
Depth-𝑑 Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees

Pooya Hatami
Ohio State University

Department of Computer Science and Engineering
Columbus, OH, USA
pooyahat@gmail.com

William M. Hoza
University of California, Berkeley

Simons Institute for the Theory of Computing
Berkeley, CA, USA

williamhoza@berkeley.edu

Avishay Tal
University of California, Berkeley

Department of Electrical Engineering and Computer
Sciences

Berkeley, CA, USA
atal@berkeley.edu

Roei Tell
Institute for Advanced Study

School of Mathematics
Princeton, NJ, USA
Rutgers University

DIMACS
Piscataway, NJ, USA
roeitell@gmail.com

ABSTRACT
For any 𝑛 ∈ N and𝑑 = 𝑜 (log log𝑛), we prove that there is a Boolean
function 𝐹 on 𝑛 bits and a value 𝛾 = 2−Θ(𝑑) such that 𝐹 can be
computed by a uniform depth-(𝑑 + 1) AC0 circuit with 𝑂 (𝑛) wires,
but 𝐹 cannot be computed by any depth-𝑑 TC0 circuit with 𝑛1+𝛾

wires. This boundmatches the current state-of-the-art lower bounds
for computing explicit functions by threshold circuits of depth𝑑 > 2,
which were previously known only for functions outside AC0 such
as the parity function. Furthermore, in our result, the AC0 circuit
computing 𝐹 is a monotone read-once formula (i.e., an AND-OR
tree), and the lower bound holds even in the average-case setting
with respect to advantage 𝑛−𝛾 .

At a high level, our proof strategy combines two prominent
approaches in circuit complexity from the last decade: The cele-
brated random projections method of Håstad, Rossman, Servedio,
and Tan (J. ACM 2017), which was previously used to show a tight
average-case depth hierarchy for AC0; and the line of works analyz-
ing the effect of random restrictions on threshold circuits. We show
that under a modified version of Håstad, Rossman, Servedio, and
Tan’s projection procedure, any depth-𝑑 threshold circuit with 𝑛1+𝛾

wires simplifies to a near-trivial function, whereas an appropriately
parameterized AND-OR tree of depth 𝑑 + 1 maintains structure.

CCS CONCEPTS
• Theory of computation→ Circuit complexity.

KEYWORDS
threshold circuits, AND-OR trees, circuit lower bounds, random
projections

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585216

ACM Reference Format:
Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. 2023. Depth-
𝑑 Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees. In Proceedings
of the 55th Annual ACM Symposium on Theory of Computing (STOC ’23),
June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3564246.3585216

1 INTRODUCTION
The focus of this paper is linear threshold circuits (LTF circuits).
These are non-uniform circuits in which each gate can compute an
arbitrary linear threshold function (LTF), of the form

Φ𝑤,𝜃 (𝑥1, . . . , 𝑥𝑛) = 1 ⇐⇒
∑

𝑖∈ [𝑛]

𝑤𝑖 · 𝑥𝑖 ≥ 𝜃 ,

where𝑤 ∈ R𝑛 and 𝜃 ∈ R and the arithmetic is over the reals. We
define the size of a circuit to be its number of wires.

Proving explicit lower bounds for LTF circuits is one of the most
important current challenges in complexity theory. However, de-
spite more than 50 years of research into this circuit class, the best
lower bounds known are only for circuits of slightly super-linear
size. Specifically, in the 1990s, Impagliazzo, Paturi, and Saks [40]
showed that LTF circuits of depth 𝑑 and size 𝑛1+𝛾𝑑 (where 𝛾𝑑 =

2−Θ(𝑑)) cannot compute the parity function. This was recently
strengthened byChen, Santhanam, and Srinivasan [26] to an average-
case lower bound for circuits of the same size (up to the constant
inside the Θ-notation in the expression for 𝛾𝑑) computing the Gen-
eralized Andreev function. The latter work is part of an influential
line of works in the last decade, which introduced new ways of
analyzing LTFs and LTF circuits (see, e.g., [26, 29, 39, 58, 70]).1

Our main result in this paper is a stronger lower bound, where
the improvement is that the bound holds for a function that is
“even more explicit” than parity (in the sense that it has lower
computational complexity). Specifically, we show that LTF circuits
fail to compute a simple, read-once, AND-OR tree. In particular,
such trees are monotone, read-once AC0 formulas – arguably one of

1Complementing these two lower bounds, Chen and Tell [24] showed that to prove
lower bounds against LTF circuits of polynomial size, it suffices to prove lower bounds

for LTF circuits of depth 𝑑 size 𝑛1+𝛿𝑑 , where 𝛿𝑑 = 2−Θ(𝑑) differs from 𝛾𝑑 only in the
constant hidden inside the Θ-notation.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

895

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7928-8008
https://orcid.org/0000-0001-5162-9181
https://orcid.org/0000-0002-0375-6554
https://orcid.org/0000-0002-9693-9244
https://doi.org/10.1145/3564246.3585216
https://doi.org/10.1145/3564246.3585216
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585216&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell

the weakest complexity classes that has been studied. Moreover, our

main result asserts that LTF circuits of depth 𝑑 and size 𝑛1+2
−Θ(𝑑)

cannot even compute a read-once AND-OR tree of depth 𝑑 + 1; that
is, the depth difference amounts to a single layer.2 And lastly, our
lower bound also holds on average, rather than just in the worst
case.

Theorem 1.1 (LTF circuits cannot compute simple AND-OR
trees). Let 𝑛 ∈ N be sufficiently large, let 𝑑 ≤ 1

20 · log log(𝑛), and

let 𝛾𝑑 = 2−10·𝑑 . Then, there exists an explicit depth-(𝑑 + 1) read-once

AC0 formula 𝐹 = 𝐹
(𝑛)
𝑑+1

on 𝑛 input bits such that for every depth-𝑑

LTF circuit 𝑓 with at most 𝑛1+𝛾𝑑 wires,

Pr
x∈{0,1}𝑛

[𝑓 (x) = 𝐹 (x)] ≤
1

2
+ 𝑛−𝛾𝑑 .

The key contribution underlying Theorem 1.1 is a new and more
refined way of analyzing LTF circuits, which paves the way to
proving our new lower bound, and which we hope may facilitate
further progress in proving lower bounds for LTF circuits. At a
high level, our proof strategy combines two main approaches in
circuit complexity from the last decade that were separate so far:
The celebrated random projections method of Håstad, Rossman,
Servedio, and Tan [37], which was previously used to show a tight
depth hierarchy for AC0; and the line of works (mentioned above)
that introduced new ways of analyzing LTF circuits, and that in
particular analyzed the effect of random restrictions on LTF circuits.

Combining the two lines of work requires significant technical
effort, in order to make them “fit together”. From a bird’s eye view,
our paper analyzes the effect of a very specific (and suitably chosen)
random projections procedure on LTF circuits. Replicating the anal-
ysis from Håstad, Rossman, Servedio, and Tan’s work [37] with a
different and careful parameterization, we show that the AND-OR
tree 𝐹 “maintains structure” under this projections procedure; and
the crux of our technical contribution is in showing that this pro-
jections procedure trivializes every LTF circuit of depth 𝑑 and size
𝑛1+𝛾𝑑 , with high probability. We refer the reader to Section 2 for a
technical overview of the proof.

1.1 Impossibility of Depth-Reduction Using
LTF Gates

Theorem 1.1 can also be viewed in the context of circuit depth reduc-
tion, which is the task of decreasing the depth of a circuit without
significantly increasing its size (and without changing the function
that it computes). There are classic, strong lower bounds regarding
depth reduction of AC0 circuits. Indeed, for a certain AC0 circuit
of depth 𝑑 + 1 and size 𝑂 (𝑛), Håstad showed that every equiva-

lent depth-𝑑 AC0 circuit has size at least 2𝑛
Ω (1/𝑑)

[34, Chapter 6],
improving earlier work by Sipser [65] and Yao [78]. However, the
situation changes if we allow the shallower circuit to use a stronger
model. In this case, strong depth reduction upper bounds are known
for AC0 circuits and, much more generally, for ACC0 circuits (i.e.,
AC0 circuits augmented with MOD𝑚 gates where𝑚 is constant).

2Needless to say, LTF circuits of depth 𝑑 and super-linear size (or even linear size) can
compute read-once AND-OR trees of depth 𝑑 or less, and thus to get a lower bound it
is necessary for the tree to have at least one additional layer. Our result shows that
one additional layer is also sufficient.

In particular, building on and improving a long line of work [3–
5, 11, 71, 74, 80], Chen and Papakonstantinou showed that for every
ACC0 circuit of depth 𝑑 and size 𝑤 , there exists an equivalent

SYM ◦ AND circuit of size 2(log𝑤)𝑂 (𝑑)
[27]. Depth reduction theo-

rems along these lines have found applications in circuit analysis
algorithms [7, 27, 74, 77], circuit lower bounds [21, 23, 25, 27, 51, 73–
75, 77], and even graph algorithms [76].

If we insist on the shallower circuit having the specific form
SYM ◦ AND, then near-matching lower bounds are known. Indeed,
there are constructions of constant-depth polynomial size ACC0

circuits [55], and even AC0 circuits [10], for which every equiva-
lent MAJ ◦ SYM ◦ AND circuit must have super-polynomial size.
But what happens if we allow the shallower circuit to use an even
stronger model? Observe that a SYM◦AND circuit can be converted
into an equivalent depth-three LTF circuit with only a polynomial
increase in size, because every symmetric function can be com-
puted by a depth-two polynomial-size LTF circuit. Thus, a special
case of Chen and Papakonstantinou’s result [27] is that for every
constant-depth polynomial-size AC0 circuit, there is an equivalent
depth-three quasipolynomial-size LTF circuit. Indeed, this special
case was proven already by Allender in the 1980s [3], who pre-
sented the theorem in basically this form. This raises the following
question: If we start with an AC0 circuit – the weakest model that
we have discussed – and we wish to convert it to an equivalent
LTF circuit – the strongest model that we have discussed – then is
depth reduction possible without a significant size blowup?

Theorem 1.1 gives a strong negative answer to the foregoing
question, showing that depth-reduction of AC0 circuits to LTF cir-
cuits, even one that attempts to save only a single layer, is im-
possible without a super-linear increase in size. Thus, although
one can achieve a massive depth reduction using LTF circuits with
2polylog(𝑛) wires [3–5, 11, 27, 71, 74, 80], our lower bound asserts

that using only 𝑛1+𝑐
−𝑑

wires does not allow for any depth reduc-
tion at all. (In fact, as explained below in Section 1.3, we further
prove that the complexity of such depth-reduction for our partic-
ular AND-OR tree 𝐹 is either precisely super-linear, or it is super-
polynomial.) Our theorem can thus be interpreted as saying that
some functions have an intrinsic “depth complexity” that is robust
to changes in the gate set (i.e., from AND/OR gates to LTF gates),
at least in the near-linear size regime.

1.2 Hard Functions in Extremely Weak
Complexity Classes

Another lens through which to view Theorem 1.1 is via the recent
success in proving “super-explicit” lower bounds for circuit classes.
Recall that in classical lower bounds (e.g., in [34, 35, 40, 56, 67] and
in many other works) the hard function is typically computable in
NC1; the twomostwell-known examples are the parity function and
Andreev’s function. A long-standing question, dating back to [34,
66, 78], is whether one can prove lower bounds for functions that
are “even more explicit”, such as the AND-OR tree in Theorem 1.1.

Our work follows in the footsteps of several influential works in
the last decade, which were able to prove lower bounds in which

896

Depth-𝑑 Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

the hard function is computable in uniform AC0.3 Among these
works is the celebrated average-case depth-hierarchy theorem for
AC0 by Håstad, Rossman, Servedio, and Tan [37] mentioned above
(which improved several earlier works [34, 53, 66, 72, 78]); results
asserting that AC0 [⊕] circuits of depth 𝑑 and size 𝑠 fail to compute
a function computable by uniform AC0 formulas of depth 𝑑 + 1 and
linear size,4 and a function computable by uniform AC0 formulas of
depth 𝑑 and size poly(𝑠) [47, 48]; and a recent work by Filmus, Meir,
and Tal [30], who showed a function in uniform AC0 that cannot
be computed by De Morgan formulas of sub-cubic size 𝑛3−𝑜 (1) .

The works above “cover” the most widely-studied classes in cir-
cuit complexity, the main exception being LTF circuits (i.e., the class
TC0), which are the focus of the current work. We stress that many
prior works have shown that AC0 is hard for various subclasses
of LTF circuits, which have particular structural restrictions (such
as LTF ◦ PARITY circuits or MAJ ◦ LTF circuits or monotone cir-
cuits; see [10, 15–20, 31, 36, 44, 45, 50, 52, 57, 60–64, 79]).5 However,
Theorem 1.1 is the first result showing that AC0 is hard for LTF
circuits of any constant depth (and super-linear size), and without
any particular structural restrictions.

As mentioned above, our techniques use Håstad, Rossman, Serve-
dio, and Tan’s work on AC0 [37] as a starting point (and the crux of
our technical contribution is in analyzing the effect of a procedure
similar to theirs on LTF circuits). However, our techniques are com-
pletely different than the techniques used in the works [8, 47, 48, 53]
on AC0 [⊕] (the latter works build on the line of research on the
“coin problem” [1, 2, 12–14, 28, 32, 46–48, 59, 69]), and also com-
pletely different than the techniques in [30] on DeMorgan formulas.

1.3 Tightness of Our Result
When 𝑑 is constant, the correlation bound 𝑛−𝛾 in Theorem 1.1 can-
not be significantly improved. The reason is that our hard function
is so computationally simple that it can be approximated, to a rea-
sonable extent (i.e., almost matching Theorem 1.1), by shallower
circuits:

• Every depth-(𝑑 + 1) AC0 circuit with𝑂 (𝑛) wires and top fan-
in𝑚 can be approximated, with success probability 1/2 +
Ω(1/𝑚), by a depth-𝑑 AC0 circuit with 𝑂 (𝑛) wires. (This
follows from the discriminator lemma [33].)

• Every monotone function can be approximated, with success
probability 1/2 + Ω((log𝑛)/𝑛), by a constant or a variable.
(This follows from the Kahn-Kalai-Linial theorem [43].)

• Every AC0 circuit (of any constant depth and any polyno-
mial size) can be approximated, with success probability
1/2 + 2−polylog(𝑛) , by a depth-1 AC0 circuit with polylog(𝑛)
wires, i.e., either a conjunction of polylog(𝑛) literals or else
a disjunction of polylog(𝑛) literals. (This follows from the
Linial-Mansour-Nisan theorem [49].)

For completeness, we include proofs of the three preceding bounds
in the full version of this paper [38, Appendix A]. It is an interesting

3Of course, to show that uniform AC0 is hard for circuits from a certain class C, one
needs to give the AC0 circuit some advantage over C, such as more depth or size (as
in Theorem 1.1, in which the AND-OR tree has depth 𝑑 + 1).
4As explained by Limaye, Sreenivasaiah, Srinivasan, Tripathi, and Venkitesh [47], this
follows from works of O’Donnell and Wimmer [53] and Amano [8].
5In fact, the works mentioned here managed to prove super-polynomial lower bounds
for these subclasses.

problem to close the remaining quantitative gaps between our
correlation bound and the three preceding bounds, especially the
last one.

In contrast, if we focus on exact (worst-case) simulations, then it
is unclear whether the size bound 𝑛1+𝛾 in our theorem is tight. We
partially address this question by proving a “hardness magnifica-
tion” result. Recall that such results assert that specific, seemingly-
minor improvements to known lower bounds would imply dra-
matic, strong lower bounds for powerful models of computation.
(An intensive recent interest in such results was sparked by the
work of Oliveira and Santhanam [54], who coined the term, fol-
lowing older results such as those by Srinivasan [68] and Allender
and Koucký [6].) Regarding TC0, prior work shows that tiny im-
provements in the known lower bounds for certain NC1-complete
functions or forMCSP would yield lower bounds for LTF circuits
of arbitrarily large polynomial size [6, 22, 24, 39]. In the same spirit,
we show that even a very small improvement to the size bound in
Theorem 1.1 would imply that our AND-OR tree is hard for LTF cir-

cuits of arbitrarily large polynomial size. (Recall that 𝐹 (𝑛)
𝑑+1

denotes
the depth-(𝑑 + 1) AND-OR tree from Theorem 1.1.)

Theorem 1.2 (hardness magnification for our construc-

tion). Let 𝑑0 ∈ N and 𝑘 > 1 be constants. Suppose that for all

sufficiently large 𝑛, the function 𝐹
(𝑛)
𝑑0+1

can be computed by depth-

𝑑0 LTF circuits with 𝑛𝑘 wires. Then for all sufficiently large 𝑛 and

all 2𝑑0 ≤ 𝑑 ≤ 1
20 log log𝑛, the function 𝐹

(𝑛)
𝑑+1

can be computed by

depth-𝑑 LTF circuits with 𝑂̃ (𝑛1+𝑘 ·10
−𝑑
) wires.

In particular, suppose that for every sufficiently large constant

𝑑 and sufficiently large 𝑛, the function 𝐹
(𝑛)
𝑑+1

cannot be computed

by depth-𝑑 LTF circuits with 𝑛1+2
−3·𝑑

wires (slightly improving

the 𝑛1+2
−10·𝑑

bound from Theorem 1.1). Under that assumption,

Theorem 1.2 implies that 𝐹 (𝑛)
𝑑+1

cannot even be computed by depth-
𝑑 LTF circuits with any poly(𝑛) number of wires. The proof of

Theorem 1.2 is simple and relies on the recursive structure of 𝐹 (𝑛)
𝑑+1

.
See the full version of this paper for details [38, Section 9].

The optimal size complexity of depth-𝑑 LTF circuits comput-

ing our depth-(𝑑 + 1) AND-OR tree 𝐹
(𝑛)
𝑑+1

remains unclear. How-
ever, taken together, our results and prior depth-reduction theo-
rems [3–5, 11, 27, 71, 74, 80] essentially narrow down the optimal
size complexity to two relatively small intervals. Either the optimal

size complexity is 𝑛1+2
−Θ(𝑑)

(for all sufficiently large 𝑛 and 𝑑 with
𝑑 ≤ 1

20 log log𝑛), or else the optimal size complexity is between

𝑛𝜔 (1) and 𝑛polylog(𝑛) (for each constant 𝑑 ≥ 4 and infinitely many
𝑛).

2 TECHNICAL OVERVIEW
We prove our result using the method of random projections, which
is a generalization of the traditional method of random restrictions
that (to the best of our knowledge) was first used by Impagliazzo and
Segerlind [41]. A projection maps each variable either to a constant
(0 or 1) or else to another variable. The key feature distinguishing
projections from traditional restrictions is that a projection might
“merge” multiple variables by mapping them to a single variable,
thereby keeping the variables alive but “tying them together.”

897

STOC ’23, June 20–23, 2023, Orlando, FL, USA Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell

For this technical overview, let us focus on the problem of prov-
ing a worst-case separation between depth-𝑑 LTF circuits and depth-
(𝑑 +1) AND-OR trees, and let us focus on the case that 𝑑 is constant.
Such a separation follows from the following theorem.

Theorem 2.1. Let 𝑑 ∈ N be a constant, let 𝛾 = 2−10·𝑑 , and let
𝑛 ∈ N be sufficiently large. There exists an explicit depth-(𝑑 + 1)

read-once AC0 formula 𝐹 = 𝐹
(𝑛)
𝑑+1

on 𝑛 input bits, a random projection
𝝅 , and a distribution 𝝈 such that:

(1) (Survival of the AND-OR tree) With probability 1 − 𝑜 (1) over
𝜋 ∼ 𝝅 , the projected function 𝐹!𝜋 is 𝑜 (1)-unbiased under 𝝈 ,
i.e., "

"
"
"Pr𝝈

[𝐹!𝜋 (𝝈) = 1] −
1

2

"
"
"
" = 𝑜 (1).

(2) (Simplification of any LTF circuit) For any depth-𝑑 LTF circuit
𝑓 on 𝑛 input bits with at most 𝑛1+𝛾 wires, with probability
1 − 𝑜 (1) over 𝜋 ∼ 𝝅 , the projected function 𝑓 !𝜋 is 𝑜 (1)-close
to a constant under 𝝈 , i.e., there is some 𝑏 ∈ {0, 1} such that

Pr
𝝈
[𝑓 !𝜋 (𝝈) = 𝑏] = 1 − 𝑜 (1) .

The distribution 𝝈 is simply an i.i.d. product distribution (with
biased marginals). Furthermore, projecting according to 𝝅 and then
assigning values according to 𝝈 yields the uniform distribution over
{0, 1}𝑛 , which is why we actually get an average-case separation.

Both our hard function 𝐹 and our projection 𝝅 are based on the
work of Håstad, Rossman, Servedio, and Tan [37]. We do modify
the parameters, but still, the fact that the hard function 𝐹 survives
the projection (Item 1 above) follows from a fairly straightforward
generalization of their analysis. The main challenge is showing
that LTF circuits simplify under the specific random projection
procedure 𝝅 (i.e., proving Item 2).

Random Projections and LTF Circuits. The last couple of decades
have seen the development of what is often referred to as the struc-
tural theory of linear threshold functions, which can be viewed as
a special case of the “structure vs. randomness” paradigm. One of
the main applications of this body of knowledge is the analysis of
the effect of random and pseudorandom restrictions on LTF circuits

of depth 𝑑 and size at most 𝑛1+2
−𝑂 (𝑑)

[26, 29, 39, 58, 70].
The main technical contribution of our work is showing that this

body of knowledge can be extended so that it works in an inher-
ently different setting, namely the setting of random projections as
discussed above. The projections that we analyze are quite different
than traditional random restrictions: Not only are variables some-
times merged, but also the assigned values are heavily biased, and
the values assigned to them have significant correlations. Indeed,
these projections cannot even be considered “pseudorandom,” but
we nevertheless show that LTF circuits of depth 𝑑 simplify under
these projections. The underlying technical challenges require ex-
tending and refining techniques used in previous works in the last
decade.

In Section 2.1, we describe the hard function 𝐹 , the projection
𝝅 , and the distribution 𝝈 in more detail (see the full version of this
paper for the full definitions [38, Section 4]), and we briefly explain
why 𝐹 survives the projection (following the analysis in [37]). Then,
in Sections 2.2–2.4, we discuss the main part of the proof, which
shows that LTF circuits simplify under 𝝅 .

2.1 Setup and High-Level Plan
Let us describe our random projection procedure, which is a very
careful modification of the one in [37]. One of our contributions
is to devise an alternative way of thinking about the projection
procedure that hides some complexity, enabling us to analyze its
effect on LTF circuits. This abstraction might be useful in other
contexts as well. While the new perspective is enough to carry
out most of our analysis of LTF circuits, we do still rely on the
original perspective for some parts of this analysis. (Readers who
are familiar with the work of Håstad et al. [37] are encouraged to
refer to the full version of this paper, in which we prove the formal
connection between the two perspectives [38, Section 6.1].) We
now give an overview of the procedure from the new perspective.

The Random Projections. We denote by b1−𝛽 a Bernoulli RV that
gets value 1 with probability 1− 𝛽 . The projection procedure works
in 𝑑 iterations. For the first iteration, consider the gates of 𝐹 just
above the inputs, denoted 𝑔1, . . . ,𝑔𝑡 , which are all AND gates. We
partition the variables into disjoint blocks 𝐵1, . . . ,𝐵𝑡 , where 𝐵 𝑗

consists of the variables that feed into the gate 𝑔 𝑗 . Then, in each
block 𝐵 𝑗 independently, for suitable parameters 𝑝1, 𝛽1 > 0:

(1) With probability 𝑝1 the block survives, in which case a ran-
dom subset of its variables of density ≈ 𝛽1 is kept alive,6 and
all the other variables in the block are assigned the value 1
(recall that the 𝑔 𝑗 is an AND gate).

(2) If the block does not survive, the variables are assigned val-
ues from b1−𝛽1 independently, except that the probability
that all variables are assigned 1 is artificially decreased.

Note that the expected fraction of living variables in such an it-
eration is approximately 𝑝1 = 𝑝1 · 𝛽1. In the end of the iteration,
we merge the living variables in each surviving block; that is, we
project these variables to a single new variable. We consider this
new variable to be a “level-1 variable” whereas the original input
variables are level-0 variables. We denote the end-result of this
assignment and merging (i.e., projection) process by 𝝅

(1) , and we
refer to any projection with the above structure as a corrupted bi-
ased block projection. (See the full version of this paper [38] for the
precise definition.)

After applying 𝝅
(1) , we can identify each AND gate 𝑔 𝑗 either

with a constant (in case a variable in 𝐵 𝑗 was assigned 0, or all
variables in 𝐵 𝑗 were assigned 1), or with the living variable corre-
sponding to the “merged” variables in 𝐵 𝑗 (in case some variables
in 𝐵 𝑗 were left alive, and all the others were assigned 1). We thus
recurse into the next iteration with a circuit of smaller depth on
the level-1 variables. However, in our setting (and unlike [37]), sub-
sequent iterations of the projection, denoted 𝝅

(2) , . . . , 𝝅 (𝑑) , will
be parameterized by different values of 𝑝2, . . . , 𝑝𝑑 and 𝛽2, . . . , 𝛽𝑑 .
The projection 𝝅

(𝑖) maps level-(𝑖 − 1) variables to level-𝑖 variables
(or constants). The projection 𝝅 referred to in Theorem 2.1 applies
𝝅
(1) , . . . , 𝝅 (𝑑) successively, thereby mapping level-0 variables to

level-𝑑 variables or constants.
Loosely speaking, our goal is to prove that each iteration of the

procedure above reduces the depth of 𝐹 by exactly one layer, and
simultaneously reduces the depth of any LTF circuit by at least one

6Specifically, we include each element with probability 𝛽1 and condition on getting a
nonempty set.

898

Depth-𝑑 Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

layer; thus, after 𝑑 iterations, 𝐹 maintains structure whereas any
LTF circuit of depth 𝑑 trivializes. As articulated in Theorem 2.1,
our notions of “maintaining structure” and “trivialization” are de-
fined with respect to a suitable distribution 𝝈 . Similarly, at each
intermediate stage, we carry out our analysis with respect to a
corresponding intermediate distribution 𝝈

(𝑖) over the level-(𝑖 − 1)
variables. This distribution is also an i.i.d. product distribution with
suitably biased marginals (the bias differs from one 𝑖 to the next).

Specifying the Parameters. Let us now motivate our choice of
parameters, informed by prior work on LTF circuits. In [37], the
fraction 𝑝𝑖 of living variables is essentially the same from one
iteration to the next: 𝑝1 ≈ 𝑝2 ≈ · · · ≈ 𝑝𝑑 . In contrast, previous
restriction procedures for LTF circuits apply𝑑 rounds of restrictions
where the fraction of living variables decreases from one iteration
to the next: 𝑝𝑖+1 = (𝑝𝑖)

𝐶 for a large constant 𝐶 > 1. We follow the
latter line of works, and adapt the AND-OR tree and the random
projections above to use corresponding parameters. Accounting
for the required changes to maintain the properties above, the
resulting AND-OR tree is such that the fan-ins of gates in the tree
grow rapidly as we go up the layers.

Being more specific, recall that we are assuming that the depth
𝑑 + 1 is constant for simplicity. For a parameter𝑀 (where𝑀 ≈ 𝑛𝜖

for a small constant 𝜖 > 0), we define a sequence of parameters
𝑀1 = 𝑀 and𝑀𝑖+1 = 𝑀100

𝑖 for 𝑖 = 1, . . . ,𝑑−1. We choose the fan-ins
in the AND-OR tree such that under a uniform random input, for
each gate 𝑔 at distance 𝑖 ≤ 𝑑 from the inputs, the subformula rooted
at 𝑔 has acceptance probability roughly 1/𝑀𝑖 if 𝑖 is even or 1−1/𝑀𝑖

if 𝑖 is odd, and overall, the AND-OR tree has acceptance probability
roughly 1/2. In more detail, we set 𝑓𝑖 , 𝑝𝑖 , 𝛽𝑖 , and 𝝅 (𝑖) as described in
Figure 1. For the precise values, see the full version of this paper [38,
Sections 4 and 6.1]. For intuition, we remark that our AND-OR tree
corresponds to a 𝑑-fold composition that alternates between the
well-known tribes function (a read-once DNF) and its Boolean dual (a
read-once CNF), with widths approximately log(𝑀1), . . . , log(𝑀𝑑).
The tribes function and its dual are approximately balanced, so
the composition is also approximately balanced. The top fan-ins of
these CNFs and DNFs are approximately𝑀1 · ln(2), . . . ,𝑀𝑑 · ln(2),
and hence after merging adjacent layers when possible, we get a
depth-(𝑑 + 1) tree with the fan-ins as described above.

Observe that for 𝑖 ≥ 2, the values that 𝝅 (𝑖) assigns to fixed
variables are highly biased, alternately toward 1 or toward 0.

As mentioned above, the proof that 𝐹 survives the projection
procedure simply generalizes the analysis in Håstad, Rossman,
Servedio, and Tan’s work [37] to our different parameter setting.
Intuitively, the “blockwise” correlations that are present in the pro-
jections 𝝅 (1) , . . . , 𝝅 (𝑑) (e.g., recall that when 𝝅

(1) keeps a variable
alive, it assigns 1 to all of the non-surviving variables in that block)
are tailored to the AND-OR-tree and designed to keep it alive. See
the full version of this paper for details [38, Section 5]. The inno-
vative part in our argument is showing that LTF circuits simplify
under the projections.

LTF Circuits Simplify under Projections: The High-Level Plan. Our
argument has a high-level structure similar to the ones in prior
work [26, 39, 70], but instead of arguing about the effects of tradi-
tional random restrictions, we now argue about the effects of each

random projection 𝝅
(𝑖) above (for any fixed 𝑖 ∈ [𝑑]). For simplicity,

we assume from now on that 𝑖 is odd, in which case the assigned
values of 𝝅 (𝑖) are biased toward 1 and the corresponding gate in 𝐹
is an AND gate.

Similarly to the analysis in [39] (also implicit in the work of
Chen, Santhanam, and Srinivasan [26]), we will work with hybrid
computational models. That is, on the way to proving that any
LTF circuit 𝑓 becomes (close to) a constant, we argue that after
intermediate projections 𝝅 (𝑖) the circuit can be computed by a
computational model that combines decision trees and LTF circuits;
specifically, the tree queries variables to reach a leaf, and the leaf is
labeled by an LTF circuit that is then applied to the input.7

Our proof has three main steps:

(1) As a first step, we prove that applying 𝝅
(𝑖) to any LTF (i.e.,

any single gate in 𝑓) makes the LTF extremely close to a
constant, with somewhat high probability. This probability
is high, but not enough to allow a union bound on all gates.
We will elaborate in Section 2.2.

(2) Our second step is to argue that applying 𝝅
(𝑖) to any LTF

circuit of depth 𝑑 + 1 − 𝑖 with 𝑛1+2
−𝑂 (𝑑)

wires simplifies the
circuit, with somewhat high probability, to be very close to
a decision tree with LTF circuits of depth 𝑑 − 𝑖 at its leaves,
where the depth of the tree is significantly smaller than the
number of living variables under 𝝅 (𝑖) . We will elaborate in
Section 2.3.

(3) The final step is to show that applying 𝝅 (𝑖) to a decision tree
with LTF circuits of depth 𝑑 + 1− 𝑖 at its leaves simplifies the
tree, with high probability, such that it is close to a shallower
decision tree in which the leaves are labeled by depth 𝑑 − 𝑖
LTF circuits. We will elaborate in Section 2.4.

We stress that in all the statements above, the notion of “approx-
imating a function” (i.e., when saying that a restricted function is
close to a simpler function) refers to the distribution 𝝈

(𝑖+1) , rather
than to the uniform distribution. Having proved the three steps
above, the proof will analyze the applications of 𝝅 (𝑖) for 𝑖 = 1, . . . ,𝑑 ,
arguing at each iteration 𝑖 that the circuit simplifies with respect to
the “next” distribution 𝝈

(𝑖+1) . In the last step the circuit will be a
decision tree that queries only a sub-constant fraction of its vari-
ables. Such a tree cannot approximate the AND (or OR) function
𝐹!𝝅 under 𝝈 (𝑑+1) . Indeed, with high probability over 𝝅 , the tree is
close to a constant under 𝝈 (𝑑+1) , whereas 𝐹!𝝅 is nearly balanced
(because 𝝈 (𝑑+1) is biased).

2.2 Random Projections Simplify Any Single
LTF

Chen, Santhanam, and Srinivasan showed that a random restriction
that keeps a 𝑝-fraction of the variables alive simplifies any single
LTF to be exp(−𝑝−Ω (1))-close to a constant, with probability at
least 1 − 𝑝Ω (1) [26]. A motivating observation for our analysis
is that a biased restriction, which keeps a 𝑝-fraction of variables
alive and fixes the other variables independently by b1−𝛽 , simplifies

any unweighted threshold function to be exp(−𝑝−Ω (1))-close to a
constant with respect to any product distribution, with probability

7This hybrid model is simpler than the one considered in [39], since the latter also
allowed queries to LTF gates at internal nodes of the tree.

899

STOC ’23, June 20–23, 2023, Orlando, FL, USA Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell

𝑓𝑖 = fan-ins at distance 𝑖 from inputs ≈

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

log(𝑀1) 𝑖 = 1

𝑀𝑖−1 · ln(𝑀𝑖) 2 ≤ 𝑖 ≤ 𝑑

𝑀𝑑 · ln(2) 𝑖 = 𝑑 + 1

𝑝𝑖 = probability that a block survives under 𝝅 (𝑖) ≈ 1/
√
𝑀𝑖

𝛽𝑖 = bias parameter of 𝝅 (𝑖) (biased toward 1 if 𝑖 is odd, 0 if 𝑖 is even) = 1/
√
𝑀𝑖−1

𝝈
(𝑖)

= distribution over level-(𝑖 − 1) variables =

{
b1−𝛽𝑖 to each variable (i.i.d.) 𝑖 odd

b𝛽𝑖 to each variable (i.i.d.) 𝑖 even.

Figure 1: The main parameters of our construction and analysis.

1 − (𝑝/𝛽)Ω (1) .8 In other words, for any bias 𝛽 > 0 of assignments
to the fixed variables, the probability that an unweighted LTF fails
to simplify is (𝑝/𝛽)Ω (1) , compared to the 𝑝Ω (1) bound that Chen,
Santhanam, and Srinivasan showed in their setting [26].

We extend this statement to hold for an arbitrary (weighted)
LTF rather than just the unweighted LTFs; to hold when the values
assigned to fixed variables are correlated (i.e., within each block,
if the block survives then all fixed variables are simultaneously
assigned the value 1, and otherwise the probability of the all-ones
string is artificially decreased); and to hold also when considering
a merging of the variables after applying the restriction. In this
more challenging setting, we show a slightly worse error bound of
(𝑝/𝛽2)Ω (1) compared to (𝑝/𝛽)Ω (1) :

Theorem 2.2 (LTFs simplify under corrupted biased block

projections; informal). Let Φ be an LTF on 𝑛 variables, let 𝝅 be
a corrupted biased block projection with parameters 𝑝 and 𝛽 , and
let 𝝈 be a product distribution (possibly with biased marginals). As-

sume that each block 𝐵 𝑗 satisfies 𝜖/𝑛 ≤ (1 − 𝛽) |𝐵 𝑗 | ≤ 𝑝 . Then the
probability that Φ!𝝅 is not 𝜖-close to a constant under 𝝈 is

𝑂

((
𝑝

𝛽2

)1/3
· log

(𝑛
𝜖

))

.

Before explaining the ideas in the proof, let us comment on the
subtlety of the parameters obtained in Theorem 2.2. First, in Theo-
rem 2.2, we assume both upper and lower bounds on the quantity
(1 − 𝛽) |𝐵 𝑗 | . That is, we assume that the block size |𝐵 𝑗 | is neither
too big nor too small. Fortunately, this “Goldilocks” condition is
indeed satisfied by our projections 𝝅 (1) , . . . , 𝝅 (𝑑) with high proba-
bility.9 (It is also satisfied by Håstad, Rossman, Servedio, and Tan’s
projections [37].) Thus, Theorem 2.2 applies to 𝝅

(𝑖) with failure
probability 𝑂 ((𝑝𝑖/𝛽

2
𝑖)

1/3 · log(𝑛/𝜖)).

8To see this, let Φ be an 𝑛-bit unweighted LTF, and let 1/𝑛 ≤ 𝑝 ≤ 1/2. Consider
a random restriction 𝝆 that keeps a random subset 𝑆 of 𝑝 · 𝑛 variables alive and
fixes the variables in [𝑛] \ 𝑆 independently according to b1−𝛽 . Hoeffding’s inequality
implies that (with respect to any fixed product distribution) the function is 𝜖-close to
a constant only if the sum of values assigned to variables in [𝑛] \ 𝑆 falls in an interval

of length𝑂 (
√
log(1/𝜖) · 𝑝 · 𝑛) . By the Berry-Esseen theorem, the probability of this

event is at most𝑂 (
√
log(1/𝜖) · (𝑝/𝛽)) . See the full version of this paper for further

details [38].
9Actually, in the rare event that a block is an unacceptable size, our projection assigns
values to all variables in that block from an i.i.d. product distribution independently of
the other blocks, and we show that this does not affect the rest of the analysis. See the
full version of this paper for details [38].

Secondly, the projections in Håstad, Rossman, Servedio, and
Tan’s original work [37] satisfy 𝑝 ≈ 𝛽 . For such parameters, the
bound of Theorem 2.2 would be useless. However, our modified
projections have parameters 𝑝 and 𝛽 that vary from one iteration
to the next, and crucially, the bias parameter 𝛽 in each iteration
is approximately equal to the block survival probability 𝑝 in the
previous iteration, i.e., 𝛽𝑖 ≈ 𝑝𝑖−1. A key property of our projections
is that they are “increasingly aggressive” in the sense that 𝑝𝑖 ≪ 𝑝𝑖−1
(specifically 𝑝𝑖 ≈ 𝑝100𝑖−1). Therefore, the bound of Theorem 2.2 is
indeed small when we apply it to our projections.

To prove Theorem 2.2, we generalize the “structure vs. ran-
domness” approach that Chen, Santhanam, and Srinivasan used to
show that LTFs simplify under traditional random restrictions [26].
Loosely speaking, their proof first analyzes “regular” LTFs, i.e., LTFs
in which the weights are reasonably well-spread (this is the “ran-
dom” case). Under the assumption of regularity, they argue that
the weighted sum of assigned values is anti-concentrated, and thus
unlikely to land in the small interval that would cause the restricted
LTF to be somewhat balanced. To complement this analysis, they
analyze LTFs that have a small number of “heavy” variables (this is
the “structure” case). If the number of heavy variables is sufficiently
small, then it is possible to fix them and reduce to the regular case,
and otherwise they show anti-concentration among these “heavy”
variables alone.

To make this approach work in our setting, the main challenge is
establishing anti-concentration in the regular case.10 Recall that in
the projection 𝝅

(𝑖) , after the set of living variables has been fixed,
non-surviving variables in surviving blocks are always assigned
the value 1; this deterministic assignment does not contribute any
anti-concentration at all. In non-surviving blocks, the assignment is
random, but the assigned values are not independent, because the
probability of the all-ones assignment is artificially decreased. The
effect of this “corruption” within a single block is limited (because
the all-ones assignment would be rare even without corruption).
However, there are many blocks, and the overall effect is statistically
significant; nevertheless, our goal is to show anti-concentration
despite these corruptions.

To prove anti-concentration of the weighted sum of the assigned
values, we first observe that with high probability, the variables

10By comparison, our analysis of non-regular LTFs is a relatively straightforward
adaptation of techniques from prior work. Note that both the regular and the non-
regular cases contribute to the final error bound in Theorem 2.2, and as discussed, that
error bound forces us to use a careful choice of parameters in our construction.

900

Depth-𝑑 Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

in non-surviving blocks have a constant fraction of the total ℓ2-
weight. (By “ℓ2-weight,” we mean the sum of the squares of the
weights.) We may therefore focus on such variables (and ignore the
non-surviving variables in surviving blocks). To handle the corrup-
tions in non-surviving blocks, we show that the weighted sum of
assigned values to fixed variables in non-surviving blocks can be
represented as the weighted sum of truly independent Bernoulli
variables, plus an error term. The sum of independent variables is
anti-concentrated by the Berry-Esseen theorem; see the full version
of this paper for details [38, Lemma 6.9]. To handle the error term,
we bound its variance. (This is where we use the assumption that
the blocks are not too small, in which case the all-ones assignment
would be rare even without corruption. See the full version of this
paper [38, Lemma 6.7] for details.) We thereby show that the er-
ror term is concentrated, and therefore it does little harm to the
anti-concentration property of the sum of independent variables.

The anti-concentration established by the preceding arguments
must be compared to the ℓ2-weight of the living variables. Here
we face another potential pitfall: When variables are merged, their
weights effectively add, which typically increases the ℓ2-weight of
the living variables (making the LTFmore balanced). This potential
pitfall is the reason that we assume that the blocks are not too big.
The assumption in Theorem 2.2 implies that with high probability,
the number of variables that are merged in each block is small –
only𝑂 (log(𝑛/𝜖)) – and therefore the detrimental effect of mergings
is limited.

2.3 Random Projections Simplify LTF Circuits
(If We Allow Some Queries)

The next step is to argue that for every LTF circuit 𝑓 of slightly
super-linear size, with high probability, 𝝅 (𝑖) “simplifies” the entire
bottom layer of 𝑓 . Ideally, we are hoping that the gates in the bot-
tom layer become close to constants. We cannot simply apply a
union bound to claim that they are all close to constants simultane-
ously, because the failure probability in Theorem 2.2 might be too
large. Instead, following prior work, we argue that after querying
a sub-linear number of the remaining variables, each gate in the
bottom layer is either close to a constant (over the distribution
𝝈
(𝑖+1)) or has fan-in one. Thus, the projected circuit 𝑓 !

𝝅 (𝑖) can

be approximated (over 𝝈 (𝑖+1)) by a decision tree whose leaves are
labeled by shallower LTF circuits.

Given appropriate techniques from prior work [9, 26, 39, 42, 70],
this is the easiest part of our argument, because those techniques
do not depend on the assignments to fixed variables, but rather only
on concentration properties of the number of living variables inside
certain sets. We include a brief explanation of the argument here
for completeness; see the full version of this paper for details [38,
Section 6.3].

We partition the gates in the bottom layer of 𝑓 into “heavy gates”
and “light gates” based on their fan-in. Most light gates have only
one (or zero) living variable feeding into them after the projection,
so they can be replaced with a wire (or eliminated), and we query
the variables feeding into the remaining light gates (there are few
such variables, because these gates are light). Most heavy gates
become close to a constant by Theorem 2.2, and we query all the
variables feeding into the remaining heavy gates. The total number

of such queries is bounded because the total number of wires in the
circuit is bounded. (The latter argument is carried out by a standard
bucketing technique, looking at all gates with fan-in roughly 2𝑖 for
each 𝑖 and using the simple observation that there can be at most
𝑤/2𝑖 such gates for each 𝑖 .)

2.4 Random Projections Simplify Decision
Trees with LTF Circuits at Their Leaves

The previous step yielded a decision tree 𝑇 with LTF circuits at its
leaves. The last key piece in our proof is arguing that each such
decision tree simplifies, under 𝝅 (𝑖) , to a shallower decision tree
with shallower LTF circuit at its leaves. (Indeed, we need the tree
depth to decrease by a factor of ≈ 𝑝𝑖 , and we need the circuits to
decrease by one layer.)

First, we show that the tree depth indeed shrinks, with high
probability, by a factor of ≈ 𝑝𝑖 . This turns out to be not as straight-
forward as it might seem, due to correlations and mergings in
𝝅
(𝑖) ; see the full version of this paper for details [38, Lemma 7.1].

Nonetheless, the more interesting part of the argument is arguing
that we can use shallower LTF circuits at the leaves. The natural
strategy to try and prove this is to claim that for each leaf, the
corresponding circuit simplifies under 𝝅 (𝑖) with high probability,
and thus the fraction of “bad” leaves is small and we can replace
those by constants, obtaining a tree with similar functionality.

The problem with this approach is the correlations between
variables in the same block under the projection 𝝅

(𝑖) . At each
fixed leaf, simplification occurs with high probability, but we must
analyze the random leaf reached when we apply 𝝅

(𝑖) to 𝑇 and
then plug in an input sampled from 𝝈

(𝑖+1) . In particular, the leaf is
determined in part by 𝝅

(𝑖) , and the event of reaching a particular
leaf can be correlated with the event that simplification fails at that
leaf. It is therefore not clear how to show that simplification occurs
with high probability at the random leaf that we reach.11

Dealing with this issue is the most subtle part of our argument,
and it involves a two-step approach.

Preprocessing the Tree. As a first step, we “preprocess” the tree𝑇 ,
transforming it into a new tree 𝑇 . The new tree 𝑇 simulates 𝑇 and
in fact refines 𝑇 in the following way: if 𝑇 ever queries too many
variables in a block, or if𝑇 ever queries a variable in some block and
observes a 0 (a somewhat unlikely event as bits are biased towards
1), then 𝑇 queries all variables in that block. It turns out that these
modifications are not too costly, in the sense that after applying
the projection 𝝅

(𝑖) , the two projected trees𝑇!
𝝅 (𝑖) and𝑇!𝝅 (𝑖) have

similar query complexities. Briefly, this holds for the following two
reasons:

• The event of querying too many variables in a single block
can only happen so many times given 𝑇 ’s depth bound, and
most such blocks don’t survive the projection, so these events
only cause 𝑇!

𝝅 (𝑖) to perform a few additional queries com-
pared to 𝑇!

𝝅 (𝑖) .

11In previous work [39] a similar challenge occurred, since the path to each leaf
contained LTFs. However, the challenge there was significantly easier, since the number
of LTFs on a path was small and thus it was possible to easily upper bound their effect
on the resulting distribution.

901

STOC ’23, June 20–23, 2023, Orlando, FL, USA Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell

• If a variable 𝑥 𝑗 in block 𝐵 is observed to be 0, we have two

cases. If the block 𝐵 is non-surviving under 𝝅 (𝑖) , then𝑇!
𝝅 (𝑖)

does not need to query any variable in 𝐵, because they are all
assigned. On the other hand, if the block 𝐵 is surviving, then
the individual variable 𝑥 𝑗 ∈ 𝐵 must survive in 𝝅

(𝑖) , because
non-surviving variables in surviving blocks are assigned the
value 1. Therefore, in this case, both𝑇!

𝝅 (𝑖) and𝑇!𝝅 (𝑖) query
the single “merged” variable corresponding to the entire
block 𝐵. Thus, in either case, observing a 0 ultimately does
not cause𝑇!

𝝅 (𝑖) to perform any additional queries compared
to 𝑇!

𝝅 (𝑖) .

Conditional Analysis of Corrupted Biased Block Projections. For
the second step, consider the process of applying 𝝅

(𝑖) to 𝑇 and
then plugging in an input sampled from 𝝈

(𝑖+1) . We analyze the
joint distribution of 𝝅 (𝑖) and 𝝈

(𝑖+1) conditioned on the event of
reaching a leaf ℓ . Because of the preprocessing step, we can make
a “win-win” argument: for each block, either (a) the tree queries
every single variable in the block, or (b) the tree only makes a few
queries to the block and observes 1 each time. In case (a), we can
assume without loss of generality that the circuit 𝐶ℓ labeling the
leaf ℓ ignores all variables in that block, hence we can ignore the
block. In case (b), the constraints on the queries help us to bound
the extent to which conditioning distorts the distributions of 𝝅 (𝑖)

and 𝝈
(𝑖+1) .

For example, we show that the event we are conditioning on in
case (b) is a high-probability event regardless of whether the block
survives, and hence the conditioning has little effect on the block’s
survival probability. By analyzing our projection distribution in
more detail, we show that instead of applying 𝝅

(𝑖) to the circuit
𝐶ℓ , plugging in an input sampled from 𝝈

(𝑖+1) , and conditioning
on the event of reaching ℓ , we can equivalently imagine applying
another corrupted biased block projection 𝝅̃ , plugging in an input
sampled from another product distribution 𝝈̃ , and not conditioning on
anything. The parameters of 𝝅̃ and 𝝈̃ are slightly different than the
parameters of 𝝅 (𝑖) and 𝝈 (𝑖+1) , but our analysis of a single circuit is
sufficiently robust against these small distortions to conclude that
𝑇 simplifies with high probability.

2.5 Putting It All Together
To summarize our discussion so far, we show that when we apply
the random projection 𝝅

(𝑖) to a decision tree T𝑖−1 with LTF circuits
at its leaves, we get another decision tree T𝑖 with LTF circuits at its
leaves that is “simpler” in the sense that the circuit-depth decreases
by 1. The tree T𝑖 agrees with the projected function T𝑖−1!𝝅 (𝑖) with

high probability under the product distribution 𝝈
(𝑖+1) . To finish

the proof, we need to apply some type of triangle inequality. For
example, we know that T1 ≈ T0!𝝅 (1) and T2 ≈ T1!𝝅 (2) ; we want
to conclude that T2 ≈ T0!𝝅 (2)◦𝝅 (1) .

We are indeed able to show that T𝑑 ≈ T0!𝝅 (𝑑)◦· · ·◦𝝅 (1) by re-

lying upon a crucial feature of the projections 𝝅 (1) , . . . , 𝝅 (𝑑) and
the product distributions 𝝈 (1) , . . . ,𝝈 (𝑑+1) . These projections and
product distributions are compatible with each other, in the sense
that applying 𝝅

(𝑖) and then assigning values sampled from 𝝈
(𝑖+1)

yields exactly the distribution 𝝈
(𝑖) [38, Lemma 5.2].

The same feature (the “completion property”) is also crucial in
the work of Håstad, Rossman, Servedio, and Tan [37]. However, the
completion property plays a different role in their work than it does
in ours. Their work is focused on average-case lower bounds; they
rely on the fact that applying 𝝅

(𝑑) ◦ · · · ◦ 𝝅 (1) and then assigning
values sampled from 𝝈

(𝑑+1) yields the uniform distribution over
inputs. The completion property is likewise an essential ingredient
of our average-case separation, but the distinction is that in our
setting, the completion property would still be crucial even if we
were merely aiming for a worst-case separation. After all, the sim-
plification we achieve at intermediate stages of our argument is
itself only approximate, forcing us to use techniques designed for
average-case separations.

The completion property holds trivially in the traditional set-
ting of truly random restrictions, because the values assigned by
the restriction are themselves independent and uniform. In both
our work and the work of Håstad et al. [37], there are correlations
between the values assigned to different variables, which are essen-
tial for ensuring that the AND-OR tree 𝐹 survives. In both works,
the purpose of merging variables (i.e., the purpose of using projec-
tions rather than restrictions) is to achieve the completion property
despite these correlations.

ACKNOWLEDGMENTS
P.H. is supported by NSF grant CCF-1947546. Part of this work was
done while W.M.H. was visiting the Simons Institute for the Theory
of Computing, and part of this work was done while W.M.H. was a
graduate student at the University of Texas at Austin, supported
by the NSF GRFP under Grant DGE-1610403 and by a Harrington
Fellowship from the University of Texas at Austin. A.T. is supported
by NSF CAREER award CCF-2145474 and by a Sloan Fellowship
from the Sloan Foundation. R.T. is partially supported by the Na-
tional Science Foundation under grant number CCF-1445755 and
under grant number CCF-1900460. Part of this work was conducted
while R.T. was at DIMACS, and part of this work was conducted
while R.T. was a fellow at the Simons Institute for the Theory of
Computing.

REFERENCES
[1] Scott Aaronson. 2010. BQP and the polynomial hierarchy. In Proc. 42nd Annual

ACM Symposium on Theory of Computing (STOC). ACM, New York, 141–150.
https://doi.org/10.1145/1806689.1806711

[2] Rohit Agrawal. 2020. Coin theorems and the Fourier expansion. Chicago Journal
of Theoretical Computer Science (2020), Art. 4, 15. https://doi.org/10.4086/cjtcs.
2020.004

[3] Eric Allender. 1989. A note on the power of threshold circuits. In Proc. 30th
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 580–584.
https://doi.org/10.1109/SFCS.1989.63538

[4] Eric Allender and Vivek Gore. 1994. A Uniform Circuit Lower Bound for the
Permanent. SIAM J. Comput. 23, 5 (1994), 1026–1049. https://doi.org/10.1137/
S0097539792233907

[5] Eric Allender and Ulrich Hertrampf. 1994. Depth reduction for circuits of un-
bounded fan-in. Inform. and Comput. 112, 2 (1994), 217–238. https://doi.org/10.
1006/inco.1994.1057

[6] Eric Allender and Michal Koucký. 2010. Amplifying lower bounds by means of
self-reducibility. Journal of the ACM 57, 3 (2010), 14, 36. https://doi.org/10.1145/
1706591.1706594

[7] Josh Alman, Timothy M. Chan, and Ryan Williams. 2016. Polynomial repre-
sentations of threshold functions and algorithmic applications. In Proc. 57th
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 467–476.
https://doi.org/10.1109/FOCS.2016.57

[8] Kazuyuki Amano. 2009. Bounds on the size of small depth circuits for approxi-
mating majority. In Proc. 36th International Colloquium on Automata, Languages

902

https://doi.org/10.1145/1806689.1806711
https://doi.org/10.4086/cjtcs.2020.004
https://doi.org/10.4086/cjtcs.2020.004
https://doi.org/10.1109/SFCS.1989.63538
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1006/inco.1994.1057
https://doi.org/10.1006/inco.1994.1057
https://doi.org/10.1145/1706591.1706594
https://doi.org/10.1145/1706591.1706594
https://doi.org/10.1109/FOCS.2016.57

Depth-𝑑 Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

and Programming (ICALP). 59–70. https://doi.org/10.1007/978-3-642-02927-1_7
[9] Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, and Srikanth

Srinivasan. 2022. A #SAT algorithm for small constant-depth circuits with PTF
gates. Algorithmica 84, 4 (2022), 1132–1162. https://doi.org/10.1007/s00453-021-
00915-7

[10] Paul Beame and Trinh Huynh. 2012. Multiparty Communication Complexity and
Threshold Circuit Size of AC0 . SIAM Journal of Computing 41, 3 (2012), 484–518.
https://doi.org/10.1137/100792779

[11] Richard Beigel and Jun Tarui. 1994. On ACC. Computational Complexity 4, 4
(1994), 350–366. https://doi.org/10.1007/BF01263423

[12] Mark Braverman, Sumegha Garg, and David P. Woodruff. 2020. The coin prob-
lem with applications to data streams. In Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Soc., Los Alamitos, CA,
318–329. https://doi.org/10.1109/FOCS46700.2020.00038

[13] Mark Braverman, Sumegha Garg, and Or Zamir. 2022. Tight space complexity
of the coin problem. In Proc. 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Soc., Los Alamitos, CA, 1068–1079.
https://doi.org/10.1109/FOCS52979.2021.00106

[14] Joshua Brody and Elad Verbin. 2010. The coin problem, and pseudorandomness
for branching programs. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 30–39. https://doi.org/10.1109/FOCS.2010.10

[15] Jehoshua Bruck and Roman Smolensky. 1992. Polynomial threshold functions,
AC0 functions, and spectral norms. SIAM J. Comput. 21, 1 (1992), 33–42. https:
//doi.org/10.1137/0221003

[16] Harry Buhrman, Nikolay Vereshchagin, and Ronald de Wolf. 2007. On Computa-
tion and Communication with Small Bias. In Proc. 22nd Annual IEEE Conference
on Computational Complexity (CCC). 24–32. https://doi.org/10.1109/CCC.2007.18

[17] Mark Bun and Justin Thaler. 2015. Hardness amplification and the approximate
degree of constant-depth circuits. In Proc. 42nd International Colloquium on
Automata, Languages and Programming (ICALP). Lecture Notes in Comput. Sci.,
Vol. 9134. Springer, Heidelberg, 268–280. https://doi.org/10.1007/978-3-662-
47672-7_22

[18] Mark Bun and Justin Thaler. 2016. Improved bounds on the sign-rank of AC0 . In
Proc. 43rd International Colloquium on Automata, Languages and Programming
(ICALP). LIPIcs. Leibniz Int. Proc. Inform., Vol. 55. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, Art. No. 37, 14. https://doi.org/10.4230/LIPIcs.ICALP.2016.37

[19] Mark Bun and Justin Thaler. 2021. The large-error approximate degree of AC0 .
Theory of Computing 17 (2021), Paper No. 7, 46. https://doi.org/10.4086/toc.2021.
v017a007

[20] Arkadev Chattopadhyay. 2007. Discrepancy and the Power of Bottom Fan-in in
Depth-three Circuits. In Proc. 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 449–458. https://doi.org/10.1109/FOCS.2007.30

[21] Lijie Chen. 2019. Non-deterministic Quasi-Polynomial Time is Average-case
Hard for ACC Circuits. In Proc. 60th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). https://doi.org/10.1109/FOCS.2019.00079

[22] Lijie Chen, Ce Jin, and Richard Ryan Williams. 2020. Sharp threshold results for
computational complexity. In Proc. 52nd Annual ACM Symposium on Theory of
Computing (STOC). 1335–1348. https://doi.org/10.1145/3357713.3384283

[23] Lijie Chen and Hanlin Ren. 2022. Strong Average-Case Circuit Lower Bounds
from Nontrivial Derandomization. SIAM J. Comput. 51, 3 (2022), STOC20–115–
STOC20–173. https://doi.org/10.1137/20M1364886

[24] Lijie Chen and Roei Tell. 2019. Bootstrapping results for threshold circuits “just
beyond” known lower bounds. In Proc. 51st Annual ACM Symposium on Theory
of Computing (STOC). 34–41. https://doi.org/10.1145/3313276.3316333

[25] Ruiwen Chen, Igor C. Oliveira, and Rahul Santhanam. 2018. An average-case
lower bound against ACC0 . In LATIN 2018: Theoretical informatics. Lecture Notes
in Comput. Sci., Vol. 10807. Springer, Cham, 317–330. https://doi.org/10.1007/978-
3-319-77404-6_24

[26] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. 2018. Average-case
lower bounds and satisfiability algorithms for small threshold circuits. Theory of
Computing 14 (2018), Paper No. 9, 55. https://doi.org/10.4086/toc.2018.v014a009

[27] Shiteng Chen and Periklis A. Papakonstantinou. 2019. Depth reduction for
composites. SIAM J. Comput. 48, 2 (2019), 668–686. https://doi.org/10.1137/
17M1129672

[28] Gil Cohen, Anat Ganor, and Ran Raz. 2014. Two sides of the coin problem. In Proc.
18th International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM) (LIPIcs. Leibniz Int. Proc. Inform., Vol. 28). 618–629.
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.618

[29] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. 2010. Bounded independence fools halfspaces. SIAM Journal of
Computing 39, 8 (2010), 3441–3462. https://doi.org/10.1137/100783030

[30] Yuval Filmus, Or Meir, and Avishay Tal. 2021. Shrinkage under random pro-
jections, and cubic formula lower bounds for AC0. In Proc. 12th Conference
on Innovations in Theoretical Computer Science (ITCS), Vol. 185. Art. No. 89, 7.
https://doi.org/10.4230/LIPIcs.ITCS.2021.89

[31] Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakz-
janov, Niels Schmitt, and Hans Ulrich Simon. 2001. Relations Between Communi-
cation Complexity, Linear Arrangements, and Computational Complexity. In Proc.
21st Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). 171–182. https://doi.org/10.1007/3-540-45294-X_15

[32] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets,
Antonina Kolokolova, and Avishay Tal. 2019. AC0 [𝑝] lower bounds against
MCSP via the coin problem. In Proc. 46th International Colloquium on Automata,
Languages and Programming (ICALP) (LIPIcs. Leibniz Int. Proc. Inform., Vol. 132).
Art. No. 66, 15. https://doi.org/10.4230/LIPIcs.ICALP.2019.66

[33] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
1993. Threshold Circuits of Bounded Depth. Journal of Computer and System
Sciences 46, 2 (1993), 129–154. https://doi.org/10.1016/0022-0000(93)90001-D

[34] Johan Håstad. 1987. Computational Limitations for Small-Depth Circuits. MIT
Press.

[35] Johan Håstad. 1998. The shrinkage exponent of De Morgan formulas is 2. SIAM
J. Comput. 27, 1 (1998), 48–64. https://doi.org/10.1137/S0097539794261556

[36] Johan Håstad andMikael Goldmann. 1991. On the power of small-depth threshold
circuits. Computational Complexity 1, 2 (1991), 113–129. https://doi.org/10.1007/
BF01272517

[37] Johan Håstad, Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. 2017. An
average-case depth hierarchy theorem for boolean circuits. Journal of the ACM
(JACM) 64, 5 (2017), 1–27. https://doi.org/10.1145/3095799

[38] Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. 2022. Depth-𝑑
Threshold Circuits vs. Depth-(𝑑 + 1) AND-OR Trees. Electronic Colloquium on
Computational Complexity: ECCC 87 (2022), 71. https://eccc.weizmann.ac.il/
report/2022/087/

[39] Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. 2022. Fooling
constant-depth threshold circuits. In Proc. 62nd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). 104–115. https://doi.org/10.1109/FOCS52979.
2021.00019

[40] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. 1997. Size-depth
tradeoffs for threshold circuits. SIAM Journal of Computing 26, 3 (1997), 693–707.
https://doi.org/10.1137/S0097539792282965

[41] Russell Impagliazzo and Nathan Segerlind. 2001. Counting axioms do not poly-
nomially simulate counting gates. In Proc. 42nd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). https://doi.org/10.1109/SFCS.2001.959894

[42] Valentine Kabanets and Zhenjian Lu. 2018. Satisfiability and derandomization
for small polynomial threshold circuits. In Proc. 22nd International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM).
Art. No. 46, 19. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.46

[43] J. Kahn, G. Kalai, and N. Linial. 1988. The influence of variables on Boolean
functions. In Proc. 29th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 68–80. https://doi.org/10.1109/SFCS.1988.21923

[44] Matthias Krause and Pavel Pudlák. 1997. On the computational power of depth-2
circuits with threshold and modulo gates. Theoretical Computer Science 174, 1-2
(1997), 137–156. https://doi.org/10.1016/S0304-3975(96)00019-9

[45] Matthias Krause and Pavel Pudlák. 1998. Computing Boolean functions by
polynomials and threshold circuits. Computational Complexity 7, 4 (1998), 346–
370. https://doi.org/10.1007/s000370050015

[46] Chin Ho Lee and Emanuele Viola. 2018. The coin problem for product tests. ACM
Transactions on Computation Theory 10, 3 (2018), Art. 14, 10. https://doi.org/10.
1145/3201787

[47] Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi,
and S. Venkitesh. 2021. A fixed-depth size-hierarchy theorem for AC0 [⊕] via
the coin problem. SIAM Journal of Computing 50, 4 (2021), 1461–1499. https:
//doi.org/10.1137/19M1276467

[48] Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi. 2019. More onAC0 [⊕]
and Variants of the Majority Function. In Proc. 39th Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS). 22:1–
22:14. https://doi.org/10.4230/LIPIcs.FSTTCS.2019.22

[49] Nathan Linial, Yishay Mansour, and Noam Nisan. 1993. Constant depth circuits,
Fourier transform, and learnability. Journal of the ACM 40, 3 (1993), 607–620.
https://doi.org/10.1145/174130.174138

[50] Marvin Minsky and Seymour Papert. 1969. Perceptrons: an Introduction to Com-
putational Geometry. MIT Press.

[51] Cody D. Murray and R. Ryan Williams. 2020. Circuit lower bounds for nondeter-
ministic quasi-polytime from a new easy witness lemma. SIAM J. Comput. 49, 5
(2020), STOC18–300–STOC18–322. https://doi.org/10.1137/18M1195887

[52] Ryan O’Donnell and Rocco A. Servedio. 2010. New degree bounds for polynomial
threshold functions. Combinatorica 30, 3 (2010), 327–358. https://doi.org/10.
1007/s00493-010-2173-3

[53] Ryan O’Donnell and Karl Wimmer. 2007. Approximation by DNF: examples and
counterexamples. In Proc. 34th International Colloquium on Automata, Languages
and Programming (ICALP). Lecture Notes in Comput. Sci., Vol. 4596. Springer,
Berlin, 195–206. https://doi.org/10.1007/978-3-540-73420-8_19

903

https://doi.org/10.1007/978-3-642-02927-1_7
https://doi.org/10.1007/s00453-021-00915-7
https://doi.org/10.1007/s00453-021-00915-7
https://doi.org/10.1137/100792779
https://doi.org/10.1007/BF01263423
https://doi.org/10.1109/FOCS46700.2020.00038
https://doi.org/10.1109/FOCS52979.2021.00106
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1137/0221003
https://doi.org/10.1137/0221003
https://doi.org/10.1109/CCC.2007.18
https://doi.org/10.1007/978-3-662-47672-7_22
https://doi.org/10.1007/978-3-662-47672-7_22
https://doi.org/10.4230/LIPIcs.ICALP.2016.37
https://doi.org/10.4086/toc.2021.v017a007
https://doi.org/10.4086/toc.2021.v017a007
https://doi.org/10.1109/FOCS.2007.30
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1137/20M1364886
https://doi.org/10.1145/3313276.3316333
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.4086/toc.2018.v014a009
https://doi.org/10.1137/17M1129672
https://doi.org/10.1137/17M1129672
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.618
https://doi.org/10.1137/100783030
https://doi.org/10.4230/LIPIcs.ITCS.2021.89
https://doi.org/10.1007/3-540-45294-X_15
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1007/BF01272517
https://doi.org/10.1007/BF01272517
https://doi.org/10.1145/3095799
https://eccc.weizmann.ac.il/report/2022/087/
https://eccc.weizmann.ac.il/report/2022/087/
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1137/S0097539792282965
https://doi.org/10.1109/SFCS.2001.959894
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.46
https://doi.org/10.1109/SFCS.1988.21923
https://doi.org/10.1016/S0304-3975(96)00019-9
https://doi.org/10.1007/s000370050015
https://doi.org/10.1145/3201787
https://doi.org/10.1145/3201787
https://doi.org/10.1137/19M1276467
https://doi.org/10.1137/19M1276467
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.22
https://doi.org/10.1145/174130.174138
https://doi.org/10.1137/18M1195887
https://doi.org/10.1007/s00493-010-2173-3
https://doi.org/10.1007/s00493-010-2173-3
https://doi.org/10.1007/978-3-540-73420-8_19

STOC ’23, June 20–23, 2023, Orlando, FL, USA Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell

[54] Igor C. Oliveira and Rahul Santhanam. 2018. Hardness magnification for natural
problems. In Proc. 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Soc., Los Alamitos, CA, 65–76. https://doi.org/
10.1109/FOCS.2018.00016

[55] Alexander Razborov and Avi Wigderson. 1993. 𝑛Ω (log𝑛) lower bounds on the
size of depth-3 threshold circuits with AND gates at the bottom. Inform. Process.
Lett. 45, 6 (1993), 303–307. https://doi.org/10.1016/0020-0190(93)90041-7

[56] Alexander A. Razborov. 1987. Lower bounds on the size of constant-depth
networks over a complete basis with logical addition. Mathematical Notes of the
Academy of Science of the USSR 41, 4 (1987), 333–338.

[57] Alexander A. Razborov and Alexander A. Sherstov. 2010. The Sign-Rank of AC0 .
SIAM Journal of Computing 39, 5 (2010), 1833–1855. https://doi.org/10.1137/
080744037

[58] Rocco A. Servedio. 2007. Every linear threshold function has a low-weight
approximator. Computational Complexity 16, 2 (2007), 180–209. https://doi.org/
10.1007/s00037-007-0228-7

[59] Ronen Shaltiel and Emanuele Viola. 2010. Hardness amplification proofs require
majority. SIAM J. Comput. 39, 7 (2010), 3122–3154. https://doi.org/10.1137/
080735096

[60] Alexander A. Sherstov. 2009. Separating AC0 from Depth-2 Majority Circuits.
SIAM Journal of Computing 38, 6 (2009), 2113–2129. https://doi.org/10.1137/
08071421X

[61] Alexander A. Sherstov. 2011. The pattern matrix method. SIAM Journal of
Computing 40, 6 (2011), 1969–2000. https://doi.org/10.1137/080733644

[62] Alexander A. Sherstov. 2018. Breaking the Minsky-Papert barrier for constant-
depth circuits. SIAM Journal of Computing 47, 5 (2018), 1809–1857. https:
//doi.org/10.1137/15M1015704

[63] Alexander A. Sherstov. 2018. The power of asymmetry in constant-depth circuits.
SIAM Journal of Computing 47, 6 (2018), 2362–2434. https://doi.org/10.1137/
16M1064477

[64] Alexander A. Sherstov and Pei Wu. 2021. Near-Optimal Lower Bounds on
the Threshold Degree and Sign-Rank of AC0 . SIAM Journal of Computing on-
line ahead of print (2021), STOC19–1–STOC19–86. https://doi.org/10.1137/
20M1312459

[65] Michael Sipser. 1983. Borel Sets and Circuit Complexity. In Proc. 15th Annual
ACM Symposium on Theory of Computing (STOC). 61–69. https://doi.org/10.1145/
800061.808733

[66] Michael Sipser. 1983. A complexity theoretic approach to randomness. In Proc.
15th Annual ACM Symposium on Theory of Computing (STOC). 330–335. https:
//doi.org/10.1145/800061.808762

[67] Roman Smolensky. 1987. Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. In Proc. 19th Annual ACM Symposium on Theory of
Computing (STOC). 77–82. https://doi.org/10.1145/28395.28404

[68] Aravind Srinivasan. 2003. On the approximability of clique and related maximiza-
tion problems. Journal of Computer and System Sciences 67, 3 (2003), 633–651.
https://doi.org/10.1016/S0022-0000(03)00110-7

[69] John Steinberger. 2013. The distinguishability of product distributions by read-
once branching programs. In Proc. 28th Annual IEEE Conference on Computational
Complexity (CCC). 248–254. https://doi.org/10.1109/CCC.2013.33

[70] Roei Tell. 2018. Quantified Derandomization of Linear Threshold Circuits. In
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 855–865.
https://doi.org/10.1145/3188745.3188822

[71] Seinosuke Toda. 1991. PP is as hard as the polynomial-time hierarchy. SIAM J.
Comput. 20, 5 (1991), 865–877. https://doi.org/10.1137/0220053

[72] Emanuele Viola. 2014. Randomness Buys Depth for Approximate Counting.
Computational Complexity 23, 3 (2014), 479–508. https://doi.org/10.1007/s00037-
013-0076-6

[73] Nikhil Vyas and R. Ryan Williams. 2020. Lower bounds against sparse symmetric
functions of ACC circuits: expanding the reach of #SAT algorithms. In Proc. 37th
Symposium on Theoretical Aspects of Computer Science (STACS) (LIPIcs. Leibniz
Int. Proc. Inform., Vol. 154). Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art.
No. 59, 17. https://doi.org/10.4230/LIPIcs.STACS.2020.59

[74] RyanWilliams. 2014. Nonuniform ACC circuit lower bounds. J. ACM 61, 1 (2014),
Art. 2, 32. https://doi.org/10.1145/2559903

[75] R. Ryan Williams. 2016. Natural proofs versus derandomization. SIAM J. Comput.
45, 2 (2016), 497–529. https://doi.org/10.1137/130938219

[76] R. Ryan Williams. 2018. Faster All-Pairs Shortest Paths via Circuit Complexity.
SIAM J. Comput. 47, 5 (2018), 1965–1985. https://doi.org/10.1137/15M1024524

[77] R. Ryan Williams. 2018. New algorithms and lower bounds for circuits with
linear threshold gates. Theory of Computing 14 (2018), Paper No. 17, 25. https:
//doi.org/10.4086/toc.2018.v014a017

[78] Andrew C-C. Yao. 1985. Separating the Polynomial-time Hierarchy by Oracles.
In Proc. 26th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1–10. https://doi.org/10.1109/SFCS.1985.49

[79] Andrew Chi-Chih Yao. 1989. Circuits and Local Computation. In Proc. 21st Annual
ACM Symposium on Theory of Computing (STOC). 186–196. https://doi.org/10.
1145/73007.73025

[80] Andrew Chi-Chih Yao. 1990. On ACC and threshold circuits. In Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Comput. Soc.
Press, Los Alamitos, CA, 619–627. https://doi.org/10.1109/FSCS.1990.89583

Received 2022-11-07; accepted 2023-02-06

904

https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1016/0020-0190(93)90041-7
https://doi.org/10.1137/080744037
https://doi.org/10.1137/080744037
https://doi.org/10.1007/s00037-007-0228-7
https://doi.org/10.1007/s00037-007-0228-7
https://doi.org/10.1137/080735096
https://doi.org/10.1137/080735096
https://doi.org/10.1137/08071421X
https://doi.org/10.1137/08071421X
https://doi.org/10.1137/080733644
https://doi.org/10.1137/15M1015704
https://doi.org/10.1137/15M1015704
https://doi.org/10.1137/16M1064477
https://doi.org/10.1137/16M1064477
https://doi.org/10.1137/20M1312459
https://doi.org/10.1137/20M1312459
https://doi.org/10.1145/800061.808733
https://doi.org/10.1145/800061.808733
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/28395.28404
https://doi.org/10.1016/S0022-0000(03)00110-7
https://doi.org/10.1109/CCC.2013.33
https://doi.org/10.1145/3188745.3188822
https://doi.org/10.1137/0220053
https://doi.org/10.1007/s00037-013-0076-6
https://doi.org/10.1007/s00037-013-0076-6
https://doi.org/10.4230/LIPIcs.STACS.2020.59
https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219
https://doi.org/10.1137/15M1024524
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1145/73007.73025
https://doi.org/10.1145/73007.73025
https://doi.org/10.1109/FSCS.1990.89583

	Abstract
	1 Introduction
	1.1 Impossibility of Depth-Reduction Using LTF Gates
	1.2 Hard Functions in Extremely Weak Complexity Classes
	1.3 Tightness of Our Result

	2 Technical overview
	2.1 Setup and High-Level Plan
	2.2 Random Projections Simplify Any Single LTF
	2.3 Random Projections Simplify LTF Circuits (If We Allow Some Queries)
	2.4 Random Projections Simplify Decision Trees with LTF Circuits at Their Leaves
	2.5 Putting It All Together

	Acknowledgments
	References

