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ABSTRACT

The value of electronic waste at present is estimated to in-
crease rapidly year after year, and with rapid advances in elec-
tronics, shows no signs of slowing down. Storage devices such
as SATA Hard Disks and Solid State Devices are electronic de-
vices with high value recyclable raw materials which often goes
unrecovered. Most of the e-waste currently generated, including
HDDs, is either managed by the informal recycling sector, or is
improperly landfilled with the municipal solid waste, primarily
due to insufficient recovery infrastructure and labor shortage in
the recycling industry. This emphasizes the importance of devel-
oping modern advanced recycling technologies such as robotic
disassembly. Performing smooth robotic disassembly operations
of precision electronics necessitates fast and accurate geometric
3D profiling to provide a quick and precise location of key com-
ponents. Fringe Projection Profilometry (FPP), as a variation
of the well-known structured light technology, provides both the
high speed and high accuracy needed to accomplish this. How-
ever, Using FPP for disassembly of high-precision electronics
such as hard disks can be especially challenging, given that the
hard disk platter is almost completely reflective. Furthermore,
the metallic nature of its various components make it difficult
to render an accurate 3D reconstruction. To address this chal-
lenge, We have developed a single-shot approach to predict the
3D point cloud of these devices using a combination of computer
graphics, fringe projection, and deep learning. We calibrate a
physical FPP-based 3D shape measurement system and set up its
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digital twin using computer graphics. We capture HDD and SSD
CAD models at various orientations to generate virtual training
datasets consisting of fringe images and their point cloud recon-
structions. This is used to train the U-NET which is then found
efficient to predict the depth of the parts to a high accuracy with
only a single shot fringe image. This proposed technology has the
potential to serve as a valuable fast 3D vision tool for robotic re-
manufacturing and is a stepping stone for building a completely
automated assembly system.

1 INTRODUCTION

The amount of electronic waste currently produced is worth
$57 billion, of which Europe is the leading collector. Only a
small fraction of this (20%) is recycled and recovered sustain-
ably, which can offset tonnes of CO;. E-waste is described as all
waste from discarded electrical and electronic equipment and can
include devices ranging from large household appliances such as
dishwashers and dryers to consumer electronics such as laptops,
tablets and mobile phones. Global E-waste has only been in-
creasing rapidly year after year. The E-waste generated in 2019
was 21% more than the E-waste generated in 2015. More than
80% of this was either dumped illegally or burnt openly. Recy-
cling and re-using E-waste properly can lead to the recovery of a
wide range of valuable raw materials and the fact that less than
20% of this is recovered sustainably poses a serious environmen-
tal threat. E-waste recovery and collection can be designated as
part of the formal or informal sector. The process of formal recy-
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cling is regulated and involves specially built facilities equipped
with highly specialized machinery that allows salvageable mate-
rials to be extracted safely. Informal waste recycling is unofficial
and unregulated. Moreover, the majority of e-waste recycling is
done by the informal sector. The processes and practices used
to recycle and reuse e-waste by the informal recycling sector, re-
sults in hazardous chemicals being released to the environment.
This, along with the sheer volume of E-waste being dumped in
landfill every year, poses a serious threat to the environment and
the safety of workers in the recycling sector [1,2].

Hard disk drives (HDDs) and Solid State Drives (SSDs) con-
tain a lot of valuable metals such as Gold, Silver, Aluminum,
Palladium, and Neodymium and that can be recovered through
recycling. However, a big portion of these are still improperly
landfilled with the rest of municipal solid waste. One of the main
disincentives to their recovery is the lack of recovery infrastruc-
ture. Another problem plaguing the recycling of HDDs is incom-
plete recycling. Typically, the recovery of HDDs involves simply
taking apart the printed circuit boards and recovering non ferrous
metals from it such as Gold, Silver, Palladium. Neodymium, a
rare earth metal used in HDD magnets, often goes overlooked.
It is not in abundant supply yet its recovery rate is less than 1%.
This is an example of material leakage, wherein material from a
component is not recovered for re-use. This could cause material
shortage and supply chain issues in the future. The reason for
material leakage in HDDs is because hard disks are difficult to
disassemble by design. This, combined with the labor shortage
in the recycling industry, the insufficient recycling infrastructure
and the environmental threat caused by dumping the bulk of un-
recovered e-waste into landfill highlights the need for better in-
frastructure in the form of automation and robotic disassembly
of these components [3].

Due to the high dexterity as required by disassembling of
HDDs and SSDs, it is crucial to develop computer vision tools
to provide visual input to a disassembly robot such that the robot
can accurately ’see” the parts being disassembled. To achieve
this, it is crucial to conduct fast and accurate 3D geometric pro-
filing such that the key components (e.g., screws, platter, flange,
etc.) can be precisely located with minimum latency induced.
Taking this into account, researchers have tried to embrace 3D
sensors for assisting robot assembly operations. Niedermayr et
al. [4] evaluated the performance of the Azure Kinect sensor, a
time of flight based sensor, to assist assembly operations. It was
found that this sensor had limitations, which included underex-
posure or overexposure due to object reflectivity and multi-path
errors due to transmittance of the material. In addition to these
drawbacks, time of flight sensors in general are only accurate
to the millimeter or centimeter [5]. While this is still accept-
able for assembly assistance tasks, the limitations render it un-
suitable for precision disassembly tasks, especially for complex
electronic components like HDDs and SSDs. Ogun et al. [6] fo-
cused on flexible automated assembly of clearance fit machine

components using 3D vision and the recognition and estimation
of the poses of the components are achieved by matching the
CAD models of the parts with the acquired point cloud data of the
scene. They used a shaft and three rings for the assembly task,
wherein the rings were placed on the tapered section of the shaft
by a vision guided robotic arm with a laser scanner mounted on
it. However, the limitation of this method is the fact that the laser
scanner performs line scanning sequentially and hence cannot be
used in high speed assembly tasks. Yildiz et al. [7] developed a
deep learning based visual detection scheme for hard drive dis-
assembly. Their setup consists of a tilting table that holds the de-
vice at 0°or 45°. Two cameras, one monocular camera which ac-
quires RGB images at 3.5 FPS and another RGB-D stereo camera
with depth sensing accuracy of 0.06 cm, were positioned 45°to
each other such that they could capture top down images of the
hard disk. Their pipeline takes in an RGB image and a point
cloud. The RGB images are fed to the part detection and screw
detection modules which uses deep neural networks to segment
parts and detect screws. Gap detection relies on the point cloud
acquired from the RGB-D stereo camera. The limitation of this
method is that the stereo camera can provide an inaccurate point
cloud when it encounters shiny and reflective parts. Addition-
ally, the depth accuracy of the point cloud can be improved upon
with structured light techniques which would be more suitable as
a vision system for high precision disassembly tasks.

In the domain of 3D computer vision, compared to other
3D vision technologies such as time-of-flight, laser scanning or
binocular stereo vision, structured light technology has the merit
of simultaneous whole-area scanning with high accuracy (e.g.,
0.1 mm or higher), and thus is by far the most suitable technology
that can be used by a disassembly robot. Fringe Projection Pro-
filometry (FPP) is a variation of the structured light method that
involves projecting and capturing continuous sinusoidal fringe
patterns and can provide the most accurate 3D reconstruction re-
sults compared to other discrete structured light pattern codifi-
cation technologies. However, an important drawback of FPP is
that it can be inaccurate when the object to be scanned has highly
specular and reflective components. This is because of the loss of
information due to saturation of the fringe image in these parts.
This holds true in the case of Hard Disks. The platter of the Hard
Disk, which is machined to a high precision, is perfectly reflec-
tive which makes it impossible to perform traditional FPP-based
3D shape measurements. To measure such a shape with FPP, spe-
cial surface treatment such as spray paintings are needed before
any patterns are projected onto the object surfaces [8]. Moreover,
typically multiple fringe patterns needs to be properly projected
by the video projector and captured by the camera, which makes
the measurements speed compromised. In this paper, we tackle
these limitations of FPP by using a deep learning and computer
graphics based single shot approach to reconstruct the 3D shape
of HDD and SSD components instead. This method has the ad-
vantage of predicting the depth map of the device with a single
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FIGURE 1: SCHEMATIC OF FRAMEWORK

image thereby making it a fast 3D vision tool that can be used
by a disassembly robot. Moreover, our approach is further able
to predict the geometric profile of the conventionally hard-to-
measure reflective platter surfaces along with the outlines of the
key disassembly components (e.g., screws) with reasonable ac-
curacy. A brief overview of our approach, as outlined in Fig. 1,
is given here:

1. Calibrate the real-world FPP system and compute its intrin-
sic and extrinsic matrices for both the camera and the pro-
jector

2. Determine the location and orientation of the camera and
projector based on its extrinsic matrices

3. Set up the virtual camera and projector system in the CG-
based platform Blender [9] based on the location and cali-
bration parameters computed

4. Build a training data set consisting of Hard Disk and SSD
models using virtual scanning in Blender

5. Train deep neural network which takes in a single fringe
image as input and outputs depth map of the object being
scanned

6. Utilize the trained deep neural network to predict the geo-
metric profile of the device with a single-shot fringe image
taken from the real-world system

2 CALIBRATION

Our physical set up of the FPP system consists of
a complimentary-metaloxide-semiconductor (CMOS) camera
(model: FLIR Grasshopper3 GS3-U3-23S6M-C) for image ac-
quisition and a DLP LightCrafter 4500 projector for projecting
fringe patterns. The camera resolution was set to 544 x 514 pix-
els and the projector was set to 912 x 1140 pixels. The calibration
process was done in accordance with the procedure outlined by
Lietal. [10].

We utilize a pinhole model for both the camera and projec-

tor. Figure 2 is an illustration of a typical FPP system. The cam-
era is described by the extrinsic and intrinsic matrices. The ex-
trinsic matrix describes the position of the camera in world coor-
dinates, namely its x,y,z coordinates and its rotations Ry, Ry, R,
about the three axes. The intrinsic matrix contains parameters
such as the focal lengths in the principal directions of the image
plane, the principle points, and the skew factor. The projector is
described by similar parameters.

A point on the world coordinate will be projected onto the
imaging plane at location (u,v) where s is a scaling factor. This
model can be further rewritten as

s°I° = A°[RC, 1€)X ", €))
where I¢ = [u¢,1°,1]7 is the coordinates of the image point in
the image coordinate system, X" = [x",y", 7", 1] is the object
point in the world coordinate system, and R, and 7. are rotation
and translation matrices respectively between the world coordi-

nate system and the camera coordinate system. A€, the intrinsic
parameter matrix of the camera, is

o ¥ u
0 B, )
00 1

AC =

where (u(,v()) are the coordinates where the optical axis inter-
sects the imaging sensor plane, a¢ and ¢ are focal lengths along
the principal axes of the image plane and Y° is the skewness pa-
rameter.

We align the world coordinates with the camera coordinates.
Thus the rotation matrix R. of the camera is equivalent to the
identity matrix and the translation vector is set to the origin.

100 0
010];¢= 0] . 3)
001 0

R =

The model for the projector can also be written as:
sPIP = AP[RP tP]X™, “)

where 17 = [uP,vP,1]T are the corresponding coordinates of the
image point in the projector coordinate system, and s” is a scale
factor. R, and 7, are rotation and translation matrices respec-
tively between the world coordinate system and the projector co-
ordinate system. Our goal when calibrating the system is to es-
timate the intrinsic and extrinsic projection matrices of the cam-
era and the projector. The intrinsic matrices of the camera can
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FIGURE 2: SCHEMATIC OF FPP SYSTEM

be calibrated by the method suggested by Li et al. [10] using
a black/white circle board as a target, as shown in Fig. 3. In
the figure, the diameter of each white circle is 10 mm and the
distance between the circle centers is 20 mm, with the pattern
contained in a rectangle spanning 100 mm x 90 mm. Now, the
square checkerboard is a valid option that has been extensively
used for calibration. However, the projector image created in
this case is a discrete grid which involves quantization, leading
to non-negligible error. An additional problem with the checker-
board is that the phase around the corner may be distorted. It
has been demonstrated that the phase is prone to sharp changes
from one square to another, which could introduce a mapping
error for the corresponding projector pixel determination since
the vertices of the squares captured by the camera is not always
exact. To circumvent these problems, Li et al. [10] proposed to
use the white circles on black background and further only cir-
cle centers are mapped to the projector image without generating
the entire projector image. This avoids the projector image dis-
cretization error. The use of white circles avoids color changes at
the circle centers , resulting in a smooth phase. This is the reason
we pick this calibration method.

A total of 18 poses of the calibration board are captured and
OpenCV’s camera calibration toolbox is used to determine the

circle centers and the intrinsic matrix A€ of the camera. A total
of 52 images are captured per pose. The projector circle centers
are then determined by using the horizontal and vertical phase
maps and mapping the circle centers using OpenCV’s camera
calibration toolbox. The projector intrinsic matrix is then cal-
ibrated using the OpenCV camera calibration toolbox with the
projector circle centers as input. The extrinsic parameters that
define the transformation from the camera coordinate system to
the projector coordinate system is computed using the OpenCV
stereo calibration toolbox. The intrinsic matrix for the camera
was calculated as:

1526.58 0  252.65
A= 0 1528.16 274.49 5)
0 0 1

The intrinsic matrix for the projector was calculated as:

1100.67 0O 439.45
AP = 0 2212.52 1188.38 ©6)
0 0 1
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FIGURE 3: 5 X 9 CIRCLE BOARD USED FOR CALIBRA-
TION

The rotation matrix for the projector was calculated as:

—0.999 0.003 0.004
R = |—0.0032 —0.999 —.00032 @)
0.004 —0.0032 0.999

The translation matrix for the projector was calculated as:

0.662
P = | —142.058 8)
—43.311

It is also important to discuss the reprojection error associated
with this calibration. In our case, the projector error was calcu-
lated to be 0.2252 pixels and the stereo error was calculated to
be 0.2119 pixels. This re projection error is caused by the uncer-
tainty of finding circle centers. The calibration process involves
reorienting and repositioning the calibration target such that all
the poses cover the entire field of view. When the angle between
the calibration target plane and camera sensor plane is larger, the
camera imaging pixels are no longer square or small, and this
makes it difficult to locate circle centers accurately.

3 Mapping digital twin FPP system in Blender

Zheng et al. [11] developed a virtual training pipeline based
on the digital twin of the structured light system using the open-
source software Blender. The digital twin system seeks to repli-
cate the structured light system in a virtual environment. The
digital twin system requires the following parameters as input:

1. The location and orientation of the camera
2. The intrinsic parameters of the camera

3. The location and orientation of the projector
4. The intrinsic parameters of the projector

The world coordinate system is aligned and oriented with the
camera coordinate system. Thus the location of the camera is
at (0,0,0). The intrinsic parameters of the camera are calcu-
lated from the calibration of the physical system. The location
and orientation of the projector still needs to be calculated. We
know that the extrinsic parameter matrix transforms the camera
and projector coordinate systems to the world coordinate system.
Since the camera coordinate system is aligned with the world co-
ordinate system, we obtain:

0=RPP+17, ©)

where P is the location of the projector in world coordinates, R
is the rotation matrix of the projector with respect to the world
coordinates, and #? is the translation matrix of the projector.

P=—R\tP. (10)

The rotation angles of the projector about the x,y,z axes can be
computed from the rotation matrix R,. The intrinsic parameters
of the projector are input from the computation during calibra-
tion.

4 FRINGE IMAGE GENERATION

We collect nine SATA HDD CAD models and three NVMe
SSD CAD models from the internet. These models did not con-
tain material property information such as metallicity and rough-
ness which determine how light interacts with the object. These
parameters were manually input to the textures of these models
and were modeled to closely approximate that of a real-world
component. Each of the CAD models is rotated about each of
the x,y,z axes leading to a total number of 396 different orien-
tations combined of all of these models. Three high frequency
fringe images are captured per orientation for the three-step en-
hanced two frequency phase shifting method [12], with a total of
1188 high frequency fringe images captured this way. This com-
prises our large input dataset that we use for network training.
For each of the 396 orientations captured above, we pick one of
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the high frequency images, resulting in one high frequency image
per orientation with a total of 396 images. This comprises our
small input dataset that we use for network training. Addition-
ally, we generate a background mask for each image. However,

FIGURE 4: FRINGE IMAGE OF SAMPLE HDD WITH PER-
FECTLY REFLECTIVE PLATTER

FIGURE 5: FRINGE IMAGE OF SAMPLE HDD WITH ARTI-
FICIALLY ROUGH PLATTER

performing FPP on the perfectly reflective Hard Disk Platter is
still a problem due to the loss of fringe information in the plat-
ter region. To combat this, we collect two sets of images. One
set of images consists of fringe patterns projected on the devices
with perfectly reflective platters as in Fig. 4. Another set of im-
ages consists of fringe patterns projected on the devices with the
roughness of the hard disk platters artificially increased, which
results in fringe patterns being visible in the platter region as in
Fig. 5. 3D reconstruction is performed on the latter set of im-
ages to retrieve accurate geometric profiles of the devices used as
ground truth for the deep neural network in the following steps.
The former set of images is used as input to the neural network.

It is important to note that suppressing the specular reflec-
tion of the highly reflective area in the disk would indeed be a
challenge if instead of using this a we were to simply perform
traditional FPP on the disk and the associated reconstruction.

However, we are circumventing that challenge by using a neu-
ral network trained on the hard disk images with the reflective
platter. The neural network simply handles the prediction of the
disk geometry and is able to predict the associated 3D geometry
from the input fringe image of the hard disk, despite the platter
being highly reflective. We shall demonstrate this in the subse-
quent sections.

5 3D RECONSTRUCTION OF VIRTUAL DATA
5.1 Principles of FPP

The typical setup for FPP includes a camera, projector and
an object in the scene. Fringe patterns projected by the projector
onto the object are captured by the camera. These fringe patterns
are distorted based on the geometry of the object. The geomet-
ric profiles of the objects can be retrieved through the analysis
of the carrier phase information, which can be computed by a
phase shifting algorithm. It is important to note that this tech-
nique lends itself to a depth uncertainty between a range of sub
0.01 mm to a little over 0.1 mm depending on the size of the
device being imaged [13]. Additionally, because our set-up uses
a digital projector, the computer generated fringe patterns pro-
jected have high accuracy and high repeatability [14]. Further-
more, several physical set ups involving fringe projection pro-
filometry using digital projection have demonstrated high mea-
surement precision [15, 16].

The three step phase shifting algorithm, which involves us-
ing three steps each at a phase shift of 27/3, utilizes the min-
imum number of steps needed to solve for the phase uniquely,
and is thus useful for high-speed 3D imaging applications. The
three phase shifted fringe images, I, (x,y), L(x,y), and Iz(x,y),
can be mathematically described as

Li(x,y) =TI'(x,y)+1"cos [¢(x,y> - 23”} : (11)
L(x,y) =TI'(x,y) +1"cos[d(x,y)], (12)

/ 1 271’-
) =1 () +1'cos [ox) + 5| 19

where I'(x,y) is the average intensity, I”(x,y) is the fringe or
intensity modulation, and ¢ (x,y) is the wrapped phase.

\ﬂ3)(11—13)] (14)

-1
=t
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FIGURE 6: U-NET ARCHITECTURE

Simultaneously solving these equations gives us the wrapped
phase map. This wrapped phase map is a relative phase map
that varies from [—x, 7] and needs to be unwrapped to obtain a
continuous phase map [17].

¢ =& (mod?2m) (15)
where @ is the continuous phase map.

For each point (u€,1¢) on the camera image plane, we can
compute its absolute phase, use that to identify the correspond-
ing vertical stripe u” in the projector plane. Since we have al-
ready calibrated the system and computed its intrinsic and ex-
trinsic matrices, from equations 1 and 4, we will need to solve
the following linear equations:

fl(xw7yw7zw7u0) =0 (16)
fZ(XWayWazwavc) =0 (17)
f3(xwvyw’zwvup) =0 (18)

The above three equations enable us to solve for x", y", z"¥ which
represent the world coordinates of the point on the object.

5.2 Generation of the Ground Truth 3D Data

In our case, it is necessary to perform 3D reconstruction to
retrieve a depth map for each of the device orientations that we
can use to train the deep neural network in the following step.
However, performing FPP on the perfectly reflective Hard Disk
platter is still a challenge due to the loss of fringe pattern infor-
mation in the platter region (as shown in Fig. 4). To combat this,
we collect an additional set of fringe images of the hard disks
in the data set wherein we artificially increase the roughness of
each hard disk platter, making it non reflective and ensuring that
the fringe information in that area is not lost. We use the en-
hanced two-frequency three step phase shifting method [12] to
compute the depth map for each orientation. This allows us to
perform FPP accurately on the entire device and retrieve accurate
geometric profiles of these virtual devices that we use as ground
truth use for training the deep network. The input to the neu-
ral network is the fringe image of the hard disk with the smooth
platter to mimic the scenarios in the real world.
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FIGURE 7: PHOTOGRAPH IMAGE OF SAMPLE HDD

FIGURE 8: PHOTOGRAPH IMAGE OF SAMPLE SSD

FIGURE 9: CROSS SECTION OF HDD

6 TRAINING THE SINGLE-SHOT DEEP NEURAL NET-
WORK
We train the network using the U-NET adopted by Zheng et
al. [11]. Tts architecture is depicted in Fig. 6. The network con-
sists of an encoder and a decoder with residual connections. We
use 5 x 5 kernels and 2 x 2 max pooling layers with a stride of

FIGURE 10: CROSS SECTION OF SSD

2 in both the encoder and decoder block. The convolutional lay-
ers in the encoder block down-sample the image, extracting vital
feature information from it, and the deconvolutional layers in the
decoder block up-sample the image. We use a Rectified Linear
Unit (ReLU) activation function in each convolutional layer. We
use the RMSE loss function and the RMSProp Optimizer. To en-
sure that the network learns useful information about the object
and not the background, the background pixels were not used in
the loss computation. To prevent overfitting, we use drop out.
The network takes in a 512 x 512 Fringe Image as input and pre-
dicts the depth map as output. The network is trained on two
different data sets. One data set consists of using just one fringe
image per orientation. As a result, this data set consists of a total
of 396 images. The other dataset consists of six fringe images
per orientation. Each of these is used in the neural network as in-
put with the ground truth being the same point cloud for all six.
Thus, this dataset consists of a total of 1188 images. We used
the same 70%-15%-15% train, validation and test split for both
cases. We trained the network for a total of 17,100 epochs and
2750 epochs with the smaller and larger data-set respectively on
one NVIDIA Quadro RTX 5000 GPU. We used a batch size of 2
for both datasets and used the pre-trained model from the smaller
data-set to accelerate training for the larger data set.

7 RESULTS

Table 1 shows the average training, validation and test
RMSE losses by data set achieved by the network after train-
ing. We can see that the network is able to achieve an apprecia-
ble RMSE loss with both the data-sets. The training loss for the
larger dataset is 2.52mm and the validation and test losses are
0.85mm and 0.914mm respectively. The training loss observed
in the smaller dataset is 2.86mm, with the validation and test
losses being 0.914mm and 0.998mm. The training loss is signifi-
cantly higher because of the use of dropout on every single layer
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of the network during training. During testing and validation,
dropout is turned off and due to this, all of the network’s nodes
are used for prediction, resulting in a lower loss value.

Figure 11 and Fig. 12 show the depth map of a sample HDD
and SSD from the validation set (shown in Figure 7 and Figure 8)
taken from the larger data set. We observe that the RMSE error
is 0.8314mm and 0.9028mm for these individual cases respec-
tively. In the case of the hard disk, we see that the network is
able to make reasonably accurate predictions on the platter. Fur-
thermore, faint outlines of the screws in the original prediction
are visible in this picture. In the case of the SSD, the bumps
and other miscellaneous features are predicted accurately by the
network. These features are important for subsequent robotic
disassembly that may be applied.

Figure 15 and Fig. 16 show the depth map of the same HDD
and SSD from the validation set taken from the smaller data set.
We observe that the RMSE error is 0.8059 mm and 1.1606 mm
for these individual cases respectively. In the case of the hard
disk, we see that the network is also able to make reasonably
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accurate predictions on the platter and additionally we see faint
outlines of the screws. The geometric profile of the SSD is also
predicted accurately by the network. These results show that
even with reduced size of training dataset, the network is still
capable of predicting depth maps with reasonable quality.

To help further demonstrate the comparison between the
ground truth and the neural network’s prediction of the geomet-
ric profile, we have attached depth plots of cross section of each
of the profiles as well as the difference plots of each of both the
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hard disk and SSD demonstrated in Fig. 7 and Fig. 8. Fig. 9
and Fig. 10 show the cross sections selected for this comparison.
Fig. 13 and Fig. 14 show the depth and difference plots for the
hard disk and the SSD respectively for the larger data set. Fig.
17 and Fig. 18 show the depth and difference plots for the hard
disk and the SSD respectively for the smaller data set. In the
case of the hard disk, we observe from these plots that for the
majority of the cross section, the accuracy of the neural network
is within a millimeter of the ground truth. We notice that the ar-
eas of maximum error occur when there is an abrupt change of
depth in the cross section. In the case of the SSD, we notice that
the accuracy of the network dips below the sub millimeter range
as the cross section approaches the final raised portion along the
X axis, corresponding to approximately the last fifth of the cross
section.

It is important to note that these results are valid when the
U-Net model is tested on the FPP system that it was calibrated
with. As shown previously by Zheng et al. [11], testing the model
on data acquired from an FPP system calibrated differently may
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lead to erroneous results.

From these figures, we observe that in both cases, the hard
disk platter, on which it is impossible to perform traditional FPP
based 3D reconstruction, is predicted with reasonable accuracy.
Faint outlines of the locations of screws in both cases are visible
as well, although the model does a marginally better job at overall
accuracy with the larger data set.

We would like to clarify that the hard disk platter has a sur-
face roughness of few tens of nanometers, and this method will
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TABLE 1: AVERAGE RMSE LOSS

Data-set Avg. Train Avg. Avg. Test
Loss Validation Loss
Loss
1188 2.462mm 0.847mm 0.914mm
Images
396 Images 2.886mm 0.914mm 0.998mm

not be able to capture it to that level of detail. However, it can
still predict the overall geometric profile of the hard disk to an ag-
gregate sub millimeter RMSE accuracy, as shown in the figures
and in Table 1, which can be valuable for robotic disassembly.

8 CONCLUSION AND FUTURE WORK

We have shown in this work the efficacy of our proposed
deep learning + computer graphics method in conducting single-
shot 3D shape measurement for conventionally hard-to-measure
electronic devices such as HDDs and SSDs. We map a calibrated
FPP system using a virtual computer graphics-based platform
Blender and generate a completely virtual dataset consisting of
virtually 3D scanned CAD models of HDDs and SSDs imported
from the internet. We have used this training data to build the
neural network that can predict the geometric profile of these
non volatile storage devices using a single shot. Compared to
traditional FPP methods that require multiple fringe images for
3D reconstruction, our proposed method requires only a single
shot image as input and is therefore faster than conventional FPP
methods. In the meantime, the proposed method also addresses
the limitation of conventional FPP when measuring highly re-
flective surfaces such as the disk platter. It is able to predict the
geometric profile of the virtual hard disk with reasonable accu-
racy, including the profile of the platter. Given the ability to map
high quality geometric details of HDDs and SSDs, the proposed
method can be a valuable 3D machine vision tool for future ap-
plications such as robotic disassembly.

It is worth mentioning that in this work, all tests were con-
ducted using virtual CAD models of HDDs and SSDs. Future
work will be conducted to test the effectiveness of the proposed
deep learning model on real world HDDs and SSDs such that it
can be used for industrial sensing and measurements.
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