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Spreading of a thin droplet on a soft substrate
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A thin liquid droplet spreads on a soft viscoelastic substrate with arbitrary rheology.
Lubrication theory is applied to the governing field equations in the liquid and solid
domains, which are coupled through the free boundary at the solid-liquid interface, to
derive a set of reduced equations that describe the spreading dynamics. Fourier transform
techniques and the finite difference method are used to construct a solution for the dynamic
liquid—gas and solid-liquid interface shapes, as well as the macroscopic contact angle.
Substrate properties affect the spreading dynamics through the contact angle and internal
droplet flow fields, and these mechanisms are revealed. Increased substrate softness
increases the spreading rate, whereas increased viscoelasticity decreases the spreading
rate. For the case of a purely elastic substrate, the spreading power-law exponent recovers
Tanner’s law in the rigid limit and increases with substrate softness.
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1. Introduction

Dynamic wetting phenomena are prevalent in industrial processes, such as oil recovery
(Tangparitkul et al. 2018), microfluidic manipulation (Stone, Stroock & Ajdari 2004) and
inkjet printing (Daniel & Berg 2006), where the substrate upon which the liquid moves
is rigid, but can also be observed on soft, deformable substrates, as with the wrinkling
of elastic sheets (Huang et al. 2007) and spontaneous droplet motion due to durotaxis
(Style et al. 2013b). The underlying physics of the spreading process involves a complex
interplay of bulk and interfacial forces and has been the subject of many theoretical and
experimental studies (de Gennes 1985; de Gennes, Brochard-Wyart & Quéré 2004; Bonn
et al. 2009). The canonical problem of liquid drop spreading on a rigid surface is the
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one most widely studied and involves the spontaneous motion of the three-phase contact
line, which will continue until the contact angle 6 reaches its equilibrium value 6,, which
is determined by the balance of surface tension forces acting at the contact line (Young
1805; Dupré 1869)

Vsg — YIs = Vig COS Ok . (LD
Here, yj5, yie and y,e are the liquid—solid, liquid—gas and solid—gas surface tensions,
respectively. When out of equilibrium, the contact-line motion is governed by the balance
between the horizontal driving force yje(cos 6, — cos @) and the resistive friction force
from energy dissipation in the system. For a rigid substrate defined by an elastic modulus
E > 10° Pa, the energy dissipation occurs solely in the liquid phase. Recent studies have
shown that, when a droplet interacts with a soft, deformable solid (E ~ 10° Pa), wetting
behaviours can deviate significantly from the corresponding rigid substrate case (Chen
et al. 2018; Andreotti & Snoeijer 2020). This is due to the coupling between the bulk
elasticity of the solid and the surface tension of the liquid, which, when they act on the
same length scales, gives rise to a property known as elastocapillarity (Style et al. 2017). In
this paper, we are interested in the spreading of a viscous liquid drop on a soft viscoelastic
substrate, whose rheological properties can dominate the liquid—solid interaction.

Soft solids are characterized by the elastocapillary length ¢, = 7/G, where 1 is
the solid surface stress and G is the static shear modulus. For small strains, one can
approximate solid surface stress and surface tension to be equal, i.e. 7" = y; and ignore
the Shuttleworth effect (Andreotti & Snoeijer 2016; Van Gorcum et al. 2020). When the
drop radius R < £,, the solid substrate is deformed at the contact line due to the vertical
component of the liquid—gas surface tension, y;, creating the universal wetting ridge (Style
et al. 2013a; Park et al. 2014). Theoretical and experimental studies have shown that the
formation of the wetting ridge causes the equilibrium geometry at the contact line to
deviate from the classical Young—Dupré equation (1.1) for rigid wetting (Style & Dufresne
2012; Bostwick, Shearer & Daniels 2014). Soft solids, such as polydimethylsiloxane
(PDMS), are typically polymeric materials which exhibit viscoelastic dissipation when
subjected to a dynamic deformation, such as a moving contact line. This causes a slower
spreading rate than on a rigid substrate in a phenomenon referred to as viscoelastic braking
(Shanahan 1988; Carré & Shanahan 1995; Park et al. 2017). The unique properties of soft
wetting are beneficial to applications such as enhanced condensation (Sokuler et al. 2010),
adhesion (Poulain & Carlson 2022) and designing biomimetic surfaces (Liu et al. 2021).
Spontaneous droplet motion can also occur on soft surfaces due to bioinspired means, such
as durotaxis and bendotaxis, where the substrate exhibits a gradient in elastic compliance
(Style et al. 2013b; Bradley et al. 2019; Tamim & Bostwick 2021a). Soft spreading is
particularly relevant to cell-substrate interactions where substrate mechanical properties
affect collective migration (Douezan, Dumond & Brochard-Wyart 2012; Beaune et al.
2014).

For a rigid substrate, £, ~ 1 nm and the deformation of the liquid—solid interface is
negligible, and does not affect the spreading dynamics (Shanahan & Carre 1995). In this
limit, the moving contact line is incompatible with the no-slip condition, leading to a
shear stress singularity at the contact line (Huh & Scriven 1971), which can be removed by
the introduction of a small slip length at the contact-line region, valid for small capillary
numbers (Voinov 1976) and later extended to arbitrary viscosity ratios (Cox 1986). On a
completely wetting substrate, the droplet will spread indefinitely with a contact-line radius
that takes on a power-law form with respect to time r(¢) ~ ¢* in the well-known Tanner’s
law (Tanner 1979). Here, the energy dissipation due to viscosity occurs primarily at the
contact-line region where the liquid displaces the gas. See the review article by Snoeijer
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& Andreotti (2013) for a detailed discussion on the moving contact-line problem on rigid
substrates. The other limit in which a liquid spreads on another liquid results in significant
deformation of the liquid-liquid interface and corresponding contact-line region, which
leads to an increased spreading rate that has been observed experimentally and predicted
by theory (Fraaije & Cazabat 1989; Bacri, Debregeas & Brochard-Wyart 1996; Cormier
et al. 2012). The results from these limiting cases suggest that the spreading dynamics will
be significantly affected by the substrate properties. Our goal is to investigate the more
general problem of soft spreading where the substrate can deform due to capillary forces,
but also exhibits a viscoelastic response to the applied stress.

Most models of soft spreading focus on the limiting case where the rheology of the solid
substrate controls the spreading dynamics, as opposed to the liquid viscosity (Karpitschka
et al. 2015). Models developed by Shanahan (1988) and Long, Ajdari & Leibler (1996)
were among the first to consider the deformation of a thin polymeric substrate due to a
single moving contact line. These works show that the local strain at the wetting ridge acts
as an energy sink where a significant fraction of elastic energy is dissipated. More recently,
Dervaux, Roché & Limat (2020) considered the case where dissipation in liquid and solid
were of similar magnitude, and revealed the dependence of the dynamic contact angle on
the viscosity ratio between the liquid and solid. Thin-film models have also been developed
to simplify this complex problem and study the effects of substrate softness and wettability
on droplet spreading (Charitatos & Kumar 2020; Henkel, Snoeijer & Thiele 2021). Our
current work is aimed at developing a theoretical framework for viscous spreading on a
linear viscoelastic substrate of arbitrary rheology that accounts for bulk viscous properties
in both the liquid and solid phases. To do this, we use the lubrication approximation which
assumes that both the drop and solid substrate are thin. This approach has been previously
adopted for modelling droplet motion on rigid substrates and has yielded good agreement
with experiments, even for moderate contact angles (Ehrhard & Davis 1991; Oron, Davis
& Bankoff 1997; Bostwick 2013). Our work is motivated by the method of slow spreading
dynamics studied in these works, where the authors consider a small capillary number
limit and use a dynamic contact-line condition in combination with a microscopic slip
length to represent the contact-line dynamics. Taking a similar approach to the problem
of spreading on a deformable solid greatly simplifies the nonlinear coupled boundary
value problem that describes a liquid—solid dynamic interaction. By considering a small
capillary number, we are able to formulate the problem without including long-range van
der Waals forces while accounting for arbitrary substrate rheology.

We begin this paper by writing down the governing field equations in the liquid and
solid domains, and derive a set of reduced equations using the lubrication approximation
that depend upon the liquid—gas and solid-liquid interface shapes, as well as the
dynamic contact angle. Here, the liquid is viscous and Newtonian, and the solid is a
linear viscoelastic material with arbitrary rheology. The time-dependent two-way coupled
boundary value problem is solved using Fourier transform and finite difference methods.
We include a non-trivial solid surface tension at the solid—liquid interface to remove
the singularity associated with applying a point load at the contact line (Jerison et al.
2011), which is also known to give rise to elastocapillary instabilities (Tamim & Bostwick
2020, 2021b,¢), which we do not consider. We report how the dynamic contact angle and
droplet flow fields depend upon the rheology and deformability of the solid substrate. In
the purely elastic limit, we show how substrate softness affects the spreading rate and
compare with the classical Tanner’s law for spreading on a rigid substrate. Lastly, we offer
some concluding remarks.
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Figure 1. Definition sketch.

2. Formulation

Consider a two-dimensional (2-D) liquid droplet in contact with a solid substrate that
has a free surface at z = 0 and a rigid base pinned at z = —A, as shown in figure 1. The
drop undergoes spontaneous spreading of constant velocity v, as defined by contact-line
radius r(f) = r, + vt, where r, is the initial radius. This assumption of constant spreading
rate is reasonable considering the relatively slow spreading rates found in soft wetting
experiments (Carré, Gastel & Shanahan 1996; Van Gorcum et al. 2020). The liquid—gas
interface is located at z = h(x, t) and forms the macroscopic contact angle 6(¢) with the
horizontal at the contact line, while the deformed solid-liquid interface is located at z =
w(x, 1). We neglect the effect of gravity on the drop shape by considering the Bond number,
Bo = pgr(% /y to be small in both liquid and solid, where p is the material density and
g is the gravitational acceleration. This means that the drop sizes we consider are below
the capillary length scale. For example, in an experiment with glycerol (oy = 1260 kg m~3,
vig = 0.064 N m ) drop on PDMS substrate (p; = 970 kg m3, ys = 0.02 N m~!) the
capillary length scale is between 1.5 ~ 2 mm.

2.1. Field equations

The spreading process is determined by the dynamic response of both the fluid flow and
the solid deformation, as well as the interactions between the two. Here, the field equations
for the fluid are defined in the current configuration, whereas the field equations for the
solid are defined in the reference configuration, assuming small strains.

2.1.1. Fluid field

The flow field inside the spreading drop is described through a 2-D velocity field as v =
vy (x, 2)ex + v (x, 2)e;. The droplet is incompressible with a constant dynamic viscosity p
and has a stress tensor T/ given by

T = oyt (2% U @.1)
y e oxj  0xi)’
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where Py is the fluid pressure and § is the Kronecker delta function. The velocity field
obeys the momentum balance and incompressibility conditions

a
oy (8_]; e V”) = —VP; + uV, 22a)

V.v=0. (2.2b)

2.1.2. Solid field

The solid substrate is described by a 2-D deformation field u = u,(x, 7)ey + u;(x, z)e;. We
assume the material is incompressible and linear viscoelastic with time-dependent stress
tensor given by (Christensen 2012)

s 5 u;  Ju; )

Here, ¥ (¢) is a relaxation function, G, the static shear modulus, Ps the pressure in
the solid and f % g is a convolution operator defined as f* g = fi oSt — )og/or.
The functional form of () depends on the rheology of the solid. Typical examples
include the well-known power-law model ¢ (t) = 1 4+ ' (1 — n)~ /t)", and the classical
Kelvin—Voigt model ¥ = H(t) + t(¢) (Long et al. 1996; Karpitschka et al. 2015). Here,
7 is the relaxation time scale and n is the power-law exponent, I" is the gamma function
and H is the Heaviside theta function. The 2-D nature of this formulation makes it similar
to plane strain problems typically studied in solid mechanics.

The solid deformation field obeys the momentum balance and incompressibility
equations

3’u 5
'OSW = —VP,+ G,V xV-u, (2.4a)

V.u=0. (2.4D)

2.2. Boundary conditions

At the liquid—gas interface z = h(x, t), we apply a kinematic condition relating the fluid
velocity to the interface velocity there, and balance the normal and shear stresses

_8h ok

—E-O-vxa, n-Tf-nz—yngf, t-T/ .n=0. (2.5a—c)

Uz

Here, n and ¢ are normal and tangential unit vectors along the interface, and ky =
82h/8x2(1 + (ah/ax)z)_3/2 is the curvature.

At the liquid—solid interface, the field variables in the two domains interact and couple
the two sets of governing equations. Here, we evaluate the solid deformation field in the
reference configuration z = 0, and the fluid field in the current configuration z = w(x, 1),
which are related through a kinematic condition u,(z = 0) = w. Continuity of velocity

971 A32-5


https://doi.org/10.1017/jfm.2023.673

https://doi.org/10.1017/jfm.2023.673 Published online by Cambridge University Press

S. Tamim and J.B. Bostwick

dictates the velocity field in the fluid to be equal to the rate of deformation in the solid

Ol
Ux|z=w = E

+ 8= (2.6a)
7z=0 9z

=0 ar ox

where g is the slip length introduced to relieve the stress singularity that may arise at the
contact line. Stress continuity is given by

au;

Ule:W == W

(2.6b)

9
z=0

n-T -n—n-T' - n=yus+ Falx, 1), (2.7a)
t- T -n=t-T -n, (2.7b)

where kg is the curvature of the solid free surface. The inclusion of the solid surface
tension Yy in the normal stress condition (2.7a) regularizes the stress singularity at the
contact point (Jerison et al. 2011). By assuming a uniform y; throughout the free surface
we also neglect any difference between solid surface tension on the liquid and gas sides.
The contact-line force F; is given by

Fei = yigsin08(r(t) — |x]), (2.8)

where § is the Dirac delta function. Here, 6 is the macroscopic contact angle between
the liquid interface and the horizontal axis. Note that we have ignored for simplicity the
Laplace pressure inside the liquid which should be small in the limiting case of large
drops. In our formulation, this limit is realized when the vertical thickness in both the
liquid and solid domains is small compared with the drop radius, i.e. 4/rg, h/ro < 1.
This is consistent with the thin-film approximation to be considered in this work and also
simplifies the analysis of viscoelastic spreading. This assumption can be relaxed for a
purely elastic substrate whose rheology is time independent. We illustrate the potential
effect of Laplace pressure for this limit in Appendix B and show that the spreading
dynamics is nearly unaffected in the parameter ranges considered in this work. The
macroscopic contact angle 6 can be defined from the slope of the liquid—gas interface
at the contact line

oh
tanf = — (2.9)

ax x=r(t) ‘
Finally, we impose a no-displacement condition at the rigid base,
ul,——1=0. (2.10)

This is a free surface flow and the shape of the liquid-gas h(x, ) and solid g(x, t)
interfaces need to be determined as part of the solution. For this, we impose the following
shape boundary conditions:

h(r(t),t) = w(r(t),t), :condition of contact (2.11a)
dh d 33h 3’
— -2 = = —2) =0, :smoothness and symmetry (2.115)
9x [ —g 9x g 9x° [ —o 9x° g
+r(t)
/ (h —w)dx =Vp, :volume conservation, (2.11¢)
—r(1)

where V) is the equilibrium drop volume.

971 A32-6
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3. Lubrication approximation

We solve the coupled boundary value problem using the lubrication approximation (Oron
et al. 1997).

3.1. Scaling

We scale the horizontal and vertical lengths with r, and r,6,, which are the initial drop
radius and thickness, respectively. By considering the drop to be a thin film, we assume 6,

to be a small parameter, 6, < 1. We choose a characteristic velocity scale k65, where
and p are two experimental parameters related to the contact line speed (Ehrhard & Davis
1991; Smith 1995). The scalings

1
X=X, 2=2T00p t=11/k0), V= vxiceg, vl = vzfcég+ ,
p—2 p—2
pr =p}‘;uc90 [To, Uy =Uilo, Uz =U.To0,, ps=psuky /1o, 0 =070,
31

are applied to the governing equations, which gives rise to the following dimensionless
groups:

Kko? > 63 G A
S SO LI SR CR . B = ’3,
Yig Goro w Yig ToBo robo
(3.2a—f)

Here, C is the viscocapillary number, o is the elastocapillary number and ¢ is the relative
viscosity of the substrate which includes the viscoelastic time scale 7. Here ¢ = 0 refers
to a purely elastic substrate. Also, we define IT as the surface tension ratio, A as the solid
aspect ratio, and B’ as the dimensionless slip length. We fix these parameters at [T =
2, A = 0.5, 8 = 0.01, unless stated otherwise, and focus on the remaining parameters. As
shown by Limat (2012), the ratio between liquid and solid surface tension needs to be
small for the condition of linear elasticity to hold, and therefore we work with 77 > 1. The
A and B values represent a thin substrate and a small slip length, respectively. It is known
from previous works that increase of both substrate thickness and elasticity can increase
the deformability of the solid and thus play a role in the wetting process (Zhao et al. 2018;
Khattak et al. 2022). Therefore, we typically fix the value of A and focus on the effect
of o only. The range of elastocapillary number where our reduced model will be valid
is 0 < O(1) and this is the range where we report our results. If o is much higher, the
bulk deformation in the substrate can become more significant than the deformation at the
contact line and the thin film approximations on the stress condition at the solid—liquid
boundary may break down. The subsequent sections have been written in dimensionless
form and asterisks have been dropped hereafter.

3.2. Thin-film equations

Applying the lubrication approximation to the scaled boundary value problem and
ignoring terms of 0(93) gives rise to a reduced set of equations. The x and z components
of the fluid (2.2a) and solid (2.4a) momentum balance equations become

oPr 92 oP
oy o —ZL_p, (3.3a,b)
dx 972 9z
J— o — k —— = , = . . Ca
dx 072 9z
971 A32-7
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The incompressibility conditions (2.2b), (2.4b) remain invariant under the lubrication
approximation. The boundary conditions (2.5)—(2.10) become

?h v dh  dh
Cpfl=h = Tl a_z - =0, vili=n= T + avxlzzh, (3.4a—c)
8%u, -

—CPs|.=0 + CPf|z:w =11 92 +oFy, (3.4d)

z=0

a a

yr k| =co 22 (3.4e)

aZ z=0 82 =w

aux /7 avx auz 3Mx auz
= vl - ) —y = _— , 3.4f,

Ul = TP L e T T G e ), O
Ulz=—A = Uz|z=—a = 0. (3.4h,0)

Here, F; = 08(r(t) — |x|) is the dimensionless contact-line force, with the contact angle

oh
0= —
0x

(3.5)

x=r(t)

The dimensionless forms of the shape boundary conditions (2.11) are given by

_0%h
00X

oh

h(r@®, D) = w(r@®, 0, =

+r(t)
=0, / (h—w)dx=1, (3.6a—c)
x=0 —r(t)

x=

which illustrate the coupling between the fluid and solid domains.

4, Solution method

We begin by deriving evolution equations for the liquid-gas interface 4 and the solid
interface w, which we then expand in the small viscocapillary number C limit to facilitate
a solution.

4.1. Fluid flow

In the fluid domain, we begin by integrating (3.3a,b) with respect to z and applying the
pressure and velocity boundary conditions (3.4a,b,f) to determine the pressure p and
horizontal velocity field v,. We then use the continuity equation (2.2b) to determine the
vertical velocity field v,. The velocity and pressure fields are given by

, (4.1a)

33h 2w 3
CUX=—(hz—hw—z—+w7+ﬁ/(h—w))+cﬂ
z=0

ax3 2 ot

971 A32-8


https://doi.org/10.1017/jfm.2023.673

https://doi.org/10.1017/jfm.2023.673 Published online by Cambridge University Press

Spreading of a thin droplet on a soft substrate

a*h 1 N L/, 5
Cv, = P <hw 2<hz+w)+6<z +zw+w >> (z—w)
+83h (h ) 10h o, - dh  dw
w)— ——(@—w — -
9x3 ¢ ax  Ox
d? 9 w d
C@wo% l+lﬂ- , (4.1b)
oxot|,_y 9t  dx Ot |
C 0% (4.1c)
= — . Adc
p 9x?

Integrating (2.2b) from h(x, t) to w(x, t) and applying the appropriate boundary conditions
gives a depth averaged continuity equation,

9 9 "
5 =W+ | uedz=0, (4.2)

w
which, when we apply (4.1a), gives the first evolution equation

3 (h — w)] =0. 4.3)

3 [3h ; ey
—(h w) + [ ((— w)? + B'(h — w)>+C§

z=0

4.2. Solid deformation

The second evolution equation is determined from the thin-film equations in the solid
domain (3.3¢,d), (2.4b) with boundary conditions at the solid surface and the rigid base
(3.4d), (3.4e), (3.4h,i). A closed form solution for the deformation field components can
be determined as

2 9x3 a3 20x

" T 3*w N 3*h L] 32 7 z2 A2 2A3
% — _ —_ _— —_
LTI\ 20 T ok T 202 )3 ¢T3

oddw 8h 19 - 5, 33h
Yrxuy=0|—=——%5+—= Fg) (A —z)+C0 (h w)(z+ A), (“4.4a)

ol (E 4 et (4.4b)
—Co—(h— — — .
A TN\ AT )

which, when evaluated at z = 0, gives the desired evolution equation at the solid interface
" o A3 H84w N 284h N 32 3 _ CaA’d%h
*W = ——— — — + —
3 ot o YT A

Equations (4.3) and (4.5) need to be solved simultaneously, with the associated shape
boundary conditions (2.11), to determine the unknown functions A (x, t) and w(x, 1).

—h—w)z+A). (45)

4.3. The small C limit

Droplet spreading in the viscosity-dominated regime is typically a slow dynamic process
such that the characteristic velocity can be of the order of microns/second. Therefore, we
can assume the viscocapillary number to be a small parameter, i.e. C < 1, and expand the
unknown functions in C as

h=hy+Ch;, w=w,+Cwi, u,=u’+Cul, 0=0,+C6.  (4.6a-d)
971 A32-9
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4.3.1. Leading-order solution

At O(1) the fluid evolution equation (4.3) reduces to a steady state condition without
explicit time dependence. The leading-order liquid—gas interface shape h,(x, ) only
implicitly depends on time through the contact-line position r(¢). The liquid—gas interface
shape at this order is quasi-steady and independent of slip

33h,
=0, 4.7
03 4.7)
with shape boundary conditions (3.6a—c) given by
P ho +r(t)
ho(r(2)) = wo(r(®), —— =0, / (ho —wo)dx = 1. (4.8a—c)
9% |=0 —r(t)
The leading-order solid deformation w,, can be obtained from the reduced form of (4.5)
oA [ 3w, 0% -

Equation (4.9) is a partial integro-differential equation when the substrate response is
viscoelastic. To solve this equation we assume a constant spreading velocity, V such
that r(#) = 1 4+ V¢ and use the Fourier transform method. We employ a double Fourier
transform to convert variables ¢ and x into frequency w and wavenumber s, respectively,
using the following integral transformation pair (Sneddon 1995):

]:”(s, W) = % ffwf(x, 1) exp(i(sx + wt)) dxdt, (4.10a)

flx, 1) = % / - ]%(s, w) exp(—i(sx + wt)) ds dw. (4.10b)

Here, the wavenumber and frequency are made dimensionless by scaling them with the
horizontal length and time scales of the system, respectively. In this transformed space,

(4.9) becomes an algebraic equation for v:vo that can be solved

5 o A3s2F (s, o)
Wy = = .
"7 o A3s* + 39 (w)

(4.11)

where Fi(s, w) = 6(e8(w + sV) + e 98 (w — sV)) with 6 = dh,/8x|x=r(1), and ¥ (@) is
a frequency dependent shear modulus.

The inverse Fourier transform of (4.11) into the time domain is easily resolved by using
the following property of the Dirac delta function:

/Oof(w)fs(w — o) dw = f(wo). (4.12)

Finally, the transformation back into the spatial domain can be achieved by numerical
integration of

exp(is(1 + vr)) exp(—is(1 + vt)) ) ds

1 oo
e [ (e v
21 J -0 3y (—sV) 4+ Mo A°s 3Y(sV) + o A°s
(4.13)

To find the interface shapes during the spreading motion, we numerically solve (4.13) and
(4.7) with the shape boundary conditions using a finite difference scheme. Note that, for

971 A32-10
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a purely elastic substrate, the convolution operator in (4.5) is simply a constant and the
transformation in the time domain is not required. For this special case, we can solve for
an arbitrary contact-line position 7(¢#) which needs to be described from a constitutive
equation. We describe this limiting case in detail in § 5.3.

4.3.2. First-order solution
Next, we solve the O(C) fluid (4.3) and solid (4.5) evolution equations

3 d (°h (1 s 5\ o oul
E‘(ho_wo)+ a ﬁ g(ho_wo) +,8 (h()_wo) +W 0 (ho_Wo) =0,
(4.14q)
¥ w4+ oA’ (ptw O (4.14b)
* W =0, .
1773 axt T ax
with the O(C) shape boundary conditions
+r(1)
B (r(®)) = wi (D) = O, /' (hy — wi)dx = 0,
. ;’(” (4.15)
oh 0 0°h 0
_1=£=—1 =—Wl =0 atx=0.
X 0x ax3 ox3

The integro-differential equation (4.14b) can be greatly simplified by considering only the
leading-order contribution to the viscoelastic relaxation. Carré & Shanahan (1995) and
Shanahan (1988) have shown that the wetting ridge on a viscoelastic substrate can act as
a dissipative sink which largely controls the spreading dynamics. Since the contact-line
forces responsible for creating the wetting ridge do not appear at O(C), we can assume
viscoelastic effects at this order to be trivial and approximate the first term in (4.14b) as
¥ * wy & wi. This allows us to compute the solution of (4.1a,b) as a system of ordinary
differential equations, thereby reducing the computational loads significantly. Details of
the numerical algorithm used are given in Appendix A.

4.3.3. Rheology

We have formulated the problem in a way that any known rheology of linear viscoelasticity
described with a single time scale can be replaced in ¥ (w) and the corresponding interface
shapes can be found using the methods outlined above. For the results reported in the
following section, we make use of the power-law rheology given by

V() =1+ (ion)", (4.16)

with n = ¢o C. This is a generalization of the classic Kelvin—Voigt model (n = 1), and is
relevant for PDMS substrates. It is also straightforward to generalize to other rheologies.

5. Results

Here, we report the results from the two-way coupled model of viscous drop spreading
on a deformable substrate. Our focus is on how the dimensionless material parameters,
e.g. 0, A, g, C affect the spreading dynamics. Here, we show how substrate elasticity and
viscosity affect the interface shapes h(x, t), w(x, t), and subsequently the dynamic contact
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Figure 2. Liquid and solid interface shapes during spreading, as they depend upon the (a) time ¢ for fixed
elastocapillary number o = 0.5, and (b) elastocapillary number o for fixed time 7= 1. Here, C = 0.2,
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angle 0 and the related flow fields for given spreading velocity V. Then, through a power
balance analysis, we show how the spontaneous contact-line velocity V can be estimated
as a function of 6 in different regimes. Next, we consider the purely elastic limit ¢ = 0
of the rheology (4.16) and compare the spreading rate on a deformable substrate with the
well-known Tanner’s law for drop spreading on a rigid substrate.

5.1. Spreading on a viscoelastic substrate

Figure 2 plots the dynamic liquid—gas and liquid—solid interfaces for a viscous droplet
spreading on a viscoelastic substrate with a constant contact-line velocity. Figure 2(a)
shows that as time ¢ increases the droplet width increases and the height decreases,
because of the positive spreading velocity V. The maximum substrate deformation occurs
at the contact line and similarly decreases with time due to solid viscoelastic dissipation.
Figure 2(b) shows the effect of solid elasticity on the interface shape where increasing
elastocapillary number o corresponds to a more deformable substrate. Here, increases in
o correspond to increases in the wetting ridge height, as well as the overall deformation in
the bulk of the solid with a corresponding decrease in the contact angle on soft substrates.
These results reveal a contrasting role of solid viscous dissipation and elastic resistance on
the shape of the interface.

The macroscopic contact angle 6 is a key parameter to characterize the spreading
dynamics of a moving contact line. This angle is determined by measuring the slope
of the liquid—gas interface at the contact point using (3.5). Figure 3(a) illustrates the
dependence of the contact angle 6 on the dimensionless time ¢, for different spreading
velocities V. This shows that 6 remains nearly constant with respect to time ¢ for small
velocity V = 0.01, but becomes a decreasing function of time for higher velocities, e.g.
V = 0.2. Note that the velocity V is considered to be a free parameter in this solution and
here we observe how the contact angle, and therefore the drop shape, changes over time
as the contact line travels at different speeds. The decrease in contact angle occurs due
to the volume conservation in the droplet. Figure 3(b,c) plots 6 against V as it depends
upon (b) the viscosity ratio ¢ and (c¢) elastocapillary number o, to illustrate the contrasting
effects of substrate viscosity and elasticity. In figure 3(b) we find that increasing ¢ also
increases 6 for a fixed velocity. This implies that, on a substrate with higher viscous
dissipation, it will take longer to reach an equilibrium state and the spreading motion
will be slowed, consistent with previous experimental observations (Shanahan & Carre
1995; Chen, Bonaccurso & Shanahan 2013). Figure 3(c) plots 6 against velocity V as it
depends upon the elastocapillary number o, showing 6 decreases with increasing V and
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Figure 3. Contact angle 6 against (a) time ¢, as it depends upon contact-line velocity V (o = 0.5, & = 5), and
against (b,c) velocity V, as it depends upon the (b) viscosity ratio € (t = 1, 0 = 0.5) and the (¢) elastocapillary
number o (¢ = 1, ¢ = 1). For all panels, C = 0.2, n = 0.6.
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Figure 4. Flow fields on a (a) rigid o0 =0, e = 0, (b) highly viscoelastic 0 = 0.1, ¢ = 50, (¢) moderately

viscoelastic 0 = 0.1, & = | and (d) nearly elastic 0 = 0.5, ¢ = 0.1 substrate, with all other parameters fixed as
C=02,n=06,V=0.2,r=0.1.

these trends also decrease with increasing o or substrate softness. This means that, for
a given droplet shape, i.e. a given 0, the spreading velocity V will be higher on softer
substrates, as opposed to the smaller velocities found in more viscoelastic substrates.
Figure 4 plots typical flow fields. Figure 4(a) shows the limiting case of liquid spreading
on arigid substrate ¢ = 0, ¢ = 0, where the fluid motion is directed from the bulk towards
the contact line, which results in an increased drop radius and reduced height. On a soft
substrate, the internal flow can be more complex due to the deformability of the substrate
and this will affect the spreading dynamics. This is illustrated in figure 4(b), which plots
the flow field for a drop on a highly viscoelastic substrate with o = 0.2, ¢ = 50 with
wetting ridge formed at the contact line and neighbouring depression of the substrate.
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Here, some fluid inside the droplet moves towards the depressed region creating a
recirculation flow that causes less fluid to move towards the contact line. This so-called
‘dissipative sink’ prevents contact-line motion and results in reduced spreading (Carré
& Shanahan 1995). For a moderately viscoelastic substrate (¢ = 1, 0 = 0.2), figure 4(c)
shows the deformation increases away from the contact line and the ‘dissipative sink’
becomes less sharp. Here, the recirculation flow has moved away from the contact-line
region and more fluid is being directed towards the centre of the drop. This is an
intermediate regime where, in addition to the flow towards the dissipative sink, some of the
fluid also moves downwards pushing the bulk of the droplet onto the solid substrate. This
occurs because substrate deformability increases with reduced viscoelastic dissipation &
and solid deformability is favourable to contact angle reduction. Since ¢ and o are of
similar magnitude in this case, the spreading dynamics is expected to be governed by a
competition between the solid elasticity and solid viscosity. Figure 4(d) shows the flow
field for a weakly viscoelastic substrate (o = 0.5, ¢ = 0.1), i.e. an elasticity-dominated
case. Here, we find that the fluid flow is now directed primarily downwards and deforms
the bulk substrate away from the contact line, which tends to decrease the contact angle
and should result in an enhanced spreading rate. Therefore, we can conclude that the effect
of solid elasticity is to enhance spreading, while viscosity inhibits spreading.

5.2. Estimating velocity from power balance

So far, the contact-line velocity V has been taken to be a free parameter, and the
spreading dynamics associated with a given velocity has been studied. In the absence
of external forcing, this velocity of spontaneous spreading in a droplet can be determined
by considering the energy conservation of the system and combining it with the interface
deformation model. This is done by considering the power balance between the driving
force of capillarity and the rate of energy dissipation in the system, which can be expressed
as

Pr + Py = y4 (cos O, — cos ) V, 5.1

where Py and Py are the dissipated powers per unit depth in the fluid and solid,
respectively. Here, 6, is the equilibrium contact angle that depends on the substrate
wettability and 6, = 0 denotes complete wetting. For a thin film with small contact angle,
we can approximate cos 6, — cos & (6% — 93) /2. Within the lubrication approximation,
the power balance can be expressed as

00 h 2 0 2
vy 0 Uy Dty 1 22
dx | Co dz| — | + * —dz | = zoV(0~ —-6)). 5.2
,/_OO ( /0 Z(82> /_AW dtdz 0z Z) 2 ( ¢) (5-2)
We can estimate the viscoelastic dissipation in a thin solid substrate following an approach
similar to Long et al. (1996). Briefly, we express the integral for Py by using a Fourier
transform into the frequency domain and then use Plancherel’s theorem to convert the
horizontal coordinate x into wavenumber s to get

00 0 ~ 2
Py =/ ds/ dzsV(snV)" <M) . (5.3)
—00 —A

0z

From the horizontal deformation equation (4.4a), we can determine the scale of the
horizontal shear stress as dit,/dz ~ oz/s. The integral over the s domain would then
diverge at s = oo and lead to infinite viscoelastic dissipation. Including solid surface
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tension in the solid deformation model regularizes this singularity and provides a cutoff
wavenumber s;,, = € (Jerison et al. 2011). Through numerical tests (illustrated in
Appendix C), we typically find e = O(10).

To determine the scale of the fluid dissipation, one can assume Poiseuille flow in the
drop as dv,/dz & Vz/h?. Then, we can simplify (5.2) as

Ximax h Vz 2 € 0 1
/ dx/ dzC (—2> +/ ds/ dzo" (e0)" VI ~ V(07 - 67). (5.4)
Xmin 0 h 0 —A 2

Using (5.4) one can determine the relationship between contact angle 6 and velocity
V in a system where both solid and liquid dissipations are important. Two important
limiting cases can be recovered from this nonlinear equation. For complete spreading on
a rigid surface (6, = 0, ¢ = 0), the driving capillary force is balanced only by the fluid
dissipation. In this case, (5.4) can be solved to generate the following explicit relationship
between the spreading velocity V and contact angle 6

1
CV ~ 293. (5.5)

Here, ¢ is a ratio of cutoff length scales in the droplet, which is typically £ = O(10) (De
Gennes 1985). Equation (5.5) is a reduced form of the general Cox—Voinov law for infinite
spreading (Voinov 1976; Cox 1986). The other limiting case is found when the viscoelastic
dissipation dominates (¢ — oo, C — 0) and balances the driving capillary force. In this
case, we can write (5.4) as

1
(" A necv ~ —p?/", (5.6)
€

This recovers the scaling relation between V and 6 in the viscoelasticity-dominated regime
when the thin-film limit is applied (Zhao et al. 2018). Carré & Shanahan (1995) have
experimentally shown this scaling law to hold for fluids of different viscosities when the
solid dissipation dominates the power balance. Here, we have identified a slow velocity
scale in the viscoelasticity-dominated regime that depends upon the viscoelastic power-law
exponent in the solid and can be directly compared with the velocity scale in the rigid case
from (5.5). Zhao et al. (2018) have also developed a similar scaling law from viscoelastic
dissipation. In the intermediate regime of 0 < ¢ < oo, the integral in (5.4) can be solved
to find the more general relationship in the complete wetting case

CVEL/0 + a1 (VeC) Ade™ ~ 622, (5.7)

which includes energy dissipation in both solid and liquid domains.

5.3. The limit of a purely elastic substrate

The effect of substrate softness on droplet spreading can be further investigated in the
purely elastic limit ¢ = 0. Here, our focus is on the role of substrate deformability on
spreading laws, i.e. variation of r(¢) as a power-law function of time ¢, which will be
contrasted with the well-known Tanner’s law for spreading on a rigid substrate (Tanner
1979). To do this, we relax the condition of constant spreading velocity and allow for
a general spreading rate 7(¢). This requires one to prescribe a constitutive relationship
for the contact-line speed. Here, we use the following empirical relationship written in
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Figure 5. Equilibrium radius R, on a purely elastic substrate ¢ = 0, as it depends upon the elastocapillary
number o and substrate thickness A, for 6, = 0.

dimensionless form which relates the contact angle 6 to the contact-line speed 7(#) (Dussan
1979; Ehrhard 1993):

dr »

i @ —0,)". (5.8)
Here, 6, is the static contact angle whose value depends on the substrate wettability. The
value of p = 3 has been suggested in many previous studies (Schwartz & Tejada 1972;
Tanner 1979), and this is the value we use here. Here, in the absence of viscoelastic
dissipation, we have a constant relaxation function ¥ (w) = 1 and find the leading-order
solid deformation from the following inverse spatial Fourier transform:

o0 0A3521A7d
V27 oo Mo A3s4 +3

with I:“cl = /2/m6 cos(sr(t)) and 6 > 6,. The solution method outlined in the previous
sections can be used to determine liquid interface shape h(x, f), which can then be applied
to the following dynamic contact-line condition:

)4
d h
el —0,) . (5.10)
dr 0X |y —r(p)

The drop will spread until the condition 6 > 6, is met, from which we can determine an
equilibrium drop radius R, as dr/d¢|,—g,, = 0. The dependence of Ry, on the substrate
elasticity for the complete wetting case 6, = 0 is shown in figure 5 which plots R, against
the elastocapillary number o for different substrate thicknesses A. This shows that the
equilibrium radius Ry decreases with increased elastocapillary number o or substrate
deformability. This is in agreement with figure 4, where we found that, during spreading
on a soft substrate, the primary fluid flow is directed downwards, causing the contact angle
to decrease and causing the drop to reach its equilibrium shape with a smaller radius.
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Figure 6. Spreading on a purely elastic ¢ = 0 substrate plotting the (a) contact-line radius r and (b) contact
angle 0 against time, as it depends upon the elastocapillary number o for 6, = 0, exhibits a power-law ~ r* for
large times with exponent «.

Note here that increasing the substrate thickness A makes the substrate even more
deformable, and thus also reduces Rc.

The approach to equilibrium can be determined by numerically solving (5.10) with
initial condition r(0) = 1 using the forward Euler method. Here, we use an adaptive
timestep and a maximum relative error of 10~°. Figure 6 plots the (a) contact-line radius r
and (b) contact angle against time. At long times, the dynamics approaches the power-law
form r* with characteristic exponent «. In the rigid solid limit ¢ = 0, we find an exponent
o = 0.1428 that recovers the classic Tanner’s law (Tanner 1979). Increasing the substrate
deformability o causes the spreading rate to increase. For o = 0.1 and 0 =1 we find
the spreading-law exponent « to be 0.148 and 0.153, respectively. Figure 6 plots the
corresponding contact angles 6 (¢) for the same parameter values as figure 6. To summarize,
the effect of substrate deformability is to decrease the equilibrium radius R, and increase
the spreading exponent «.

6. Concluding remarks

We have developed a theoretical model of a 2-D liquid drop spreading on a soft
viscoelastic solid of arbitrary rheology using lubrication theory. The spreading dynamics
is characterized by the dynamic liquid—gas and solid-liquid interface shapes and the
macroscopic contact angle formed at the three-phase contact line, as the system approaches
static equilibrium. On a deformable substrate, energy dissipation in both the liquid and
solid affect the contact angle and determine the spreading rate. We find that, when the
dissipation in the solid is larger than that in the liquid, the spreading rate is decreased
through the internal flow fields. In contrast, increased substrate deformability or softness
tends to enhance spreading, as the larger deformation tends to reduce the contact
angle. Through a power balance argument, we identify a general relationship between
spreading velocity and contact angle and also recover the appropriate limiting cases in
the liquid-dominated dissipation and solid-dominated dissipation regimes. The effect of
substrate elasticity is described in further detail in the limiting case of a purely elastic
substrate, where we find a final equilibrium drop radius that becomes smaller as the solid
becomes softer, which is accompanied by a faster spreading rate when compared with the
well-known Tanner’s law for droplet spreading on a rigid substrate.

Our work uncovers some essential features of this two-way coupled problem of a viscous
fluid interacting with a soft viscoelastic solid. Here, we were able to study the most general
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problem where the liquid and solid viscosities are of comparable magnitude, and reveal
the contrasting roles of solid viscosity and elasticity on the spreading dynamics. Our focus
was on comparing spreading laws on soft substrates with rigid substrates in the complete
wetting case, and an important extension of the current model would be to introduce
the effect of partial wetting on the solid deformation field. For example, Charitatos &
Kumar (2020) have previously shown that when the equilibrium contact angle 6, > 0,
the spreading rate can become slower on softer substrates due to the presence of an
attractive van der Waals force. In addition, it is known in rigid wetting dynamics that
the axisymmetric spreading rate of a 3-D drop scales as r ~ ¢!/19, which is slower than
the 2-D case of r ~ ¢'/7, and developing a 3-D counterpart of the current model would
provide key insights into the 3-D spreading dynamics.

In this work, we assume soft solids to be incompressible and that is typically valid for
most materials used in experiment, such as PDMS (Karpitschka et al. 2015). But this need
not always be the case. The current formulation can be extended to a finitely compressible
material using a Galerkin vector formulation of deformation field # (Tamim & Bostwick
2021a). Also, our 2-D formulation of spontaneous spreading should be easily extendible to
more complex cases of soft wetting, such as droplet translation under a substrate gradient,
or on an inclined surface. It has been shown in previous works that substrate wettability
can play a non-trivial role in such phenomena (Bueno et al. 2018), and the inclusion of
the full effect of substrate wettability would be an important modification of the current
model.

Lastly, our model can be used as an essential tool for validating novel experiments
on soft wetting phenomena, such as dewetting of contact lines during dip-coating
phenomenon (Kajiya et al. 2014; Bertin et al. 2022). Numerical simulation of the fully
3-D two-way coupled elastocapillary wetting phenomena would also benefit from using
this model as a benchmarking tool (Aland & Mokbel 2021). Finally, this model can be
useful in developing a general universal model of spreading on complex surfaces with
arbitrary rheology and deformability.
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Appendix A. Numerical method for the evolution equations

To solve the O(1) evolution equation (4.7), we discretize the interface into a number
of nodes and employ a first-order accurate forward finite difference scheme to express
the derivatives. The integral boundary condition (4.8a—c) is defined using a standard
Simpson’s method. Here, using 50 nodes was typically enough to achieve convergence
of the contact angle to 10~%. For the O(C) evolution equation (4.14a), we are required
to compute the time derivative term from the leading-order solutions /4y and wg, and to
evaluate dhg/dt we integrate (4.7) twice using the boundary conditions (4.8a—c) to derive
an expression for hg as

r

L
0= (r"—=x7) (1 —2rgo+2 go(x)dx ). (Al)
0

453
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Figure 7. Effect of capillary pressure in the purely elastic ¢ = 0 regime for o = 1 contrasting the (a) interface
shapes for » = 1.5, and (b) drop radius (), with (dashed lines) and without (solid lines) capillary pressure.
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Figure 8. (a) Horizontal deformation 122 (s, 0) and (b) and vertical deformation w (s, 0) components plotted
against wavenumber s.

Here, we compute the time derivative by using r(f) = 1 + Vt. For slow velocities V < 1,
typically 50 nodes is sufficient to achieve a converged solid interface shape.

Appendix B. Effect of capillary pressure

The contribution of capillary pressure from the droplet onto the solid substrate has been
suppressed thus far for simplicity of analysis. One can include capillary pressure into the
model by redefining

1
Fep = yigsinf (S(F(t) — XD — %H(r(t) - IXI)) ; (B1)
with H the Heaviside theta function, and investigate the effect in the purely elastic limit
e = 0. Figure 7(a) plots the interface shapes for o = 1, r = 1.5, contrasting the effect
of the capillary pressure which shows a larger solid deformation in the wetted region with
corresponding rotation of the wetting ridge which lowers the contact angle. One can expect
this difference to become larger with increasing elastocapillary number o. Figure 7(b)
plots the contact-line radius r(f) against time ¢ for o = 1 contrasting the effect of capillary
pressure, showing that the spreading rate is nearly unaffected.

Appendix C. Cutoff wavelength for solid deformation components

In our computation of dissipated power in (5.3), we introduce a finite cutoff wavenumber
s = €. This is evidenced by the fact that solid deformation components in the wavenumber
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space decay at large s, as illustrated in figure 8. Figure 8(a) plots itg (s, 0) as a function
of s for varying o, which shows the function becoming nearly zero beyond s > O(10).
Figure 8(b) similarly shows the vertical component wg(s, 7) also decaying at high
wavenumbers.
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