
Weighted Pseudorandom Generators via
Inverse Analysis of Random Walks and

Shortcutting
Lijie Chen

Miller Institute for Basic Research in Science
University of California, Berkeley

Berkeley, US
wjmzmbr@gmail.com

William M. Hoza
Department of Computer Science

University of Chicago
Chicago, US

williamhoza@uchicago.edu

Xin Lyu
EECS

University of California, Berkeley
Berkeley, US

xinlyu@berkeley.edu

Avishay Tal
EECS

University of California, Berkeley
Berkeley, US

atal@berkeley.edu

Hongxun Wu
EECS

University of California, Berkeley
Berkeley, US

wuhx@berkeley.edu

Abstract—A weighted pseudorandom generator (WPRG)
is a generalization of a pseudorandom generator (PRG) in
which, roughly speaking, probabilities are replaced with
weights that are permitted to be positive or negative. We
present new explicit constructions of WPRGs that fool certain
classes of standard-order read-once branching programs. In
particular, our WPRGs fool width-3 programs, constant-
width regular programs, and unbounded-width permutation
programs with a single accepting vertex. In all three cases,
the seed length is Õ

(
log n ·

√
log(1/ε) + log(1/ε)

)
, where n

is the length of the program and ε is the error of the WPRG.
For comparison, for all three of these models, the best

explicit unweighted PRGs known have seed length Õ(log n ·
log(1/ε)) (Meka, Reingold, and Tal STOC 2019; Braverman,
Rao, Raz, and Yehudayoff SICOMP 2014; Hoza, Pyne, and
Vadhan ITCS 2021). Our WPRG seed length is superior when
ε is small. For the case of unbounded-width permutation
programs, Pyne and Vadhan previously constructed a WPRG
with a seed length that is similar to ours (CCC 2021), but
their seed length has an extra additive log3/2 n term, so our
WPRG is superior when ε ≫ 1/n.

Our results are based on a new, general framework for
error reduction. Our framework builds on the remarkable
recent work by Ahmadinejad, Kelner, Murtagh, Peebles, Sid-
ford, and Vadhan (FOCS 2020) that gave a near-logarithmic
space algorithm for estimating random walk probabilities
in Eulerian digraphs with high precision. Our framework
centers around the “inverse analysis” of random walks and a
key combinatorial structure termed “shortcut graphs.” Using
our new framework and the recent notion of singular value
approximation (Ahmadinejad, Peebles, Pyne, Sidford, and

Lijie Chen is supported by Miller Research Fellowship. Avishay Tal
is supported by Sloan Research Fellowship and NSF CAREER Award
CCF-2145474. Xin Lyu and Hongxun Wu are supported by Avishay
Tal’s Sloan Research Fellowship, NSF CAREER Award CCF-2145474,
and Jelani Nelson’s ONR grant N00014-18-1-2562. This work was done
while William M. Hoza was visiting the Simons Institute for the Theory
of Computing.

Vadhan arXiv 2023), we also present an alternative, simpler
proof of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford,
and Vadhan’s main theorem. Compared to the original proof,
our new proof avoids much of the sophisticated machinery
that was imported from recent work on fast Laplacian solvers.

Index Terms—Pseudorandomness, Branching Program

I. INTRODUCTION

What is the intrinsic relationship between random-
ness and space as computational resources? The famous
“L = BPL” conjecture says that for every halting ran-
domized decision algorithm using S ≥ log n bits of
space, there is a deterministic algorithm that solves the
same problem using O(S) bits of space: randomization
buys at most a constant factor in terms of space complex-
ity. The challenge of derandomizing efficient algorithms
is well-motivated, because high-quality random bits are
not always available easily and without cost.

A traditional approach to derandomization is to try
to design sufficiently powerful pseudorandom generators
(PRGs).

Definition I.1 (PRGs). Let n ∈ N, let F be a class of
functions f : {0, 1}n → {0, 1}, and let ε > 0. An ε-PRG
for F is a function G : {0, 1}s → {0, 1}n such that for every
f ∈ F , we have

|E[f (G(Us))]− E[f]| ≤ ε.

(Above, Us denotes the uniform distribution over {0, 1}s, and
E[f] is a shorthand for E[f (Un)].) The parameter s is called
the seed length of the PRG. We also say that G fools F with
error ε, or ε-fools F .

For the purpose of derandomizing space-bounded
computation, the appropriate class F consists of

1224

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00072

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

07
2

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

polynomial-width standard-order read-once branching
programs (ROBPs).

Definition I.2 (Standard-order ROBPs). Let w, n ∈ N. A
width-w length-n standard-order ROBP is a directed graph
B. The vertex set consists of n+ 1 layers, V = V(0) ∪V(1) ∪
· · · ∪ V(n), where |V(i)| ≤ w for each i. We usually assume
without loss of generality that |V(i)| = w. Every vertex v ∈
V(i) with i < n has two outgoing edges, one labeled 0 and
the other labeled 1, leading to V(i+1). There is a designated
start vertex vstart ∈ V(0), and there is a set of designated
accepting vertices Vaccept ⊆ V(n). The program computes a
Boolean function B : {0, 1}n → {0, 1} as follows. Given an
input x ∈ {0, 1}n, let vstart = v0, v1, v2, . . . , vn be the unique
path such that for each i ∈ [n], there is an edge from vi−1 to
vi with label xi. If vn ∈ Vaccept, then we set B(x) = 1, and
otherwise B(x) = 0.

If A is a randomized space-S algorithm, then for each
fixed input σ, the function B(x) = A(σ, x) (where x
denotes the random bits used by A) can be computed
by a width-w length-n standard-order ROBP where w =
n = 2O(S). Therefore, given an explicit1 ε-PRG G for
such programs, we could deterministically estimate the
acceptance probability of A to within ±ε by computing
2−s · ∑u∈{0,1}s A(σ,G(u)). In particular, explicit PRGs
for width-n length-n ROBPs with seed length O(log n)
would imply L = BPL.

Using the probabilistic method, one can show the
existence of non-explicit ε-PRGs for width-w length-n
ROBPs with seed length O(log(wn/ε)). Furthermore,
several unconditional constructions of explicit PRGs for
standard-order ROBPs are known. Most famously, Nisan
designed a PRG that ε-fools width-w length-n ROBPs
with seed length O(log(wn/ε) · log n) [1]. Nisan’s PRG
has found numerous applications, but its seed length is
too large to resolve the L vs. BPL problem.

A. Weighted PRGs

Nisan’s PRG [1] is more than three decades old. De-
spite much effort, there is still no known explicit PRG
for standard-order ROBPs of polynomial width (or even
width 4) with a better seed length. This motivates the
search for alternative approaches to proving L = BPL that
do not necessarily require any breakthroughs on the PRG
problem.2 Braverman, Cohen, and Garg introduced one
such approach [3], based on the concept of a weighted
PRG (WPRG).

Definition I.3 (WPRGs). Let n ∈ N, let F be a class of
functions f : {0, 1}n → {0, 1}, and let ε > 0. An ε-WPRG

1For our purposes, a generator G : {0, 1}s → {0, 1}n is explicit if it
can be computed in space O(s). The algorithm for computing G(u) is
given the seed u along with parameters (n, ε, etc.) specifying G among
a relevant family of generators.

2See Hoza’s survey for a discussion of different approaches to
proving L = BPL [2].

for F is a pair (G, µ), where G : {0, 1}s → {0, 1}n and
µ : {0, 1}s → R, such that for every f ∈ F , we have

∣∣∣Eu∈{0,1}s [f (G(u)) · µ(u)]− E[f]
∣∣∣ ≤ ε.

The parameter s is called the seed length of the WPRG. We
also say that (G, µ) fools F with error ε, or ε-fools F .

Crucially, the weights µ(u) are allowed to be neg-
ative. (Indeed, WPRGs with nonnegative weights are
essentially equivalent to unweighted PRGs [4, Appendix
C].) Intuitively, this means that we are considering the
expectation of f with respect to a sparse input “dis-
tribution” in which some probabilities are negative. For
this reason, WPRGs are also known as pseudorandom
pseudodistribution generators [3].

Because we are allowed to use negative weights,
constructing WPRGs is potentially easier than con-
structing unweighted PRGs. Indeed, Braverman, Cohen,
and Garg [3] constructed an explicit WPRG that ε-
fools width-w length-n standard-order ROBPs with seed
length

Õ(log(wn) · log n + log(1/ε)),

which is better than Nisan’s PRG’s seed length when the
error parameter ε is very small. A sequence of followup
works developed simpler and better WPRG construc-
tions [4]–[7], in particular improving the seed length
to O(log(wn) · log n + log(1/ε)) [7]. These examples
demonstrate that negative weights open up new avenues
for making progress. Furthermore, for a certain class of
branching programs, Pyne and Vadhan constructed a
WPRG [4] with a seed length that is provably impossible
to achieve via unweighted PRGs [8], demonstrating the
intrinsic power of negative weights. (Jumping ahead, we
improve Pyne and Vadhan’s construction in this work.
See Section I-D.)

Despite the presence of negative weights, explicit
WPRGs are still useful for derandomization. Indeed,
an explicit WPRG for width-n length-n standard-order
ROBPs with seed length O(log n) would imply L = BPL,
just like an explicit unweighted PRG would. The reason
is that given such a WPRG, we could deterministically
estimate the acceptance probability of a randomized al-
gorithm A by computing 2−s ·∑u∈{0,1}s A(σ,G(u)) ·µ(u).
Furthermore, WPRGs imply hitting set generators (HSGs).

Definition I.4 (HSGs). Let n ∈ N, let F be a class of
functions f : {0, 1}n → {0, 1}, and let ε > 0. An ε-HSG
for F is a function G : {0, 1}s → {0, 1}n such that for every
f ∈ F , if E[f] > ε, then there exists u ∈ {0, 1}s such that
f (G(u)) = 1.

If (G, µ) is an ε-WPRG for F , then G is an ε-HSG for
F [3]. HSGs have been studied for many decades, per-
haps starting with the pioneering work of Ajtai, Komlós,
and Szemerédi [9]. It turns out that an explicit HSG for
width-n length-n standard-order ROBPs with optimal

1225

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

seed length O(log n) would already imply L = BPL [10],
[11], just like a PRG or a WPRG. However, in the non-
optimal regime (which is the most relevant regime given
the present state of knowledge), the known applications
of WPRGs exceed the known applications of HSGs.
In particular, the current state-of-the-art unconditional
derandomization of space-bounded computation says
that randomized space-S algorithms can be simulated
deterministically in space O(S3/2/

√
log S) [7]. This re-

sult is a recent slight improvement over Saks and Zhou’s
decades-old O(S3/2) bound [12]. The improvement relies
on the recent line of work on WPRGs [3]–[7], and it is
not clear how to reproduce the result using HSGs alone.

In summary, it seems that the WPRG concept achieves
a “Goldilocks” effect: it is flexible enough to facilitate
constructions, yet structured enough to facilitate ap-
plications. The WPRG approach to derandomization is
therefore highly promising. In this work, we present new
and improved constructions of WPRGs for several well-
motivated classes of branching programs.

B. Width-3 Branching Programs

When w < n, width-w length-n standard-order ROBPs
do not correspond to uniform algorithms, but they are
nevertheless a natural nonuniform model of (log w)-
space computation. We emphasize that the transitions
may vary from one layer to the next, which can be
interpreted as meaning that the program has access to a
“clock,” in addition to its (log w)-bit workspace.

For width-2 programs, explicit PRGs are known with
optimal seed length O(log(n/ε)) [13]–[15]. The width-
3 case is at the frontier of current knowledge. Meka,
Reingold, and Tal designed an explicit ε-PRG for width-
3 standard-order ROBPs with seed length Õ(log n ·
log(1/ε)) [16]. When the error parameter ε is constant,
Meka, Reingold, and Tal’s seed length is near opti-
mal, but when ε = 1/poly(n), their PRG does not
beat Nisan’s O(log2 n) seed length. To address this is-
sue, we present a WPRG that fools width-3 standard-
order ROBPs with error 1/poly(n) and seed length
Õ(log3/2 n). More generally, we achieve the following
parameters.

Theorem I.5 (WPRG for width-3 ROBPs). For every n ∈
N and ε > 0, there is an explicit ε-WPRG with seed length

Õ
(

log n ·
√

log(1/ε) + log(1/ε)

)

that ε-fools width-3 length-n standard-order ROBPs.

Note that near-optimal HSGs for width-3 standard-
order ROBPs were already known; see Table I.

3Note that there is also work on width-3 ROBPs in the more
challenging arbitrary-order setting [16], [18].

C. Regular Branching Programs

Unfortunately, the state of the art for width-4
standard-order ROBPs is the same as that for the
polynomial-width case. On the bright side, better results
are known for narrow ROBPs that also satisfy certain
structural restrictions such as regularity.

Definition I.6 (Regular ROBPs). Let B be a standard-order
ROBP with vertex set V = V(0) ∪ · · · ∪ V(n). We say that
B is regular if every vertex v ∈ V \ V(0) has precisely two
incoming edges.

Regular ROBPs have been the subject of intense
study [19]–[24]. One reason to study regular ROBPs is
that there is a reduction from the general case to the
regular case. Indeed, Lee, Pyne, and Vadhan recently
showed that if a function f : {0, 1}n → {0, 1} can be
computed by a standard-order ROBP of width w, then
it can also be computed by a standard-order regular
ROBP of width O(wn) [25]. (This is an improvement over
previous reductions [19], [23].) Consequently, optimal
explicit WPRGs for polynomial-width standard-order
regular ROBPs would imply optimal explicit WPRGs for
polynomial-width standard-order non-regular ROBPs.

Braverman, Rao, Raz, and Yehudayoff designed an
explicit ε-PRG for width-w length-n standard-order reg-
ular ROBPs with seed length Õ(log(w/ε) · log n) [20].
(See also De’s followup work [21].) When the width
parameter w and the error parameter ε are both constant,
Braverman, Rao, Raz, and Yehudayoff’s seed length is
near-optimal. However, when ε = 1/poly(n), their seed
length is no better than Nisan’s O(log2 n) seed length,
even if we hold w constant. To address this issue, we
present a WPRG that fools constant-width standard-
order regular ROBPs with error 1/poly(n) and seed
length Õ(log3/2 n). More generally, our WPRG has the
following parameters.

Theorem I.7 (WPRG for regular ROBPs). For every n, w ∈
N and ε > 0, there is an explicit ε-WPRG with seed length

Õ
(

log n ·
(

log w +
√

log(1/ε)

)
+ log(1/ε)

)

that ε-fools width-w length-n standard-order regular ROBPs.

Our seed length matches that of an HSG for the same
class that Bogdanov, Hoza, Prakriya, and Pyne recently
constructed [23] (ignoring log log factors). In turn, their
construction is the best HSG known for this class (again,
ignoring log log factors). See Table II.

4Note that there is also work on the intriguing setting of unbounded-
width programs with only one accepting vertex, as well as the chal-
lenging arbitrary-order setting [23], [26]. Furthermore, Ahmadinejad,
Kelner, Murtagh, Peebles, Sidford, and Vadhan gave a near-optimal
non-black-box algorithm for estimating the acceptance probability of a
given standard-order regular ROBP [27]; see Section I-E.

1226

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

Seed length Type Reference Notes

Õ(log(n/ε)) HSG [17]

Õ(log n · log(1/ε)) PRG [16]

Õ
(

log n ·
√

log(1/ε) + log(1/ε)
)

WPRG This work

O(log(n/ε)) PRG Folklore Optimal; non-explicit
TABLE I

PSEUDORANDOMNESS CONSTRUCTIONS FOR WIDTH-3 STANDARD-ORDER ROBPS.3

Seed length Type Reference Notes

Õ(log(w/ε) · log n) PRG [20]

O(w · log n) for all ε > 0 HSG [20]

Õ
(

log n ·
(

log w +
√

log(1/ε)
)
+ log(1/ε)

)
HSG [23]

Õ
(

log n ·
(

log w +
√

log(1/ε)
)
+ log(1/ε)

)
WPRG This work

O(log(wn/ε)) PRG Folklore Optimal; non-explicit
TABLE II

PSEUDORANDOMNESS CONSTRUCTIONS FOR WIDTH-w LENGTH-n STANDARD-ORDER REGULAR ROBPS.4

D. Unbounded-Width Permutation Branching Programs

Definition I.8 (Permutation ROBPs). Let B be a standard-
order ROBP with vertex set V = V(0) ∪ · · · ∪ V(n). We say
that B is a permutation ROBP if every vertex v ∈ V \ V(0)

has precisely two incoming edges, and those two incoming
edges have distinct labels.

In other words, between every two adjacent layers of a
permutation ROBP, the edges labeled 0 form a matching,
as do the edges labeled 1. Permutation ROBPs are thus a
subclass of regular ROBPs. The first sequence of papers
studying permutation ROBPs focused on the constant-
width regime [21], [22], [28]–[31]. In recent years, there
has been another wave of interest in permutation ROBPs,
but this time, the focus is on programs of unbounded
width with only one accepting vertex [4], [8], [23], [24],
[32], [33]. This intriguing model cannot be considered
a model of “space-bounded” computation anymore; in-
stead, it is a certain type of “reversible” computation.
Still, we hope that studying this model can shed light
on the L vs. BPL problem. Studying unbounded-width
models has already been a fruitful approach for proving
new results about standard bounded-width models [4],
[24], [33]. Indeed, in general, results for unbounded-
width models typically imply corresponding results for
standard width-w models, with a factor-of-w loss in
the error parameter. Additionally, the unbounded-width
model serves as a valuable “test-bed” for studying dif-
ferent notions of pseudorandomness.

Hoza, Pyne, and Vadhan designed an ε-PRG for these
programs with seed length Õ(log n · log(1/ε)) [8], build-
ing heavily on prior work by Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan [27]. Importantly,
Hoza, Pyne, and Vadhan also proved a near-matching
seed length lower bound: every ε-PRG for this model has

seed length at least Ω̃(log n · log(1/ε)) [8]. In contrast,
Pyne and Vadhan designed an ε-WPRG for this model
with seed length Õ(log n ·

√
log(n/ε) + log(1/ε)) [4].

In particular, when ε = 1/poly(n), the optimal seed
length for unweighted PRGs is Θ(log2 n), whereas Pyne
and Vadhan’s WPRG seed length is only Õ(log3/2 n).
As mentioned previously, these results demonstrate that
WPRGs have an intrinsic advantage over unweighted
PRGs in this case.

A weakness of Pyne and Vadhan’s WPRG [4] is that
the seed length is always at least log3/2 n. We present
a new WPRG that smoothly interpolates between Hoza,
Pyne, and Vadhan’s Õ(log n) seed length in the constant-
error regime [8] and Pyne and Vadhan’s Õ(log3/2 n) seed
length in the inverse-polynomial-error regime [4].

Theorem I.9 (WPRG for unbounded-width permutation
ROBPs). For every n ∈ N and ε > 0, there is an explicit
WPRG with seed length

s = Õ
(

log n ·
√

log(1/ε) + log(1/ε)

)

that ε-fools unbounded-width standard-order permutation
ROBPs with a single accept state.

Thus, our work strengthens the known separation
between WPRGs and unweighted PRGs. Note that our
seed length is always at least as good as Hoza, Pyne, and
Vadhan’s PRG seed length [8] (ignoring log log factors).
See Table III for a summary. We also remark that as a
simple corollary of Theorem I.9, we obtain an explicit
WPRG for width-w standard-order permutation ROBPs
(with an unbounded number of accepting vertices) with
seed length

Õ
(

log n ·
√

log(w/ε) + log(w/ε)

)
.

1227

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

E. A Simpler High-Precision Non-Black-Box Derandomiza-
tion of Regular ROBPs

In addition to WPRGs, we also study non-black-box
derandomization algorithms. In this model, we are given
the complete description of an ROBP, and our job is to
estimate its acceptance probability. In a remarkable re-
cent work [27], Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan designed an algorithm for estimat-
ing the acceptance probability of a given regular ROBP
within an inverse polynomial error using Õ(log(wn))
bits of space. Formally:

Theorem I.10 (High-precision non-black-box derandom-
ization of regular ROBPs [27]). There is a deterministic
algorithm that uses Õ(log(wn) · log log(1/ε)) bits of space
and outputs a value that is within ±ε of E[B], given a
width-w length-n standard-order regular ROBP B and a value
ε ∈ (0, 1) as inputs.

Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan’s work [27] combines techniques from the pseu-
dorandomness literature with sophisticated machinery
developed in a sequence of works on faster solvers for
Eulerian directed Laplacian systems [34]–[36]. Roughly
speaking, it introduced three new ideas to the space-
bounded derandomization community: (1) the applica-
bility of Richardson iteration for error reduction in the
space-bounded setting, (2) the notion of the unit-circle
approximation, and (3) a sophisticated analysis of the INW
generator [37] via bounding a matrix norm defined by
a recursive application of Schur complement (see [27,
Theorem 6.1]).

The first two ideas have led to a flurry of exciting new
results in space-bounded derandomization [4], [6]–[8],
[38], [39], including much of the prior work on WPRGs
that we described earlier. In contrast, the third idea has
found limited applications so far, despite the fact that it
is arguably the core of Ahmadinejad, Kelner, Murtagh,
Peebles, Sidford, and Vadhan’s proof [27]. Only one
paper, by Pyne and Vadhan [4], has managed to adapt
this technique to a new problem.

A possible explanation might be that it is not easy to
understand the meaning of the constructed matrix norm
[27, Section 6] in the context of derandomizing ROBPs.
Moreover, Ahmadinejad, Kelner, Murtagh, Peebles, Sid-
ford, and Vadhan’s analysis [27] makes heavy use of
complicated linear algebra facts developed in the Lapla-
cian solver literature, and it is unclear how to interpret
these facts when applied to the matrix constructed from
a branching program.

To remedy this situation, we present a significantly
simpler proof of Theorem I.10. In our proof, we view the
recursive Schur complement construction in the original

6Note that there is also work on the more challenging arbitrary-order
setting [23], [24], [26]. Note also that the optimal WPRG seed length
for this model is unclear.

proof as a natural combinatorial “shortcut graph;” see
Section III-A3 for details. We believe that this proof helps
to clarify what exactly the recursive-Schur-complement-
matrix-norm really represents in the setting of branching
programs. We hope that our proof enables a fuller appre-
ciation of Ahmadinejad, Kelner, Murtagh, Peebles, Sid-
ford, and Vadhan’s analysis [27] and thereby facilitates
the development of new ideas.7

II. PRELIMINARIES

A. Read-Once Branching Programs

Let B be a standard-order ROBP (Definition I.2) with
vertex set V = V(0) ∪ · · · ∪ V(n). Let vstart ∈ V(0) be the
start vertex, and let Vaccept ⊆ V(n) be the set of accepting
vertices.

The transition notation B[u, x].: For ℓ ∈ {0, . . . , n},
u ∈ V(ℓ), and x ∈ {0, 1}≤n−ℓ, we let B[u, x] be the vertex
v ∈ V(ℓ+|x|) that is reached from u by traversing the
edges with labels specified by x. Using this notation, for
x ∈ {0, 1}n, we have

B(x) = 1 ⇐⇒ B[vstart, x] ∈ Vaccept.

The subprogram notation Bv←u.: Let 0 ≤ ℓ ≤ r ≤ n,
let u ∈ V(ℓ), and let S ⊆ V(r). We define BS←u to be the
program obtained from B by specifying u as the new
start vertex and S as the new set of accepting vertices.
We use the following shorthands:

Bv←u := B{v}←u, Bv← := Bv←vstart , B←u := BVaccept←u.

For convenience, we think of BS←u as a program of
length n rather than length r − ℓ. That is, in BS←u, the
first ℓ transitions are trivial identity layers; the next r − ℓ
transitions are the same as in B; and the final n − r
transitions are trivial identity layers. Thus, we think of
BS←u as a Boolean function on n bits, but it only depends
on r − ℓ of those bits:

BS←u(x1, . . . , xn) = 1 ⇐⇒ B[u, (xℓ+1, . . . , xr)] ∈ S.

Nevertheless, we will occasionally abuse notation and
write BS←u(xℓ+1, . . . , xr) rather than BS←u(x1, . . . , xn).

The matrix notation B(x).: As explained in Def-
inition I.2, we identify B with a Boolean function
B : {0, 1}n → {0, 1}. We use boldface B to denote the
matrix-valued function B : {0, 1}n → {0, 1}V(n)×V(0) ∼=
{0, 1}w×w given by

B(x)v,u = Bv←u(x).

7Indeed, all of our new WPRG constructions are inspired by the
insights from our simpler proof of Theorem I.10.

1228

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

Seed length Type Reference Notes

O(log(n/ε) · log n) PRG [21]

Õ(log n · log(1/ε)) PRG [8]

Õ
(

log n ·
√

log(n/ε) + log(1/ε)
)

WPRG [4]

Õ
(

log n ·
√

log(1/ε) + log(1/ε)
)

WPRG This work

Ω̃(log n · log(1/ε)) PRG [8] Lower bound

O(log(n/ε)) HSG [8] Optimal; non-explicit

O(log(n/ε)) Det. sampler5 [32] Optimal; non-explicit
TABLE III

PSEUDORANDOMNESS CONSTRUCTIONS FOR UNBOUNDED-WIDTH PERMUTATION ROBPS WITH A SINGLE ACCEPTING STATE.6

ROBPs over large alphabets.: We occasionally use the
standard large-alphabet generalization of Definition I.2.
A width-w length-n standard-order ROBP over the al-
phabet Σ is defined just like Definition I.2, except that
each vertex in V(0) ∪ · · ·∪V(n−1) has |Σ| outgoing edges
leading to the next layer, labeled with the symbols in Σ.
Thus, the program computes a function B : Σn → {0, 1}.
We say that the program is regular if each vertex in
V(1) ∪ · · · ∪ V(n) has precisely |Σ| incoming edges, and
we say that the program is a permutation program if those
|Σ| incoming edges have distinct labels.

B. Linear Algebra
We use boldface to denote matrices. We denote the

w × w identity matrix by Iw. We often simply write I if
the dimension w is clear from context. Recall that every
positive semidefinite matrix M induces a vector “norm”
∥ · ∥M:

Definition II.1 (Vector seminorm induced by a psd
matrix). Let M ∈ RN×N be a positive semidefinite matrix.
We define a corresponding function ∥ · ∥M : RN → [0, ∞) by
the rule

∥x∥M =
√

xTMx.

For example, if W is a doubly stochastic matrix, then I −
WTW is positive semidefinite, and the corresponding function
∥ · ∥I−WTW is given by

∥x∥2
I−WTW = ∥x∥2

2 − ∥Wx∥2
2.

Observe that we can sometimes have ∥x∥M = 0 even
if x ̸= 0. This means that technically, ∥ · ∥M is a seminorm
(defined below) rather than a true norm.

Definition II.2 (Vector seminorm). A seminorm on RN

is a function ∥ · ∥ : RN → [0, ∞) satisfying the following
properties:

1) For every x, y ∈ RN, we have ∥x + y∥ ≤ ∥x∥+ ∥y∥.
2) For every x ∈ RN and every λ ∈ R, we have ∥λx∥ =

|λ| · ∥x∥.

It is standard that any vector norm ∥ · ∥ induces a
corresponding matrix norm, namely, the operator norm:

∥M∥ := max
x ̸=0

∥Mx∥
∥x∥ .

What if we start with a vector seminorm ∥ · ∥ rather than
a true norm? Unfortunately, in this case, the definition
above can suffer from divison-by-zero issues, i.e., some-
times we have ∥M∥ = ∞. For this reason, in this case,
the matrix “norm” defined by the equation above is
technically not a norm, nor even a seminorm, but rather
it is an extended seminorm, defined next.

Definition II.3 (Extended submultiplicative matrix semi-
norm). An extended submultiplicative matrix seminorm
on RN×N is a function ∥ · ∥ : RN×N → [0, ∞] satisfying the
following conditions.

1) For every A, B ∈ RN×N, if ∥A∥ < ∞ and ∥B∥ < ∞,
then ∥A + B∥ ≤ ∥A∥+ ∥B∥.

2) For every A, B ∈ RN×N, if ∥A∥ < ∞ and ∥B∥ < ∞,
then ∥A · B∥ ≤ ∥A∥ · ∥B∥.

3) For every M ∈ RN×N and every nonzero λ ∈ R, we
have ∥λ · M∥ = |λ| · ∥M∥.

4) The zero matrix 0 satisfies ∥0∥ = 0.

Definition II.4 (Extended submultiplicative matrix semi-
norm induced by a vector seminorm). Let ∥ · ∥ : RN →
[0, ∞) be a vector seminorm. We define an extended submul-
tiplicative matrix seminorm ∥ · ∥ : RN×N → [0, ∞] by the
rule

∥M∥ = min
{

λ ∈ R ∪ {∞} :

for every x ∈ RN , ∥M · x∥ ≤ λ · ∥x∥
}

.

III. TECHNICAL OVERVIEW

A. Our Error Reduction Framework
Each of our constructions follows the same high-level

approach: We start with a construction that has moderate
error τ ≫ ε, and then we apply an error reduction proce-
dure to decrease the error down to ε. For example, for
regular ROBPs, our WPRG construction (Theorem I.7)
works by applying an error reduction procedure to the
BRRY PRG [20]. Many recent works on space-bounded
derandomization have developed and applied error re-
duction procedures [4], [6], [7], [23], [27], [38]–[40]. Like
most of this prior work, our approach for error reduction
is based on the “inverse Laplacian” perspective on space-
bounded derandomization, introduced by Ahmadinejad,

1229

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

Kelner, Murtagh, Peebles, Sidford, and Vadhan [27]. We
review this perspective next.

1) The Inverse Laplacian Perspective: Let B be a width-
w length-n standard-order ROBP. The vertices of B are
denoted as V(B) := V(0) ∪V(1) ∪ · · ·∪V(n) where V(i) =
{i · w + 1, . . . , (i + 1) · w} for each i ∈ {0, 1, . . . , n}. Next,
we define W ∈ R(n+1)·w×(n+1)·w to be the transition
matrix of B. Specifically, for every directed edge (u, v) in
B, we set Wv,u = 1

2 (or Wv,u = 1 if both outgoing edges
of u go to v). 8 Since B only contains edges between pairs
of adjacent layers, W has the following form:

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
W1 0 0 · · · 0 0
0 W2 0 · · · 0 0
...

. . .
...

0 0 0
. . . 0 0

0 0 0 · · · Wn 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the equation above, Wi ∈ RV(i)×V(i−1) denotes the
transition matrix from the (i − 1)-th layer of B to the
i-th layer. We define the Laplacian of W as

L := I(n+1)w − W.

Being a unitriangular matrix, L is invertible. Observe
that (1) (See Figure 1) holds.

where we use Wj←i to denote Wj ·Wj−1 · · ·Wi+1. This
matrix, L−1, describes the random walks of all lengths
from all starting vertices in B. Looking at (1), we see
that Wn←0 is a submatrix of L−1, and thus the problem
of estimating E[B] reduces to approximating L−1.

The inverse Laplacian perspective is easiest to under-
stand in the non-black-box setting: if we are given the
description of the ROBP B, then we can readily compute
the Laplacian matrix L, and it makes sense to try to
approximately invert it. It turns out that the perspective
is also valuable in the black-box setting. To construct
WPRGs, our approach will be to first reason in terms
of matrix arithmetic, and then “reverse engineer” a
WPRG such that all the matrix arithmetic happens in the
analysis of the WPRG rather than its construction. This
technique is due to Cohen, Doron, Renard, Sberlo, and
Ta-Shma [6] and, independently, Pyne and Vadhan [4].
For this technical overview, we primarily focus on the
matrix arithmetic itself.

2) Richardson Iteration: With the inverse Laplacian per-
spective in mind, our high-level plan for proving our
results is as follows. First, we will construct a matrix L̂−1

that approximates L−1 with moderate error.9 Specifically,

8Note that the index order is (v, u). This convention implies that
taking a step in B corresponds to left-multiplication by W.

9We use L̂−1 to denote our approximate inverse because our matrix
L̂−1 is indeed the exact inverse of another matrix L̂, and L̂ plays a
crucial part in our analysis.

we will ensure that ∥I − L̂−1L∥ ≤ δ for a suitable, sub-
multiplicative matrix norm10 ∥ · ∥ and some “moderately
small” δ < 1. Then, we will apply a powerful, generic
error reduction technique called Richardson iteration: for
each m ∈ N, define

Am =
m

∑
i=0

(I − L̂−1L)i · L̂−1.

It turns out that ∥I − AmL∥ ≤ ∥I − L̂−1L∥m+1 ≤ δm+1.
Finally, we will use this low-error approximate inverse
Am to compute an approximation to E[B] with low
additive error.

Given the plan described above, our main task is to
explain how to construct the matrix L̂−1. The upside of
this “Richardson iteration” approach is that the matrix
L̂−1 only needs to be a moderate-error approximation. The
downside is that L̂−1 must approximate the entire inverse
Laplacian matrix L−1, as stipulated by the requirement
∥I − L̂−1L∥ ≤ δ. This is true despite the fact that ulti-
mately, we only care about a single w × w block of L−1.
To put it another way, to use Richardson iteration, we
must construct a moderate-error collection of estimated
acceptance probabilities for all subprograms of B, even
though we are ultimately only interested in E[B].

So, how shall we construct this matrix L̂−1? For each
w × w block Wj←i of L−1, we begin by constructing
a matrix W̃j←i that approximates Wj←i with moder-
ate error. For example, in the case of bounded-width
standard-order regular ROBPs, we let W̃j←i consist of the
estimated probabilities of going from vertices in layer i
to vertices in layer j based on the BRRY PRG [20], which
gives us bounds such as ∥W̃j←i − Wj←i∥1 ≤ τ where τ
is moderately small.

Given these matrices W̃j←i, a natural approach for
constructing L̂−1 would be to simply arrange them in
an (n + 1)× (n + 1) array:

First Attempt: L̂−1 =

⎡

⎢⎢⎢⎢⎢⎣

I 0 · · · 0
W̃1←0 I · · · 0
W̃2←0 W̃2←1 · · · 0

...
. . .

...
W̃n←0 W̃n←1 · · · I

⎤

⎥⎥⎥⎥⎥⎦
. (2)

Indeed, this approach has been used in prior work [6],
[7]. The trouble with this approach is that if we defined
L̂−1 in this way, then the error of the matrix L̂−1 as a
whole would be typically much larger than the error
of a single block. For example, the condition ∥W̃j←i −
Wj←i∥1 ≤ τ would merely give us ∥I − L̂−1L∥1 ≤ O(n ·
τ), essentially due to a “union bound” over the n + 1
rows/columns. Therefore, if we used this approach, we
would have to start with a very small initial error τ < 1

n
to get a nontrivial bound (∥I − L̂−1L∥ < 1). In the

10Technically, in some cases we will use an “extended seminorm”
rather than a true norm; see Definition II.3.

1230

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

L−1 =
n

∑
i=0

Wi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iw 0 0 · · · 0 0
W1←0 Iw 0 · · · 0 0
W2←0 W2←1 Iw · · · 0 0

...
. . .

...

W(n−1)←0 W(n−1)←1 W(n−1)←2
. . . Iw 0

Wn←0 Wn←1 Wn←2 · · · Wn←(n−1) Iw

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Fig. 1. Inverse of L.

settings we study, we cannot afford to compute W̃j←i
with such a low error. For example, notice that all the
explicit PRGs in Table I, Table II, and Table III have seed
length Ω(log n · log(1/τ)) for error τ. If used these PRGs
with an initial error value of τ < 1/n, then our seed
lengths would always be Ω(log2 n). We therefore need
a different approach.

3) Constructing L̂−1 via Shortcutting and Correction
Graphs: Our construction of L̂−1 uses ideas from Ah-
madinejad, Kelner, Murtagh, Peebles, Sidford, and Vad-
han’s algorithm for estimating random walk probabil-
ities in Eulerian digraphs [27]. To briefly summarize
their algorithm, they recursively applied Rozenman and
Vadhan’s derandomized square operation [41] to con-
struct a “unit-circle approximation” with moderate error
τ ≈ 1/ log n, and then they decrease the error using
heavy machinery from the literature on fast Laplacian
solvers.

One of our contributions is to isolate and reformulate
the key ingredient of their algorithm that enables them
to perform error reduction starting from such a moderate
error value (and avoiding the union bound over n + 1
rows/columns). Surprisingly, this key ingredient is not
the derandomized squaring or the “unit-circle approx-
imation” but the recursive structure itself. We capture
such recursive structure with the following definition of
a shortcut graph.

For simplicity, from now on, we always assume n is a
power of 2. The shortcut graph on n+ 1 vertices, denoted
as SCn, has vertex set {0, 1, 2 . . . , n} and contains edges
(i, i + 2k) for every k ∈ {0, 1, . . . , log n} and i that is a
multiple of 2k. See Figure 2.

0 1 2 3 4 5 6 7 8

Fig. 2. The shortcut graph SCn with n = 8.

Construction of L̂−1 based on Shortcut Graph: Recall
that for each i < j, we have a matrix W̃j←i that we
think of as a “moderate-error approximation” to Wj←i.
Using these matrices W̃j←i, let us define the matrix L̂−1 ∈
(Rw×w)(n+1)×(n+1) block-by-block. Let 0 ≤ ℓ < r ≤ n,
and let ℓ = i0 → i1 → · · · → ik = r be the (unique)
shortest path from ℓ to r in SCn. It is not hard to see
from Figure 2 that the length of this shortest path is at
most 2 log n. We define the (r, ℓ)-th block of L̂−1 by the
formula

(L̂−1)r←ℓ := W̃ik←ik−1 · W̃ik−1←ik−2 · · · W̃i2←i1 · W̃i1←i0 .

Intuitively, since each W̃it←it−1 approximates Wit←it−1 ,
their product should approximate the product

Wik←ik−1 · Wik−1←ik−2 · · ·Wi2←i1 · Wi1←i0 = Wr←ℓ,

which is the (r, ℓ)-th block of the exact inverse Lapla-
cian L−1. To complete the definition of L̂−1, we set
(L̂−1)ℓ←ℓ = Iw for every ℓ ∈ {0, 1, . . . , n}, and
(L̂−1)r←ℓ = 0 for every ℓ > r. For example, the case
n = 4 is shown below.

L̂−1 =
⎡

⎢⎢⎢⎢⎣

I 0 0 0 0
W̃1←0 I 0 0 0
W̃2←0 W̃2←1 I 0 0

W̃3←2 · W̃2←0 W̃3←2 · W̃2←1 W̃3←2 I 0
W̃4←0 W̃4←2 · W̃2←1 W̃4←2 W̃4←3 I

⎤

⎥⎥⎥⎥⎦
.

(3)

Comparisons: Our construction of L̂−1 based on the
shortcut graph corresponds to Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan’s recursive usage
of the Schur complement operation [27, Theorem 6.1].

Let us compare our definition of L̂−1 above to the
straightforward approach given in (2). The straightfor-
ward approach uses “unrelated” approximations for all
Θ(n2) blocks of L−1. Instead, we first approximate O(n)
many (carefully selected) “essential” blocks Wj←i, and
then we approximate each remaining block by multi-
plying approximations of essential blocks. The “price”
we pay for this additional structure is low, because each
product involves only O(log n) many essential blocks.

1231

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

Analyzing L̂−1. Inverse analysis of random walks:
Having defined L̂−1, our job is to bound ∥I − L̂−1L∥,
i.e., our job is to show that L̂−1 approximately describes
random walks in the given branching program B in a
certain sense. At an intuitive level, our approach is as
follows. We admit that L̂−1 doesn’t perfectly describe
random walks in B; we only aim to show that it is
an approximation. However, L̂−1 does perfectly describe
random walks in some other graph B̂! This graph B̂ is
not a true ROBP (it is not layered, and its edges have
positive and negative weights), but still, our construction
of L̂−1 ensures that B̂ has considerable combinatorial
structure. We use this structure to show that B̂ ≈ B
in some sense, which enables us to bound the error
∥I − L̂−1L∥. The process of going from L̂−1 to B̂ (i.e.,
starting with a description of the behavior of random
walks, and reconstructing an underlying graph that is
consistent with that description) is what we refer to as
the “inverse analysis of random walks.” 11

The matrix L̂ and the correction graph: To implement
the plan described above, let L̂ denote the inverse of L̂−1;
this exists because L̂−1 is lower-triangular. We emphasize
that we first construct an approximate inverse to L
(which we denote by L̂−1), and then we take the exact
inverse of that matrix to get L̂. Then I − L̂−1L = L̂−1 ·
(L̂− L), so our job is to bound ∥L̂−1 · (L̂− L)∥. Actually,
we will show that it suffices to bound ∥L−1 · (L̂ − L)∥:

Suppose ∥L−1 · (L̂ − L)∥ ≤ δ.
Then ∥L̂−1 · (L̂ − L)∥ ≤ δ/(1 − δ).

(4)

We will therefore focus on bounding ∥L−1(L̂ − L)∥ in-
stead.

It turns out that this matrix L̂ is highly structured. For
example, it is relatively sparse: we show that the block
L̂j←i (where i < j) is nonzero only if (i, j) ∈ E(SCn).
Furthermore, we give an exact formula for L̂. Assume
for simplicity that all length-1 approximations are exact,
i.e., W̃i+1←i = Wi+1←i. We show that

L̂ = I − (W + ∆W),

where ∆W = ∑log n
t=1 ∆W(t) and

(∆W(t))j←i =

⎧
⎪⎪⎨

⎪⎪⎩

W̃j←i − W̃j← i+j
2

W̃ i+j
2 ←i

if (i, j) ∈ E(SCn) and j = i + 2t;
0 Otherwise.

For example, the inverse of the n = 4 example from (3)
is given in Figure 3: Since L̂ = I − (W + ∆W), the
matrix L̂ can be interpreted as the “Laplacian” of a
weighted graph with transition matrix W+∆W. We refer
to the subgraph corresponding to ∆W as the “Correction

11One caveat is that because of the positive and negative edge
weights in B̂, technically we ought to speak of “weighted walks” rather
than “random walks;” we will ignore this distinction for simplicity.

Graph,” because adding ∆W to L̂ yields the original
Laplacian L.

Overall, we have

∥L−1 · (L̂ − L)∥ = ∥L−1∆W∥ ≤
log n

∑
t=1

∥L−1∆W(t)∥,

and so our job reduces to bounding ∥L−1∆W(t)∥ for a
fixed t ∈ [log n].

In summary, for a standard-order ROBP B, we have
the following recipe for estimating E[B] to within low
error.

1) Design an initial algorithm for constructing the ap-
proximation matrices W̃j←i. These matrices W̃j←i
induce a correction graph transition matrix ∆W.

2) Pick a submultiplicative matrix norm (or “extended
seminorm”) ∥ · ∥. In this paper, the function ∥ · ∥ is
always induced by a vector seminorm (see Defini-
tion II.4).

3) Use properties of the branching program B (e.g.,
regularity) to prove that ∥L−1∆W(t)∥ ≤ δ for each
t ∈ [log n], where L is the Laplacian matrix of B and
δ is “moderately small.”

4) Apply our error reduction framework (the construc-
tion of L̂−1, the correction graph lemma, Richardson
iteration, etc.) to obtain a matrix Am that has very
low error, in the sense that ∥I−AmL∥ is very small.

5) Use Am to compute an approximation to E[B],
and use properties of the “norm function” ∥ · ∥ to
conclude that this approximation has very small
additive error.

The details of how we carry out this recipe to prove
our main results vary from one result to the next. In
the remainder of this technical overview, we give an
overview of each of the arguments.

B. Our WPRG for Bounded-Width Regular ROBPs
In this section, we explain how we carry out each

step of the recipe to construct a WPRG that ε-fools
bounded-width regular ROBPs (Theorem I.7). For ease
of exposition, we will focus on the case ε = 1/n in this
proof overview, and we will assume that the width of
the program is O(1).

We construct the approximation matrices W̃j←i by
using the BRRY PRG [20]. We set the error parameter
of the PRG to τ = 2−

√
log n, so the BRRY PRG has

seed length Õ(log n · log(1/τ)) = Õ(log3/2 n). We use
the standard ℓ∞ matrix norm, i.e.,

∥M∥ = max
v ∑

u
|Mv,u|.

Our main job is to bound ∥L−1∆W(t)∥. For simplicity,
let us focus on the case t = 1. Working through the
definitions, each nonzero block of L−1∆W(1) has the
form

Wj←ℓ+2 · (W̃ℓ+2←ℓ − Wℓ+2←ℓ).

1232

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

L̂ =

⎡

⎢⎢⎢⎢⎣

I 0 0 0 0
−W̃1←0 I 0 0 0

−(W̃2←0 − W̃2←1W̃1←0) −W̃2←1 I 0 0
0 0 −W̃3←2 I 0

−(W̃4←0 − W̃4←2W̃2←0) 0 −(W̃4←2 − W̃4←3W̃3←2) −W̃4←3 I

⎤

⎥⎥⎥⎥⎦
.

Fig. 3. Inverse of (3) when n = 4.

We analyze the matrix above using the weight mea-
sure introduced by Braverman, Rao, Raz, and Yehuday-
off [20]. Using techniques similar to Braverman, Rao,
Raz, and Yehudayoff’s arguments [20], one can show
that for any vertex u in layer ℓ and any vertex v in layer
j, we have

|(Wj←ℓ+2 · (W̃ℓ+2←ℓ − Wℓ+2←ℓ))v,u|
≤ O(τ ·Weight(Bv←, ℓ, ℓ+ 2)), (5)

where Weight(Bv←, ℓ, ℓ + 2) is the sum, over all edges
(u, u′) between layer ℓ and layer ℓ + 2, of |E[Bv←u] −
E[Bv←u′

]|. Therefore, summing over all ℓ, we get

∑
u
|(L−1∆W(1))v,u| ≤ O(τ ·Weight(Bv←, 0, n)).

Braverman, Rao, Raz, and Yehudayoff showed that be-
cause B is regular, we have Weight(Bv←, 0, n) = O(1),
and hence ∥L−1∆W(1)∥ ≤ O(τ).

A similar argument bounds ∥L−1∆W(t)∥ when t > 1.
From here, our error reduction framework provides a
matrix Am such that ∥I − AmL∥ ≤ Θ(1/n). By reverse-
engineering the definition of Am, we construct a WPRG
that fools B with error 1/n as desired. However, the
seed length of this WPRG is too large, because each
seed includes several independent seeds for the BRRY
PRG. We therefore decrease the seed length by using
the Impagliazzo-Nisan-Wigderson (INW) PRG [37] to
generate correlated seeds for the BRRY PRG, similar to
prior work [4], [6].

C. Our WPRG for Width-3 ROBPs

Next, we give an overview of our WPRG for width-3
ROBPs (Theorem I.5). Recall that Meka, Reingold, and
Tal designed a PRG for width-3 length-n standard-order
ROBPs with seed length Õ(log n · log(1/ε)) [16]. We do
not apply our error reduction framework to this PRG
in a black-box way. Instead, to construct our WPRG, we
revisit Meka, Reingold, and Tal’s specific construction
and analysis [16].

To construct their PRG, Meka, Reingold, and Tal
showed how to sample a pseudorandom restriction ρ ∈
{0, 1, ⋆}n using Õ(log(n/ε)) truly random bits such
that the following two properties hold for any width-
3 length-n standard-order ROBP B.

1) The restriction ρ preserves the expectation of B, i.e.,
|Eρ,U [B|ρ(U)]− E[B]| ≤ ε, where U is independent
of ρ and uniform random.

2) The program B simplifies under ρ with high prob-
ability. Indeed, it “almost” becomes a permutation
ROBP.

In more detail, with probability 1 − ε, the restricted pro-
gram B|ρ is approximated by a program B̃ that satisfies
the permutation condition (Definition I.8) in all but a
few layers. In this case, Meka, Reingold, and Tal argue
that the BRRY PRG [20] fools B|ρ [16]. Therefore, to
fool the original program B, they apply the pseudoran-
dom restriction ρ and then fill in the stars using the
BRRY PRG. The overall seed length is dominated by the
Õ(log n · log(1/ε)) seed length of the BRRY PRG.

Our WPRG for width-3 ROBPs follows the same high-
level plan, except that in the final step, instead of ap-
plying the BRRY PRG, we apply our own WPRG for
regular ROBPs. That way, instead of paying Õ(log n ·
log(1/ε)) truly random bits in the final step, we only
pay Õ

(
log n ·

√
log(1/ε) + log(1/ε)

)
truly random bits.

Implementing this plan requires improving Meka, Rein-
gold, and Tal’s “simplification” arguments in multiple
ways, two of which we describe below.

A quantitative improvement. Fewer colliding layers:
In Meka, Reingold, and Tal’s analysis, the number of
“colliding layers” in B̃ (i.e., layers that violate the permu-
tation condition) is bounded by poly(1/ε) · log log n [16].
We are most interested in the regime ε = 1/poly(n), in
which their bound is trivial. To address this issue, we
show that with probability 1 − ε, the restricted program
B|ρ is in fact approximated by a program with only
polylog(1/ε) · log log n many colliding layers (see Claim
7.35 in the full version).

A qualitative improvement. Bounding the weight of the
restricted program: Building on our analysis of collid-
ing layers, we show that with high probability, the
restricted function B|ρ can be computed by a program
with bounded weight (as defined by Braverman, Rao,
Raz, and Yehudayoff [20]). Specifically, with probability
1 − ε, the weight is at most polylog(n/ε); see Theorem
7.2 of the full version.

We consider this “simplification” statement in terms of
weight to be cleaner and easier to understand, compared
to Meka, Reingold, and Tal’s analysis [16]. Furthermore,
it turns out to be a crucial step in our WPRG analysis. To

1233

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

explain why, let X be a pseudorandom string sampled
by the BRRY PRG [20]. As mentioned previously, Meka,
Reingold, and Tal prove that X fools the restricted
program B|ρ [16]. Let us recall their argument in more
detail, so that we can see where it breaks down when
we try to use our WPRG in place of X .

The first step of the argument is to show that X fools
programs with few colliding layers such as B̃ [16]. Then,
to bridge the gap between B̃ and B|ρ, the second step
is to design an “error indicator” function E with the
following properties:

1) For every x such that B̃(x) ̸= B|ρ(x), we have
E(x) = 1.

2) E[E] ≤ ε and E[E(X)] ≤ ε.
Because such an E exists, Meka, Reingold, and Tal are
able to reason that∣∣∣E[B|ρ]− E

[
B̃
]∣∣∣ ≤ E[E] ≤ ε

and
∣∣∣E[B|ρ(X)]− E

[
B̃(X)

]∣∣∣ ≤ E[E(X)] ≤ ε, (6)

and consequently E[B|ρ(X)] ≈ E
[

B̃(X)
]
≈ E

[
B̃
]
≈

E[B|ρ]. (This argument can be interpreted as a type of
“sandwiching argument.”)

The preceding argument breaks down when we re-
place the BRRY PRG with our WPRG (G, µ). To under-
stand the issue, let Serr be the set of seeds x such that
B̃(G(x)) ̸= B|ρ(G(x)), and let SE be the set of seeds x
such that E(G(x)) = 1. Then Serr ⊆ SE, but we might
nevertheless have∣∣∣∣∣ ∑

x∈Serr

µ(x)

∣∣∣∣∣ ≫
∣∣∣∣∣ ∑
x∈SE

µ(x)

∣∣∣∣∣

due to cancellations in the right-hand sum. Therefore, (6)
no longer works after we introduce negative weights. (In
general, WPRGs do not seem to be “compatible” with
sandwiching arguments.)

We circumvent this issue by eliminating the error in-
dicator function altogether. In a nutshell, this is possible
due to the following facts: (i) The program B̃ is a “suffix”
of the restricted program B|ρ, i.e., it consists of layers
i, i + 1, . . . , n of B|ρ for some i. (ii) The error indicator
function E(x) essentially checks whether all paths that
start in layer i of B|ρ collide under the input x. (iii)
If these paths collide with high probability (under a
uniformly random input x), then the weights in B|ρ
before layer i are negligible. (iv) Since B̃ has few colliding
layers, the total weight of the edges in B|ρ after layer i
are also bounded. Thus, we are able to bound the total
weight of B|ρ.

In the analysis of our WPRG for regular ROBPs, the
only place we use regularity is to bound the weight of
the program (and its subprograms12). Therefore, since

12Because of this technicality, we must argue that not only does B|ρ
have low weight, but also all of its subprograms have low weight. See
Theorem 7.2 of the full version.

we show that B|ρ can be computed by a program with
low weight, it follows that our WPRG fools B|ρ. By
combining with the pseudorandom restriction ρ, we get
a WPRG that fools B itself. For more details, see Section
7 of the full version.

D. Our Simplified Derandomization of Polynomial-Width
Regular ROBPs

We now present an overview of our simplified proof
of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan’s main result [27] (Theorem I.10). That is, given
the description of a regular width-w length-n standard-
order ROBP B, we will explain how to estimate E[B] to
within a small additive error in near-logarithmic space.
The most important case to keep in mind is w = poly(n).

Our proof is largely inspired by Braverman, Rao, Raz,
and Yehudayoff’s work [20]. To explain the intuition,
let us begin by revisiting the analysis of constant-width
regular ROBPs that we summarized in Section III-B, so
we can understand more deeply why it works. After-
ward, we will explain how to adapt the intuition to the
polynomial-width case.

1) Reflections on Braverman, Rao, Raz, and Yehudayoff’s
Techniques [20]: Let V(0), . . . , V(n) be the layers of a
constant-width regular program B. Fix some target ver-
tex v, say v ∈ V(j). To show that ∥L−1∆W(1)∥∞ ≤ O(τ),
where τ is the error of each block W̃r←ℓ, the main steps
that we discussed in Section III-B are as follows.

1) First, we bound the “local” error in terms of weight. Let
u ∈ V(ℓ) where ℓ ≤ j − 2. We show

|(Wj←ℓ+2 · (W̃ℓ+2←ℓ − Wℓ+2←ℓ))v,u|
≤ O(τ ·Weight(Bv←, ℓ, ℓ+ 2)). (7)

2) Then, we bound the total weight of the program.
Braverman, Rao, Raz, and Yehudayoff showed that
Weight(Bv←, 0, n) ≤ O(1) [20]. Consequently, the
total error is O(τ).

To gain more insight, let us open up the two proofs
above and look inside.

The BRRY potential argument: Let S be the set of
vertices q ∈ V(ℓ+2) that are reachable from u. (See
Figure 4.) Define

Spread(u) :=
(

max
q∈S

E[Bv←q]

)
−

(
min
q∈S

E[Bv←q]

)
,

and consider two extreme cases:
1) (The error-free case.) Suppose Spread(u) = 0, i.e.,

E[Bv←q] is the same for every q ∈ S. In this case,
the two bits that we read immediately after visiting
u “do not matter.” Consequently, there is no error:
|(Wj←ℓ+2 · (W̃ℓ+2←ℓ − Wℓ+2←ℓ))v,u| = 0. In general,
one can show that the error |(Wj←ℓ+2 · (W̃ℓ+2←ℓ −
Wℓ+2←ℓ))v,u| is bounded by O(τ · Spread(u)).

2) (The mixing case.) Suppose Spread(u) ≫ 0. In this
case, it is helpful to think about the reversed random

1234

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

V(ℓ) V(ℓ+2) V(j)

u q

v

· · ·

S

V(ℓ+1)

Fig. 4. The setup for the analysis of constant-width regular ROBPs.

walk, in which we reverse all the directions of the
edges in B. The assumption Spread(u) ≫ 0 means
that there are two vertices in V(ℓ+2) that have very
different probabilities of being reached from v, and u
is reachable from both of them. Intuitively, because
B is regular, this should mean that in the reversed
random walk, the distribution over states becomes
more uniform (mixed) when we walk from V(ℓ+2) to
V(ℓ).

The ideas above enable us to carry out a potential argu-
ment. Define a potential function by the formula

Φi := ∑
a,a′∈V(i)

|E[Bv←a]− E[Bv←a′]|,

which quantifies how far the reversed random walk is
from uniform (“fully mixed”) when it reaches V(i) [20].
For each u ∈ V(ℓ), one can use the concept of “weight”
to prove

Φℓ+2 ≥ Φℓ + Ω (Spread(u)) .

Therefore, whenever there is any error, there is a cor-
responding increase in the potential function Φi. Mean-
while, the potential function’s total growth is bounded,
i.e., Φn ≤ O(1). Therefore, the sum of errors over all
vertices u (which corresponds to ∥L−1∆W(1)∥∞) must be
bounded by O(τ).

Linear-algebraic interpretation: We can interpret the
quantity Spread(u) in linear-algebraic terms as follows.
Let D = 4 be the number of paths from u to V(ℓ+2). If
the i-th path from u leads to q ∈ V(r), then define

y(u)i = E[Bv←q].

Thus, y(u) is a vector in RD. Decompose y(u) = y(u)∥ +

y(u)⊥ , where y(u)∥ is parallel to the all-ones vector and y(u)⊥
is perpendicular to the all-ones vector. Intuitively, the
component y(u)∥ corresponds to the “error-free” case, and

y(u)⊥ corresponds to the “mixing” case. Furthermore,

∥y(u)⊥ ∥∞ ≤ Spread(u) ≤ 2 · ∥y(u)⊥ ∥∞.

Thus, by looking at Spread(u), we are effectively using
the ℓ∞ norm of y(u)⊥ to tell us whether we are in Case 1
(“error-free”) or Case 2 (“mixing”).

Key new idea. Using the ℓ2 norm: Why do we use
the ℓ∞ norm to measure y(u)⊥ ? Intuitively, the underlying
reason is that we are working with an ℓ∞-type guarantee
regarding the approximation matrices W̃j←i. To get the
best WPRG seed length, we construct W̃j←i using the
BRRY PRG [20] (as discussed in Section III-B), but the
correctness proof works in the more general setting
where W̃j←i is constructed using an arbitrary PRG that
fools constant-width regular ROBPs with moderate error.
In such a general setting, using the ℓ∞ norm seems
necessary, because it captures the “worst possible error”
for a pseudorandom walk starting from u.

To make progress in the polynomial-width case, we
take a less “generic” approach. We construct the approxi-
mation matrices W̃j←i by recursively applying (a version
of) Rozenman and Vadhan’s derandomized squaring
operation [41] (similar to what Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan did [27]). This
operation uses a spectral expander graph to recycle ran-
domness. Let H be the expander’s transition matrix, and
let J be the transition matrix of a complete graph with
self-loops. The quality of H is measured by the quantity
λ(H) = ∥H − J∥2, i.e., we measure error using the ℓ2
norm. This raises the following question:

In the case that the matrices W̃j←i are con-
structed using the derandomized square, can
we get a tighter analysis of L−1∆W by looking
at the ℓ2 norm ∥y(u)⊥ ∥2 instead of the ℓ∞ norm?

Although seemingly naı̈ve, this idea is the core moti-
vation for our simplified proof of Ahmadinejad, Kel-
ner, Murtagh, Peebles, Sidford, and Vadhan’s main re-
sult [27]. We believe it is the “real magic” behind their
work.

2) The Error-Free Case. Singular-Value Approximation:
Let B be a regular width-w length-n standard-order
ROBP, where w = poly(n). As discussed above, our
approach for analyzing L−1∆W is to use the ℓ2 norm to
distinguish between an “error-free” case and a “mixing”
case. We begin by discussing the error-free case.

For simplicity, we continue to focus on ∆W(1) for this
proof overview. Therefore, fix a length-2 edge (ℓ, ℓ+ 2) ∈
E(SCn). The approximation matrix W̃ℓ+2←ℓ is defined
by using an expander graph to recycle randomness. Let
H ∈ Rd×d be the transition matrix of this expander, and
let J ∈ Rd×d be the transition matrix of the complete
graph with self-loops. The definition of λ(H) implies,
for all α, β ∈ Rd,

∣∣∣βT · (H − J) · α
∣∣∣ ≤ λ(H) · ∥α∥2 · ∥β∥2

≤ λ(H)
2

· (∥α∥2
2 + ∥β∥2

2). (8)

1235

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

Now let x ∈ RV(ℓ) and y ∈ RV(ℓ+2) be vectors. For each
vertex u ∈ V(ℓ), let y(u) be the subvector of y that is
reachable from u. That is, if the i-th path from u leads
to v, then we define y(u)i = yv. Similarly, for each vertex
v ∈ V(ℓ+2), let x(v) be the subvector of x from which v
is reachable. By regularity, x(v) and y(u) are both vectors
in RD where D = 22 = 4. Using (8), one can show that

∣∣∣yT ·
(

W̃ℓ+2←ℓ − Wℓ+2←ℓ

)
· x

∣∣∣

≤ λ(H)
2D

·
(

∑
v∈V(ℓ+2)

∥x(v)⊥ ∥2
2 + ∑

u∈V(ℓ)

∥y(u)⊥ ∥2
2

)
. (9)

When x and y are chosen appropriately, the left-hand
side of (9) measures the amount of error that occurs in
layers ℓ through ℓ+ 2. Therefore, provided that all of the
ℓ2 norms ∥x(v)⊥ ∥2 and ∥y(u)⊥ ∥2 are close to zero, (9) says
that we are in an “error-free” case, as desired.

The sums on the right-hand side of (9) can be con-
veniently simplified as follows. Observe that ∥x(v)⊥ ∥2

2 =

∥x(v)∥2
2 −∥x(v)∥ ∥2

2. Intuitively, x(v)∥ corresponds to the v-th
coordinate of Wℓ+2←ℓ · x. Using this idea, one can show
that

1
D

· ∑
v∈V(r)

∥x(v)⊥ ∥2
2 = ∥x∥2

2 − ∥Wℓ+2←ℓ · x∥2
2

= ∥x∥2
I−WT

ℓ+2←ℓWℓ+2←ℓ
,

and similarly,
1
D

· ∑
u∈V(ℓ)

∥y(u)⊥ ∥2
2 = ∥y∥2

2 − ∥WT
ℓ+2←ℓ · y∥2

2

= ∥y∥2
I−Wℓ+2←ℓWT

ℓ+2←ℓ
.

Thus, (9) is equivalent to the statement that W̃ℓ+2←ℓ
is a good singular-value approximation of Wℓ+2←ℓ, as
defined by Ahmadinejad, Peebles, Pyne, Sidford, and
Vadhan [42]:

Definition III.1 (Singular-value approximation [42]). Let
W̃, W ∈ Rw×w be doubly stochastic matrices. We say W̃ τ-
singular-value approximates W, denoted as W̃

sv≈ τ W, if
for every x, y ∈ Rw,

∣∣∣yT
(

W̃ − W
)

x
∣∣∣ ≤

τ

4
·
(
∥x∥2

I−WTW + ∥y∥2
I−WWT

)
.

In this proof overview, we are focusing on the length-
two edges in SCn, which correspond to a single ap-
plication of the derandomized squaring operation. In
the actual proof, we show that more generally, W̃r←ℓ
is a good singular-value approximation of Wr←ℓ for
every edge (ℓ, r) ∈ E(SCn). We would like to clarify
that it was already known that recursive derandomized
squaring produces a good singular-value approximation.
Indeed, this fact readily follows from the analysis in Ah-
madinejad, Peebles, Pyne, Sidford, and Vadhan’s recent
work [42].

3) The Mixing Case. Potential Dynamics: To summarize
the discussion so far, our simplified proof of Ahmadine-
jad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s
main theorem [27] can be divided into two main parts.

1) First, we show that the approximation matrices
W̃j←i constructed via a version of the derandomized
squaring operation [41] are singular-value approxi-
mations of the corresponding exact matrices Wj←i.
(See Theorem 8.1 of the full version.)

2) Second, we show that ∥L−1∆W∥ is moderately
small, where ∥ · ∥ is a suitably chosen matrix
“norm.”13 (See Lemma 8.5 of the full version.)

Bounding ∥L−1∆W∥ enables us to apply our error re-
duction framework, which ultimately leads to a low-
error approximation to E[B]. (See Theorem 8.3 of the full
version.)

We now present an overview of our proof that
∥L−1∆W∥ is moderately small. For this proof, the only
feature of the approximation matrices W̃j←i that we
use is the fact that W̃j←i

sv≈ τ0 Wj←i for a suitable
τ0 = 1/polylog(n).

The test vector and the error vectors: Like before, we
decompose ∆W = ∑log n

t=1 ∆W(t). For simplicity, in this
technical overview, we continue to focus on the case
t = 1, i.e., we focus on the challenge of bounding
∥L−1∆W(1)∥.

Our matrix “norm” ∥ · ∥ is induced by a suitable
vector “norm” (technically a seminorm), which we will
specify later. Therefore, fix some arbitrary “test vector”
x ∈ R(n+1)·w, and let z = L−1∆W(1)x. Our job is to show
that ∥z∥ ≤ δ∥x∥ for some moderately small δ.

Write x as a block vector x = (x[0], . . . , x[n]), where
x[j] ∈ RV(j) ∼= Rw. Similarly, write z = (z[0], . . . , z[n]).
Observe that we have the following recursive formula
for z[j]: for every j ∈ {0, 2, 4, . . . , n − 2}, we have

z[j+2] = Wj+2←j · z[j] + ∆W(1)
j+2←j · x[j].

For convenience, define z[n+2] to be the zero vector, and
define Wn+2←n and ∆W(1)

n+2←n to be the zero matrix, so
the equation above holds even for j = n. We denote the
two terms above by z̃[j+2] := Wj+2←j · z[j] and s[j+2] :=
∆W(1)

j+2←j · x[j], so that

z[j+2] = z̃[j+2] + s[j+2].

Intuitively, z[j+2] is the “cumulative” error vector at layer
j + 2, while s[j+2] is the “local” error vector.

The potential function: Analogous to the discussion in
Section III-D1, our approach for bounding ∥z∥ is to use a
potential argument. Our potential function Φ : Rw → R
is given by

Φ(y) = ∥y∥2
2.

13Technically, the “norm” we use is not a true norm, but rather an
extended submultiplicative matrix seminorm.

1236

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

Observe that if y is a probability vector, then Φ(y) is a
measure of how far y is from the uniform distribution.
In this respect, Φ(·) is similar to the potential function
Φi discussed in Section III-D1; however, compared to
Φi, our function Φ(·) is more compatible with spectral
analysis.

As discussed previously, we wish to argue that in
each step, we fall into one of two cases: the error-free
case, and the mixing case. To implement this plan, let us
think of |Φ(z[j+2])− Φ(z̃[j+2])| as the amount of error in
step j. (Intuitively, if we pretend that z[j] is a probability
vector, then the quantity |Φ(z[j+2])−Φ(z̃[j+2])| measures
the extent to which ∆W(1)

j+2←j “damages mixed-ness,”
since Φ(·) is our measure of mixing.) Using the fact that
W̃j+2←j

sv≈ τ0 Wj+2←j, we prove that
∣∣∣Φ(z[j+2])− Φ(z̃[j+2])

∣∣∣
︸ ︷︷ ︸

amount of error in step j

≤ O(τ0) ·
(

Φ(z[j])− Φ(Wj+2←j · z[j])
︸ ︷︷ ︸

mixing in z

+ Φ(x[j])− Φ(Wj+2←j · x[j])
︸ ︷︷ ︸

mixing in x

)
. (10)

Thus, if the amount of error |Φ(z[j+2]) − Φ(z̃[j+2])| is
large, then there must be a corresponding change in the
potential function: either Φ(Wj+2←j · z[j]) ≪ Φ(z[j]), or
else Φ(Wj+2←j · x[j]) ≪ Φ(x[j]). The first case describes
mixing that occurs “on the z side,” i.e., after multiplying
by L−1∆W(1). The second case describes mixing that
occurs “on the x side,” i.e., the mixing was already
present in the test vector x to begin with. Either way,
we see that error at step j implies mixing at step j.

The F1-seminorm.: In light of (10), it is natural to
define our “norm function” ∥ · ∥ : R(n+1)·w → R by the
formula

∥y∥2 = ∑
j∈{0,2,4,...,n}

(
Φ(y[j])− Φ(Wj+2←j · y[j])

)
,

where y = (y[0], . . . , y[n]). This quantity ∥y∥2 measures
the total potential drops when we apply each matrix
Wj+2←j to the appropriate block of y. One can verify
that this function ∥ · ∥ truly is a (semi)norm; we refer to
it as the “F1-seminorm.” Summing up (10) gives

∑
j∈{0,2,4,...,n}

∣∣∣Φ(z[j+2])− Φ(z̃[j+2])
∣∣∣

︸ ︷︷ ︸
amount of error in step j

≤ O(τ) · (∥z∥2 + ∥x∥2).

(11)
The left-hand side above is a measure of the total amount
of error. However, our job is to bound ∥z∥, which is,
conceptually, a different way of measuring the total
amount of error. To connect these two quantities, it might
be helpful to visualize a dynamic process generating
z[0], z̃[2], z[2], . . . as in Figure 5.

The value ∥z∥2 is the sum of the heights of the dashed
arrows in Figure 5. Meanwhile, the error measure on the
left-hand side of (11) is the sum of the heights of the solid
arrows in Figure 5. The key observation is that in this
process, the initial point z[0] is equal to the final point z[n+2]

(both are the zero vector), so the two types of arrows
must perfectly balance. Symbolically, we have

∥z∥2 = ∑
j∈{0,2,...,n}

⎛

⎜⎝Φ(z[j])− Φ(z̃[j+2])︸ ︷︷ ︸
drop in potential

⎞

⎟⎠

= Φ(z[0])− Φ(z[n+2]) + ∑
j∈{0,2,...,n}

(
Φ(z[j+2])− Φ(z̃[j+2])

)

≤ Φ(z[0])− Φ(z[n+2]) + ∑
j∈{0,2,...,n}

∣∣∣Φ(z[j+2])− Φ(z̃[j+2])
∣∣∣

︸ ︷︷ ︸
amount of error in step j

= 0 − 0 + O(τ) · (∥z∥2 + ∥x∥2)

by (11). By choosing τ to be sufficiently small, we
conclude that ∥z∥ ≤ O(

√
τ · ∥x∥) as desired.

In the actual proof, to account for ∆W(t) where t > 1,
we use a somewhat more complicated seminorm called
the “F-seminorm.” Intuitively, the F-seminorm measures
the total potential drops across all edges (i, j) ∈ E(SCn),
whereas the F1-seminorm only looks at edges of length
2.

E. Our WPRG for Unbounded-Width Permutation ROBPs
We conclude this technical overview by briefly dis-

cussing our improved WPRG for unbounded-width
permutation ROBPs (Theorem I.9). This WPRG corre-
sponds closely to our simplified proof of Ahmadine-
jad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s
main theorem [27]. We construct our WPRG by reverse-
engineering the (non-black-box) algorithm for deran-
domizing regular ROBPs. In order to carry out this
reverse-engineering process, we assume that the pro-
gram we are fooling is a permutation program, because
under this assumption, Rozenman and Vadhan’s deran-
domized squaring operation [41] has a “black-box inter-
pretation,” namely, it is equivalent to the Impagliazzo-
Nisan-Wigderson (INW) PRG [37]. The WPRG that we
construct in this way has a seed length that is greater
than what we can afford, because each seed includes
several independent seeds for the INW PRG. We there-
fore decrease the seed length by using Hoza, Pyne, and
Vadhan’s PRG [8] to generate correlated seeds for the
INW PRG.

The approach outlined above is essentially identical
to the approach that Pyne and Vadhan use to construct
their WPRG for permutation ROBPs [4]. The reason
we get an improved bottom-line seed length is that
Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan’s algorithm [27] involves a “cycle lift” at some
points. These cycle lifts are inherited by Pyne and Vad-
han [4], and they effectively cost a factor of n in the

1237

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

z[0]

z̃[2]

z[2]

z̃[4]

z[4]
W2←0×

+s[2]

W4←2×

+s[4]

Φ

Fig. 5. An illustration of the dynamics of the potential function.

error parameter. In terms of seed length, this means
that O(log n ·

√
log(1/ε)) becomes O(log3/2 n + log n ·√

log(1/ε)). In contrast, we never use any cycle lifts,
hence we do not pay the extra log3/2 n term.

REFERENCES

[1] N. Nisan, “Pseudorandom generators for space-bounded
computation,” Combinatorica, vol. 12, no. 4, pp. 449–461,
1992. [Online]. Available: https://doi.org/10.1007/BF01305237

[2] W. M. Hoza, “Recent progress on derandomizing space-bounded
computation,” Bulletin of EATCS, vol. 138, no. 3, 2022.

[3] M. Braverman, G. Cohen, and S. Garg, “Pseudorandom pseudo-
distributions with near-optimal error for read-once branching
programs,” SIAM J. Comput., vol. 49, no. 5, pp. STOC18–242–
STOC18–299, 2020. [Online]. Available: https://doi.org/10.1137/
18M1197734

[4] E. Pyne and S. P. Vadhan, “Pseudodistributions that beat
all pseudorandom generators (extended abstract),” in 36th
Computational Complexity Conference, CCC 2021, July 20-23,
2021, Toronto, Ontario, Canada (Virtual Conference), ser. LIPIcs,
V. Kabanets, Ed., vol. 200. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 33:1–33:15. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CCC.2021.33

[5] E. Chattopadhyay and J.-J. Liao, “Optimal Error Pseu-
dodistributions for Read-Once Branching Programs,” in 35th
Computational Complexity Conference (CCC 2020), ser. Leibniz
International Proceedings in Informatics (LIPIcs), S. Saraf,
Ed., vol. 169. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, pp. 25:1–25:27. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12577

[6] G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma, “Error
Reduction for Weighted PRGs Against Read Once Branching Pro-
grams,” in 36th Computational Complexity Conference (CCC 2021),
ser. Leibniz International Proceedings in Informatics (LIPIcs),
V. Kabanets, Ed., vol. 200. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021, pp. 22:1–22:17.

[7] W. M. Hoza, “Better pseudodistributions and derandomization
for space-bounded computation,” in Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2021, August 16-18, 2021, University of Wash-
ington, Seattle, Washington, USA (Virtual Conference), ser. LIPIcs,
vol. 207. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, pp. 28:1–28:23.

[8] W. M. Hoza, E. Pyne, and S. Vadhan, “Pseudorandom generators
for unbounded-width permutation branching programs,” 12th
Innovations in Theoretical Computer Science (ITCS’21), 2021.

[9] M. Ajtai, J. Komlós, and E. Szemerédi, “Deterministic simulation
in logspace,” in Proceedings of the 19th Symposium on Theory of
Computing (STOC), 1987, pp. 132–140.

[10] K. Cheng and W. M. Hoza, “Hitting sets give two-sided
derandomization of small space,” Theory Comput., vol. 18, pp.
Paper No. 21, 32, 2022. [Online]. Available: https://doi.org/10.
4086/toc.2022.v018a021

[11] E. Pyne, R. Raz, and W. Zhan, “Certified hardness vs. randomness
for log-space,” ECCC preprint TR23-040, 2023. [Online]. Available:
https://eccc.weizmann.ac.il/report/2023/040/

[12] M. E. Saks and S. Zhou, “BP hspace(s) subseteq dspace(s3/2),” J.
Comput. Syst. Sci., vol. 58, no. 2, pp. 376–403, 1999.

[13] M. Saks and D. Zuckerman, 1995, unpublished work showing that
ε-biased distributions fool width-2 ROBPs with error O(ε · n).

[14] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff,
“Pseudorandomness for width-2 branching programs,” Theory
Comput., vol. 9, pp. 283–292, 2013. [Online]. Available:
https://doi.org/10.4086/toc.2013.v009a007

[15] P. Hatami and W. M. Hoza, “Theory of unconditional pseudo-
random generators,” ECCC preprint TR23-019, 2023. [Online].
Available: https://eccc.weizmann.ac.il/report/2023/019/

[16] R. Meka, O. Reingold, and A. Tal, “Pseudorandom generators for
width-3 branching programs,” in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019. ACM, 2019, pp. 626–637.

[17] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. Vadhan,
“Better pseudorandom generators from milder pseudorandom
restrictions,” in 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science—FOCS 2012. IEEE Computer Soc., Los
Alamitos, CA, 2012, pp. 120–129.

[18] T. Steinke, S. Vadhan, and A. Wan, “Pseudorandomness and
Fourier-growth bounds for width-3 branching programs,” Theory
Comput., vol. 13, pp. Paper No. 12, 50, 2017. [Online]. Available:
https://doi.org/10.4086/toc.2017.v013a012

[19] O. Reingold, L. Trevisan, and S. Vadhan, “Pseudorandom walks
on regular digraphs and the RL vs. L problem,” in STOC’06:
Proceedings of the 38th Annual ACM Symposium on Theory of
Computing. ACM, New York, 2006, pp. 457–466. [Online].
Available: https://doi.org/10.1145/1132516.1132583

[20] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff, “Pseudoran-
dom generators for regular branching programs,” SIAM Journal
on Computing, vol. 43, no. 3, pp. 973–986, 2014.

[21] A. De, “Pseudorandomness for permutation and regular branch-
ing programs,” in 26th Annual IEEE Conference on Computational
Complexity. IEEE Computer Soc., Los Alamitos, CA, 2011, pp.
221–231.

[22] O. Reingold, T. Steinke, and S. Vadhan, “Pseudorandomness
for regular branching programs via Fourier analysis,” in
Approximation, randomization, and combinatorial optimization, ser.
Lecture Notes in Comput. Sci. Springer, Heidelberg, 2013, vol.
8096, pp. 655–670. [Online]. Available: https://doi.org/10.1007/
978-3-642-40328-6 45

[23] A. Bogdanov, W. M. Hoza, G. Prakriya, and E. Pyne, “Hitting sets
for regular branching programs,” in 37th Computational Complexity
Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA,
ser. LIPIcs, vol. 234. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, pp. 3:1–3:22.

[24] C. H. Lee, E. Pyne, and S. Vadhan, “Fourier growth of
regular branching programs,” in Approximation, randomization,
and combinatorial optimization. Algorithms and techniques, ser.
LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2022, vol. 245, pp. Art. No. 2, 21. [Online].
Available: https://doi.org/10.4230/lipics.approx/random.2022.2

[25] ——, “On the power of regular and permutation branching
programs,” Electronic Colloquium on Computational Complexity
(ECCC), 2023. [Online]. Available: https://eccc.weizmann.ac.il/
report/2023/102/

[26] L. Chen, X. Lyu, A. Tal, and H. Wu, “New PRGs for Unbounded-
Width/Adaptive-Order Read-Once Branching Programs,” in
50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023), ser. Leibniz International Proceedings
in Informatics (LIPIcs), K. Etessami, U. Feige, and G. Puppis,
Eds., vol. 261. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023, pp. 39:1–39:20. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2023/18091

1238

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

[27] A. Ahmadinejad, J. A. Kelner, J. Murtagh, J. Peebles, A. Sidford,
and S. P. Vadhan, “High-precision estimation of random walks
in small space,” in 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, S. Irani, Ed. IEEE, 2020, pp. 1295–1306. [Online].
Available: https://doi.org/10.1109/FOCS46700.2020.00123

[28] J. Brody and E. Verbin, “The coin problem and
pseudorandomness for branching programs,” in Proceedings of the
51st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2010, pp. 30–39. [Online]. Available: https://www.cs.
swarthmore.edu/∼brody/papers/CoinProblemFullVersion.pdf

[29] M. Koucký, P. Nimbhorkar, and P. Pudlák, “Pseudorandom
generators for group products [extended abstract],” in STOC’11—
Proceedings of the 43rd ACM Symposium on Theory of Computing.
ACM, New York, 2011, pp. 263–272. [Online]. Available:
https://doi.org/10.1145/1993636.1993672

[30] T. Steinke, “Pseudorandomness for permutation branching
programs without the group theory,” ECCC preprint TR12-083,
2012. [Online]. Available: https://eccc.weizmann.ac.il/report/
2012/083/

[31] E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett,
“Pseudorandom generators from polarizing random walks,”
Theory Comput., vol. 15, pp. Paper No. 10, 26, 2019. [Online].
Available: https://doi.org/10.4086/toc.2019.v015a010

[32] E. Pyne and S. Vadhan, “Deterministic approximation of random
walks via queries in graphs of unbounded size,” in 5th SIAM
Symposium on Simplicity in Algorithms. [Society for Industrial
and Applied Mathematics (SIAM)], Philadelphia, PA, 2022, pp.
57–67.

[33] L. Golowich and S. Vadhan, “Pseudorandomness of expander
random walks for symmetric functions and permutation branch-
ing programs,” in 37th Computational Complexity Conference (CCC
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[34] M. B. Cohen, J. A. Kelner, J. Peebles, R. Peng, A. Sidford, and
A. Vladu, “Faster algorithms for computing the stationary dis-
tribution, simulating random walks, and more,” in IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA.
IEEE Computer Society, 2016, pp. 583–592.

[35] M. B. Cohen, J. A. Kelner, J. Peebles, R. Peng, A. B. Rao,
A. Sidford, and A. Vladu, “Almost-linear-time algorithms for
markov chains and new spectral primitives for directed graphs,”
in Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. ACM, 2017, pp. 410–419. [Online]. Available:
https://doi.org/10.1145/3055399.3055463

[36] M. B. Cohen, J. A. Kelner, R. Kyng, J. Peebles, R. Peng, A. B. Rao,
and A. Sidford, “Solving directed laplacian systems in nearly-
linear time through sparse LU factorizations,” in 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018. IEEE Computer Society, 2018, pp. 898–
909.

[37] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudorandom-
ness for network algorithms,” in STOC. ACM, 1994, pp. 356–364.

[38] A. L. Putterman and E. Pyne, “Near-optimal derandomization of
medium-width branching programs,” Electron. Colloquium Com-
put. Complex., vol. TR22-150, 2022.

[39] G. Cohen, D. Doron, O. Sberlo, and A. Ta-Shma, “Approximating
iterated multiplication of stochastic matrices in small space,”
Electron. Colloquium Comput. Complex., vol. TR22-149, 2022.

[40] W. M. Hoza and D. Zuckerman, “Simple optimal hitting sets for
small-success RL,” SIAM J. Comput., vol. 49, no. 4, pp. 811–820,
2020. [Online]. Available: https://doi.org/10.1137/19M1268707

[41] E. Rozenman and S. Vadhan, “Derandomized squaring of
graphs,” in Approximation, Randomization and Combinatorial Opti-
mization. Algorithms and Techniques. Springer, 2005, pp. 436–447.

[42] A. Ahmadinejad, J. Peebles, E. Pyne, A. Sidford, and S. P. Vadhan,
“Singular value approximation and reducing directed to undi-
rected graph sparsification,” CoRR, vol. abs/2301.13541, 2023.

1239

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 29,2025 at 19:21:11 UTC from IEEE Xplore. Restrictions apply.

