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Abstract—We present BioSLAM, a lifelong SLAM frame-
work for learning various new appearances incrementally and
maintaining accurate place recognition for previously visited
areas. Unlike humans, artificial neural networks suffer from
catastrophic forgetting and may forget the previously visited
areas when trained with new arrivals. For humans, researchers
discover that there exists a memory replay mechanism in the
brain to keep the neuron active for previous events. Inspired
by this discovery, BioSLAM designs a gated generative replay
to control the robot’s learning behavior based on the feedback
rewards. Specifically, BioOSLAM provides a novel dual-memory
mechanism for maintenance: 1) a dynamic memory to efficiently
learn new observations and 2) a static memory to balance new-old
knowledge. When the agent is encountered with different appear-
ances under new domains, the complete processing pipeline can
help to incrementally update the place recognition ability, robust
to the increasing complexity of long-term place recognition.

We demonstrate BioOSLAM in three incremental SLAM sce-
narios: 1) a 120km city-scale trajectories with LiDAR-based
inputs, 2) a multi-visited 4.5km campus-scale trajectories with
LiDAR-vision inputs, and 3) an official Oxford dataset with
10km visual inputs under different environmental conditions.
We show that BioSLAM can incrementally update the agent’s
place recognition ability and outperform the state-of-the-art
incremental approach, Generative Replay, by 24% in terms of
place recognition accuracy. To our knowledge, BioSLAM is the
first memory-enhanced lifelong SLAM system to help incremental
place recognition in long-term navigation tasks.

Index Terms—Lifelong SLAM, Incremental Place Recognition,
Continuous Localization

I. INTRODUCTION

N essential capability for long-term robotics autonomy

in the open world without human assistance is life-
long Simultaneous Localization and Mapping (SLAM) [I]]. In
the context of lifelong SLAM, the system needs to consider
work in long-term navigation in large-scale environments
and diverse environmental conditions, as depicted in Fig.
Current SLAM methods are mainly conducted under single-
type environments, where the environmental conditions (such
as illuminations, weather, seasons, etc.) are consistent. Recent
works attempt to relax the single-type assumption to accom-
modate diverse environments by leveraging domain adaptation
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Fig. 1: Challenges in Real-world Robotic Localization.
For real-world field applications, robotic localization usually
encounters the following challenges: 1) changing appearance
under long-term traveling, 2) diverse geometric differences
under large-scale areas, 3) mixture structure/unstructured envi-
ronments, and 4) non-stop restriction for long-term autonomy.

techniques [2]], into model learning with deep neural net-
works. However, the domain knowledge under new scenarios
can affect the localization accuracy in previous learned areas,
an effect known as “catastrophic forgetting”.

In real-world long-term navigation [4], the robot may en-
counter complicated 3D environments, such as campus areas,
open streets, residential blocks, commercial buildings, etc.,
and each place has its unique patterns in place recognition.
The robot platform can’t collect datasets under all scenarios at
once and train the localization module in a supervised manner.
A naive solution for incremental observations is to source
additional data for model adaptation with a new scenario;
however, this adaptation is not feasible when the goal is to
ensure the uninterrupted and long-term operation of the robot
since it causes catastrophic forgetting of previous knowledge.
Moreover, changes in environments can be sudden, e.g., rapid
illumination and weather changes, while it may take too
long for traditional learning-based approaches to react to the
changes. Given the above consideration, the main challenges
for lifelong place recognition include:

o Various environmental conditions: the appearances of the
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same area under different environmental conditions will be

represented with different patterns.

e Diverse scenarios: the robot platform will encounter dif-
ferent 3D environments in large-scale navigation tasks, and
most areas are a combination of different types.

e Non-stop training: the robot will accumulate new datasets,
and model fine-tuning is usually required to improve local-
ization performance for new scenarios.

Though the topic of long-term SLAM [5]—[9] has been well
studied in the past decade, in this work, we narrow down the
scope to the lifelong place recognition in long-term navigation
and proposed BioSLAM, that can continuously re-localize to
new environments without sacrificing recognizing ability in
previously seen environments. In our previous work [10], we
notice that cross-domain appearance differences will signif-
icantly affect the recognizing performance; the recognizing
module encounters the catastrophic forgetting problem, where
it is only robust to the most recently trained scenarios. In
contrast, humans and animals do not suffer from catastrophic
forgetting, and short-term and long-term memory mechanisms
exist within the hippocampus [11]] and the front lobe of the
brain [12f], which plays the main role in lifelong knowl-
edge updating. Recently, new evidence from fMRI studies
in humans [13] finds that the hippocampus may ‘act as
a librarian to retrieve the cortical books of memory’, i.e.,
the hippocampus can index the memories for fast retrievals.
Inspired by the biological mechanism, we design two memory
zones for BioSLAM, namely static memory zones (SMZ) for
historical memory encoding with low frequency and dynamic
memory zone (DMZ) for quickly memory reply, and propose
a dual-memory selection mechanism to balance the short-
term adaptation for new observations and long-term memory
retention for historical knowledge. Specifically, BioSLAM also
develops a sleeping cycle for memory consolidation within
SMZ, which is also inspired by a similar mechanism in the
hippocampus [[14]]. Based on the above mechanism, BioSLAM
has the ability to achieve long-term place recognition.

The evaluation methods [[15] for the traditional place recog-
nition using supervised learning approaches do not apply to
lifelong systems. The adaptation capability reflects the perfor-
mance of lifelong systems concerning new observations and
the long-term memory retention of previously visited areas.
In this work, we formulate two metrics, namely adaptation
efficiency (AE) analysis, and retention ability (RA) analysis,
and perform an extensive evaluation using three long-term
datasets: 1) ALITA Urban Dataset, which is focused on
changing geometric patterns, and 2) ALITA Campus Dataset,
which is focused on changing illumination patterns, 3) Oxford
RobotCar Dataset, which is an official long-term datasets with
different environmental conditions. The contributions of this
paper are as follows:

e BioSLAM provides a systematic framework to learn
about ever-changing environments without interruption.
This framework enables incremental place feature learning
for long-term autonomy.

e Within BioSLAM, we develop a rewarding mechanism with
a dynamic and static memory zone, which contains the
task-oriented external reward and curiosity-oriented internal

reward, which can quickly adapt new patterns and maintain

memorization for long-term memory retention.

The rest of the paper will introduce the related works for
place recognition and lifelong incremental learning in sec-
tion [} Section [IT] gives the structural overview of BioSLAM.
Section and section [V explain the details of the general
place feature learning and bio-inspired lifelong memory, re-
spectively. The experiment setup and qualitative/quantitative
analysis are given in section VI and section

II. RELATED WORKS

There are two essential modules in lifelong navigation:
1) navigation and 2) lifelong learning. The navigation task
usually contains the place recognition (PR) or Loop closure
detection (LCD) module as stated in [[16]—[18]], which mainly
serves as the data association for large-scale re-localization
and map optimization in SLAM tasks. Lifelong learning, also
known as continual, incremental, or sequential learning, aims
at incrementally building up knowledge from a sequential data
stream [[19]], [20]], which is essential for long-term localization
where robots will encounter many infinite environments. In
the following subsections, we will mainly introduce the related
works in visual/LiDAR navigation and recent lifelong learning
works from a robotics perspective.

A. Long-term Navigation

In long-term navigation, the place recognition targets iden-
tifying the exact areas under different perspectives and envi-
ronmental conditions [16]].

The traditional geometry descriptors (e.g., scale-invariant
feature transform (SIFT) [21] and oriented FAST and rotated
BRIEF (ORB) [22]) are widely used in visual place recog-
nition because of their invariant properties to scale, orien-
tation and illumination changes. Based on these handcrafted
features, FAB-MAP [23|] build a Bag-of-visual-words (BoW)
architecture to achieve large-scale visual re-localization [8]],
[24]. iBoW-LCD [25] uses an incremental BoW scheme
based on binary descriptors to retrieve matched images more
efficiently. Shan An et al. introduces FILD++ [26], an in-
cremental loop closure detection approach via constructing
a hierarchical small-world graph. With the booming of deep
learning, new convolutional neural network (CNNs) features,
provide significant improvements in feature/semantic extrac-
tion. NetVLAD [27] combined the CNN features and a
differentiable VLAD [28] layer to enable deep learning for
visual place recognition; and based on NetVLAD, recent deep
learning approaches [29], [30]] further improve the recognition
accuracy with different networks.

Despite the success of existing place recognition methods,
the non-learning-based approaches are sensitive to parameter
tuning under different scenarios; and learning-based tech-
niques are trained in a supervised learning manner, restricting
their generalization ability within the offline training datasets.
However, in real-world and long-term tasks [31], [32], the data
stream is infinite with the combination of different areas under
varying environmental conditions; meanwhile, robotic systems
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cannot stop and wait for the network model to update for
newly encountered scenarios.

Except for the above place descriptor-based SLAM system,
there are other remarkable works for long-term navigation.
[S]] provides the Experience-based approach for ever-changing
environments, and the robot can switch between different
experience traces while maintaining the robustness of the
localization system. Recently, [33] extended the experience-
based long-term navigation for the UGV routine-following
task, and [34]], [35]] further extended it to the teach-and-repeat
visual navigation task for UAV systems. [36] developed the
linear regression-based supervised change prediction mech-
anism to handle the predictable changes in the long-term
navigation task. In [6]], the author provides a map summarizing
framework for lifelong visual navigation, where the multiple
visited maps are incorporated into a joint map which shows
better generalization ability for changing environments. On
the other hand, dynamic changes within the 3D environments
may also cause localization failures in the long-term navigation
task. [37] provides a frequency-enhanced map monitor mech-
anism, which can detect the regular changeable appearance in
the long-term navigation task. Besides the experience traces,
[38] also provides a lifelong navigation approach based on a
particle filter with a hidden Markov model; this method can
also long-term UGV localization over the parking areas under
ever-changing parking spaces. [39|] construct graph pruning
for Lifelong SLAM, which can balance the graph size and
mapping performance for long-term navigation requirements.

In this work, we target lifelong localization, where the
place observations will be viewed only once in the sequential
order [19]. Instead of focusing on short-term localization or
fixed pattern localization [15] in most exciting place recog-
nition methods or using the experience-based/frequency-based
mechanisms to keep the long-term robust appearance features,
we focus on how to provide the lifelong training procedure
for the learnable place descriptor.

B. Lifelong Learning for Robotics

Lifelong learning, also known as continual learning, aims at
providing incrementally updated knowledge in ever-changing
environments. Though this area has been studied for a long
time, most approaches are still restricted to simulation or toy
datasets [19]] and can not be applied in real robotic applica-
tions [40]-[42]]. As mentioned in [20], the fundamental chal-
lenge for lifelong learning is not necessarily finding solutions
that work in the real world but rather finding stable algorithms
that can learn in the real world and overcome the catastrophic
forgetting problem. Recent works can be roughly divided
into four families: dynamic architectures, regularization-based,
rehearsal, and generative replay approach.

Dynamic architecture-based methods either 1) add addi-
tional parameters to the models, such as LwF [43]], which use
shared early feature extraction layers and fixed task layers;
or 2) use model adaptation to avoid catastrophic forgetting,
such as PackNet [44], which defines the mask layer to protect
weights when learning new tasks. Regularization-based meth-
ods in the context of lifelong learning can add constraints to

avoid overfitting to new tasks and keep inference ability for
the previous mission, such as Elastic Weight Consolidation
(EWC) [45]] and Synaptic Intelligence (SI) [46]. Airloop [47]
proposed a lifelong learning method for visual loop closure
detection utilizing a euclidean-distance knowledge distillation
loss on images. InCloud [48] proposed an angular distillation
loss to encourage the network to preserve the structure of
its embedding space. However, the above methods must deal
with specific network structures and can quickly converge to
undesired local optima for complex tasks. Rehearsal-based
methods, on the other hand, use memory replays to enhance
the knowledge from the previous tasks or processes such as
iCaRL [49], GEM [50]], which use a small subset of the
previous dataset to balance the knowledge distribution for
different tasks. Instead of maintaining the knowledge based on
past data samples, generative replay [51] combines the actual
raw data and generated artificial data for model updating.
In [52], the authors use a dual teacher-student generative replay
method for incremental learning, where the teacher network
is frozen to guide new networks, and the networks will
switch roles when the student network surpasses the teacher.
Meanwhile, for the memory mechanism in lifelong navigation,
[53]] introduced a long-short-mechanism to transfer the new
observation to the long-term memory while maintaining robust
localization performance under changing environments.

In the long-term localization task, the robots will encounter
many areas under different viewpoints and environmental
conditions. Hence, the ideal approach would be tackling the
real-world localization problem in an embodied platform: an
autonomous agent that can efficiently and incrementally update
its localization ability with limited computation resources.
Similar to [53], BioSLAM also utilizes the dual-memory
mechanism to adapt to new observations while maintaining
memorization ability for long-term knowledge; the signifi-
cant difference is that BioSLAM introduced the rewarding
mechanism (internal & external rewards) and the memory
consolidation for the dual memory system.

III. PROBLEM FORMULATION & SYSTEM OVERVIEW

This paper presents BioSLAM, an incremental place recog-
nition method that enables continual learning of place feature
extraction modules across various domains. Various domains
may encompass different weather conditions, road areas, or
input signal modalities. The approach consists of two funda-
mental modules: 1) a general place feature extraction module
for encoding place features under different domains, and 2)
a bio-inspired lifelong memory system for continual learning
place recognition from different domains. In this section, we
will first formulate the lifelong localization problem, then
introduce the two key modules in the BioSLAM system.

A. Problem Formulation

We define a sequence of place observations under domain D
(i.e., visual or LiDAR) as OP = {0y, ..., Oy}, and a query of
observations under the same domain as QP = {Q, ..., Qn}.
The task of traditional place recognition is to learn a feature
extraction function F with parameter 6 to help each frame in
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Fig. 2: Lifelong Localization System Framework. The lifelong localization system contains the following modules: 1) the
general place feature extraction network, which extracts the place feature from different domains; 2) the bio-inspired lifelong
memory system can provide short-term and long-term assistance to capture new knowledge and maintain old knowledge.

QP find positive (or neighbor) places from the reference sets
OP. Let d(-,-) denote the difference matrix (i.e., Euclidean
distance). The objective is to make the feature differences of
positive (or neighbor) places smaller than negative (or far-
away) places by feature extraction function Fy-.

LQF) = d (Fo(QR), Fo(OR)) — d (Fo(QR), Fo(02))

N
0" = argmin ) | £(Q) (1)
k=1

where QP is the current k-th query, OF is the positive
reference in a neighbor range near QkD , and OQ is the negative
reference away from QP.

In lifelong localization, the environmental domains
(D1, , Dy, -+, Dp) can vary under different environmental
conditions or sensor modalities (e.g. incrementally learning
from different illuminations or weathers). Thus, both ref-
erences set OP¢ and the query set QP* are obtained in-
crementally. As depicted in Fig. 2] the lifelong localization
problem is to incrementally learn and update the feature
extraction function Fy, that can quickly adapt its feature
extraction ability in the newest domain {OP7, QP7}, and also
in parallel maintain the feature distinguish ability for previous
domains {OPt,QP*}|,=1,. r_1. Since we are considering
lifelong learning [[19], raw data of different domains are fed
sequentially for one-time usage and cannot be stored for offline
training. Thus, when optimizing feature extraction function
Fo, at the current domain {OP7,QP7}, we cannot access
the previous raw data from {OP¢, QP*}|,—1 . 7_1. For time
step T, lifelong localization can be formulated as,

£1QP) = d (Fo(QP). FalO2)) — d (Fo(QP), Fo(0L"))

T N
Or :argrrbinZZ[,t( )

t=1 k=1

2)

B. General Place Feature Extraction

For the lifelong purpose of long-term localization, we
developed a General Place Feature Extraction or General Place
Learning (GPL) network based on our previous works in
visual [10] and LiDAR-based [54] localization, which can
be referred to as the feature extraction function Fy as in
Eq. (2). We use the shared spherical convolution network to
simultaneously achieve LiDAR and visual place localization.
The spherical harmonic-based convolution can help the learned
descriptor have the viewpoint-invariant propriety for the same
place recognition. The major difference between the current
GPL and our previous works is that GPL does not contain
any domain-transfer module, which has been used to reduce
the feature differences for the same areas under different do-
mains [10]]. This modification is because we want to evaluate
the adaptation ability for the same network. On the other
hand, no task-specific network layers are used in the dynamic
architecture-based lifelong modules, as stated in section [lI-B
We want to avoid uncertain parameters and only focus on how
memory mechanisms can help incremental learning for real-
world applications.

C. Bio-inspired Lifelong Memory

Inspired by the memory system in human-being and other
mammal animals [[13]], we propose a dual-memory, dynamic
memory (DM) zone and static memory (SM) zone, enhanced
lifelong learning mechanism to deal with catastrophic forget-
ting in lifelong localization. As studied in [S5], to create long-
term memories in our brain, we have so-called sleep circle
during our sleep: 1) the brain can encoding our daily observa-
tion into the hippocampus zone with decay along the time; 2)
and a consolidation mechanism is triggered between the hip-
pocampus and the neocortex to store essential memory traces
and forget the rest traces; 3) then humans can retrieve the
relative memory traces based on the consolidated ones in the
neocortex. In BioSLAM, we re-build the ‘sleep circle’ for the
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Fig. 3: BioSLAM Network Structure. The structure of BioSLAM includes the General Place Learner (GPL) network, the
rewarding mechanism to guide the memory storing and consolidation, and the dual-memory module with static-/dynamic-
memory zones. The whole procedure includes: 1) new observations ¢;, are fed into the networks only one time and sequentially;
2) In GPL, the memory encoder converts the inputs g to encoded memory zj, followed by spherical convolution and VLAD
layer to generate place feature Fj. 3) the rewarding mechanism will estimate the external reward R., and internal rewards
Rin to guide the memory operations; 4) the dual-memory will conduct memory storing/consolidation and replay the important
(high-rewarded) memories. 5) the memory decoder generates the synthetic samples from the replayed memories; 6) updating
the GPL network module with both raw (real) samples and synthetic samples.

lifelong localization task. As we can see in Fig. [2] the memory
system of BioSLAM also includes the place feature ‘encoding’
procedure for new observations, the memory ‘consolidation’
controlled by a rewarding mechanism to filter out necessary
traces for more extended storage, and the ‘retrieved’ memory
to re-enhance the long-term place recognition ability. Based on
the above architecture, the BioSLAM system constructs two
major modules, the General Place Learning (GPL) module
and the Bio-inspired Lifelong Memory (BiLM) module, which
will be investigated in section [[V] and section [V

IV. GENERAL PLACE LEARNING

As shown in Fig. [3] the general place learning (GPL) (blue
dashed box) system mainly contains two sub-modules: a place
memory encoding module (upper part of the blue dashed
box) and a generative memory reply module (lower part).
All samples under different domains are fed into the system
sequentially once during the lifelong learning procedure. The
GPL system uses symmetric encoder-decoder networks to
encode new observations to ‘memory codes’ and decode
‘memory codes’ into the synthetic observations. In this section,
we introduce the design of the encoder, the decoder, and the
place feature learning within the GPL system.

A. Place Memory Encoding and Place Feature Extraction

GPL applies the encoder module £ to convert raw sensor
observations into the ‘memory codes’ with VGG [56]-based
networks, and the memory codes are basic materials in the

BiLM system. Viewpoint differences and environmental ap-
pearance changes in lifelong localization will affect the final
localization performance in real-world applications. Based on
the orientation-equivalent property of spherical harmonics, we
utilize the spherical convolution [I0], on top of the
encoder module to provide viewpoint-invariant feature (also
called place descriptor) to reduce the viewpoint differences in
long-term re-localization.

The GPL system encodes panorama camera and 3D local
point cloud with the same encoding network structure £. For
the visual inputs, we convert the raw image to [H x W]
spherical perspectives. For the LiDAR inputs, instead of a
single scan, we generate dense local 3D maps using the similar
voxel mapping mechanism in our previous work and
map the points onto the spherical projections, which have
the same omnidirectional view as a panorama camera. Then
the preprocessed (visual or Lidar) inputs g are fed into
the encoder module for generating memory codes and place
features. The memory code zj, are encoded from gy:

3

To extract the viewpoint-invariant place feature from zj,
we utilize the spherical convolution based on the spherical
harmonics [58]]. In theory, Spherical convolution can avoid
space-varying distortions in Euclidean space by convolving
spherical signals in the harmonic domain. Let f is the
signal on spherical harmonic, which satisfy the viewpoint-
equivariant property with the signal &,

[f *so@) [HRrE]] (ax) = [HR[Sf *so) €]] (ar)

ze = E(qr)

“
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where Hr (R € SO(3)) is the rotation operator for spherical
signals. fxgo(3) € denotes the spherical convolution between
f and &. Practically, the spherical convolution is computed in
three steps. We first expand f and £(gi) to their spherical har-
monic basis, then compute the point-wise product of harmonic
coefficients, and finally invert the spherical harmonics.

Let V' be the unsupervised VLAD layer [27]. Then the fea-
ture extraction function Fy = Vo[ f*go(3)&] is the viewpoint-
invariant function, where 6 are learnable parameters of the
feature extraction function. For details about the viewpoint-
invariant analysis, please refer to works [10], [54]. Given the
data sample g, the place feature Fj can be denoted as

Fr = Folqr) =V o [f *so(3) 2] )

The above procedure is relevant to the biological ‘encoding’
procedure within the ‘sleep cycle’ as we mentioned section [ITI}
The extracted ‘memory codes’ zp will be used for later
‘memory consolidation’ in next section [V| and ‘retrieval’ for
generative replay in next section

B. Memory Decoding and Memory Replay

As depicted in Fig. [3] we generate synthetic samples from
stored place memory codes by memory decoder, which is
called memory replay. In particular, the retrieved memory
codes will contain the latent place information under previous
domains as shown in Fig. which enforces the memory
decoder to extract a portion of history samples under all
previous domains to maintain the localization performance.
Thus, we can combine the raw real samples with (decoded)
synthetic samples to train the place feature extraction function.

To ensure the generalization ability of synthetic samples, we
use a deep generative adversarial network (GANs) to mimic
the distribution of raw samples when generating synthetic
samples. The GANs-based generative model defines a zero-
sum minimax game with the memory decoder G and the
discriminator D as stated in [[60]], the objective function is
thereby defined by,

(6)
minmax By p,,,, [log D(q)] + Bz p.[log(1 = D(G()))]

min max Lgan(G,D) =

where P, is the retrieved memory buffer from the BiLM
system, and Pyq, is the new observed data samples. Lgqn
denotes the generator and discriminator losses [60]. The
detailed generative play strategy for lifelong learning can be
found in [61]], [62].

Given the combination of new raw data qr ~ Pyu, and
retrieved synthetic samples g ~ G(P,) , we can obtain input
tuple sets (qgx, {07”°}, {0p“Y}), where for each query sample
qr we have a set of potential positives (close-by samples )
{07} and the set of negatives (far away samples) {0, “’}.
The localization loss metric is defined by:

Lloc(Qk) = (7)
max (IF(gr) = F@ 7 )II” + a = [|F(gx) — F(op® )%, 0)

Lioe = Bgpnpyora [Lioe(ar)] + Bz [Lioc(G(2))] (8)

Scenery 1 Scenery 2 Scenery 3
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Fig. 4: Generative Memory Reply within the GPL system.
In the lifelong localization, new observations OP+ under
domains D; will be streamed into the BioSLAM system
sequentially. GPL’s generative memory replay module can
generate synthetic samples G (5 (oP t)) from stored memories.

the above equation is the triplet loss version of Eq. (I)), where
Lioc(qr) is the localization loss metric for single query gy,
(v > 0) is a margin to control the feature difference threshold,
and L;,. is the localization loss for the joint { Pyatq, P, } sets.

To keep the consistency of memory encoding-decoding, we
further use a reconstruction loss between encoder and decoder
modules. For the encoded memory code 2’ and the decoded
memory £(G(z')), we have

Lree = Bonp [[IE(G(2) = '] ©)

The joint loss metric for the generative memory replay en-
hanced place recognition can be written as,

Ejoint = Eloc + Erec + £gan(g» D)

The major difference between our work and the traditional
generative replay [61] is that BioSLAM can manage the
retrieved memory based on their long-term behavior instead of
treating all data on the same manifold distribution. The next
section will deeply investigate the lifelong memory system.

(10)

V. BIO-INSPIRED LIFELONG MEMORY

In our BioSLAM, as shown in the greed dashed box
of Fig. the bio-inspired lifelong memory system mainly
contains two modules: 1) Rewarding mechanism to measure
the memory codes’ importance (or reward calculation), the
importance score will be used to manage memory consoli-
dation and selection in the dual-memory module. 2) Dual-
memory module to cooperate with the rewarding mechanism
for long-/short- term memory storage and importance-retrieval
with limited space usage; which includes static memory zone
and dynamic memory zone.

A. Rewarding mechanism

When the memory system encounters a new place ‘memory
codes’ z, we define the hybrid reward to control the learning
behavior: an external reward R., which indicates localization
ability, and the internal reward R;,, which presents the intrinsic
familiarity on observations.

1) External Reward: The external reward is related to the
learning difficulty of data samples, which indicates their distin-
guishing ability in the place recognition task. In the standard
learning paradigm, all samples with different difficulties are
equally considered during the model optimization. However,
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humans and animals usually spend more energy and time to
learn harder concepts. Inspired by animal training [63]] and
curriculum learning [64], it is practical to differentiate the
data samples into different difficulty levels, such as “easy”,
“medium”, and “hard”. For lifelong localization, the feature
extraction function Fy» may require more ‘energy’ or iterations
to learn “hard” samples. Hence, we encourage “hard” samples
to have a higher chance of re-training by defining the triplet
loss to measure the sample’s difficulty and distinguishability.
Based on the place recognition loss metric L;,., we define the
external reward for each input as follows:

Rex(Qk) = Lloc(qk) (11)

which means that if the sample q; has a higher loss than
other samples, it will require more iterations in model training.
“Hard” samples tend to have a high value of R.;, and
therefore the dual-memory module selects them for memory
replay with a higher probability, as described in section [V-B4.
2) Internal Reward: The internal reward is related to the
robustness of the feature extraction model when given a
sample. Let A(gy) denote the data augmentation (i.e. random
rotation and random translation) for sample gj. The internal
reward R;, for sample g; is defined as the cosine distance
between its feature and the feature over data augmentation:

~ Elaw) - E(A(gr))
1€ ()2 - [1€(Aqr)) |2

The internal reward R ;,, also indicates the network’s famil-
iarity with the observations. In large-scale place recognition,
similar place patterns (street view, buildings, trees) can be
frequently visited with different views; the encoder £ has a
robust representation and low internal reward of frequently
visited places. Therefore, the internal reward R;, can guide
the dual memory system to focus more on unfamiliar areas.

The final reward for g, can be obtained by combining the
external reward with the internal reward,

Rk == Rer(qk) + Rin(qk’);

Rin(Qk‘) =1 (12)

(13)

Based on this rewarding mechanism, we can evaluate all the
queries and obtain a set of memory trace my = (2, Pk, Rk),
where py is the estimated location of ¢ obtained from our
previous re-localization system [10], [65]. The memory traces
my, are then used as the main factor in memory operations
described in section [V-B]

B. Dual-Memory & Memory Operations

The memory of human beings is highly connected with
long-term memory (the neocortex) and short-term memory
(the hippocampus) mechanisms within our brains. BioSLAM
also constructs such paired dual-memory mechanisms,

« Static Memory Mg is similar to the long-term memory
of human beings, which stores the selected memory traces
by memory consolidation.

o Dynamic Memory Mp is similar to the short-term mem-
ory of human beings, which is a quick access memory
with a portion of pre-stored historical memory traces.

Dynamic memory is automatically refreshed from the
static memory and connected with the memory decoder.

In general, dynamic memory has a smaller buffer size (e.g.
1000), while static memory has a larger buffer size (e.g.
4000). Based on the dual-memory structure, we construct two
important operations for static memory: memory consolidation
and forgetting, and two important operations for dynamic
memory: memory refreshing and memory replay.

As shown in Fig. [3] the running mechanisms of the dual-
memory module can be summarized as follows. Consider an
agent employing the BioSLAM algorithm, continuously navi-
gating an environment. Upon encountering a new observation,
the memory encoder encodes the observation into memory
codes. Memory consolidation enables static memory to store
the memory code, while forgetting allows static memory to
discard unimportant samples and retain significant and diverse
ones. Next, dynamic memory obtains selected memories from
static memory via memory refreshing and replays them to a
memory decoder using memory replay. The memory decoder
generates synthetic samples from the replayed memory codes,
which BioSLAM employs to update the agent’s place recog-
nition function in combination with the new real samples.

1) Static Memory Consolidation: As stated in [[66], memory
consolidation is defined as a time-dependent process by which
recently learned experiences are transformed into long-lasting
forms to extend the long-term memory circle. In the long-term
and large-scale place recognition, the observations may vary
not only in the spatial domain (Euclidean distance) but also in
the feature domain (feature distance). Furthermore, real-world
navigation tasks involve an unlimited data stream. Memory
consolidation is essential to abstract concise representations
and guarantees memory efficiency. To provide memory con-
solidation for static memory, we construct a feature-spatial
code ¢ = [z, pr] for memory trace my, which can capture
both spatial and feature properties.

At time step 7" and observations ¢ C QP the obtained
new memory traces m? = (z, P, Rk)T typically consist of
a large number of samples. To obtain a diverse and smaller
subset of memory traces (abstraction), we use K-means-
based unsupervised clustering. K-means clustering partition
the {m}7 into K sets ST = {ST, ST, ... SL} by feature-
spatial code ¢y, = [k, pi] to minimize the following,

k
. 1
ST:argmlnzsiT Z ||ng—0y||2 (14)
ST i—1 | i cm,cyES?
1
i _ﬁ Z Ci
v cest

where ] is the cluster centroid for cluster S}". The memory
traces within a single cluster have similar characteristics and
storing all of them is redundant and memory-intensive. To
optimize memory usage and retrieval efficiency, downsampling
is applied within each cluster S :

(ST, iTy = downsampling(SY, uF), |ST| < Npaa (15)

7 2

Where N, is the (predefined) maximum number of samples
in each cluster. After the sampling process, a set of new
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clusters ST = {ST,ST ... SL} and their corresponding
centroids g7 = {pf,nl,--- ik} are generated from a
subset of the traces {my}%.

BioSLAM can integrate the newly generated clusters ST
with the existing clusters from previous steps, resulting in a
total of S(M+) = {§1 82 ... ST} clusters in static memory
with corresponding centroids puMs) = {g' @2, ---  @T}. If
the total number of clusters C'Ms) = |(Ms)| exceeds the
maximum threshold K,,,,, similar clusters are merged to
prevent memory overflow, as described in the Memory Forget-
ting mechanism section [V-B2. The consolidation mechanism
is shown in Algorithm

Algorithm 1: Memory Consolidation

Input: Static memory Mg, new memory traces {my},
maximum number of clusters K.z
Output: Updated static memory

1 Construct feature-spatial codes {ci} = {zk, pr|mx};

2 Calculate clusters {S?}|%, and centroids {u? }|X
for {cx} based on Eq. ;

3 Downsample within clusters, based on Eq. , to
generate smaller clusters {S'zT HE | and centroids
{af My s ~

4 Append new clusters {S7 }|/X | and centroids
{ATHE, to Ms:

5 Calculate the total cluster number C'Ms) in Ms ;

6 if CM:) > K, .. then

7 L Memory Forgetting with Algorithm

8 Update static memory Mg;

2) Static Memory Forgetting: As mentioned in the previous
section, the space allocated to static memory is limited in long-
term lifelong learning. Memory forgetting, a crucial operation
in static memory, is implemented to eliminate redundant
memory clusters that are too similar to the existing ones. If
the number of current clusters exceeds the maximum limit of
clusters C™s) > K, .., the memory forgetting mechanism
removes K* = CM:) — [, clusters. To accomplish this,
we first calculate the cluster similarity based on the distance
matrix d; j) between every pair of cluster centroids.

iy = lwi — wll, Vi, iy € pte) (16)

We search for cluster pairs (¢*, j*) with the smallest distance
between their centroids and remove one of the clusters ¢* from
each pair. This removal procedure is repeated K* times.

(i%,5%) = arg mind )
3

a7

This method allows us to maintain a diverse set of memory
clusters while removing any redundant clusters. The memory
forgetting mechanism is presented in Algorithm

3) Dynamic Memory Refreshing: Dynamic memory is sim-
ilar to the short-term memory of humans, brief and storage-
limited. To effectively replay important memory traces from
dynamic memory, we need to refresh it periodically and clone
relevant memory traces from static memory to dynamic mem-
ory. This is done through memory refreshing mechanisms,

Algorithm 2: Memory Forgetting

Input: Static memory Mg, maximum number of
clusters K,,qu
1 Load clusters S(™=) and centroids p(M=) from static
memory Mg ;
2 Calculate the number of forgettable clusters
K* = ‘u(]\/[s) = Kinaz 3
3 Calculate the distance matrix yj) between every pair
)

of cluster centroids on Eq. (
4 while repeat K* times do
5 Find most similar cluster pairs (¢*,j*) based on
Eq. li ;
6 Remove cluster +* from static memory Mg and
distance matrix d(m-) ;

b}

where dynamic memory M, obtains memory traces {my}
from static memory M through importance sampling.

M, = importance_sampling ({my}, {wg })
wy, = ™) LRy

(18)
my = (2, P, Rie) ~ M,

where importance weights wy, are determined by the reward
R and the time-decaying factor 7”('”’“). Here, v (0 <~y < 1)
is a predefined decay parameter, and n(my) denotes the
replayed time (or revisited time) for the trace my. Traces
with higher rewards are assigned higher sampling weights as
they have lower localization ability and robustness, requiring
more attention from BioSLAM. Moreover, new traces are
assigned higher sampling weights since the network’s ability
to learn samples with many occurrences has reached an upper
limit, and storing samples replayed many times is unnecessary.
The decaying mechanisms also encourage dynamic memory
to be more curious about new traces. These reward decay
mechanisms are inspired by the decaying factor in human
memory [67]], which suggests that repeated learning of the
same things decreases the boost in memorization.

4) Dynamic Memory Replay: During lifelong learning,
dynamic memory replays selected memory traces to the mem-
ory decoder for generating synthetic samples, as stated in
section Importance sampling is used to obtain replayed
memories {2}, } from dynamic memory M, in the same manner
as the refreshing memory mechanisms.

{z}.} = importance_sampling ({2}, {wx}) (19)

mg = (Zkvpk;Rk) ~ Md, W = ,}/n(mk) . Rk

We use memory decoder G to generate replayed samples {q }
from memories {z},},

ar = G(z) (20)

Both new observations {q;} and generated samples {dx}
are used to train the General Place Learner (GPL) network
by minimizing the total loss Eq. (I0). The overall lifelong
learning algorithm of BioSLAM is shown in Algorithm

VI. EXPERIMENT SETUP AND CRITERIA

In this section, we will introduce the experimental setup
for lifelong localization. Unlike traditional localization tasks,
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Algorithm 3: Lifelong Learning with BioSLAM
Input: Initial place feature extraction model Fy with
parameters 6, Initial static memory M, = () and
dynamic memory My = ()
1 for T=1,2,--- do
2 Obtain observation set {qx} ;
3 while repeat until converge do
4 Generate replayed samples {Gx} from dynamic
memory based on Eq. and @ ;
5 Calculate loss L;qin using real samples {E@)

and replayed samples {qx } based on Eq.
dLjoint

6 Calculate gradient —25* then optimize Fy
with parameters 6 by gradient descend ;
7 Calculate rewards {RR,} of observations {qy}
based on Eq. ;
8 Static memory M, consolidation based on
Algorithm (1] ;

9 | Dynamic memory Mg refreshing based on Eq.

Panoramas

Velodyne
LiDAR

P

Fig. 5: Data Collection Platform. The platform can record
the omnidirectional visual inputs, Velodyne VLP-16 LiDAR
inputs, and Xsens MTI IMU data on an Nvidia Jetson
AGX Xavier. We utilize the LiDAR odometry to gen-
erate the relative odometry for each trajectory and GNSS or
Generalized-ICP to estimate the relative transformation
between different trajectories.

lifelong localization requires recorded data that includes either
long-term differences or large-scale geometric differences. For
these reasons, we built our own data collection platform and
created our own lifelong localization datasets, including the
ALITA Urban dataset and the ALITA Campus dataset [70].
Then we evaluated the performance of BioSLAM on the
official Oxford RobotCar dataset.

A. Data Collection Platform

Fig. |§| shows our data collection platform, which includes an
omnidirectional camera, a Velodyne VLP-16 LiDAR device,
an inertial measurement unit (Xsense MTI 30, 0.5° error

TABLE I: Comparison between different datasets.

Dataset Domains Scales (km)
ALITA Urban Areas: Street, Residential, Terrain 120 x 1
ALITA Campus Input Modality: Lidar, Visual 4.5 x 8
Oxford RobotCar Weather and Road Conditions =~ 10.0

in roll/pitch, 1° error in yaw, 550mW), and an embedded
GPU device (Nvidia Xavier, 8G memory). To collect time-
synced LiDAR projection and omnidirectional images, we
first generated dense 3D maps through well-known LiDAR
odometry [68]]. Then project the point cloud within a certain
distance (default is 30m) to the spherical projections, which
have the same perspective as the omnidirectional images. We
will revisit the same area under large-scale and long-term
assumptions in lifelong localization. To provide the relative
ground truth position between different visits: to outdoor
environments, we rely on the GNSS system and Generalize-
ICP to estimate the relative transformation; For indoor
environments, we mainly rely on Generalize-ICP. Please note
that we cannot guarantee the meter-level global absolute
localization, but we can provide accurate relative localization,
which is enough for the lifelong localization task. Based
on the collected datasets, we have hosted a General Place
Recognition Competition for long-term place recognition. For
more details on the data collection platform and the datasets,
please refer to our dataset paper and competition site
(http://gprcompetition.com/).

B. Lifelong Localization Datasets and Learning Settings

We intend to analyze the lifelong learning performance un-
der large-scale, multi-modal, and long-term three perspectives.
To this end, our localization datasets include three tracks:

e ALITA Urban dataset: as shown in Fig.[f] is targeted towards
large-scale lifelong learning performance. We collected 50
trajectories within the city of Pittsburgh, focusing only on
LiDAR inputs within a short-term drive, as our main con-
cern is large-scale localization. The total trajectory distance
for this dataset is 110 km. 729 query and database frames
are selected from 11 trajectories to construct the test set.

e ALITA Campus dataset: as shown in Fig. [7] is targeted
towards multi-modal lifelong learning performance. Both
LiDAR inputs and visual inputs are collected, and we picked
up 10 trajectories within Carnegie Mellon University. Each
trajectory is revisited 8 times under different day and night-
time conditions to meet the long-term requirements. The
test set contains 739 query and database frames.

e Oxford RobotCar dataset [71]): is a widely used public
dataset aimed at long-term lifelong learning performance.
This dataset covers over 1000 km of driving from May
2014 to December 2015, providing long-term observations.
As our main concern is long-term localization, we use a
subset of the Oxford RobotCar dataset that includes long-
term behavior and different weather conditions.

We use the lifelong learning procedure depicted in Fig. [2] to

feed the sequential data stream for all datasets. In our ex-

periments, a feature extraction function Fy continually learns
from different domains (D1, -, Dy, --- ), where the domain
of each dataset is different. For the ALITA Urban dataset,
domains are different areas, such as commercial buildings,
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Fig. 6: ALITA Urban Dataset. The dataset includes 50 trajectories (110 km) within the city of Pittsburgh. The dataset includes
three areas (colored in blue, yellow, and red) covering commercial buildings, parks, and residential areas.
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Fig. 7: ALITA Campus Dataset. For the dataset, omnidirectional camera and LiDAR data are recorded for 2D-to-2D and
2D-to-3D place recognition within CMU. The datasets are generated during 08/2021 ~ 10/2021, which are mainly taken from
normal day-light (2pm ~ 5pm) and dawn-light (5am ~ 6am or Tpm ~ 8pm).

parks, and residential areas. For the ALITA Campus dataset,
domains are different input modalities, such as LiDAR input,
daylight visual input, and night light visual input. For the
Oxford RobotCar dataset, domains are different weather and
road conditions, such as sunny days, daylight with roadworks,
night, snowy days, cloudy days, and rainy days. It’s worth
noting that each data sample is only fed into the system
once, and BioSLAM does not save a copy of that data. The
comparison between different datasets is presented in Table I}

C. Performance Evaluation

During lifelong place learning, we mainly evaluate the
online localization performance through the Weighted Recall
(WR) of top-6 retrievals over lifelong learning, which is
defined by WR = 22=1 wgTk, w1 = 0.5,wr = 0.1 for k # 1.
rr (1 < k < 6) denotes Recall@k, which measures the
percentage of correctly localized queries using top-k elements
returned from the database. To be considered a correct match,
the query image must have at least one of the top % retrieved
reference images within the predefined neighbor range (e.g.,
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Fig. 8: Comparison of weighted recall w.r.t. training epochs on ALITA Urban dataset. Place recognition methods
incrementally trained on trajectory observations from 3 different areas. The shaded region shows the standard deviation.

3m) from the ground truth position.

In lifelong place recognition, our focus is on the WR curve
during incremental learning by continually feeding a data
stream from different domains, as opposed to evaluating the
WR on fixed place recognition models for descriptors, as is the
case with classical place recognition. We also introduce unique
matrices for evaluating the performance of lifelong place
recognition, namely Adaptation Efficiency (AE) for measuring
fast learning ability in the current new domain, and Retention
Ability (RA) for measuring the ability to memorize without
forgetting the previous domains when training samples from
previous domains are no longer available. When optimizing the
feature extraction function Fy in the current domain D7, the
adaptation efficiency is defined as the WR on observations and
queries from the current domain {OP7 QP7}. Meanwhile,
the retention ability is defined as the WR on observations and
queries from the previous domains {OP, QP }|,=y ... 7_1.

D. Baselines

As our place recognition task involves different sensor
modalities, non-learning/learning methods, and lifelong/non-
lifelong methods, it is not feasible to cover all the relevant
state-of-the-art methods. Therefore, we focus on performance
comparisons from a 2D perspective and exclude Point-like 3D
methods [72]]. To compare our proposed method, we select
well-known non-learning methods (Bag-of-wards (BOW) [[73]]
and CoHOG [[74]]), learning-based methods (NetVLAD [27]
and RegionVLAD [29]) and lifelong-based methods (Genera-
tive Replay (GR) [[75] and Synaptic Intelligence (SI) [46]). All
of the learning-based baselines and our proposed method were
incrementally trained on the same sequential data during the
experiments. Among the above methods, GR and SI are the
most related and essential baselines to BioSLAM. Although
both BioSLAM and GR use memory replay, BioSLAM has

more efficient and reasonable memory replay mechanisms.
This is due to two reasons: first, BlioSLAM replays samples
according to their reward (importance), while GR replays them
randomly and evenly. Second, BioSLAM has static memory,
which refreshes the dynamic memory buffer to keep diverse
and important memory traces, making it easier to adapt to new
trajectory observations.

VII. EXPERIMENT ANALYSIS

In this section, we analyze the lifelong place recognition re-
sults on large-scale City areas, multi-modal Campus scenarios,
and long-term Oxford RobotCar datasets.

A. Large-scale City Place Recognition

In the localization task under city-scale environments,
robots may encounter various 3D geometric structures, such
as open streets, bridges, parks, and residential areas. We eval-
vated the performance of BioSLAM in a large-scale lifelong
learning scenario using the ALITA Urban dataset. We divided
the 50 trajectories covering a distance of 120km within the city
into three different areas based on their geometric properties:
area 1 for commercial buildings, area 2 for parks, and area 3
for residential districts. BioSLAM and the baseline methods
learn the place features incrementally by continually feeding
the trajectory observations from different areas.

Fig. [84] illustrates the weighted recall curve of trajectory
observations within area 1, area 2, and area 3, respectively.
The vertical dotted line indicates the epoch when the trajectory
observations switched from one area to another, e.g., the
training observations switched from area 1 to area 2 at epoch
120. Fig. [8b] presents the average weighted recall curve of all
trajectories during training. It is evident that BioSLAM out-
performs other methods during training and achieves at least a
14% improvement in terms of final average recall. When the



IEEE TRANSACTIONS ON ROBOTICS (T-RO). PREPRINT VERSION. AUGUST 2023

0.9

—— BioSLAM
GR
N — /__/\/J\,
— =~ ——
0.3
0.9
\_/———\___'/
3 W
Q0.6

0.3

—— BioSLAM
GR

— S|

—— NetVLAD

Weighted Recall

Lidar Day Vision

Trajectory Observations

Night Vision

a Weighted recall in different modalities

0 250 500 750 1000

Epoch

1250 1500 1750

b Average recall

Fig. 9: Comparison of weighted recall w.r.t. training epochs on ALITA Campus dataset. Place recognition methods
incrementally trained on trajectories from Lidar, day-time visual, and night-time visual inputs.

training observations switched from area 2 to area 3 at epoch
240, BioSLAM’s performance drop on previous trajectories
is much smaller than that of other methods, as shown in
Fig. This is because BioSLAM retrains necessary previous
knowledge by replaying related memory traces. While GR
only replays randomly, BioSLAM replays essential and highly
rewarded memory traces, leading to a higher convergence rate
and better final performance than other baselines.

B. Multi-modal Campus Place Recognition

Training place recognition models separately on indepen-
dent modalities, such as Lidar and visual, can be inefficient
as no information is shared between them. In this study, we
demonstrate the effectiveness of BioSLAM in more practical
settings where the model benefits from solving place recogni-
tion using multiple modalities, such as Lidar, day-light vision,
and night-light vision. Firstly, knowledge gained from one
modality can help to better and more quickly understand other
modalities since the modalities are not completely independent
in place recognition. Secondly, generalization across multiple
modalities may lead to the acquisition of more universal
knowledge that applies to unseen modalities, a phenomenon
that is also observed in infants’ learning [[76], [77]. We evaluate
the performance of BioSLAM in multi-modal lifelong learning
scenarios using the ALITA Campus dataset. Both BioSLAM
and the baseline methods incrementally learn the place features
from different modalities (Lidar, day-light vision, and night-
light vision) by continually feeding trajectory observations
from each modality.

Fig. presents a performance comparison between
BioSLAM and baselines on different modalities of the ALITA
Campus dataset. The vertical dotted line indicates the epoch
when the trajectory observations switched from one modality
to another, e.g., the training observations switched from Lidar

to day-light visual image at epoch 600. During the initial
0 ~ 600 epochs, we train the place recognition model on
the Lidar inputs, and all methods show performance im-
provement across all modalities. This result supports the idea
that the knowledge gained from one modality can aid in
better and faster understanding of other modalities. Between
600 ~ 1200 epochs, we train the model on daylight visual
images. The performance of all methods improves in daylight
visual images, but the Lidar performance drops around epoch
600 due to the significant difference in the Lidar and visual
images. However, BioSLAM exhibits a smaller performance
drop than other methods, indicating its ability to learn new
observations in a new modality without forgetting previous
modalities. Between 1200 and 1800 epochs, we train the model
on night-light visual images. Here, we observe an increase
in performance in night-light visual images for all methods,
and BioSLAM also shows increased performance in Lidar,
thanks to its efficient replay mechanisms. Fig. [Ob] displays the
comparison of average weighted recall between BioSLAM and
the baselines on different modalities of the ALITA Campus
dataset. Initially, the performance of all methods is compa-
rable. However, as new observations from new modalities
are added, BioSLAM exhibits faster and better convergence
compared to the baselines. Moreover, BioSLAM outperforms
the other methods by 10% in terms of final average recall.

C. Long-term Place Recognition

In long-term localization, robots need to navigate through
various weather and road conditions such as heavy rain, night,
direct sunlight, snow, and also account for changes in road
and building structures over time. To evaluate BioSLAM’s
performance in long-term lifelong learning, we use the Oxford
RobotCar dataset. We use a subset of the original Oxford
RobotCar dataset that includes diverse weather and road
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Fig. 10: Comparison of weighted recall w.r.t. training epochs on Oxford dataset. Place recognition methods incrementally
trained on trajectories from different weather and road conditions, such as sun, roadworks, night, snow, cloud, and rain.

conditions such as sun, roadworks, night, snow, cloud, and
rain. BioSLAM and the baseline methods incrementally learn
the place features by continually feeding the trajectory obser-
vations captured in various weather and road conditions.

Fig. [T0a] depicts the weighted recall curve of trajectory
observations captured under various weather and road con-
ditions. The vertical dotted line indicates the epoch when
the trajectory observations switched from one condition to
another, e.g., the training observations switched from sun-
light vision to roadworks at epoch 60. As shown, BioSLAM
addresses catastrophic forgetting by retraining necessary previ-
ous knowledge and replaying related memory traces. When the
observations switch from night light to snowy day at epoch
120, BioSLAM’s performance drop on previous trajectories
(night light) is significantly smaller than other methods. A
similar phenomenon is observed when the observations switch
from snow to cloud at epoch 160.

Fig. [T0b] shows the average weighted recall curve of all
trajectories during training. As demonstrated, BioSLAM out-
performs other methods during training and achieves at least an
8% improvement in final average recall compared to different
baselines. Although both BioSLAM and GR utilize memory
mechanisms to recall previous samples, BioSLAM exhibits
more efficient learning due to its rewarding and memory
selection mechanisms. The comparison between BioSLAM
and GR in different buffer sizes (for dynamic memory) on the
Oxford RobotCar dataset is shown in Fig. |11} It is evident that
BioSLAM consistently outperforms GR across various buffer
sizes, showcasing its superior efficiency, especially in small
memory settings.

D. Adaptation, Retention and Generalization Ability

To clearly show the lifelong property of BioSLAM, in
this section, we will show the Adaptation Efficiency (AE)
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Fig. 11: Comparison of BioSLAM and GR in different
buffer sizes on Oxford RobotCar dataset.

and Retention Ability (RA) of ALITA Urban (large-scale
localization) and Oxford RobotCar (long-term localization)
datasets. AR is measured as the WR in the current domain.
RA is measured as the WR on the previous domains.
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Fig. 12: Comparison of BioSLAM and baselines in AE (left)
and RA (right) on ALITA Urban dataset.

Fig. [12] illustrates the performance of different methods on
the ALITA Urban dataset in terms of AE and RA, while
Fig. [13] shows the same metrics for the Oxford RobotCar
dataset. The AE metric represents the fast adaptation ability
to a new domain, and BioSLAM achieves the highest AE
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Fig. 13: Comparison of BioSLAM and baselines in AE (left)
and RA (right) on Oxford RobotCar dataset.

compared to the baselines on both datasets, demonstrating
its fast-learning capability. On the other hand, RA represents
the memorizing ability without forgetting previous domains.
BioSLAM surpasses the other methods in terms of RA, thanks
to its efficient rewarding and dual-memory mechanisms. In the
Oxford dataset, the RA of BioSLAM almost monotonically
increases, whereas other methods can exhibit a decrease in
some domains (e.g., epoch 120 180 for training with night-
light observations). BioSLAM’s RA remains stable as it
leverages its efficient replay mechanisms to replay important
samples from previous domains such as sun and roadworks to
overcome catastrophic forgetting.

In addition to the lifelong learning metrics AR and RA,
we also evaluate the generalization ability of the final trained
model on a fixed test set, similar to classic place recognition
tasks. Fig.|14|displays the comparison between BioSLAM and
other baselines in terms of top-k recall on the test set of
the ALITA Urban dataset. Despite some non-lifelong learning
methods being designed or trained for offline evaluation,
BioSLAM still outperforms baselines on classic (non-lifelong
learning) offline test set evaluation. We then report the gener-
alization ability of the final trained model on the fixed test set
in terms of weighted recall, as illustrated in Table

On the ALITA Urban dataset, BioSLAM outperforms a
state-of-the-art lifelong learning method GR by 7.6%. On
the ALITA Campus dataset, BioSLAM outperforms a lifelong
learning method GR by 15.6%. Note that this paper primarily
focuses on incremental and lifelong learning scenarios, and
thus the most crucial evaluation metric is the recall curve over
incremental learning (as shown in Fig. [§] and [9). While some
non-lifelong learning methods (i.e., CoOHOG) may perform
well on recall for a fixed test set, these methods cannot learn
incrementally, and therefore their performance is limited. Con-
sequently, lifelong learning methods have a higher potential in
wider and dynamic real-world environments.

E. Ablation Study

As outlined in section |Y, BioSLAM stands out from pre-
vious lifelong learning methods due to several novel mech-
anisms, including (1) external reward R., to indicate lo-
calization performance; (2) internal reward R;, to indicate
the robustness of feature representation; (3) Static memory
consolidation to abstract concise memory traces, where clus-
tering (Eq. (T4)) is a key component; (4) Dynamic memory
refreshing to effectively replay diverse and important memo-
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0.6
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§0.5 — BOW
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0.2 //
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1 5 10 15 20
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Fig. 14: Comparison of BioSLAM and baselines in terms
of recall@k on ALITA Urban dataset.

TABLE II: Comparison of weighted recall of trained model
and fixed test set on ALITA Urban, ALITA Campus, and
Oxford RobotCar datasets. We use boldface for highlighting
the best results.

Weighted Recall (%) Urban  Campus  Oxford
Non-learning BOW 5.7 60.1 63.2
CoHOG 70.1 85.1 90.3
Learning based RegionVLAD 45.3 75.1 81.4
(not lifelong) NetVLAD 47.8 72.2 82.9
SI 65.1 73.7 85.7
Lifelong learning | GR 68.4 76.1 87.9
BioSLAM 73.6 90.2 94.2

ries, with the time-decay mechanism (Eq. (I8)) for importance
weight being critical. To evaluate the effectiveness of these
mechanisms, we compared BioSLAM with the following
variants: (1) w/o R.,, which does not apply external reward
and leads to Ry = Rin(qr); (2) w/o R;,, which does not
apply internal reward and results in Ry = Rez(qx); (3)
w/o consolidation-clustering, which does not use clustering in
static memory consolidation, resulting in Algorithm 1| directly
storing all memory traces in static memory; (4) w/o time-
decay, which does not use the time decay factor in importance
sampling, which is equivalent to setting v = 1 in dynamic
memory refresh Eq. (I8). Note that these variants follow the
control variates method, covering all important mechanisms of
BioSLAM without overlapping functionalities.

TABLE III: Ablation study of BioSLAM. We use boldface
for highlighting the best results.

Weighted Recall \Dataset Urban  Campus  Oxford
BioSLAM 59.8 79.0 90.2
w/o Rex 53.6 69.7 81.7
w/o R;p, 479 68.2 80.4
w/o consolidation-clustering 56.1 74.2 86.4
w/o time-decay 50.9 71.2 83.1

Section |VII-E presents the results of the ablation study con-
ducted on the Urban dataset. It is evident that BioSLAM out-
performs its variants, and the removal of any of its components
leads to a significant drop in performance. To facilitate a clear
comparison of the results obtained from different variants, we
present the ablation study conducted on different datasets in
terms of the final average recall during lifelong learning, as
depicted in Table Notably, the larger drop in performance
is observed when removing internal rewards, highlighting the



IEEE TRANSACTIONS ON ROBOTICS (T-RO). PREPRINT VERSION. AUGUST 2023

—— BioSLAM
W/0 Rex
w/o Rj,
w/o consolidation-clustering
w/o time-decay

I
»
[

Weighted Recall
o
=
o

100 200 300 400 500 600 700
Epoch

Fig. 15: Ablation study of BioSLAM. Comparison between
BioSLAM and its variants on the ALITA Urban dataset.

significance of the internal reward as an indicator of feature
representation robustness for retrieving memories. While the
performance of the ”w/o cluster-consolidation” variant is close
to that of BioSLAM, the latter is more memory-efficient by
clustering and downsampling.

F. BioSLAM Feature Property

In this section, we analyze the learned features of
BioSLAM, denoted by Fy(qx), using similarity matrix and
Principle Component Analysis (PCA) on ALITA Urban
and Campus datasets. The similarity matrix Msim is com-
puted by taking the cosine similarity between the refer-
ence OP and query QP features, where Mgy(i,j) =
cos (F(OP), F(QF)). A high-contrast similarity matrix in-
dicates that the learned feature representation, F, has a strong
ability to express and discriminate between places, as evi-
denced by high similarity values for similar places and low
values for dissimilar places.

The similarity matrix of BioSLAM during lifelong learning
on the ALITA Urban dataset is presented in Fig. [[6a, where
the left column illustrates the sampled trajectories from area
1, area 2, and area 3, respectively. The three right columns
display the similarity matrices of the corresponding trajectories
(from left to right) after incrementally learning from area 1,
area 2, and area 3, respectively. Notably, after learning from
a new area (e.g., area 2), the similarity matrix of the previous
area (e.g., area 1) shows almost no decay. This observation
indicates that BioSLAM still has a strong expression ability
on past trajectories even when learning from different areas.
Fig. presents the similarity matrix of BioSLAM on the
ALITA Campus dataset. The left column shows the sampled
observations from Lidar, day-light visual image, and night-
light visual image. The three right columns display the simi-
larity matrices after incremental learning from each modality.
Notably, the similarity matrix of the previous modality (e.g.,
Lidar) shows almost no decay after learning from a new
modality (e.g., day-light visual image). This indicates that
BioSLAM can remember past modalities when learning from
different new modalities.

We utilized PCA to project the BioSLAM learned features
into a 2D space for visualization. The PCA visualization
of observations from different areas on the Urban dataset
is displayed in Fig. with sub-figures from left to right
representing the initial step and incremental learning from
area 1, area 2, and area 3, respectively. The results show
that BioSLAM training enables the clustering of observations
within the same area and facilitates discrimination between
clusters of different areas during incremental learning. Simi-
larly, the PCA visualization of learned features from different
modalities and trajectories on the ALITA Campus dataset is
presented in Fig. with sub-figures from left to right
representing the initial step and incremental training on Li-
dar, day-light visual, and night-light visual images. Notably,
BioSLAM can differentiate not only different modalities (as
seen from the three clusters from left to right) but also different
trajectories within each modality. Moreover, BioSLAM can
find cross-domain relationships between place observations
from different modalities. For instance, the PCA results of
Lidar and night-time visual domains for trajectory 1 are
relatively close and located in the lower part of the PCA
visualization results.

G. BioSLAM Memory Activity

In this section, we provide a visualization of the mem-
ory buffer during lifelong learning on the Oxford RobotCar
dataset. For this experiment, we used a buffer size of 1000
samples for the dynamic memory (DM) and 5000 samples for
the static memory (SM). For SM, we store the samples on the
hard disk since it requires a large capacity and is not accessed
frequently. For DM, we store the data in RAM because it
requires frequent access and does not need a large capacity.

As described in section [E, static memory stores concise
and diverse observations based on their feature and spatial
properties, which are achieved through memory consolidation.
For observations from a current domain, memory consoli-
dation mechanisms cluster the observations into K clusters
(where K = 20 in our experiment) and then downsample
to keep a maximum of N,,., samples per cluster (where
Npaz = 50 in our experiment). Therefore, at most K X N,,qx
samples were stored in the static memory for a domain or
trajectory (K X Npjee = 10000 in our experiment). If the
total number of clusters for all domains exceeds the maximum
threshold K,,,4, (Where K4, = 100 in our experiment) or the
total number of samples exceeds the buffer size K42 X Npmazxs
the memory forgetting mechanism is triggered to reduce
the number of samples in static memory to keep at most
Kpar X Nipax samples. The value of K40 X Npgr 1
equivalent to the buffer size of the static memory, which
is 5000 in our experiments. Fig. shows the number of
samples in static memory from different domains, such as
weather and road conditions, during lifelong learning on the
Oxford RobotCar dataset. In the experiment, we recieve the
observations from a new domain every 60 epochs. As depicted,
the static memory incrementally stores samples from different
domains throughout the lifelong learning process. If the total
number of samples in the static memory exceeds the buffer
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Fig. 18: Static Memory, Dynamic memory zone, and Reward ratio (normalized) of different trajectories during lifelong
learning training on Oxford RobotCar dataset.

size, the memory forgetting mechanism deletes some similar all samples’ reward in the domain RP* = ﬁ > ak€D, R(qk).
samples in the memory. The normalized average reward of a domain is then RVt =

Dynamic memory M, selects memory traces from static RDt/ ZsE[l,T] RDs The p]ot shows that the dynamic memory
memory with Memory Refreshing. Memory refreshing is  zone holds more memory traces (samples) from domains
based on importance sampling, where the sampling weight with higher normalized average reward. Given a domain, a
is proportional to its reward value. These selected memory higher reward indicates worse performance, and BioSLAM
traces are then sent to the memory decoder for training through  yses higher sampling weights to retrieve more memory traces
memory replay. Fig. @ illustrates the number of samples  from the high-rewarded domain to achieve better performance.
in dynamic memory from different domains during lifelong
learning on the Oxford RobotCar dataset. To better understand
the sample ratio between different domains, we also plot the
normalized average reward for each domain in Fig. The To demonstrate the incremental learning property of
average reward of a domain can be computed as the average of BioSLAM, we evaluate its performance using a confidence

H. Incremental Learning Property
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score during lifelong learning. The confidence score is calcu-
lated as a function of the place recognition loss L;,., where
confidence(qr,) = LW‘%Z;’Z“(Q’“), and L., is the normal-
ization constant set to the maximum loss value. A higher
confidence score indicates a higher place recognition ability.
We calculate the confidence score for all observations on real
trajectories. Supplemental movie 1|I| presents the confidence
score of BioSLAM during lifelong learning on the ALITA
Campus dataset. Similarly, supplemental movie presents the
confidence score of BioSLAM during lifelong learning on the
ALITA Urban dataset. As shown in the videos, the proposed
BioSLAM framework enables incremental improvements in
place recognition ability across all areas during lifelong learn-
ing.

TABLE IV: Comparison of GPU memory (Megabyte) of
different methods.

Method
GPU Memory (MB)
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Fig. 19: Time usage (inference, optimization, replay, consol-
idation time) of the BioSLAM lifelong learning on ALITA
Urban dataset during incremental learning.

L. Run-time Analysis

In this section, we present the memory and time usage
of BioSLAM and compare it to another method for lifelong
learning. Our experiments were conducted on an Ubuntu 18.04
system, with an Nvidia RTX 2080 Ti (12 GB) GPU, Intel
Core 19-7900x processors, and 64 GB memory. We report the
total memory usage on ALITA Urban datasets in [[V] As can
be seen, the memory usages of BioSLAM are acceptable for
current embedded system structures.

Fig. [19] displays the time usage of the BioSLAM lifelong
learning procedure on the ALITA Urban dataset, where new
trajectory segments are incrementally fed. Each segment is
approximately 2km in distance and composed of around 200
observation frames. The data inference procedure takes less
than 1 second per trajectory segment, demonstrating efficiency
in real-world inference. Memory consolidation and forgetting,
on average, take approximately 40 seconds for each trajectory,
which is fast enough to analyze the newly captured memory
traces and update the memory system. Memory replay takes

Uhttps://youtu.be/eNrwUw7BWuE
Zhttps://youtu.be/K8pSDI5rLYs

2 seconds to generate replayed samples for place recognition
training. Additionally, place recognition optimization takes 40
seconds to optimize a 2km new trajectory in one epoch. For
multi-epoch training, BioSLAM runs inference, replay, and op-
timization multiple times but only runs memory consolidation
once. Typically, training a trajectory segment about 50 times
achieves convergence results. Therefore, the total learning time
for a 2km trajectory segment is 40s + (1 + 2 + 40) * 50s =
2190s ~ 36min. Given that the distance between neighbor
keyframes is 10m, BioSLAM can learn 100m of new areas in
around 1.8 minutes.

One important property of BioSLAM is that the time
required for memory operations is not affected by differences
in spatial or temporal scale. This is made possible by our
memory forgetting mechanism, which allows us to maintain
the searching space of Mg and M, and keep memory traces
up-to-date for localization. As a result, BioSLAM can be
used for long-term place recognition tasks on low-cost robotic
systems that use NVIDIA embedded systems.

VIII. DISCUSSION & LIMITATIONS

BioSLAM provides robust and efficient lifelong learning for
large-scale and long-term place recognition tasks. The frame-
work adopts a dual-memory mechanism, where long-lasting
memory traces are stored in the static memory Mg, while
generative memories are retrieved from dynamic memory M p,
enabling efficient learning of new types of observations and
maintaining the lifelong memorization ability for old knowl-
edge. This mechanism ensures robust place recognition under
diverse conditions. In addition, BioSLAM demonstrates strong
adaptability to changes in domains, as shown in the evaluation
of the ALITA Campus dataset. The performance will not drop
significantly when shifting from one domain to another, such
as LiDAR, day-time, and night-time visual domains. This
adaptability enables robots to achieve long-term autonomy
in real-world scenarios. Supplemental movie 3°| demonstrates
the mechanism and performance of BioSLAM in lifelong
learning. The upper part of the video illustrates the BioSLAM
framework, which comprises the General Place Learner , the
rewarding mechanism, and a dual-memory module. The lower
part of the video displays the confidence scores during lifelong
learning.

However, BioSLAM also has some limitations for lifelong
navigation. Firstly, it cannot offer sub-meter level localization
ability like traditional visual SLAM systems. This limitation
arises from the triplet loss applied in place descriptor learning,
which cannot support feature-level alignment for 6D pose
estimation. A potential solution could be to combine meter-
level place descriptors and sub-meter-level features into a joint
SLAM system. However, transferring both descriptors and
features into the same lifelong learning framework would be
another open challenge. Secondly, while BioSLAM enables
the place recognition network module to learn observations
incrementally under diverse domains, it cannot achieve cross-
domain place recognition via direct transfer without learning
when the target domains significantly differ (e.g., summer vs.

3https://youtu.be/oablretjo-U
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winter), as the appearance differences between such domains
exceed the network’s distinguishing ability. One potential
solution is to combine an experience-based approach with
BioSLAM. However, determining the required number of
experiences for a given area and how to fuse/delete the experi-
ence and relative place descriptors presents another significant
challenge for lifelong navigation.

In this work, BioSLAM provides a memory system for
lifelong place recognition. On the other hand, it also provides
a new option for other lifelong learning tasks. Recall the
network structures as shown in Fig. 3| The functional modules
related to the place recognition task are mainly the place
descriptor extraction JFy and the relative external reward Rex
in the rewarding mechanism. For other tasks, such as 3D
segmentation, researchers can replace the place descriptor
extraction network (i.e., the spherical convolution and VLAD
layer) with a 3D U-Net [[78]], utilize segmentation loss metric
instead of triplet loss, and not need to replace the entire blocks
in the lifelong memory system. However, unlike place recog-
nition which can leverage self-supervised mechanisms without
human labeling, providing accurate segmentation annotations
will be a significant challenge. Additionally, another potential
option is to develop a parallel hybrid lifelong learning system
for multiple tasks since the encoder module £ can be shared.

IX. CONCLUSION

The real-world robots will encounter diverse environmental
changes under long-term autonomy. In the place recognition
task, the robots continuously observe new scenarios, which are
unbounded under variant conditions. In this work, we proposed
BioSLAM, a lifelong place recognition method, to alleviate the
above problem. BioSLAM combines a general place learning
(GPL) system and a bio-inspired lifelong memory (BiLM)
system. The GPL system utilizes a viewpoint-invariant place
descriptor and a generative replay module to achieve the
‘memory encoding’ and ‘memory replay’ for continual place
feature learning. The BiLM system provides a dual-memory
mechanism controlled by a rewarding mechanism to guide the
‘memory consolidation,” ‘memory forgetting,” and ‘memory
replay’ to enhance the memorization of long-term traces. We
investigate the large-scale and long-term place recognition
ability in experiments with city-scale 3D point-cloud maps,
campus-scale visual-LiDAR hybrid inputs, and long-term city-
scale visual inputs. Both results show that BioSLAM can
significantly balance the place learning ability for new obser-
vations and maintain the memorization ability for historical
observations.

Our method can be applied to low-cost mobile robots with
current embedded devices, as it has a lightweight memory
system that does not require saving massive streaming datasets.
Another interesting direction for future work is to enable
memory sharing between client agents and the cloud server.
In this case, the server can be synced with data from all kinds
of scenarios by various robots to update a more general place
recognition. Finally, the BioSLAM system can be applied to
other perception tasks by modifying objective functions in the
rewarding mechanism according to specific requirements.
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