and Meller [63]. This inequality gives a tail bound for sum
of squares of quadratic forms: In particular if M,..., M,

8The requirement of zero diagonal is for analysis purposes only and can
be assumed without loss of generality since & ® @ is zero diagonal anyway.
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are matrices with zero diagonal which form an orthonormal
set when viewed as n? dimensional vectors, then the random

variable ¢ = > | <a: ® z, M7> satisfies Pry.., [q > t] <

e~ YD for any t > m?. We remark that this tail bound
relies on the orthogonality of the quadratic forms and is
much sharper than, for example, the bound obtained from
hypercontractivity or other standard polynomial concentration
inequalities.

In our setting, the matrices are being chosen adaptively. In
addition, the parties are sending quadratic forms in their inputs,
and the distribution of the next (x @ x, M ) conditioned on
the history is hard to determine, unlike the level-one case. To
handle this, we replace the real communication with Boolean
communication of finite precision £1/poly(n). This means
that whenever Alice wants to perform cleanup (x ® x, M)
for some M known to both parties, she sends only O(log(n))
bits. On the one hand, this modification is similar enough to
the cleanup protocol with real messages so that most of the
argument carries through. On the other hand, now the protocol
is completely discrete, which allows us to condition on any
particular transcript.

For intuition, assume we fix a transcript of L d +
O(mlog(n)) bits which has gone through m cleanups. Typ-
ically, this transcript should capture 2= of the proba-
bility mass. More crucially, the matrices M;,..., M, for
the cleanups are also fixed along the transcript, and one
can apply the aforement2ioned Hanson-Wright inequality on
g=>", <:c ® x, Mi> . Combining the two facts together,
we can apply the non-adaptive tail bound above and then
condition on obtaining such typical transcript. This shows
E[q] < d? - polylog(n). However, each quadratic form comes
from a violation of (II.4) and contributes at least A to q in
expectation. This implies that E[g] > X - m and by taking
A = d - polylog(n), we derive that the number of cleanup
steps m < d. This shows that the level-two Fourier growth is
O((m +d) - VA) = d/? - polylog(n) completing the proof.

Note that if we could take A = polylog(n) while having
the same number of cleanup steps m = d - polylog(n), then
we would obtain an optimal level-two bound of d-polylog(n).
However, it is not clear how to use current approach to show
this. In the full version, we identify examples showing the
tightness of our current analysis and also discuss potential
ways to circumvent the obstacles within.

We remark that by replacing the Hanson-Wright inequal-
ity with its higher-degree variants and performing level-k
cleanups, we can analyze level-k Fourier growth in the similar
way. However, since the first two levels already suffice for our
applications and we believe that our level-two bound can be
further improved, we do not make the effort of generalizing it
to higher levels here.

~
~
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