
Efficient k-NN Search with Cross-Encoders
using Adaptive Multi-Round CUR Decomposition

Nishant Yadav†, Nicholas Monath♦, Manzil Zaheer♦, and Andrew McCallum†
† University of Massachusetts Amherst ♦Google Research

{nishantyadav, mccallum}@cs.umass.edu {nmonath,manzilzaheer}@google.com

Abstract

Cross-encoder models, which jointly encode
and score a query-item pair, are prohibitively
expensive for direct -nearest neighbor ( -NN)
search. Consequently, -NN search typically
employs a fast approximate retrieval (e.g. using
BM25 or dual-encoder vectors), followed by
reranking with a cross-encoder; however, the
retrieval approximation often has detrimental
recall regret. This problem is tackled by AN-
NCUR (Yadav et al., 2022), a recent work that
employs a cross-encoder only, making search
efficient using a relatively small number of an-
chor items, and a CUR matrix factorization.
While ANNCUR’s one-time selection of an-
chors tends to approximate the cross-encoder
distances on average, doing so forfeits the ca-
pacity to accurately estimate distances to items
near the query, leading to regret in the crucial
end-task: recall of top- items. In this paper, we
propose ADACUR, a method that adaptively, it-
eratively, and efficiently minimizes the approxi-
mation error for the practically important top-
neighbors. It does so by iteratively performing

-NN search using the anchors available so far,
then adding these retrieved nearest neighbors to
the anchor set for the next round. Empirically,
on multiple datasets, in comparison to previous
traditional and state-of-the-art methods such
as ANNCUR and dual-encoder-based retrieve-
and-rerank, our proposed approach ADACUR
consistently reduces recall error—by up to 70%
on the important setting—while using
no more compute than its competitors.

1 Introduction

-nearest neighbor ( -NN) search is a core sub-
routine of a variety of tasks in NLP such as en-
tity linking (Wu et al., 2020), passage retrieval for
QA (Karpukhin et al., 2020), and more generally,
in retrieval-augmented machine learning models
(Guu et al., 2020; Izacard et al., 2023). For many
of these applications, the state-of-the-art similarity
function is a cross-encoder that directly outputs
a scalar similarity score after jointly encoding a
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Figure 1: Exact versus approximate cross-encoder
scores (computed using ANNCUR) of all items for a
test-query in domain=YuGiOh. ANNCUR incurs high
approximation error on -NN items wrt exact scores
when using 50 anchor items sampled uniformly at ran-
dom (Fig. 1a). In contrast, sampling 50 anchor items
with probability proportional to exact cross-encoder
scores (Fig. 1b) significantly improves approximation
of top-scoring items.

given query-item pair. However, computing a sin-
gle query-item score using a cross-encoder requires
a forward pass of the model which can be compu-
tationally expensive as cross-encoders are typically
parameterized using deep neural models such as
transformers (Vaswani et al., 2017). For this rea-
son, -NN search with a cross-encoder typically
involves retrieving candidate items using additional
models such as dual-encoders or BM25 (Robertson
et al., 2009), followed by re-ranking items using
the cross-encoder (Logeswaran et al., 2019; Zhang
and Stratos, 2021; Qu et al., 2021). However, the
accuracy of such retrieve-and-rerank approaches is
upperbound by the recall of first-stage retrieval and
may require computationally expensive distillation-
based training of dual-encoders to improve recall.

Recent work by Yadav et al. (2022) proposed
ANNCUR, a CUR factorization (Mahoney and
Drineas, 2009) based method, that approximates
cross-encoder using dot-product of latent query
and item embeddings and performs -NN retrieval
using approximate scores followed by option-
ally re-ranking retrieved items using exact cross-



encoder scores. The latent item embeddings are
computed by comparing each item against a set of
anchor queries, and the latent query embedding is
computed using the query’s cross-encoder scores
against a fixed set of anchor items. As shown in
Figure 1, when ANNCUR selects the anchor items
uniformly at random (Fig 1a), it incurs higher ap-
proximation error on the top-scoring items than
the rest of the items, resulting in poor k-NN recall,
and including some k-NN items as part of anchor
items (Fig. 1b) can significantly improve approxi-
mation error for top-scoring items.
In this work, we propose ADACUR, a search

strategy that improves k-NN search recall by im-
proving the approximation of top-scoring items.
ADACUR performs retrieval over multiple rounds,
retrieving the first batch of items either uniformly
at random or using heuristic or auxiliary mod-
els such as dual-encoder or BM25 to get a first
coarse approximation of item scores for the test
query. In subsequent rounds, it alternates between
a) performing retrieval using approximate scores
and scoring retrieved items using cross-encoder
and b) using all retrieved items as anchor items
to improve the approximation and hence retrieval
of relevant items in the subsequent rounds. Our
proposed approach provides significant improve-
ments in k-NN search recall over ANNCUR and
dual-encoder based retrieve-and-rerank approaches
when performing k-NN search with cross-encoder
models trained for the task of entity linking and
information retrieval.

2 Proposed Method: ADACUR

Task Given a scoring function fθ : Q× I → R
that maps a query-item pair to a scalar score, and
a query q ∈ Q, the k-nearest neighbor search task
is to retrieve top-k scoring items from a fixed item
set I according to the given scoring function fθ.

2.1 ADACUR: Offline Indexing of Items
The indexing step of ADACUR involves using
the cross-encoder model (fθ) to score each item
against a fixed set of kq anchor/train queries
(Qtrain), to get score matrix Ranc

Ranc(q, i) = fθ(q, i), ∀(q, i) ∈ Qtrain × I
Each column of EI := Ranc ∈ Rkq×|I| corre-
sponds to a kq-dimensional latent item embedding.

2.2 ADACUR: Test-time inference
The baseline method ANNCUR computes the la-
tent test-query embedding eqtest using Cqtest

, a

Algorithm 1 ADACUR k-NN Search
1: Input: (qtest , Ranc, NR,BCE,A)
2: qtest : Test query
3: Ranc: Matrix containing CE scores betweenQtrain and I
4: BCE: Total cross-encoder (CE) call budget.
5: A: Algorithm to use for selecting (anchor) items.
6: NR: Number of iterative search rounds
7: Output: Ŝ: Approximate scores of qtest with all items,
Ianc: Retrieved (anchor) items with CE scores in Ctest.

8: ks ← BCE/NR ✄ Num. of items to sample per round
9: Ianc ← INIT(I, ks) ✄ Initial set of anchor items

10: Ctest ← [fθ(qtest , i)]i∈Ianc ✄ CE scores of Ianc for qtest
11: for j ← 2 to NR do
12: U ← Ranc[Ianc]† ✄ U ∈ R|Ianc|×|Qtrain|

13: Ŝ(j) ← Ctest × U ×Ranc ✄ Update approx. scores
14: I(j)anc ← SAMPLEITEMS(A, ks, Ianc, Ŝ(j))

15: Ianc ← Ianc ∪ I(j)anc

16: Ctest ← Ctest ⊕ [fθ(qtest , i)]i∈I(j)
anc

✄ Update Ctest

17: U ← Ranc[Ianc]† ✄ U ∈ R|Ianc|×|Qtrain|

18: Ŝ ← Ctest × U ×Ranc ✄ Compute approx. scores
19: return Ŝ, Ianc, Ctest

Algorithm 2 SAMPLEITEMS

1: Input: (A, ks, Imask, S)
2: A: Algorithm for sampling items
3: ks: Number of items to sample
4: Imask : Set of items to mask
5: S: (Approximate) Scores for all items
6: Output: Iselect : Set of sampled ks items

7: S̄ ← SOFTMAX(S)
8: S̄[Imask]← 0 ✄ Mask items in Imask
9: if A = TopK then
10: Iselect ← TOPK(S̄, ks)
11: else if A = SoftMax then
12: Iselect ← ks items sampled using S̄
13: else if A = Random then
14: Iselect ← ks items uniformly sampled from I \ Imask
15: return Iselect

|Ianc|-dimensional vector containing cross-encoder
scores of qtest with a set of anchor items (Ianc) as:

Cqtest
= [fθ(qtest , i)]i∈Ianc

eqtest = Cqtest
× U

where U ∈ R|Ianc|×|Qtrain| is the pseudo-inverse
of Ranc[Ianc], the subset of columns of Ranc cor-
responding to (anchor) items Ianc. Finally, AN-
NCUR approximates the score for a query-item
pair (qtest , i) using dot-product of the query em-
bedding eqtest and item embedding EI [:, i] as

f̂θ(qtest , i) = e>qtest
EI [:, i]

The main bottleneck at test-time inference is the
number of items scored using the cross-encoder for
the given test-query. For a given budget of cross-
encoder calls, ANNCUR splits the budget (BCE)
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into two parts – it uses ki cross-encoder calls to
compare against anchor items (chosen uniformly at
random or using heuristic methods) and retrieves
BCE − ki items using approximate scores and re-
ranks them using exact cross-encoder scores.
In contrast, our proposed approach ADACUR

uses the cross-encoder call budget to adaptively
retrieve and score items over NR rounds, re-
purposing the retrieved items as anchor items as
shown in Algorithm 1. ADACUR begins by sam-
pling the first batch of ks = BCE/NR (anchor)
items uniformly at random. The first batch of items
can also be selected using baseline retrieval meth-
ods such as BM25 and dual-encoders. In the jth

round, the items retrieved up to round j−1 are used
as anchor items to revise the test-query embedding,
which in turn is used to update the approximate
scores (line 13 in Algorithm 1). Finally, the items
selected so far are masked out and the next batch of
ks items in round j is retrieved using the updated
approximate scores in the following two ways:

• TopK: Greedily pick top-ks items according to
approximate scores.

• SoftMax: Convert approximate item scores
into probability using softmax and sample ks
items without replacement.

Finally, ADACUR returns top-k items based on ex-
act cross-encoder scores1 from the set of retrieved
(anchor) items as approximate k-NN items. We
refer interested readers to Appendix B.5 for a dis-
cussion on the time complexity of ADACUR.

3 Experiments

In our experiments, we evaluate the proposed ap-
proach and baselines on the task of finding k-
nearest neighbor items as per a given cross-encoder.
We experiment with two cross-encoders – one
trained for the task of zero-shot entity linking, and
another trained on information retrieval datasets.

Experimental Setup We run evaluation on do-
mains YuGiOh, StarTrek, and Military from
ZESHEL–a zero-shot entity linking dataset (Lo-
geswaran et al., 2019), and domains SciDocs and
HotpotQA from BEIR–a zero-shot information re-
trieval benchmark (Thakur et al., 2021). We use two
cross-encoder models trained on labeled training
data from the corresponding benchmark and evalu-
ate separately on each domain on the task of find-

1Sorting retrieved items based on exact cross-encoder
scores does not require any additional cross-encoder calls
as cross-encoder scores for these items have already been
computed (see line 16 in Algorithm 1).

ing k-NN cross-encoder items. For each ZESHEL
domain, we randomly split the query set into a
train/anchor set (Qtrain) and a test set (Qtest) while
for BEIR domains, we use pseudo-queries released
as part of the benchmark as train/anchor queries
and evaluate on queries in the official test split. We
refer the reader to Table 1 for additional details.

Baselines We compare our proposed approach
with the following baseline retrieval methods.
Dual-Encoders (DE): Query-item scores are com-
puted using dot-product of embeddings produced
by a learned deep encoder model. DE is used for
initial retrieval followed by re-ranking using the
cross-encoder. We report results for DEBASE, a
dual-encoder trained on training domains in the
corresponding dataset, and the following two dual-
encoder models trained on the target domain via
distillation using the cross-encoder.

• DE
CE

BERT: DE initialized with BERT (Devlin
et al., 2019) and trained only on the target do-
main via distillation using the cross-encoder.

• DE
CE

BASE: DEBASE model further fine-tuned on
the target domain via distillation.

ANNCUR : k-NN search method proposed by Ya-
dav et al. (2022) where anchor items are chosen
uniformly at random. We additionally experiment
with ANNCURDEBASE which uses top-scoring items
retrieved using DEBASE as anchor items.

Evaluation Metric Following the precedent set
by previous work (Yadav et al., 2022), we evaluate
all approaches using Top-k-Recall@BCE which is
defined as the fraction of k-NN items retrieved
under test-time cost budget BCE where the cost
is defined as the number of cross-encoder calls
made during inference. DE baselines will use the
entire budget of BCE calls for re-ranking retrieved
items using exact cross-encoder scores, ANNCUR
splits the budget between scoring anchor ki items
and using exact cross-encoder scores for re-ranking
BCE − ki retrieved items, and ADACUR use the
budget to adaptively search for k-NN items.
For ADACUR, unless noted otherwise, we use

NR = 5 with TopK method for retrieving items us-
ing approximate scores, and retrieve the first batch
of items uniformly at random (ADACUR) or using
DEBASE (ADACURDEBASE). We refer readers to Ap-
pendix B for implementation details and details on
training and parameterization of cross-encoder and
dual-encoder models used in our experiments.
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at around 5-10 rounds while incurring negligible
overhead in inference latency. As shown in Fig-
ure 4, cross-encoder score computation is the main
bottleneck in test-time inference, taking ∼7ms per
score2. Increasing NR to large values such as 100
can incur up to 25% overhead with step (a) con-
tributing significantly to this overhead. Although
the time taken by matrix multiplication in step (b)
is linear in the number of items in the domain, we
observe that it is a negligible fraction of overall
latency on GPUs even for domain=HotpotQA with
5 million items (see Figure 5) as GPUs can enable
significant speedup even for brute-force computa-
tion of this step.

4 Conclusion

In this paper, we presented an adaptive search strat-
egy that incrementally builds a query embedding
to approximate cross-encoder scores and performs
k-NN search using approximate scores over several
rounds. Our approach is designed to reduce approx-
imation error for the top-scoring items and hence
improves k-NN search recall when retrieving items
based on the approximate scores. We perform an in-
depth empirical analysis of the proposed approach
in terms of both retrieval quality and efficiency.

Limitations

Building the index for the ADACUR is more ex-
pensive than the traditional dual-encoder index due
to the computation of dense cross-encoder scores
matrix (see §2.1). We have successfully run our
approach on up to 5 million items, but scaling to
billions of items is an interesting direction for fu-
ture work. Dual-encoder-based retrieve-and-rerank
baseline approaches can benefit from training the
dual-encoder on multiple domains. It is not clear
if data from multiple domains can be leveraged to
improve performance of the proposed approach on
a given target domain; although in any case, cross-
encoders tend to be more robust to domain shift
than using only dual-encoders for retrieval.

Ethics Statement

In this paper we tackle the task of finding k-nearest
neighbor items for a given query when query-items
scores are computed using a black-box similarity
function such as a cross-encoder model. The cross-
encoder scoring function may have certain biases

2For a 12-layer transformer model on an Nvidia 2080ti

and error tendencies, and it is unclear if our pro-
posed method to approximate cross-encoder scores
exacerbates or mitigates such biases.
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A Appendix A

B Training and Implementation Details

All the code for reproducing experiments is avail-
able at https://github.com/iesl/anncur.

B.1 Training Cross-Encoder Models
In our experiments, we use [EMB]-CE, a cross-
encoder model variant proposed by Yadav et al.
(2022) that jointly encodes a query-item pair and
computes the final score using dot-product of con-
textualized query and item embeddings extracted
after joint encoding.

B.1.1 ZESHEL Dataset
ZESHEL dataset is a zero-shot entity linking con-
taining a set of 16 domains, each containing a dis-
joint set of items (entities). Each domain contains
a set of queries (mention) paired with their ground-
truth items (entities). For ZESHEL, we use the
cross-encoder model checkpoint3 released by Ya-
dav et al. (2022). The cross-encoder model was
trained by first training a dual-encoder model on
ZESHEL training data using hard negatives, and
then training a cross-encoder model for the task
of zero-shot entity-linking on all eight training do-
mains using cross-entropy loss with ground-truth

3https://huggingface.co/nishantyadav/emb_crossenc_zeshel
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Dataset Domain |I| (|Qtrain|, |Qtest|) Splits Train Query (Qtrain) Type

ZESHEL YuGiOh 10,031 (100/3274), (500/2874), (2000/1374) Real Queries
ZESHEL StarTrek 34,430 (100/4127), (500/3727), (2000/2227) Real Queries
ZESHEL Military 104,520 (100/2300), (500/1900), (2000/0400) Real Queries

BEIR SciDocs 25,657 (1000/1000) Pseudo-Queries
BEIR HotpotQA 5,233,329 (1000/1000) Pseudo-Queries

Table 1: Statistics on the number of items (I) and the number of queries in train and test splits for each domain.
The train-query (Qtrain) split refers to queries used for distilling dual-encoder models or for indexing items using
ADACUR and ANNCUR. For ZESHEL domains, we create train-test splits by splitting the queries in each domain
uniformly at random and test with three different splits by putting 100, 500, or 2000 queries in train split. For BEIR
domains, we use pseudo-queries released as part of the benchmark as train queries (Qtrain) and run k-NN evaluation
on test queries from the official test split (as per BEIR benchmark) of these domains. For HotpotQA, we use the first
1K queries out of a total of 7K test queries and we use all 1K test queries for SciDocs.

entity and negative entities mined using the dual-
encoder. We refer readers to Yadav et al. (2022) for
further details on cross-encoder training.
We perform k-NN experiments on domains

YuGiOh, StarTrek, and Military from ZESHEL
of which only Military was part of the train-
ing data used to train the cross-encoder model
and YuGiOh and StarTrek are part of the origi-
nal ZESHEL test domains and the cross-encoder
model was not trained on these domains.

B.1.2 BEIR
We follow the training setup used by Hofstätter
et al. (2020). We first train three teacher cross-
encoders initialized with albert-large-v2 (Lan
et al., 2020), bert-large-whole-word-masking,
and bert-base-uncased (Devlin et al., 2019), and
compute soft labels on 40 million (query, posi-
tive item, negative item) triplets in MS-MARCO
dataset (Bajaj et al., 2016). We then train our
cross-encoder model parameterized using a 6-
layer MINI-LM model (Wang et al., 2020) via
distillation using average scores of the three
teacher models as target signal and minimizing
mean-square-error between predicted and target
scores. We use training scripts available as part of
sentence-transformer4 repository to train the
cross-encoder model and use a dot-product based
scoring mechanism for cross-encoders proposed
by Yadav et al. (2022)..

B.2 Training Dual-Encoder Models
B.2.1 ZESHEL dataset
We report results for DE baselines as reported in Ya-
dav et al. (2022). The DE models were initialized
using bert-base-uncased and contain separate
query and item encoders, thus containing a total of

4https://github.com/UKPLab/sentence-transformers

2× 110M parameters. We refer readers to Yadav
et al. (2022) for details related to the training of all
DE model variants on ZESHEL dataset.

B.2.2 BEIR benchmark
For BEIR domains, we use a dual-encoder model5

released as part of sentence-transformer repos-
itory as DEBASE. This dual-encoder model was
initialized using distillbert-base (Sanh et al.,
2019) and trained on MS-MARCO dataset. This
DEBASE is not trained on target domains SciDocs
and HotpotQA used for running k-NN experiments.
We finetune DEBASE via distillation on the tar-

get domain to get DE
CE

BASE model. Given a set of
training queries Qtrain from the target domain, we
retrieve top-100 or top-1000 items for each query,
score the items with the cross-encoder model, and
train the dual-encoder by minimizing cross-entropy
loss between predicted query-item scores (using
DE) and target query-item scores (obtained using
cross-encoder). Training a DE

CE

BASE with 1K queries
and 100 or 1000 items per query takes around 2
hrs and 10 hrs respectively on an Nvidia RTX8000
GPU with 48GB memory. We train DE

CE

BASE for 10
epochs when using top-100 items per query and
for 4 epochs when using top-1000 items per query
using AdamW (Loshchilov and Hutter, 2019) opti-
mizer with learning rate 1e-5.

B.3 ANNCUR Implementation details

For ANNCUR, we report results for the optimal
split of cross-encoder call budget (BCE) between
scoring ki anchor items followed by retrieving
BCE− ki items for re-ranking. We experiment with
ki ∈ {iBCE/10 : 1 ≤ i ≤ 9}. If the retrieved items
contain a subset of anchor items for which exact

5msmarco-distilroberta-base-v2:
www.sbert.net/docs/pretrained-models/msmarco-v2.html
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Fi g ur e 5: A D A C U R i nf er e n c e l at e n c y v ers us n u m b er of r o u n ds f or t w o diff er e nt d o m ai ns.  T h e pri m ar y b ottl e n e c k at
i nf er e n c e ti m e is t h e ti m e t a k e n t o c o m p ut e cr oss- e n c o d er ( C E) s c or es f or q u er y-it e m p airs at t est ti m e, a n d t h e
o v er h e a d f or A D A C U R a c c u m ul at es li n e arl y as t h e n u m b er of r o u n ds i n cr e as es. S e e § B. 5 f or d et ail e d dis c ussi o n.

cr oss- e n c o d er s c or e h as alr e a d y b e e n c o m p ut e d,
w e r etri e v e  m or e t h a n B C E − k i it e ms usi n g a p-
pr o xi m at e s c or es a n d c o m p ut e e x a ct cr oss- e n c o d er
s c or es f or t h e m u ntil  w e h a v e e x h a ust e d t h e e ntir e
cr oss- e n c o d er c all b u d g et f or t h e r e-r a n ki n g st e p.

B. 4 A D A C U R I m pl e m e nt ati o n d et ails

F or all o ur k - N N s e ar c h e x p eri m e nts,  w e us e d
N vi di a 2 0 8 0ti  G P Us  wit h 1 2 G B  m e m or y f or d o-
m ai ns Y u G i O h ( 1 0 K it e ms), S t a r T r e k ( 3 4 K it e ms),
M i l i t a r y ( 1 0 0 K it e ms), a n d S c i D o c s ( 2 5 K it e ms),
a n d  w e us e d  N vi di a  R T X 8 0 0 0  G P Us  wit h 4 8 G B
m e m or y f or H o t p o t Q A ( 5  milli o n it e ms).

F or H o t p o t Q A ,  w e r estri ct o ur k - N N s e ar c h t o
t o p- 1 0 K it e ms  wrt D E B A S E f or A D A C U R D E B A S E . F or
Z E S H E L d o m ai ns a n d S c i D o c s ,  w e d o n ot us e a n y
s u c h h e uristi c a n d s e ar c h o v er all t h e it e ms i n t h e
c orr es p o n di n g d o m ai n.

B. 5  Ti m e  C o m pl e xit y of A D A C U R

T h e offl i n e i n d e xi n g st e p f or A D A C U R t a k es
O (k q | I| Cf θ

) ti m e as it i n v ol v es c o m p uti n g e x a ct
cr oss- e n c o d er s c or es f or all | I| it e ms i n t h e t ar g et
d o m ai n a g ai nst k q a n c h or q u eri es, a n d c o m p uti n g
e a c h cr oss- e n c o d er s c or e t a k es C f θ

u nits of ti m e.

At t est ti m e,  w e ar e gi v e n a b u d g et B C E o n t h e
n u m b er of cr oss- e n c o d er c alls.  E a c h o n e of t h e
N R r o u n ds d uri n g i nf er e n c e  wit h A D A C U R i n-
v ol v es a p pr o xi m ati n g all it e m s c or es f or t h e t est
q u er y ( q t e s t ) f oll o w e d b y s a m pli n g t h e n e xt b at c h
of k s = B C E / N R it e ms usi n g t h e u p d at e d a p pr o xi-
m at e s c or es. I n t h e j t h r o u n d, t h e s c or e a p pr o xi m a-
ti o n st e p i n v ol v es c o m p uti n g t h e ps e u d o-i n v ers e
of a k q × j k s - di m e nsi o n al  m atri x (li n e 1 2 i n

Al g o. 1 ),  w hi c h t a k es O (C
k q , j ks
i n v ) ti m e, f oll o w e d

b y a  m atri x  m ulti pli c ati o n st e p t o c o m p ut e u p-
d at e d a p pr o xi m at e s c or es (li n e 1 3 i n  Al g o. 1 )

w hi c h t a k es O (C
k q , j ks ,| I|
m u l ) ti m e.  T h e ti m e t a k e n

t o u p d at e t h e a p pr o xi m at e s c or es i n e a c h r o u n d is

O (C
k q , j ks
i n v + C

k q , j ks ,| I|
m u l ) , a n d t h e ti m e t a k e n t o c o m-

p ut e cr oss- e n c o d er s c or es f or t h e n e xt b at c h of k s

it e ms is O (k s C f θ
) .  T h us, t h e t ot al i nf er e n c e l at e n c y

f or r etri e vi n g it e ms o v er N R r o u n ds u n d er a gi v e n
b u d g et of B C E cr oss- e n c o d er c alls is

O

N R

j = 1

k s C f θ
+ C

k q , j ks
i n v + C

k q , j ks ,| I|
m u l

= O B C E C f θ
+

N R

j = 1

C
k q , j ks
i n v + C

k q , j ks ,| I|
m u l

O v er h e a d of A D A C U R

Fi g ur e 5 s h o ws t h e br e a k d o w n of A D A C U R ’s i n-
f er e n c e l at e n c y i n t er ms of ti m e s p e nt o n c o m p uti n g
cr oss- e n c o d er s c or es, a n d t h e o v er h e a d of c o m p ut-
i n g  m atri x i n v ers e i n li n e 1 2 a n d u p d ati n g a p pr o xi-
m at e s c or es b y  m ulti pl yi n g  m atri c es i n li n e 1 3 of
Al g orit h m 1 .  E m piri c all y,  w e o bs er v e t h at t h e pri-
m ar y b ottl e n e c k at i nf er e n c e ti m e is t h e ti m e t a k e n
t o c o m p ut e cr oss- e n c o d er s c or es f or q u er y-it e m
p airs at t est ti m e, a n d t h e o v er h e a d f or A D A C U R
a c c u m ul at es li n e arl y as t h e n u m b er of r o u n ds i n-
cr e as es.  T h e o v er h e a d is  m ostl y d o mi n at e d b y c o m-
p uti n g ps e u d o-i n v ers e (s e e li n e 1 2 i n  Al g orit h m 1 )
a n d t his st e p is i n d e p e n d e nt of t h e t ar g et d o m ai n
si z e.  T h e  m atri x  m ulti pli c ati o n st e p (li n e 1 3 i n  Al-
g orit h m 1 ) h as a li n e ar d e p e n d e n c e o n t h e n u m b er
of it e ms i n t h e t ar g et d o m ai n b ut it is a n e gli gi bl e
fr a cti o n of t h e o v er all r u n ni n g ti m e as it c a n b e
si g ni fic a ntl y s p e d u p usi n g  G P Us.

F or Z E S H E L d o m ai ns,  w e us e a cr oss- e n c o d er
p ar a m et eri z e d usi n g b e r t - b a s e (D e vli n et al. ,
2 0 1 9 ), a n d o bs er v e t h at e a c h cr oss- e n c o d er c all
t a k es a m orti z e d ti m e of ∼ 7 ms o n a n  N vi di a 2 0 8 0ti

8 0 9 5
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G P U  w h e n t h e s c or es ar e c o m p ut e d i n b at c h es of
si z e 5 0.  C o m p uti n g e a c h cr oss- e n c o d er s c or e s e-
q u e nti all y i. e.  wit h b at c h-si z e = 1 t a k es ∼ 1 3 ms
p er s c or e.  We di d n ot o bs er v e a n y f urt h er r e d u c-
ti o n i n a m orti z e d ti m e t o c o m p ut e e a c h s c or e  w h e n
i n cr e asi n g t h e b at c h si z e b e y o n d 5 0.

T h e a m orti z e d ti m e p er cr oss- e n c o d er c all is
a p pr o xi m at el y 6 ms a n d 2 ms f or S c i D o c s a n d
H o t p o t Q A r es p e cti v el y  w h e n usi n g b at c h si z e = 5 0
a n d  M I N I- L M- b as e d (Wa n g et al. , 2 0 2 0 ) cr oss-
e n c o d er.  T h e diff er e n c e i n ti m e p er cr oss- e n c o d er
s c or e f or S c i D o c s a n d H o t p o t Q A is d u e t o t h e dif-
f er e n c e i n a v er a g e q u er y-it e m p air s e q u e n c e l e n gt h.

C  A d diti o n al  R es ults a n d  A n al ysis

C. 1 T o p K vs S o f t M a x f o r A D A C U R

Fi g ur e 6 s h o ws  T o p- k - R e c all f or A D A C U R o n d o-
m ai n = Y u G i O h , | Qtr ai n| = 5 0 0 ,  w h e n usi n g T o p K
a n d S o f t M a x str at e gi es f or s a m pli n g it e ms b as e d
o n a p pr o xi m at e s c or es (s e e § 2. 2 f or d et ails). T o p K
s a m pli n g str at e g y  w hi c h gr e e dil y pi c ks t o p- k it e ms
b as e d o n a p pr o xi m at e s c or es r es ults i n s u p eri or r e-
c all as c o m p ar e d t o s a m pli n g it e ms usi n g s oft m a x
o v er a p pr o xi m at e s c or es.
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Fi g ur e 6:  T o p- k - R e c all f or A D A C U R o n Y u G i O h ,
| Qtr ai n| = 5 0 0 f or diff er e nt str at e gi es f or s a m pli n g it e ms
b as e d o n a p pr o xi m at e s c or es d es cri b e d i n § 2. 2 .

C. 2  A n c h o r It e m S a m pli n g  wit h  O r a cl e

A D A C U R p erf or ms r etri e v al o v er  m ulti pl e r o u n ds
usi n g a p pr o xi m at e cr oss- e n c o d er s c or es a n d us es
t h e it e ms r etri e v e d b as e d o n t h e a p pr o xi m at e s c or es
as a n c h or it e ms t o i m pr o v e t h e a p pr o xi m ati o n a n d
h e n c e r etri e v al i n s u bs e q u e nt r o u n ds. I n t his s e c-
ti o n,  w e r u n e x p eri m e nts  w h er e t h e a n c h or it e m
s a m pli n g  m et h o d h as or a cl e a c c ess t o e x a ct cr oss-
e n c o d er s c or es of all it e ms f or t h e gi v e n t est q u er y
t o b ett er u n d erst a n d t h e eff e ct of a n c h or it e ms
o n t h e a p pr o xi m ati o n of cr oss- e n c o d er s c or es a n d

h e n c e s u bs e q u e nt r etri e v al b as e d o n t h e a p pr o x-
i m at e s c or es.  We e x p eri m e nt  wit h t h e f oll o wi n g
str at e gi es f or s a m pli n g k i a n c h or it e ms f or a gi v e n
t est q u er y :

• T o p K O
k m , ϵ :  M as k o ut t o p-k m it e ms  wrt e x-

a ct cr oss- e n c o d er s c or es a n d s el e ct k i a n c h or
it e ms b y gr e e dil y pi c ki n g ( 1 − ϵ )k i it e ms st art-
i n g fr o m r a n k k m + 1 , a n d s a m pl e r e m ai ni n g
ϵ k i a n c h or it e ms u nif or ml y at r a n d o m.

• S o f t M a x O
k m , ϵ:  M as k o ut t o p-k m it e ms  wrt e x-

a ct cr oss- e n c o d er s c or es a n d s el e ct k i a n c h or
it e ms b y s a m pli n g ( 1 − ϵ )k i a n c h or it e ms us-
i n g s oft m a x o v er e x a ct cr oss- e n c o d er s c or es,
a n d s a m pl e r e m ai ni n g ϵ k i a n c h or it e ms u ni-
f or ml y at r a n d o m.

F or a gi v e n t est-ti m e cr oss- e n c o d er c all b u d g et
B C E ,  w e s el e ct k i a n c h or it e ms, c o m p ut e a p pr o x-
i m at e cr oss- e n c o d er s c or es usi n g t h e c h os e n a n-
c h or it e ms, a n d t h e n r etri e v e B C E − k i it e ms b as e d
o n t h e a p pr o xi m at e s c or es.  We e x p eri m e nt  wit h
k i ∈ { iB C E / 1 0 : 1 ≤ i ≤ 9 } a n d r e p ort r es ults f or
t h e b est b u d g et s plit.

T o p- 1 T o p- 1 0 T o p- 1 0 0 A n c h or All
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Fi g ur e 7:  A v er a g e a p pr o xi m ati o n err or f or  C U R  m a-
tri x f a ct ori z ati o n o n t est- q u eri es f or d o m ai n =Y u G i O h
a n d | Qtr ai n| = 5 0 0 w h e n c h o osi n g k i = 5 0 a n c h or
it e ms u nif or ml y at r a n d o m (A N N C U R ), usi n g or a cl e
str at e gi es fr o m § C. 2 a n d f or A D A C U R w h e n s a m pli n g
a n c h or it e ms o v er  fiv e r o u n ds.  A p pr o xi m ati o n err or is
c o m p ut e d as t h e a v er a g e of a bs ol ut e diff er e n c e b et w e e n
a p pr o xi m at e a n d e x a ct it e m s c or es.

Eff e ct of a d di n g k - N N it e ms t o a n c h o r it e ms
Fi g ur e 8 a s h o ws  T o p- k - R e c all of a n c h or it e m
s a m pli n g str at e gi es T o p K O

k m ,0 a n d S o f t M a x O
k m ,0 f or

k m ∈ { 0 , k} , d o m ai n =Y u G i O h . S a m pli n g str at e gi es
S o f t M a x O

k, 0 a n d T o p K O
k, 0 ,  w hi c h  m as k o ut t o p-k

it e ms, p erf or m si g ni fic a ntl y  w ors e t h a n S o f t M a x O
0 ,0

a n d T o p K O
0 ,0 r e s p e cti v el y  w h e n s e ar c hi n g f or k =

1 , 1 0 n e ar est n ei g h b ors.  T his i n di c at es t h at t h e si g-
ni fic a nt i m pr o v e m e nt i n  T o p- 1 - R e c all a n d  T o p-1 0 -
R e c all f or T o p K O

0 ,0 a n d S o f t M a x O
0 ,0 s a m pli n g str at e-

gi es c a n b e attri b ut e d t o t h e pr es e n c e of t o p- k it e ms
i n t h e a n c h or it e m s et.  T his is b e c a us e  C U R  m atri x

8 0 9 6
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( c) S a m pli n g usi n g S o f t M a x of e x a ct  C E s c or es  w hil e v ar yi n g
, t h e fr a cti o n of it e ms s a m pl e d u nif or ml y at r a n d o m

Fi g ur e 8:  T o p- k - R e c all f or A D A C U R , A N N C U R , a n d
or a cl e s a m pli n g str at e gi es ( § C. 2 ) t h at h a v e or a cl e a c-
c ess t o e x a ct cr oss- e n c o d er s c or es f or all it e ms f or d o-
m ai n = Y u G i O h , | Qtr ai n| = 5 0 0 .

f a ct ori z ati o n  w hi c h is us e d t o c o m p ut e t h e a p pr o xi-
m at e s c or es i n c urs n e gli gi bl e a p pr o xi m ati o n err or
o n a n c h or it e ms, a n d h e n c e o n t o p- k it e ms  w h e n
t h es e it e ms ar e p art of t h e a n c h or s et as s h o w n i n
fi g ur es 7 a n d 9 . F or T o p K O

k, 0 a n d S o f t M a x O
k, 0 s a m-

pli n g str at e gi es, si n c e t h e t o p- k it e ms ar e n ot p art
of t h e a n c h or s et,  C U R i n c urs a  m u c h hi g h er a p-
pr o xi m ati o n err or f or t h e t o p- k it e ms (s e e e x a m pl es
i n Fi g ur es 9 a a n d 9 b ), t h us r es ulti n g i n p o or  T o p-
k - R e c all as s h o w n i n Fi g ur e 8 a .

Eff e ct of di v ersit y i n a n c h o r it e ms Fi g ur e 8 a
s h o ws t h at s a m pli n g it e ms b as e d o n s oft m a x
of e x a ct cr oss- e n c o d er s c or es ( S o f t M a x O

k m ,0 ) p er-
f or ms b ett er t h a n gr e e dil y pi c ki n g t o p-s c ori n g
it e ms (T o p K O

k m ,0 ), f or b ot h k m = 0 , k.  T h e r e a-

s o n b e hi n d S o f t M a x O
k m ,0 p erf or mi n g b ett er t h a n

T o p K O
k m ,0 i s t h at s a m pli n g b as e d o n s oft m a x of e x-

a ct s c or es yi el ds a n a n c h or s et  wit h a  m or e di v ers e
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Fi g ur e 9: S c att er pl ot s h o wi n g a p pr o xi m at e v ers us e x a ct
cr oss- e n c o d er s c or es f or a q u er y fr o m d o m ai n = Y u G i O h ,
w h e n c h o osi n g k i = 5 0 a n c h or it e ms usi n g or a cl e
str at e gi es fr o m § C. 2 a n d | Qtr ai n| = 5 0 0 .  T o p-k f or
k = 1, 1 0, 1 0 0  wrt e x a ct cr oss- e n c o d er s c or es ar e a n n o-
t at e d  wit h t e xt al o n g  wit h v erti c al li n es, diff er e nt c ol or
b a n ds i n di c at e t h e or d eri n g of it e ms  wrt a p pr o xi m at e
s c or es, a n d a n c h or it e ms ar e s h o w n i n bl u e.

s c or e distri b uti o n  w h er e as gr e e dil y s el e cti n g t o p-
s c ori n g it e ms usi n g e x a ct s c or es r es ults i n a n a n-
c h or s et  wit h it e ms h a vi n g si mil ar cr oss- e n c o d er
s c or es.  H o w e v er, as s h o w n i n Fi g ur es 9 c a n d 9 d ,
b ot h of t h es e s a m pli n g str at e gi es c a n r es ult i n o v er-
esti m ati n g s c or es f or all it e ms, e v e n t h e irr el e v a nt
o n es (i. e. it e ms b e y o n d t o p- k it e ms) d u e t o i ns uf-
fi ci e nt r e pr es e nt ati o n of t h e irr el e v a nt it e ms i n t h e
a n c h or s et.  T h us r etri e vi n g b as e d o n a p pr o xi m at e d
s c or es  m a y str u g gl e t o r etri e v e r el e v a nt k - N N it e ms,
es p e ci all y f or l ar g er v al u es of k s u c h as k = 1 0 0
w h e n t h e a n c h or it e ms ar e c h os e n usi n g or a cl e
str at e gi es s u c h as T o p K O

k m ,0 .

Fi g ur es 9 e a n d 9f ,  w h er e = 7 5 % of 5 0 it e ms
ar e s a m pl e d u nif or ml y at r a n d o m, s h o w t h at o v er-
esti m ati n g s c or es of irr el e v a nt it e ms c a n b e a v oi d e d
b y s a m pli n g a fr a cti o n of a n c h or it e ms u nif or ml y
at r a n d o m t o i n cr e as e t h e di v ersit y of t h e a n c h or
it e m s et.  As s h o w n i n Fi g ur es 8 b a n d 8 c ,  T o p-k -
R e c all f or b ot h S o f t M a x O

0 , a n d T o p K O
0 , g e n er all y

i m pr o v es  wit h a n i n cr e as e i n , t h e fr a cti o n of r a n-



d o m it e ms i n t h e a n c h or s et, d u e t o i n cr e as e d di-
v ersit y i n t h e a n c h or it e m s et. Si n c e S o f t M a x O

0 , ϵ

alr e a d y s a m pl es a di v ers e s et of a n c h or it e ms, i n-
cr e asi n g ϵ yi el ds o nl y  m ar gi n al i m pr o v e m e nt  w hil e
f or T o p K O

0 , ϵ, i n cr e asi n g ϵ yi el ds si g ni fic a nt i m pr o v e-
m e nts d u e t o i n cr e as e d di v ersit y of t h e a n c h or s et.
A s m all dr o p i n p erf or m a n c e is o bs er v e d f or l ar g er
v al u es of ϵ as i n cr e asi n g ϵ b e y o n d a t hr es h ol d r e-
s ults i n s o m e of t h e t o p- k it e ms t o b e e x cl u d e d fr o m
t h e a n c h or it e m s et.  T his r es ults i n a p o or er a p pr o x-
i m ati o n of s c or es f or t h e  missi n g t o p-k it e ms a n d
h e n c e p o or r etri e v al r e c all as t h e r etri e v al is d o n e
usi n g t h e a p pr o xi m at e s c or es.

Fi n all y, t h e o pti m al str at e g y f or c h o osi n g t h e s et
of a n c h or it e ms is t h e o n e t h at stri k es a b al a n c e
b et w e e n s el e cti n g a n c h or it e ms  wit h di v ers e cr oss-
e n c o d er s c or es a n d gr e e dil y pi c ki n g t o p- k it e ms.
O ur pr o p os e d str at e g y A D A C U R i m pr o v es o v er
A N N C U R as gr e e dil y pi c ki n g t o p-s c ori n g it e ms
a c c or di n g t o a p pr o xi m at e s c or es t o e x p a n d s et of
a n c h or it e ms i n cr e as es t h e li k eli h o o d of pi c ki n g
gr o u n d-tr ut h k - N N it e ms t o b e p art of t h e a n c h or
s et,  wit h t his li k eli h o o d i m pr o vi n g aft er e a c h r o u n d
wit h i m pr o v e m e nt i n t h e s c or e a p pr o xi m ati o n, a n d
A D A C U R a c hi e v es di v ersit y i n t h e a n c h or it e ms as
a r es ult of s a m pli n g it e ms u nif or ml y at r a n d o m i n
t h e  first r o u n d a n d d u e t o err or i n t h e a p pr o xi m at e
s c or es, as s h o w n i n Fi g ur e 1 1 .

C. 3  C o m p a ris o n  wit h  M ulti- Ve ct o r  M o d els

M ulti- v e ct or  m o d els ( K h att a b a n d  Z a h ari a , 2 0 2 0 ;
M a et al. , 2 0 2 1 ) pr o d u c e  m ulti pl e e m b e d di n gs f or
e a c h q u er y a n d it e m. F or a gi v e n q u er y q a n d it e m
i, t h e q u er y-it e m s c or e is c o m p ut e d usi n g si m pl e
f u n cti o ns s u c h as a v er a g e si mil arit y or s u m- of-
m a xi m u m si mil ariti es b et w e e n t h e s et of e m b e d-
di n gs f or q u er y q a n d it e m i.

Fi g ur e 1 0 s h o ws  T o p- k - R e c all f or D E B A S E ,

D E
C E

B A S E , A D A C U R D E B A S E , a n d  MU V E R (M a et al. ,
2 0 2 1 ), a r e c e nt  m ulti- v e ct or  m o d el tr ai n e d o n
Z E S H E L d at as et. F or  M U V E R ,  w e us e t h e pr e-
tr ai n e d c h e c k p oi nt r el e as e d b y M a et al. (2 0 2 1 )
wit h t h e vi e w- m er gi n g i nf er e n c e str at e g y as d e-
s cri b e d i n M a et al. (2 0 2 1 ).  W hil e  M U V E R c a n
b e  m or e a c c ur at e t h a n D E B A S E , D E

C E

B A S E o bt ai n e d
b y  fin et u ni n g D E B A S E m o d el o n t h e t ar g et d o m ai n
o ut p erf or ms  M U V E R a n d o ur pr o p os e d  m et h o d
A D A C U R D E B A S E yi el ds t h e b est  T o p- k - R e c all v ers us
i nf er e n c e c ost tr a d e- offs f or all v al u es of k .

We  w o ul d als o li k e t o n ot e t h at  w hil e  m ulti-
v e ct or  m o d els s u c h as  M U V E R c a n b e  m or e a c c u-
r at e t h a n si n gl e- e m b e d di n g  m o d els s u c h as D E B A S E ,
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( b) S t a r T r e k

Fi g ur e 1 0:  T o p- k - R e c all f or A D A C U R D E B A S E a n d b as e-
li n es i n cl u di n g  m ulti- v e ct or  m o d els o n  ZE S H E L d o-
m ai ns, | Qtr ai n| = 2 0 0 0 . S e e §C. 3 f or dis c ussi o n.

s u c h  m ulti- v e ct or  m o d els i n c ur si g ni fic a nt  m e m-
or y o v er h e a d f or st ori n g q u er y/it e m e m b e d di n gs.
F or i nst a n c e, usi n g 1 5 e m b e d di n gs p er it e m  wit h
7 6 8- di m e nsi o n al e m b e d di n gs  w o ul d t a k e ar o u n d
2 5 0 G B s p a c e f or 5  milli o n it e ms f or H o t p o t Q A .

C. 4  R es ults f o r T F - I D F b a s eli n e

T F - I D F :  All q u eri es a n d it e ms ar e e m b e d d e d usi n g
a T F - I D F v e ct ori z er tr ai n e d o n it e m d es cri pti o ns
a n d t o p- k it e ms ar e r etri e v e d usi n g t h e d ot- pr o d u ct
of s p ars e q u er y a n d it e m e m b e d di n gs.

F or d o m ai ns i n  Z E S H E L ,  w e r e p ort r e-
s ults f or T F - I D F b a s eli n e, f or A N N C U R w h e n
a n c h or it e ms ar e c h os e n usi n g T F - I D F b a s e-
li n e (A N N C U R T F - I D F ), a n d f or A D A C U R w h e n
t h e  first b at c h of a n c h or it e ms is c h os e n
usi n g T F - I D F b a s eli n e ( A D A C U R T F - I D F ). Fi g-
ur es 1 3 , 1 4 , a n d 1 5 s h o w  T o p- k - R e c all f or d o m ai ns
Y u G i O h , S t a r T r e k , a n d M i l i t a r y r es p e cti v el y f or
| Qtr ai n| ∈ {1 0 0 , 5 0 0 , 2 0 0 0 } . F or e a c h b as eli n e r e-
tri e v al  m et h o d, A D A C U R al w a ys p erf or ms b ett er
t h a n A N N C U R w hi c h i n t ur n g e n er all y p erf or ms
b ett er t h a n  m er el y r e-r a n ki n g it e ms r etri e v e d us-
i n g t h e c orr es p o n di n g b as eli n e r etri e v al  m et h o d. I n
m ost c as es,  T o p- k - R e c all f or A D A C U R D E B A S E > A N -
N C U R D E B A S E > D E B A S E , a n d A D A C U R T F - I D F > A N -
N C U R T F - I D F > T F - I D F.

8 0 9 8
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(a-1) ADACUR Round 1.
Total 10 anchor items.

(a-2) ADACUR Round 2.
Total 20 anchor items.

(a-3) ADACUR Round 3.
Total 30 anchor items.

(a-4) ADACUR Round 4.
Total 40 anchor items.

(a-5) ADACUR Round 5.
Total 50 anchor items.

(a-6) ANNCUR- Sampling all 50 an-
chor items uniformly at random.

(a) Sampling 50 anchor items adaptively for ADACUR (over five rounds) and for ANNCUR (uniformly at random).

(b-1) ADACUR Round 1.
Total 40 anchor items.

(b-2) ADACUR Round 2.
Total 80 anchor items.

(b-3) ADACUR Round 3.
Total 120 anchor items.

(b-4) ADACUR Round 4.
Total 160 anchor items.

(b-5) ADACUR Round 5.
Total 200 anchor items.

(b-6) ANNCUR- Sampling all 200 an-
chor items uniformly at random.

(b) Sampling 200 anchor items adaptively for ADACUR (over five rounds) and for ANNCUR (uniformly at random).

Figure 11: Scatter plot showing approximate versus exact cross-encoder scores for a query from do-
main=YuGiOh, train when choosing and anchor items with ADACUR over five rounds,
and uniformly at random with ANNCUR. Top- for =1,10,100 wrt exact cross-encoder scores are annotated with
text, different color bands indicate the ordering of items wrt approximate scores, and anchor items are shown in blue.
With ADACUR, the first batch containing anchor items in Figure 11a-1 and 11b-1 is chosen uniformly at random
and in subsequent rounds, items with highest approximate scores are chosen. Note that the approximation error
for top-scoring items improves significantly when the 50 anchor items are chosen adaptively (see Figure 11a-5)
with the improvement being much more significant than merely increasing the number of anchor items sampled
uniformly at random from 50 in Figure 11a-6 to 200 in Figure 11b-6.
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Figure 12: Top-k-Recall for ADACUR (using ten rounds) and baselines for SciDocs and HotpotQA, |Qtrain| = 1000.
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( a)  N u m b er of tr ai n/ a n c h or q u eri es | Qtr ai n| = 1 0 0 .
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( b)  N u m b er of tr ai n/ a n c h or q u eri es | Qtr ai n| = 5 0 0 .
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( c)  N u m b er of tr ai n/ a n c h or q u eri es | Qtr ai n| = 2 0 0 0 .
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c orr es p o n ds t o a diff er e nt v al u e of t h e n u m b er of tr ai n/ a n c h or q u eri es ( | Qtr ai n|).
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( b)  N u m b er of tr ai n/ a n c h or q u eri es | Qtr ai n| = 5 0 0 .
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( c)  N u m b er of tr ai n/ a n c h or q u eri es | Qtr ai n| = 2 0 0 0 .
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