
Tight Time-Space Lower Bounds for Constant-Pass
Learning

Xin Lyu
EECS

University of California, Berkeley
Berkeley, US

xinlyu@berkeley.edu

Avishay Tal
EECS

University of California, Berkeley
Berkeley, US

atal@berkeley.edu

Hongxun Wu
EECS

University of California, Berkeley
Berkeley, US

wuhx@berkeley.edu

Junzhao Yang
IIIS

Tsinghua University
Beijing, China

yang-jz20@mails.tsinghua.edu.cn

Abstract—In his breakthrough paper, Raz showed that any
parity learning algorithm requires either quadratic memory or
an exponential number of samples [FOCS’16, JACM’19]. A line
of work that followed extended this result to a large class of
learning problems. Until recently, all these results considered
learning in the streaming model, where each sample is drawn
independently, and the learner is allowed a single pass over the
stream of samples. Garg, Raz, and Tal [CCC’19] considered a
stronger model, allowing multiple passes over the stream. In the
2-pass model, they showed that learning parities of size n requires
either a memory of size n1.5 or at least 2

√
n samples. (Their result

also generalizes to other learning problems.)
In this work, for any constant q, we prove tight memory-sample

lower bounds for any parity learning algorithm that makes q
passes over the stream of samples. We show that such a learner
requires either Ω(n2) memory size or at least 2Ω(n) samples.
Beyond establishing a tight lower bound, this is the first non-
trivial lower bound for q-pass learning for any q ≥ 3. Similar
to prior work, our results extend to any learning problem with
many nearly-orthogonal concepts.

We complement the lower bound with an upper bound,
showing that parity learning with q passes can be done efficiently
with O(n2/ log q) memory.

Index Terms—Multi-pass, streaming, parity learning

I. INTRODUCTION

A growing recent line of works studied the efficiency of
learning under memory constraints [1]–[18]. This study was
initiated by the beautiful work of Shamir [1] and Steinhardt,
Valiant, and Wager [2]. Specifically, Steinhardt et al. [2]
conjectured that any learning parity algorithm requires either
quadratic memory or an exponential number of examples. In a
breakthrough result, Raz [3] proved this conjecture. While we
have two simple algorithms for parity learning: (i) Gaussian
Elimination that uses O(n2) space and O(n) samples, and (ii)
Brute-force search that uses O(n) space and O(2n) samples,

Avishay Tal is supported by Sloan Research Fellowship and NSF CAREER
Award CCF-2145474. Xin Lyu and Hongxun Wu are supported by Avishay
Tal’s Sloan Research Fellowship, NSF CAREER Award CCF-2145474, and
Jelani Nelson’s ONR grant N00014-18-1-2562.

Raz showed that there is no learning algorithm that uses o(n2)
space and 2o(n) samples [3]. This demonstrated that efficient
learning requires a large memory – in this case, at least Ω(n2)
memory bits.

Follow-up work extended and generalized the lower bounds
techniques to a wide array of learning problems such as learn-
ing sparse parities, learning DNFs, learning decision trees,
learning juntas, [4], [9] learning low-degree polynomials [9],
[10], learning from sparse equations and low-degree equations
[9], learning codewords from random coordinates [7]–[9],
learning parities with noisy inputs [16], and more. In all
the above, it is shown that any learning algorithm for the
corresponding concept class on input size n, requires either
super-linear size memory, or super polynomial number of
samples. Work towards a tight characterization of memory-
samples lower bounds was done by [19], but such a full
characterization is still missing with polynomial gaps on the
memory required for efficiently learning classical concepts
classes such as juntas, DNFs, decision trees [4].

Most of the works above modeled the learner as a streaming
algorithm, observing the random labeled examples one at a
time. More precisely, the lower bounds proved were in the
stronger model of read-once branching programs that cap-
tures bounded-space streaming computation in a non-uniform
setting. Recent exciting work by [18] extended the model
to include quantum memory in addition to classical memory
and showed that Raz’s result extends even if the learner has
additionally o(n) qubits at its disposal.

Dagan and Shamir [11] and Garg, Raz, and Tal [12]
considered the model of multi-pass learners. In this model,
the learner makes several passes over the stream of examples
in the same order. Dagan and Shamir [11] proved polynomial
lower bounds on the number of samples in such setting. Garg,
Raz and Tal [12] obtained a subexponential lower bound on
the number of samples 2Ω(

√
n) for any two-pass learning

parity algorithm with o(n1.5) space. The result more generally

1195

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00070

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

07
0

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

implies lower bounds for any of the aforementioned learning
problems. Indeed, the lower bounds are proved in the extractor-
based framework of [9] and all the aforementioned learning
problems fall under this framework.

Despite the strong lower bound, the GRT result was not
known to be tight for two-pass learning, as no efficient algo-
rithm with o(n2) space was known in this setting. Moreover,
their result did not translate to the multi-pass setting with more
than two passes, and, as indicated in their paper, some of their
techniques are quite delicate, and it is far from clear how to
extend them to more than two passes [12].

Proving lower bounds for multi-pass learners is much more
challenging, as such learners can store information during the
first pass that would make examples in the second pass some-
what predictable, correlated with one another, or correlated
with the hidden vector.

One might wonder whether more passes can help in learn-
ing. Indeed, when the number of passes is quasi-polynomial,
a parity learning algorithm with nO(logn) passes, nO(logn)

samples, and O(n) space follows from the following two facts:
(i) solving linear equations can be done in O(log2 n) depth
[20] (ii) Barrington’s simulation of O(log2 n) depth by length
nO(logn) read-once branching programs [21].

A. Our Results
We study time-memory lower bounds for multi-pass learn-

ing problems. We provide a nearly tight lower bound for two-
pass learning parity algorithms:

Theorem 1 (Informal). Any two-pass algorithm for n-bit
parity learning requires either Ω(n2) bits of memory or
2Ω(n) many samples. Otherwise, the algorithm succeeds with
probability at most 2−Ω(n).

Moreover, our results generalize to any constant-pass learner
and, moreover, imply nearly similar bounds for any algorithm
with at most o(log log n) passes.

Theorem 2 (Informal). There is a universal constant C > 0
such that the following holds. For any q ≥ 2, letting cq =
C · 1003q , any q-pass algorithm for n-bit parity learning
requires either n2/cq bits of memory or exp(n/cq) many
samples. Otherwise, the algorithm succeeds with probability
at most 2−(n/cq).

We stress that the multi-pass lower bound is not a direct
generalization of the two-pass one. It requires us to revisit
a key technique in the two-pass proof (which we call the
“transfer lemma”), and extend the technique to the multi-pass
case with a significantly more involved argument.

Extractor-based framework: Our results apply more gen-
erally to any learning problem with many nearly pairwise
orthogonal concepts (i.e. concepts that agree on roughly half
of the inputs). Alternatively, to any learning problem whose
associated matrix (as defined in [7]) exhibits an extractor-
property [9], as defined next.

Let A be a finite domain, and let X be a concept
class over A, where each x ∈ X represents a function

(or concept) mapping A to {−1, 1}. We naturally associate
with the concept class a matrix M ∈ {−1, 1}A×X whose
rows correspond to samples and columns correspond to con-
cepts/functions. Then, M describes the following learning
problem: An unknown x ∈ X is chosen uniformly at random.
A learner tries to learn x from a stream of labeled samples,
(a1,M(a1, x)), (a2,M(a2, x)), . . . where each ai is uniformly
distributed over A. In particular, we consider the setting in
which the learner can see the same stream of samples for
q ≥ 2 passes.

Our lower bounds apply to any learning problem whose
corresponding matrix M has certain extractor properties: Any
large submatrix of M has a similar fraction of 1’s and −1’s.
More precisely, we say that M is a (k, ℓ, r)-extractor if for
any submatrix of at least 2−k · |A| rows and at least 2−ℓ ·
|X| columns, the fraction of entries with value 1 is 1

2 ± 2−r.
(For example, parity learning has parameters k, ℓ, r = Ω(n).)
We show that any two-pass learning for the learning problem
associated with M requires either Ω(k ·min(ℓ, k)) memory or
at least 2Ω(r) samples. For q-pass learning, we show that the
learning problem requires either Ω(k ·min(ℓ, k))/cq memory
or at least 2Ω(r/cq) samples for cq = 1003

q

.
The formal version of Theorem 1 and Theorem 2 1 are actu-

ally stated for matrices that are L2-extractors, since these ex-
tractors are more convenient to work with in our proof. How-
ever, a simple reduction from [9, Corollary 3] shows that any
standard extractor as above is also a (Ω(k+r),Ω(ℓ+r),Ω(r))-
L2-Extractor. Our results thus apply to all the aforementioned
concept classes (juntas, DNFs, Decision trees, low-degree
polynomials, codewords) as their corresponding matrices form
L2-Extractors with good parameters.

A non-trivial multi-pass algorithm: One might wonder if
the lower bound can be strengthened to show that any no(1)-
pass learner requires either Ω(n2)-memory or 2Ω(n) samples
to learn parity. Our next result shows that this is not the case,
and efficient learning with o(n2) memory is possible for any
q = ω(1).

Theorem 3 (Informal). For any q ≤ 2n, there is a q-pass
algorithm for n-bit parity learning that uses O(n2/ log(q))
bits of memory and O(qn) samples.

II. TECHNICAL OVERVIEW

In this section, we will present the road map for our paper,
including the difficulties and a sketch of our main ideas for
bypassing them.

A. Recap of the One-Pass Lower Bound
Both our work and the previous work on the two-pass

learning bound [12] are based on the proof techniques for
one-pass lower bound [7], [9]. Let us sketch its main idea.

Computational Model: The proof models the com-
putation as a read-once branching program: The in-
put to the branching program is a sequence of pairs
(a1, b1), (a2, b2), . . . , (aT , bT) ∈ A × {−1, 1}. Each of them

1See Theorem 5 and Theorem 6 in the full version of this paper.

1196

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

represents an equation M(ai, x) = bi. These a1, a2, . . . , aT ∈
A are sampled uniformly at random, while b1, b2, . . . , bT are
all generated according to the hidden vector x ∈ X . (In our
paper, for simplicity, we will identify X with {0, 1}n.) We
label the layers of the branching program by 0, 1, 2, . . . , T .
Let v be the current vertex. Initially, it is equal to the starting
vertex of the branching program at layer 0. After it is at layer
i, we read (ai+1, bi+1) and move v along one corresponding
edge to layer i+1. At the end of the computation, v will reach
the last layer T . Then it outputs a vector xv . We say that it is
successful if and only if xv = x.

The length of this branching program is the number of
samples T . The width is 2S where S ≤ n2/16 is the memory
bound. We want to prove that when S ≤ n2/16 and T ≤ 2n/16

the program cannot succeed with constant probability.

Main Idea of the One-Pass Lower Bound: When out-
putting xv , the optimal strategy is to output the x′ with
the highest posterior probability Px|v(x

′). Intuitively, if the
distribution Px|v is very spread, measured by its ℓ2 norm, the
vertex v will have a small chance of answering x correctly.
We will define its ℓ2 norm as

∥Px|v∥2 := E
x′∼X

[
P2
x|v(x

′)
] 1

2
.

Initially, as X = {0, 1}n, the uniform prior Px has ∥Px∥2 =
2−n. As v moves along the computational path, the posterior
distribution Px|v evolves. In the end, one can show that, for
some ϵ > 0, if ∥Px|v∥2 ≤ 2ϵn · 2−n, the probability that v
answers x correctly will be less than 2−Θ(n). (Think of ϵ as
a small constant, say ϵ = 0.1.)

Hence, to upper bound the success probability, it is sufficient
to upper bound the probability that we ever reach a vertex v
with ∥Px|v∥2 > 2ϵn ·2−n on our computational path. To show
this, we will enumerate all target vertices t with ∥Px|t∥2 >
2ϵn · 2−n and try to show that the probability of reaching a
fixed t is less than 2−Θ(n2). Then our desired upper bound
follows from a union bound over all 2n

2/16+O(n) possibilities
of vertex t.

Progress Measure: To study the probability of reaching
t, we need to look at the similarity between our current
posterior Px|v and the target Px|t, captured by their inner
product ⟨Px|v,Px|t⟩, defined as

〈
Px|v,Px|t

〉
:= E

x′∼X

[
Px|v(x

′) · Px|t(x
′)
]

=
1

|X|
∑

x′∈X

Px|v(x
′) · Px|t(x

′).

This measures our progress towards t. To show that we reach t
with a very small probability, we will show that for a uniform
random a ∈ A, reading equation M(a, x) = b will, w.h.p.,
makes little progress.

a ∼ A

Px|v

X

a ∼ A

Px|v · Pv|t

X

Fig. 1: A uniformly random equation a ∼ A will w.h.p. cut
both Px|v and Px|v · Px|t almost evenly into two parts: (1)
those x ∈ X with M(a, x) = 0 and (2) those x ∈ X with
M(a, x) = 1.

Let the posterior distribution after reading this equation be
P(a,b)
x|v . Then after normalization, the similarity becomes
〈
P(a,b)
x|v ,Px|t

〉

=
1

|X| ·
∑

x′∈X
M(a,x′)=b

Px|v(x
′) · Px|t(x

′)

/
∑

x′∈X
M(a,x′)=b

Px|v(x
′).

We say a ∈ A cuts Px|v evenly if
∑

x′∈X:M(a,x′)=0

Px|v(x
′) ≈

∑

x′∈X:M(a,x′)=1

Px|v(x
′).

Similarly, we say a ∈ A cuts the point-wise product Px|v ·Px|t
evenly if this holds for Px|v · Px|t instead of Px|v .

As shown in Figure 1, due to the extractor property of M ,
when Px|v and Px|v · Px|t are spread enough, a uniformly
random a ∈ A cuts both Px|v and Px|v · Px|t in half with
high probability (1 − 2−Θ(n)). Hence each time we see a
random equation, it will most likely halve both the numerator
and the denominator, which will not help us make progress.
Suppose we are unlucky. the rare event with probability
2−Θ(n) happens. Let us see how the similarity might change:

1) If a ∈ A cuts Px|v unevenly: When the denominator∑
x′∈X,M(a,x′)=b Px|v(x

′) < 2−c, the similarity may be

1197

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

larger by a factor of 2c. This causes huge progress. For
now, we ignore this issue and assume it never arises. We
will later handle it by designing certain “stopping rules”.

2) If a ∈ A cuts Px|v ·Px|t unevenly but still cut Px|v evenly:
In this case, the worst case is that the numerator does not
decrease at all, while the denominator is still halved. Then
the similarity doubles.

Initially, the similarity between uniform prior and target t is〈
Px,Px|t

〉
= 2−2n. In order to reach the target node t, which

has similarity ⟨Px|t,Px|t⟩ = ∥Px|t∥22 ≥ 22ϵn · 2−2n with itself,
the second case has to happen 2ϵn times. Intuitively, this tells
us the probability of reaching t is less than

(
2−Θ(n)

)2ϵn
=

2−Θ(n2).
Stopping Rules: However, we still have to handle the first

case. Although it also happens with probability only 2−Θ(n), it
only needs to happen once to make huge progress. The 2−Θ(n)

probability is not enough to afford the union bound over all
2Θ(n2) many targets t.

Luckily, we do not have to union bound. Observe that
whether a ∈ A cuts Px|v evenly is independent of the target t.
Whenever we see an equation a ∈ A that cuts Px|v unevenly
in our computational path, we can stop right away. Since there
are T ≈ 2n/16 many layers in our branching program, a simple
union bound over them shows that the overall probability of
stopping is still 2−Θ(n). Moreover, if we did not stop, then
the previous argument shows that we reach any target vertex
t with probability 2−Θ(n2). Overall, our algorithm succeeds
with a very small probability.

But this is not the only stopping rule. Recall that a uniformly
random a ∈ A cuts both Px|v and Px|v ·Px|t evenly w.h.p. (by
extractor property) only when they are spread enough. We also
need stopping rules to guarantee this. Formally, we have the
following stopping rules.

• (Bad Edge) If a does not cut Px|v evenly, we stop.
• (Significant State) If ∥Px|v∥2 ≥ 2ϵn · 2−n, we stop.

This guarantees that the distribution of Px|v will be spread
enough for the extractor property.

• (Significant Value) If Px|v(x) > 2ϵn · 2−n, we stop.
After applying this rule, we know ∥Px|v∥∞ ≤ 2ϵn. Since
∥Px|v · Px|t∥2 ≤ ∥Px|v∥∞ · ∥Px|t∥2, this guarantees that
Px|v ·Px|t will be spread enough for the extractor property.

B. The Proof Framework. Two Passes
Our work builds on the approach taken by the previous

two-pass lower bound [12]. We will now sketch their proof
framework.

Computational Model: A two pass branching program
reads its input (a1, b1), (a2, b2), . . . , (aT , bT) twice in the
exact same order. At the first pass, the starting vertex is v0, and
after reading its input, the computational path reaches a vertex
v1 at the end of the first pass (which is also the first layer of
the second pass). In the second pass, the computational path
starts from v1 and reaches v2 at the last layer after reading
the input again. Then it will output a vector xv2 ∈ X .

For any two vertices u and v in the program, we use u →̃ v
to denote the following event (over x, a1, a2, . . . , aT): Imagine

that we set the starting vertex of the branching program at u,
the path from u determined by x, a1, a2, . . . , aT reaches v
without stopping.

• For a vertex v1 in the last layer of the first pass, v0 →̃ v1
means that the first pass ends at v1.

• For any vertex v1 in the last layer of the first pass, and
vertex v2 in the last layer of the second pass, v1 →̃ v2
means that the second pass will end at v2 if it were
starting at v1.

First Attempt: Moving from one pass to two passes, one
might consider the following natural approach: First, apply the
above argument to the first pass and conclude that, at the end
of the first pass, the similarity ⟨Px|v,Px|t⟩ is small. Second,
apply it to the second pass and argue that such similarity grows
slowly in the second pass too.

However, such a direct approach would not work. Consider
a program that (1) magically learns x, (2) remembers x⊕ a1
(thinking of x and a1 as bit strings), and (3) forgets x and a1
at the end of the first pass. Conditioning on what v remembers,
x⊕a1, the distribution Px|v is uniformly random, just like the
prior Px. This is because x is encrypted by the one-time pad
using a1. So in the eyes of our analysis, this magical first pass
is no different from a trivial first pass. If we do not rule out
the possibility of such a magical first pass, what could happen
in the second pass is that, after seeing a1 again, the program
combines a1 with its knowledge of x ⊕ a1 and immediately
decodes x.

Remembering the First Pass: To prove any non-trivial
lower bound for two passes, it is necessary to rule out such
a program. This program shows that analyzing two passes
separately would not work (at least for this specific argument).
Therefore, we will analyze two passes together.

The first observation is that one can w.l.o.g. assume that,
when at the i-th layer of the second pass, the program knows
which vertex it was at in the i-th layer of the first pass. This
is because the program can keep a copy of the first pass in
its memory, which only blows up the memory by a factor of
two.

More formally, we modify the second pass (See Figure 2),
so that every vertex is now a pair of an original first-pass
vertex and an original second-pass vertex. The initial starting
vertex of the second pass becomes (v0, v1). When the program
reads the first equation (a1, b1), if in the first pass v0 →̃ v′

and in the second pass v1 →̃ v, in the modified second pass,
(v0, v1) →̃ (v′, v).2

Now in the modified program, every modified vertex v in
the second pass corresponds to (“remembers”) a unique vertex
v′ in the first pass. The event v1 →̃ v now implies v0 →̃ v′, in
the sense that for any input x, a1, a2, . . . , aT such that v1 →̃ v
happens, the event v0 →̃ v′ must also happen.

2For the exact details of this modification, please refer to Section 4 of the
full version.

1198

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

(a, b)

(a ′, b ′)

(a, b)

(a ′, b ′)

(a, b)

(a ′, b ′)

The first pass

The second pass

Modified second pass

modification

Fig. 2: Remembering the first pass.

v0 v′ v1

v1 v

Fig. 3: The computational path of two passes.

Furthermore, we require every vertex in the second pass to
remember v1, the starting vertex of the second pass. This can
be achieved with a similar modification. By this modification,
for any vertex v in the second pass (which remembers its
corresponding vertex v′ in the first pass),

(v0 →̃ v) = (v0 →̃ v′) ∧ (v′ →̃ v1) ∧ (v1 →̃ v)

= (v1 →̃ v) ∧ (v′ →̃ v1).

Here the last equality holds because v1 →̃ v implies v0 →̃ v′,
and v1 is unique since v remembers it.

When v = v2 for some vertex v2 in the last layer (of the
second pass), this simplifies to

(v0 →̃ v2) = (v0 →̃ v1) ∧ (v1 →̃ v2)

= (v1 →̃ v2).

Progress Measure: When the program reaches v2, the
optimal strategy for it is to output the x′ ∈ X with the highest
Px|v0 →̃ v2(x

′). Note that this equals Px|v1 →̃ v2(x
′) (by the

equation above).
Hence, similar to the one-pass case, when the distribution

Px|v1 →̃ v2 is spread enough (∥Px|v1 →̃ v2∥2 ≥ 2ϵn · 2−n),
vertex v2 cannot answer x correctly. To upper bound the
probability of answering x correctly, we only need to upper
bound the probability of reaching any target state t with
∥Px|v1 →̃ t∥2 ≥ 2ϵn · 2−n.

Initially, Px|v1 →̃ v1 = Px. As the current vertex v
moves along the computational path from v1, the posterior
Px|v1 →̃ v evolves similarly to the one-pass case. Let the
similarity ⟨Px|v1 →̃ v,Px|v1 →̃ t⟩ be the progress measure, and
let P(a,b)

x|v1 →̃ v be the posterior after reading a new equation
(a, b). We have,

〈
P(a,b)
x|v1 →̃ v,Px|v1 →̃ t

〉

=
1

|X|
∑

x′∈X
M(a,x′)=b

Px|v1 →̃ v(x
′) · Px|v1 →̃ t(x

′)

/
∑

x′∈X
M(a,x′)=b

Px|v1 →̃ v(x
′).

Until now, this seems like a natural generalization of the
one-pass case. However, for one pass, we heavily rely upon
the fact that a ∈ A is uniformly random. In the second pass,
we no longer have this property. For example, the program
could simply remember a1 ∈ A from the first pass, then
in the second pass, a1 is completely deterministic, with no
randomness at all.

High-Probability Edges: The previous work [12] calls
such ai ∈ A that is remembered by the program a high-
probability edge. Formally, for a vertex v in the i-th layer
of the second pass, we say that a is a high-probability edge
at v (denoted by a ∈ High(v)) if and only if

Pr[ai+1 = a | v0 →̃ v] ≥ 2ϵ·n · 2−n.

Since these edges occur with too large probability (much
higher than the uniform case, 2−n), we cannot simply stop
when they cut distributions unevenly (like we did for one-
pass).

1) If this a ∈ A cuts Px|v1 →̃ v unevenly: When the
denominator

∑
x′∈X,M(a,x′)=b Px|v1 →̃ v(x

′) < 2−c, the
similarity might be larger by a factor of 2c, causing huge
progress. For now, we ignore this issue and assume that
it never arises. We will explain how we handle it in
Section II-C.

2) If this a ∈ A cuts Px|v1 →̃ v · Pv1 →̃ t unevenly, but
still cuts Px|v1 →̃ v evenly: In this case, the worst case
is the sae as one-pass. Namely, the numerator does not
decrease at all, while the denominator is halved. Then the
similarity at most doubles.

Their key observation is the following. Intuitively, to re-
member a single a ∈ A, we need at least Ω(n) memory.
Since the memory bound S ≤ n2/16, the program can only
remember O(n) many such a’s. So there can be at most O(n)
high probability edges.

Hence, to handle the case in Item 2, we observe that these
O(n) many high-probability edges only blow up the similarity
by 2O(n). Since initially similarity ⟨Px,Px|v1 →̃ t⟩ = 2−2n,
and we want to prove that it would increase to ∥Px|v1 →̃ t∥22 ≥
22ϵn ·2−2n with very small probability. As long as the constant
hidden by big O is much smaller than ϵ, this blow-up is

1199

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

negligible. We will pick the correct constants to ensure that
this is indeed the case.

C. New Ingredient: Bias Counters

As mentioned in the first case, if a high probability edge a
cuts Px|v1 →̃ v unevenly, the similarity might grow a lot. First,
we explain how the previous work [12] gets around this issue.
Then, we will introduce our new idea. This is the key idea for
proving the tight memory lower bound for two passes.

Very-bad edge: To get around this issue, they defined
“very-bad edges”, which is the high probability edges a that
cut Px|v1 →̃ v in a very biased way. Formally, a ∈ High(v) is
“very-bad” if

∑

x′∈X
M(a,x′)=b

Px|v1 →̃ v(x
′) ≤ 2−

√
n.

• On the one hand, when a high probability edge is not
very-bad, it only blows up the similarity at most by a
factor of 2

√
n.

If we set the memory bound S to be O(n3/2), there can
only be c ·

√
n many high probability edges for some

constant 0 < c < 1 (since remembering one needs Ω(n)
memory). Then these c ·

√
n many high probability not-

very-bad edges can blow up the potential by at most 2cn.
As long as c≪ ϵ, this will be acceptable for our purpose.

• On the other hand, when an edge (a, b) is very-bad,
conditioning on we reached this vertex, x is distributed
as Px|v1 →̃ v . Over the randomness of x, the probability
that we traverse this edge (a, b) instead of (a,−b) is at
most 2−

√
n.

First of all, note this is completely independent of the
target t. So we do not have to union bound over t. Then
if we set the sample bound T to be 2O(

√
n), we can stop

immediately whenever we meet a very bad edge. For each
step, we stop with probability 2−

√
n, union bound over

all T steps, and we can show that the overall stopping
probability is still 2−Ω(

√
n).

Therefore, they can prove that for some constant ϵ > 0, any
two-pass algorithm with S ≤ ϵn3/2 memory and T ≤ 2ϵ

√
n

samples cannot succeed with constant probability.
New Idea: Bias Counter: Instead of stopping imme-

diately at biased “very-bad edges”, we introduce a counter
cntbias to keep track of the accumulated biases: In the second
pass, initially, when we were at the starting vertex v1, we let
cntbias ← 0. For any high probability edge (a, b) from current
vertex v (satisfying a ∈ High(v)), we say it is ∆-biased if

∑

x′∈X
M(a,x′)=b

Px|v1 →̃ v(x
′) ∈ [2−∆−1, 2−∆).

Whenever we traverse a ∆-biased edge, we will update our
counter (roughly) by

cntbias ← cntbias +∆.

Note a ∆-biased edge has to be a high probability edge. There
can be at most O(n) high probability edges when S ≤ n2/16.
Hence we will make at most O(n) such updates.

• On one hand, when the counter cntbias ≤ ϵ · n, the
high probability edges we have traversed can blow up
the similarity by at most 2ϵn.
This follows almost directly from the definition of ∆:
We increase the counter by ∆ if and only if we traversed
a ∆-biased edge. As we have discussed, such an edge
would blow up the similarity by at most 2∆. Hence in
total, they can blow up the similarity by at most 2cntbias .

• On the other hand, the overall probability that cntbias >
ϵ · n is small. If we stop whenever the counter exceeds
the threshold ϵ · n, we can show the overall stopping
probability will be small.
This is because we traverse a ∆-biased edge (a, b) instead
of the other edge (a,−b) with probability at most 2−∆

over the randomness of x. To gain some intuition, let us
think about two extreme cases:
– Case 1: Each time, the counter increases a little, e.g.,
∆ ≈ 100. In this case, w.p. 1 − (2−100)(ϵ/100)·n =
1− 2−ϵn, the counter cntbias is going to increase like
this for less than (ϵ/100) · n times.
(For ∆≪ 100, since there are at most O(n) updates,
as long as the constant hiding by this big-O is much
smaller than ϵ, we can ignore these updates, as the total
increase due to them is negligible compared to ϵ · n.)

– Case 2: Each time, the counter increases a lot, i.e., ∆ =
δn for 0 < δ < 1. In this case, w.p. 1− (2−δn)(ϵ/δ) =
1−2−ϵn, the counter cntbias will increase like this for
less than ϵ

δ times.
In both cases, the counter cntbias will not overflow
with high probability. To make cntbias larger than ϵ · n,
it is necessary to have a sufficiently large number of
(correspondingly) sufficiently large ∆, and this is very
unlikely. This resembles a famous quote:

“You can fool some of the people all of the time, and
all of the people some of the time, but you can not
fool all of the people all of the time.”— Abraham
Lincoln

Formally, we can show that for each layer i ∈ [T], the
counter overflows at layer i with probability at most 2−ϵn.
Together with a union bound over T ≪ 2ϵn layers, we
prove that the overall stopping probability for counter
overflow is small.

This allows us to prove that for some constant ϵ′ > 0, any
two-pass algorithm with S ≤ ϵ′n2 memory and T ≤ 2ϵ

′n

samples cannot success with constant probability. This new
idea is the key to proving a tight lower bound for two-pass
learning.

In our actual proof, we will modify the program so that each
vertex v will “remember” a unique counter value cntbias(v).3

3More details about this modification, the bias counter, and related stopping
rules are presented in Section 4 of the full version.

1200

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

Potential Argument: To implement the idea, we will
introduce a new stopping rule: We stop whenever the counter
cntbias exceeds ϵ · n. We have to prove that overall, we stop
due to this new rule with a small probability.

Unlike previous stopping rules, this new stopping rule is
“soft”, in the sense that when a rare event of probability 2−∆

happens, it does not stop right away. Instead, it accumulates
such rare events and only stops when enough rare events
have occurred. Previously, we only need to analyze stopping
probability based on the randomness at the current step. But
now, we have to look at the computation history and exploit the
fact that we stop only when a lot of rare events have happened
in history.

This makes it harder to analyze the stopping probability. Our
main technical contribution to two-pass is to come up with
a potential analysis resolving the issue. Roughly speaking,
our potential function is defined as Φ ≈ 2cntbias . Initially,
the expectation of Φ is 1 (as we have cntbias = 0 at the
starting vertex). Since in each step, cntbias increases by ∆
with probability roughly 2−∆, the expectation of Φ (of the
current state v) will be (almost) non-increasing. At the end of
the computation, we can use Markov’s inequality to bound the
probability of Pr[cntbias > ϵ · n] by 1

2ϵn .4

D. Transfer Lemma

However, the proof still has the last important missing piece.
In Section II-C, we argued intuitively that for a ∆-biased edge
(a, b), with only 2−∆ probability over the randomness of x, we
traverse (a, b) instead of (a,−b). But there is one important
subtlety.

a) Informal discussion.: Note we defined the ∆-biased
edges w.r.t. the posterior distribution Px|v1 →̃ v . So we actually
showed is the following:

For all starting vertex v1 of the second pass, after
v1 →̃ v, the computational path will then traverse a
∆-biased edge from v w.p. at most 2−∆.

But ideally, we want to argue about the two-pass branching
program, starting from v0. The ideal statement will be:

For the starting vertex v0 of the first pass, after
v0 →̃ v, the computational path will then traverse
a ∆-biased edge from v w.p. at most 2−∆.

If v = v2 is a vertex in the last layer of the second pass, as
explained in Section II-B, we know that v0 →̃ v2 is equivalent
to v1 →̃ v2. This is because the second pass remembers the
first pass, so v1 →̃ v2 can “certify” that the first pass indeed
reaches v1.

But for stopping rules, it is crucial that we stop or update
counters in the middle of the program. So v is not always
going to be in the last layer. Suppose v is in the middle of
the second layer and v′ is its corresponding vertex in the first
layer. As explained in Section II-B, we have

(v0 →̃ v) = (v1 →̃ v) ∧ (v′ →̃ v1).

4We will give a more detailed overview and more intuitions in Section 5.1
of the full version.

Hence the statement we showed differs from the ideal one.
Intuitively, this is because v1 →̃ v can only certify that
v0 →̃ v′. We need extra arguments for controlling v′ →̃ v1.
This is why we need the transfer lemma, to transfer the
statement we showed into the ideal statement we want.

This is the most technical part of [12]. In Section 6 of
the full version, we will frame this subtlety as an adaptive
issue and give a slightly simplified proof together with a clean
interpretation. This perspective enables us to generalize this
lemma to multiple passes.

Distribution Mismatch: To explain this subtlety in full
clarity, let us carefully examine the definition of being ∆-
biased. We say that a high probability edge (a, b) is ∆-biased
if, ∑

x′∈X
M(a,x′)=b

Px|v1 →̃ v(x
′) ≤ [2−∆−1, 2−∆).

Note that the vector x is sampled conditioning on the event
v1 →̃ v. Hence it corresponds to the following random process:

• First, sample a uniformly random x ∈ X and let v = v1.
• At the i-th step uniformly sample ai ∈ A and move v

along the edge (ai,M(ai, x)).
The definition of ∆-biased edges is saying that conditioning

on this process reaches v, the probability that M(a, x) = b is at
most 2−∆. However, when we talk about our overall stopping
probability, we are referring to a different random process:

• First, sample a random x ∼ Px|v0→v1 and let v = v1.
• At the i-th step uniformly sample ai ∼ Pr[ai | v0 → v]

and move v along edge (ai,M(ai, x)).
We can see there is a distribution mismatch between these

two. Conditioning on we reached v, in the first process,
the posterior distribution of x is Px|v1 →̃ v , while in the
second process, the posterior distribution of x is Px|v0 →̃ v .
As explained in Section II-B, in general for a vertex v,
(v0 →̃ v) = (v1 →̃ v)∧ (v′ →̃ v1). The posterior distribution
at the end of the second process

Px|v0 →̃ v = Px|(v1 →̃ v)∧(v′ →̃ v1)

which is not only conditioning on (1) the event that the path
from v1 reaches v but also on (2) the event that in the first
pass, the path from v′ picks v1 as the end vertex.

The issue is that we ultimately want to prove that the
stopping probability is small in the second process v0 →̃ v.
But as ∆-bias has been defined w.r.t. the first process, our
previous argument only shows that the stopping probability is
small in the first process v1 →̃ v.

Transfer Lemma: To resolve this, [12] introduced the fol-
lowing lemma, “transferring” an upper bound on the stopping
probability of the first process v1 →̃ v to an upper bound on
the stopping probability of the second process v0 →̃ v.

Informal Statement: For any two-pass algorithm, suppose
for all fixed starting vertex v1, the computational path from
v1 stops with probability less than 2−cn for some 0 < c < 1.
The computational path from v0 will stop in the second pass
with probability less than 2−(c−ϵ)n for some 0 < ϵ < 1.

1201

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

Our Perspective: Note the assumption of this lemma
says that for all fixed v1, over the randomness of x and
a1, a2, . . . , aT , the probability of stopping is small. The reason
there is this distribution mismatch is that the vertex v1 is
not fixed beforehand but picked by the first pass adaptively
(depending on x, a1, a2, . . . , aT as well). Hence this is really
an issue caused by adaptivity.

We will then interpret the proof as exploiting the fact
that the first pass (a memory-bounded one-pass algorithm)
has a limited ability to adaptively choose the worst v1. This
perspective, which seems missing from the previous works, is
crucial for us to generalize this lemma to multiple passes.5.

E. Extending to Multiple Passes

To extend this to multiple passes, we first adapt our modifi-
cation on the program and stop rules beyond two passes. This
turns out to be simple.6 Our new counter and its potential
analysis extend to multi-pass smoothly as well.7

Main Challenge. Transfer Lemma: However, for the
transfer lemma, the original proof crucially relies on the
fact that the algorithm has only two passes. Subtle technical
difficulties arise when generalizing it to multiple passes.8

Current Bottleneck. Transfer Lemma: Currently, our
lower bound stops at O(log log n) many passes. This is
because of the transfer lemma. To prove a lower bound for q-
passes, we will use our result for (q−1)-passes in a black-box
way. This implicitly applies the transfer lemma for q−1 times.
It turns out that each application of the transfer lemma is quite
costly: In the informal statement in Section II-D, the original
2−cn bound on stopping probability is demoted to a 2−(c−ϵ)n

bound after applying transfer lemma. Roughly speaking, if
ϵ > 0 is a constant, we can at most apply this lemma a constant
number of times. Then we can only prove a lower bound for
a fixed constant number of passes.

By carefully choosing parameters, we can prove that for any
algorithm with q passes, to succeed with constant probability,
it necessarily requires either Ω

(
n2

cq

)
memory or 2Ω(n/cq)

samples where cq = 1003
q

. In particular, this implies a
n2−o(1) memory lower bound for o(log log n)-pass learning.
The bottleneck in improving these results beyond O(log log n)
passes is the successive application of the transfer lemma. It
remains an interesting open problem whether a better tradeoff
such as cq = exp(q) or even cq = poly(q) can be proved. For
example: can a no(1)-pass algorithm learn the hidden vector
x using n2−Ω(1) memory and 2n

1−Ω(1)

samples?

REFERENCES

[1] O. Shamir, “Fundamental limits of online and distributed algorithms for
statistical learning and estimation,” in NIPS, 2014, pp. 163–171.

[2] J. Steinhardt, G. Valiant, and S. Wager, “Memory, communication, and
statistical queries,” in COLT, ser. JMLR Workshop and Conference
Proceedings, vol. 49. JMLR.org, 2016, pp. 1490–1516.

5A more detailed overview will be given in Section 6 of the full version.
6The details are presented in Section 8 of the full version.
7This will be included in Section 10.1 of the full version.
8We give detailed intuitions and discussions in Section 9 of the full version.

[3] R. Raz, “Fast learning requires good memory: A time-space lower bound
for parity learning,” in FOCS. IEEE Computer Society, 2016, pp. 266–
275.

[4] G. Kol, R. Raz, and A. Tal, “Time-space hardness of learning sparse
parities,” in STOC. ACM, 2017, pp. 1067–1080.

[5] M. Moshkovitz and N. Tishby, “Mixing complexity and its applications
to neural networks,” CoRR, vol. abs/1703.00729, 2017.

[6] D. Moshkovitz and M. Moshkovitz, “Mixing implies lower bounds
for space bounded learning,” in COLT, ser. Proceedings of Machine
Learning Research, vol. 65. PMLR, 2017, pp. 1516–1566.

[7] R. Raz, “A time-space lower bound for a large class of learning
problems,” in 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 2017, pp. 732–742.

[8] D. Moshkovitz and M. Moshkovitz, “Entropy samplers and strong
generic lower bounds for space bounded learning,” in ITCS, ser. LIPIcs,
vol. 94. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp.
28:1–28:20.

[9] S. Garg, R. Raz, and A. Tal, “Extractor-based time-space lower bounds
for learning,” in STOC. ACM, 2018, pp. 990–1002.

[10] P. Beame, S. O. Gharan, and X. Yang, “Time-space tradeoffs for
learning finite functions from random evaluations, with applications to
polynomials,” in COLT, ser. Proceedings of Machine Learning Research,
vol. 75. PMLR, 2018, pp. 843–856.

[11] Y. Dagan and O. Shamir, “Detecting correlations with little memory
and communication,” in COLT, ser. Proceedings of Machine Learning
Research, vol. 75. PMLR, 2018, pp. 1145–1198.

[12] S. Garg, R. Raz, and A. Tal, “Time-space lower bounds for two-pass
learning,” in 34th Computational Complexity Conference (CCC), 2019.

[13] V. Sharan, A. Sidford, and G. Valiant, “Memory-sample tradeoffs for
linear regression with small error,” in STOC. ACM, 2019, pp. 890–
901.

[14] Y. Dagan, G. Kur, and O. Shamir, “Space lower bounds for linear
prediction in the streaming model,” in COLT, ser. Proceedings of
Machine Learning Research, vol. 99. PMLR, 2019, pp. 929–954.

[15] S. Garg, P. K. Kothari, and R. Raz, “Time-space tradeoffs for distinguish-
ing distributions and applications to security of goldreich’s PRG,” in
APPROX-RANDOM, ser. LIPIcs, vol. 176. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 21:1–21:18.

[16] S. Garg, P. K. Kothari, P. Liu, and R. Raz, “Memory-sample lower
bounds for learning parity with noise,” in APPROX-RANDOM, ser.
LIPIcs, vol. 207. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, pp. 60:1–60:19.

[17] A. Marsden, V. Sharan, A. Sidford, and G. Valiant, “Efficient convex
optimization requires superlinear memory,” in COLT, ser. Proceedings
of Machine Learning Research, vol. 178. PMLR, 2022, pp. 2390–2430.

[18] Q. Liu, R. Raz, and W. Zhan, “Memory-sample lower bounds
for learning with classical-quantum hybrid memory,” arXiv preprint
arXiv:2303.00209, 2023.

[19] A. Gonen, S. Lovett, and M. Moshkovitz, “Towards a combinatorial
characterization of bounded-memory learning,” in NeurIPS, 2020.

[20] L. Csanky, “Fast parallel matrix inversion algorithms,” SIAM Journal on
Computing, vol. 5, no. 4, pp. 618–623, 1976.

[21] D. A. M. Barrington, “Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in nc1,” in STOC. ACM,
1986, pp. 1–5.

1202

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:22:23 UTC from IEEE Xplore. Restrictions apply.

