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Burgess bounds for
short character sums evaluated at forms

Lillian B. Pierce and Junyan Xu

We establish a Burgess bound for short multiplicative character sums in arbitrary dimensions, in which
the character is evaluated at a homogeneous form that belongs to a very general class of “admissible”
forms. This n-dimensional Burgess bound is nontrivial for sums over boxes of sidelength at least ¢, with
B >1/2—1/2(n+1)). This is the first Burgess bound that applies in all dimensions to generic forms
of arbitrary degree. Our approach capitalizes on a recent stratification result for complete multiplicative
character sums evaluated at rational functions, due to the second author.

1. Introduction

The celebrated Burgess bound [1957] proves that for x a nonprincipal multiplicative Dirichlet character

modulo a prime ¢, the character sum

S(N,Hy= Y x(x)

xeZ
N<x<N+H
is bounded for every integer r > 1 by
IS(N, H)| <, H' =Yg +D/47 100 4. (1-1)

From this it can be deduced that S(N, H) admits a nontrivial bound o(H) for H as small as H =¢q /44«
for any k¥ > 0. Bounds for S(N, H) have many applications, and as we survey in Section 1C, Burgess’s
influential work set records that remain the best known today.

This paper proves the first n-dimensional Burgess bound for short multiplicative character sums evalu-
ated at generic homogeneous polynomial arguments of arbitrarily large degree. Let x be a nonprincipal
multiplicative character modulo a prime ¢. Let n > 1 be a fixed dimension, and F € Z[xy, ..., x,] a form
of degree D. Forany N = (Ny,...,N,) e R", H=(H,,..., Hy) € R;w define

S(F;N.H)y= Y  x(F@x). (1-2)

xeZ"
x; €(N;,Ni+H;]

Given H, we will define ||H || = H, - - - H,, so that in particular, || H|| is a trivial bound for |S(F; N, H))|.
Previous to the work of this paper, when the lengths H; are short, that is < ¢'/>*¢, nontrivial bounds for
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S(F; N, H) of the form o(|| H||) were known only in special cases, such as when F is a product of n
linear forms that are linearly independent over [, or when n =2 and F is a binary quadratic form (see
Section 1C2 for details). In this paper, we prove nontrivial bounds for S(F; N, H) in any dimension n
for a very general class of “admissible” forms F, as long as

”H”Hmin > qn/Z—HC’

for some k > 0, where Hpi, = min; H;. In particular, this is satisfied when H = (H, ..., H) with
H = g% for any k > 0, where
1 1
b= 3~ 3t (-

1A. Statement of the main theorem. We now provide a formal statement of the condition that a form F
must satisfy in order to be “admissible” for our main result. We only need to rule out those forms F for
which a nontrivial bound for S(F; N, H) would naively fail, such as when F is a perfect A-th power
and y is order A, or when F can be made to depend on fewer than n variables.

Condition ((A, g)-admissible). Let ¢ be a fixed prime and A > 1 a fixed integer. We will say that a
polynomial f € Fy[xy, ..., x,]1s (A, g)-admissible if the following holds. Factorize f = gAh, where
g helylxy,...,x,] and h is A-th power-free over [,. Then A has the property that it cannot be made
independent of (at least) one variable after a linear transformation, i.e., there exists no linear change of
variables A € GL,, (F,) such that A(xA) € Fy[x2, ..., x,].

See Section 3 for further details on this condition, and a precise definition of being A-th power-free.
If A >2is afixed integer, any form F € Z[xy, ..., x,] such that F = G2H with G, H € Z[xy, ..., xp]
where H is A-th power-free and nondegenerate with respect to changes of variables in GL,(Z), has
the property that its reduction modulo ¢ is (A, g)-admissible for all but finitely many primes ¢; see
Lemma 3.4. For any D, the form xf) +---+ an is an example of such a form. Moreover, such forms
are generic among all forms in Z[x1, ..., x,] of degree at most D, since those that violate the conditions
depend on fewer parameters.

Our main result is as follows:

Theorem 1.1. Let x be a nonprincipal multiplicative Dirichlet character of order A modulo a prime q.
Let n > 2 be fixed. For each r > 1, define

O=0,,= V‘lJ.

n—1
Let H= (H,..., H,) € R;l have maximum element Hy,x and minimum element H,,,, and assume
Hax Hnin < ql“/(m). For every degree D form F € Z[xy, ..., x,] such that its reduction modulo q is

(A, g)-admissible, then uniformly in N = (Ny, ..., N,), for every integerr > 1,
|SCFs N HD| < [H||'™ 0 H g mOT € log ), (1-4)

in which the implied constant depends only on D, A, n, r and is otherwise independent of F.
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If one carries through our method of proof in the case n = 1, we may define ® = ® , = r for all
r > 1 and recover the Burgess bound (1-1) (up to the power of the logarithm). This result may also be
extended to apply to a rational function F' = f}/f; if it is appropriately regarded as f; szfl. Analogous
to the proof of the Pélya—Vinogradov inequality, Fourier-based methods can prove a nontrivial bound for
S(F; N, H) for suitable forms F when H; > ¢!/ 2te (see Section A.3); thus the upper bound restriction
on H; in the hypothesis of the theorem is compatible with our interest in the range H; < q'/>**.
For purposes of comparison, we state a direct corollary of Theorem 1.1 in the case that all coordinates

of H are of equal size.

Corollary 1.2. Assume the hypotheses of Theorem 1.1. Suppose H=(H, H, ..., H) with H < g'/>T1/4®),
For every degree D form F € Z[x, ..., x,] such that its reduction modulo q is (A, q)-admissible, then
uniformly in N = (N, ..., N,), for every integerr > 1,

IS(F; N, H)| < H"= D12 g O DO (log g )™+, (1-5)
in which the implied constant depends only on D, A, n, r and is otherwise independent of F.

Remark. The upper bound in Burgess’s original work is independent of the order of the character. In
our results, there is a possible dependence on the order A. In our approach, this possible dependence
on A appears in the constant C” provided by Theorem 4.4, which we apply to count the number of tuples
(x(l), ..., x@)) that could result in “large” complete character sum values. In turn, the constant C”
provided by Theorem 4.4 can depend on A because it encodes the sum of the degrees of the irreducible
components of certain subschemes, that are determined by n, r, D and A. See Section 4 and [Xu 2018,
Section 2.1] for details.

1B. The strength of Theorem 1.1: quantifications. In general, for a Burgess-style result such as (1-1),
which holds for a range of integers r, to assess its strength for H near the lower-bound threshold that
yields a nontrivial bound for |S(N, H)|, we must compute which value of r produces maximum savings.
For example, in Burgess’s original result, if H = ¢'/#** the bound (1-1) with parameter value r yields the
upper bound |S(N, H)| < Hqg —8 where § = (4xr — 1) / 4r?). Computing the maximum of § with respect
to r, we see that by choosing r to be the nearest integer to 1/(2«) we may obtain the best value § & k2.

We perform an analogous optimization of our result, summarized in two corollaries.

Corollary 1.3. For eachn > 2 and r > 1, Theorem 1.1 with the parameters n, r provides a nontrivial
upper bound |S(F; N, H)| =0, A p(|H||) forall H= (H, ..., H) with H = q® with B in the range

1 0-1 1 1

§—m<ﬁ55+@, (1-6)

in which ® =0, , = | (r —1)/(n — 1)]. This range includes a nonempty interval of B < % as soon as
r>2n—1, sothat ® = ®, , > 1. In particular, this range always requires > B, with

—1__ 1 ;
= " 2y {a-7)
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8

For H = g5 for small «, we obtain a nontrivial bound || H||q ™% with savings approximately of size

N(n+1fK2
"4 —1)

as k — 0.

Remark. In the approximate value of the savings g, stated above (and similarly in Corollary 1.4 below),
the symbol ~ is used to denote that certain approximations were used in the derivation, such as (i) letting
the value 6; = | (r — 1)/(n — 1)] be approximated by r/(n — 1), which is reasonable, for fixed n, for the
very large values of » = r(«) that are chosen when x — 0; and (ii) considering the limiting case x — 0 in
order to isolate the main term in computations. More details are given in Section 7A.

The threshold 8, defined in (1-7) has appeared in n-dimensional Burgess bounds that were previously
proved in very special cases, such as [Burgess 1967b; 1968; Davenport and Lewis 1963] (see Section 1C2
for an overview, including the stronger results [Chang 2008; 2009; Bourgain and Chang 2010; Heath-
Brown 2016)).

In full generality, our main result Theorem 1.1 is in fact stronger than Corollary 1.3, as it can allow
one or more of the lengths H; to be smaller than ¢, as long as other H; are commensurably larger.
We cannot let H; vary in a completely uncontrolled fashion, since our savings comes from the smallest
parameter Hpn; thus we assume that H is proportionate, in the sense that Hpi, > ||H ||C°/ ™ for some
constant 0 < ¢g < 1. The relation (1-9) below shows that if we take ¢y smaller so that H,,;, becomes a
decreasing proportion of || H ||, for our Burgess bound to be nontrivial the geometric mean || H || /n g
forced into an ever shorter range near g'/%

Corollary 1.4. For eachn > 2 and r > 1, Theorem 1.1 with the parameters n, r provides a nontrivial
upper bound |S(F; N, H)| = oy a p(|HI|) for all H = (Hy, ..., Hy) with HpyinHmax < C]1+1/2@ as
long as Hyin > ||H||/" for some 0 < ¢o < 1 and | H||'/" = qP with B in the range

@Ol 11
<B=3+3e

1
2 20(n+cp) (1-8)

in which ® =0, , = |(r —1)/(n —1)]. This range includes a nonempty interval of B < % as soon as
r=>1/co+1)(n—1)+1, so that co® > 1. In particular this range always requires | H||'/" = g with

1 co 1 1

ﬁ>ﬁn,co=§—m_§—m. (1-9)

Alternatively, we can state that Theorem 1.1 obtains a nontrivial upper bound if

| H || Hipin > ">

for some small k. As k — 0 we obtain a nontrivial bound || H ||g =% with

(”+C0)2 2
Nk
4n—1)

n



Burgess bounds for short character sums evaluated at forms 1915

1C. Overview of previous literature. To situate our results, we recall previous literature on Burgess
bounds and in particular for the sums S(F; N, H).

1C1. The classical Burgess bound. For any integer g > 1, the P6lya—Vinogradov inequality states that
IS(N, H)| < q'/?log g (see [Pélya 1918; Vinogradov 1918] or for a modern treatment [Iwaniec and
Kowalski 2004, §12.4]). This provides a nontrivial upper bound for |S(N, H)| as long as H > ¢'/>*¢
for some ¢ > 0. When H is shorter than this range, the sum is considered to be “short,” and obtaining an
o(H) bound is much more difficult. Conjecturally, under the generalized Riemann hypothesis, a bound as
strong as |S(0, H)| <, H'/?q* should hold for all & > 0, thus leading to a nontrivial upper bound in any
range H >, q3€ (see, e.g., [Iwaniec and Kowalski 2004, Equation (12.54)], or [Friedlander et al. 2013,
Equation (9.6)]; see also the more general Conjecture C,, in [Friedlander et al. 2013, §9]).

Burgess [1957; 1962; 1963; 1986] showed that for x a primitive character to a prime modulus g, for
all integers r > 1, the inequality (1-1) holds, with an implied constant uniform in N, yielding a nontrivial
bound for H > ¢'/4**, k > 0. More generally, with log g replaced by ¢° for arbitrarily small &, Burgess
proved that this bound also holds for cube-free moduli g for all » > 1, and for any integer ¢, for r < 3.
The ¢'/#** “threshold” of the Burgess bound remains essentially unimproved since its inception, despite
significant interest, due to its applications.

As a consequence of (1-1), Burgess [1963] proved a landmark subconvexity bound

|L(%—|—it,x)| <<t78q]/4—1/]6+s

for all ¢ > 0, with x a nonprincipal Dirichlet character modulo g as above; there is a corresponding
hybrid subconvexity bound |L( +it, x)| < (Itlg)"/4=1/167¢ of Heath-Brown [1980]. This remains the
best bound known to hold for all Dirichlet L-functions. (Special cases of the modulus ¢ in which a better
subconvexity bound is known include: smooth moduli [Graham and Ringrose 1990; Goldmakher 2010;
Chang 2014; Irving 2016]; prime-power moduli [Postnikov 1956; Barban et al. 1964; Gallagher 1972;
Miliéevi¢ 2016], or powerful moduli [Iwaniec 1974]. Most recently, Petrow and Young [2018] proved a
better Weyl-strength subconvex estimate of size ¢'/¢ for all cube-free moduli ¢.') There is great interest
in establishing bounds of at least the strength of a “Burgess exponent” for analogous bounds in higher
rank contexts. For example, in the GL(2) setting, the “Burgess bound” for an L-function of a Hecke cusp
form g twisted by a primitive Dirichlet character x modulo ¢ is \L(% +it,g® X)| Lg.e g7 1/3+¢ for
all ¢ > 0 (as has been obtained in [Bykovskii 1996; Blomer and Harcos 2008]). Reaching the Burgess
exponent in new settings, or even re-proving such Burgess bounds is currently an important proving
ground for new methods (e.g., [Munshi 2018] via a GL(2) delta method and subsequently [Aggarwal
et al. 2018] via a trivial delta method).

In another direction, the Burgess bound establishes an upper bound for the least quadratic non-
residue n(p) modulo a prime p. Vinogradov conjectured that n(p) <, p® for every ¢ > 0; Burgess’s
Witing of this paper, Petrow and Young [2019] posted a preprint proving a Weyl-strength subconvex estimate for

all Dirichlet L-functions, without a restriction on the modulus ¢. This breakthrough result also implies a small improvement on
the classical Burgess upper bound (1-1) for the cases r = 2, 3 but not for larger r.
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bound (1-1) proves n(p) <, p(4\/g)71+8 for any ¢ > 0, which held the record from [Burgess 1957] until
the quantification in [Banks and Guo 2017]. In this vein, there are continued efforts toward the goal
of improving the inequality (1-1) directly, such as reducing the power of the logarithm (see [Iwaniec
and Kowalski 2004, Equation (12.58) and Remark p. 329; Kerr et al. 2019]), deducing improvements in
certain special cases from conjectural improvements on the Pélya—Vinogradov inequality [Fromm and
Goldmakher 2019], and making connections to the Elliott—Halberstam conjecture and “Type II sums” in
sieve methods [Tao 2015, Conjecture 1.5, Theorem 1.6, Remark 1.7].

1C2. Previous literature on special cases of S(F; N, H). In the n-dimensional setting of the sums
S(F; N, H), previous literature mainly focused on two special cases. Burgess [1967b; 1968] considered
the case in which

n
Fx)y=]]Lix) (1-10)
i=1
is a product of n linear forms L; € Z[xy, ..., x,] that are linearly independent over [F,, for g prime. In
this multilinear setting, he proved a nontrivial bound |S(F; N, H)| = O(||H||q %) for H = (H, ..., H)
and a certain § = §(k) > 0 as long as H = qﬂ”+" for some x > 0, with 8, as defined in (1-7). Bourgain
and Chang [2010] incorporated ideas from additive combinatorics to improve this significantly, proving a
nontrivial bound |S(F; N, H)| = O(|H|lq~%) for H = (H, ..., H) and a certain § = §(x) > 0 as long
as H = q'/*** for some k > 0, thus obtaining an n-dimensional result as strong as the original Burgess
threshold in each dimension.

The second case in which significant results are known is in dimension n = 2 when F is a binary
quadratic form. In this special case, the work of Burgess above, for bilinear sums in n = 2, combined with
results of Davenport and Lewis [1963] on analogues of the Burgess bound over [, initially provided
a nontrivial upper bound for S(F, N, H) for g prime and H; > ¢'/*>** (that is H; > ¢/ with B, as
in (1-7)), where F is any binary quadratic form that is not a perfect square over [,; that is for any
F(x1,x2) = x} 4+ axix + bx3 with a® # 4b (mod ¢). Chang [2009, Theorem 11] introduced ideas of
additive combinatorics to this setting, and improved this to a nontrivial upper bound for S(F, N, H) for
Hi, H, > g'/4** i.e., a 2-dimensional result as strong as the original Burgess threshold in each dimension.
Most recently, Heath-Brown [2016, Theorem 3] proved that this latter result continues to hold for any
odd square-free modulus ¢ such that (g, det(F)) = 1.

Remark. It remains an interesting open question to bound S(F; N, H), with all H; as short as g'/4+*
for k¥ > 0, in the general case of an arbitrary form F whose reduction modulo ¢ is (A, g)-admissible.

1C3. Further related literature. We briefly mention certain other results that are related to multivariate
sums similar to S(F'; N, H), although not of exactly the type we consider in this paper. Davenport and
Lewis [1963] considered the case of x a nonprincipal character of [, for g prime, and a linear form
F(x1,...,x,) =w1x1+- -+ wpx, for oy, ..., w, afixed basis of F,». They proved that S(F, N, H) =
O(||H||g~%) for some § = 8(k) where H; > g#** for some k > 0. As remarked in [Burgess 1968], for
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n = 2 this provides a corresponding upper bound for S(F; N, H) in the case that F is an irreducible
binary quadratic form xl2 +axixy + bx% over [, in which case x (F(xy, x2)) is a character (mod g)
of x; + wxy € Q(w), where w = %a + %«/ a* —4b. In the n-dimensional setting, if one assumes that
wi, ..., ®y, 18 a certain special type of basis (such as a power basis), stronger results have also been
obtained; Burgess [1967a] and Karatsuba [1970] proved nontrivial upper bounds in the stronger range
1/4+«

H;>q . Without such special assumptions, Chang [2008] improved on Davenport and Lewis (for

2n/5+¢ for some k > 0, and furthermore in

dimension n = 2 Chang [2009, Theorem 5] proved that H; >> ¢!/ suffices for any x > 0. See also

n > 5) by proving a nontrivial bound as soon as ||H|| > g

[Chang 2008] for certain results of Burgess-type for multiplicative character sums over sumsets.
Finally, we mention work on mixed character sums in multivariate settings, of the form

S(F,g; N, Hy= Y e(gx)x(F(x)),
xe(N,N+H]

with a polynomial g € R[x1, ..., x,]. In [Pierce 2016] the first author proved nontrivial upper bounds

for such multivariate sums in the regime H; > ¢'/4**

, in the special case F(x) = x; - - - x, (generalizing
[Heath-Brown and Pierce 2015] in dimension n = 1). This was later generalized by Kerr [2014] to
the case of F'(x) multilinear as in (1-10). A second paper in this series will prove Burgess bounds for

S(F, g; N, H) for any form F whose reduction modulo ¢ is (A, g)-admissible.

1D. Outline of the paper. We present in Section 2 a heuristic overview of the proof of Theorem 1.1,
which illustrates how the stratification result of the second author [Xu 2018] plays a key role. In Section 3
we gather together the lemmas we need to motivate and utilize the condition of (A, g)-admissibility. In
Section 4 we give a convenient restatement and strengthening of the stratification results of [Xu 2018];
we expect this version will be of independent interest in other applications. In Section 5 we begin the
n-dimensional Burgess argument, reaching the key new novel steps in Section 6, which carries out the
stratification and a Menshov—Rademacher argument involving permuting variables. In Section 7 we
complete the Burgess argument and choose parameters optimally; subsequently we verify the corollaries.
In the Appendix we provide a comparison illustrating the utility of the stratification, and a conditional
argument that assumes a stronger stratification result, which shows that the threshold 8, is stable under
such an improvement.

1E. Notation. We will use the notation x € (N, N + H] to denote the range of a sum over a box
(N, N+ H]=]],(N;, N; + H;], and will let || H| = [[; H; for any tuple H. We will write ag to mean
(a1q, ...,a,q9) and a/q to mean (ai/q, ..., a,/q). We will also use notations such as x < a to denote
xi <ajfori=1,...,n and a (mod p) to mean we regard each a; (mod p). We define Hyx := max; H;
and Hp, := min; H;. We will use the Vinogradov notation A < B to denote that there exists a constant C
such that |[A| < CB, and A <, B to denote that C may depend on the parameter «. In the following
work, all implied constants may depend on n, r, D, A := ord x and possibly an arbitrarily small ¢ > 0
without further specification, but will never depend on N, H, q.



1918 Lillian B. Pierce and Junyan Xu

2. Method of proof: an overview

In this section we recall the main points of the Burgess method in dimension 1, outline the difficulties that
arise in n > 2 dimensions, and then sketch how we overcome these difficulties to obtain our main theorem.

At its heart, the Burgess method in the classical 1-dimensional setting builds from a character sum
S(N; H) of length H < ¢, a character sum over a complete set of residues modulo g. Doing so by a
Fourier expansion only works efficiently if the sum is not too short, that is, if the character sum is of
length at least H > ¢'/>*¢ (see Section A.3). When H < ¢'/>*¢, Burgess’s method instead dissects
and translates the “short” sum into many “short-short” sums of length H/p for some prime p of size
roughly P (with P to be chosen optimally in terms of H and ¢). Averaging this process over sufficiently
many choices of p, the short-short sums become distributed across a long interval of length g. If this
process is done with enough redundancy, the starting points of these short-short sums nearly cover a full
set of residues modulo ¢g. Simultaneously, Burgess considers not just an average of these short-short
sums, but a 2r-th moment, leading to the study of a sum over starting points m, of the form

max |S(m, k)| (2-1)
— k<2H/P

At this point, positivity allows one to sum over all 1 < m < g so that the sum over m is a complete
set of residues. The Menshov—Rademacher technique allows one to deduce a bound for this maximal
moment (2-1) from a bound for the nonmaximal moment

> 1S b (2-2)

m (mod q)

in which we think of m as varying over the starting points of the short-short sums and k <2H /P as being
the new short-short length. We may write (2-2) equivalently as

> > x(Fim)), (2-3)

X1 yeees x2-€(0,k] m (mod q)

in which Fiyy(m) = (m + x1)(m + x2)27 - (m + x2,)27L If Fixy(m) is not a perfect A-th power
modulo ¢, then the Weil bound O(q!/?) applies to the sum over m, and we say the tuple x is “good”
(which is the generic case); otherwise x is “bad” (which is a sparse case) and we apply the trivial bound
O (q) to the sum over m. Balancing the contributions of these two cases leads to the optimal choice of P
and the Burgess bound (1-1).

Generalizing this argument to the n-dimensional case, we will prove in (5-9) that for any r > 1,

k<2H/
Im;|<2q

1/(2r)
IS(F; N, H)| < (log P)P"‘”Z’IIHII‘”Z’( max |S(F; m, k>|2’) : (2-4)
m



Burgess bounds for short character sums evaluated at forms 1919
This will ultimately reduce the problem of bounding |S(F; N, H)| to bounding

> OsEmDFT s Y| Y x(Fem), (2-5)

m (mod q) xD, . x@) m (mod q)
xDe(0,k)
where we define for each collection {x} = {x D, ..., x®)} with x) € 7" the polynomial
2r
Fiey(X) = Fiey (X1, ..., X)) = [ [(F(X +x©))°@, (2-6)

i=1

where §(i) = +1 if i is odd and A — 1 if i is even. One would hope that if the x) are appropriately
independent (that is, the “good” case), a generalization of the Weil bound would yield square-root
cancellation, that is an O(q”/ %) bound for

Y Py )
m (mod q)
But achieving such a bound has been a critical barrier to generalizing the Burgess method to this
n-dimensional setting. One difficulty is that the leading form of Fi,(X) (the homogeneous part of highest
degree) defines a highly singular projective variety, whereas previous literature on Weil bounds required
this either to be a nonsingular projective variety [Katz 2002], or could only allow certain singular varieties
that are not general enough for our application; see, e.g., [Rojas-Ledn 2005; 2006].

Moreover, in dimensions n > 2, as well as the two extremal cases in which the sum (2-7) is O(q”/ 2)
or O(gq"), there may be intermediate cases O(¢g"+/=V/2) for j = 1,...,n + 1. Indeed, suppose we
partition the {x(, ..., x@"} € (0, k]*" into the following types: those belonging to a good set denoted
by Good(k), are such that

> x(Fieym)| = g™

m (mod q)
for a certain constant C, and those belonging to the j-th bad set, denoted by Bad (k), are such that
‘ > X(F{x}(m))‘ > Cqg D2y ) > X(F{x}(m))) < Cq 2,
m (mod q) m (mod q)

Then according to this dissection,

Y. IS(Fim ) < ClGood(k)lg"?+C ) [Bad;(k)lq" /2. (2-8)

m (mod q) j=1

Certainly |Good(k)| < ||k||*". The real question is how to bound [Bad j(k)| foreach j =1,...,n.
The recent work of the second author [Xu 2018] proves a set of bounds that are perfectly suited for our
purposes. This takes the form of a “stratification,” in the spirit of [Fouvry 2000, Proposition 1.0; Laumon
2000, Proposition 3.2, Theorem 3.3; Fouvry and Katz 2001, Theorems 1.1 and 1.2].



1920 Lillian B. Pierce and Junyan Xu

To give the flavor of this stratification, we state here a special case in dimension n = 2 (see Section 4
and in particular Theorem 4.4 for the full setting). Let k = (k, k, ..., k) be a fixed tuple in Z", with
k > 1. We will consider tuples x € Z" that lie in the box x € (0, k], and more generally, a collection
{x}={xD, ..., x@)} € (0, k]* of 2r such n-tuples.

Theorem 2.1. Letn=2andletr, A, D> 1 be fixed. There exists a constant C =C (n, r, D) and a constant
C" =C"(n,r, A, D) such that the following holds. For any prime q, for any nonprincipal multiplicative
Dirichlet character x of order A modulo q, and for any F € F,[x1, x2] that is (A, q)-admissible, for
every tuple k = (k, k),

k4r lf] — O,
#{ e, X)) e (0,17 ) Y x(Fuymy)| > Cq<"+f"“/2} <C'ART fj=1,
m (mod q) k2r lf] =2.

We can interpret this as follows: for n = 2, the trivial bound for the number of collections {x} in the
box (0, k]*" C Z*" is k*. When Jj =1, we see that at most O (k31 collections can violate square-root
cancellation, i.e., as soon as r > 2, generically square-root cancellation holds. This stratification, in its
general formulation (Theorem 4.4) is the key input which allows us to prove the Burgess bound for all
dimensions n > 2. (See Section A.1 for a further demonstration of why the full stratification is useful.)

We stated Theorem 2.1 for simplicity in the case where the length k has identical values in each coordi-
nate. In our argument, we must instead allow k = (ky, ..., k) with k; varying independently; in particular
this arises in the step when we deduce a bound for the maximal moment in (2-4) from the nonmaximal
moment in (2-5). This raises another difficulty in the multi-dimensional setting, which we now outline.

Xu’s stratification (Theorem A, Theorem 4.1) shows that for each j = 1, ..., n, the collections
{x®, ..., x®)} counted by Bad; (k) lie on a certain subscheme over [, with a certain codimension. In
general, fix a dimension R, let X C Aﬁ be a subscheme of codimension @ and let U be the sum of the
degrees of its irreducible components. Given subsets M; C [, define the “box” M = Hsz | M; C A[fq .
We require a bound for

R
Ix (M) ::#(X([Fq)ﬂl_[Mi), (2-9)
i=1
which depends only on the codimension of X and the degree of the irreducible components of X. A trivial
bound, best possible if codim X =0, is Ix(M) < |M|| := ]_[l.R:1 |M;|. We need to improve on this when
codim X > 1.

To gain an intuition, consider the case of R = 2 and X of codimension 1. A naive hope might be
that Ix (M) < |M||'/? = |M|| - |M;|~'/*|M,|~'/2. But this need not be true. Supposing for example that
|My| =~ 1 is very small while |M,| is very large, it could happen that X of codimension 1 lies along the
subset M, of M, thus leading to the bound Ix (M) > M| = || M| - [M;|~' ~ ||M]||. Thus in general, in
estimating /x (M) we can only expect to save factors corresponding to the smallest components of the
“box” M.
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Concretely, for X of codimension @, we use the fact that if
1 <|Mi| < M| <--- < |Mg| < 00, (2-10)
then by [Xu 2018, Lemma 1.7],
Ix(M) UM - 1My 7 Mo 7h - Mo |7 (2-11)

where U is the sum of the degrees of the irreducible components of X. In our setting, we will apply such
bounds in Section 6 when using a Menshov—Rademacher technique to deduce a bound for a maximal
moment from a nonmaximal moment. Here, in order to guarantee the ordering (2-10) we must permute
variables in a delicate argument, and apply rearrangement inequalities in order to conclude. This is
another novel aspect of our method.

3. Preliminaries

3A. Power-free conditions. We say that F € Z[xy, ..., x,] is d-th power-free if each nonconstant irre-
ducible factor of F over Z (or equivalently over Q, by Gauss’s lemma) appears with multiplicity strictly
less than d. In general, given a field k, we say that F € k[xy, ..., x,] is d-th power-free over k when
F=cF"F" - - F/ withc € k¥, all q; <d and all F; € k[x1, ..., x,] are irreducible and pairwise non-
associate. (We say G, G’ € k[x1, ..., x,] are nonassociate if there is no ¢ € k* such that G = ¢G’.) (Note
that a constant may be regarded as a d-th power-free polynomial. In lemmas or theorems which assume a
polynomial is d-th power-free, other hypotheses will rule out the case of the polynomial being a constant.)

To be precise, we recall that the property of being d-th power-free may be specified equivalently over
a field k or the separable closure of k:

Lemma 3.1. Let k be a field and k* its separable algebraic closure, so k* = k if k is perfect, and in
particular if k is finite. Then for any F € k[xy, ..., x,], F is a perfect d-th power over k (up to a nonzero
multiplicative constant) if and only if F is a perfect d-th power over k*. Similarly, F is d-th power-free
over k if and only if F is d-th power-free over k°.

Proof. We begin with the second claim. Certainly if F is d-th power-free over k* then it is over k. For the
other direction, write F = cF" F;? --- F;* with ¢ € k¥, all a; <d and all F; € k[xy, ..., x,] irreducible
and pairwise nonassociate. For each such F;, we recall from [Xu 2018, Lemma 3.15 (2)] that the fact
that F; is irreducible over k implies that F; is square-free as a polynomial in k*[x, ..., x,]. Thus upon
factoring F; over k* we have F; = G, 1G> - - - G, in which each G, ; is irreducible in k* and as j varies
the G, ; are pairwise nonassociate. Thus the factorization of F over k* is

aj ai ai a az ay ay ay ay
C(G],IG],Z e Gl,bl)(GZ,] G2,2 T G2,b2) e (Gé,lGZ,Z e Gl,bg)‘

Next we recall from [Xu 2018, Lemma 3.15 (3)] that if F;, F;r € k[xq, ..., x,] are nonassociate irreducible
polynomials, then F; and F;; have no common factors in k*[xy, ..., x,]. From this we conclude that
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G;j and G j are nonassociate when (i, j) # (i’, j'). Thus as i and j vary the G; ; are all pairwise
nonassociate over k°, so that F' remains d-th power-free over k°.

Finally, if F is a perfect d-th power over k then it also is over k°. In the other direction, if F is a perfect
d-th power over k°, then in the factorization above, all a; must be multiples of d, so that F factors over k
as F = cG¥ with G = F"/* ... F{/4. 0

3B. Translation invariance conditions. 1t is natural to impose on F that it be appropriately nondegener-
ate, in the sense that it cannot be made independent of one or more variables. Indeed, if there exists a
linear change of coordinates x — x A with A € GL,(Z) such that F(xA) € Z[x,, ..., x,] then we would
not expect |S(F; N, H)| to obey bounds of the full n-dimensional strength that we will obtain. We will
require several equivalent formulations for the condition that F is nondegenerate in this sense.

We recall six equivalent statements about a polynomial F € Z[xy, ..., x,] having the property that it
can be made independent of one of the indeterminates by a linear change of coordinates over Z.

Lemma 3.2 [Xu 2018, Lemma 3.20]. Let F € Z[x1, ..., x,] and let x = (x1, ..., x,) be the row vector

of indeterminates. Then the following are equivalent:

(1) F is invariant under some nontrivial translation in Q" i.e., there exists 0 #m e Q" such that
F(x)=F(x+m).

(2) F is invariant under some nontrivial translation in 7", i.e., there exists 0 = m € 7" such that
F(x)=F(x+m).

(3) F can be made independent of one of the indeterminates by a linear change of coordinates, i.e., there

exists A € GL,,(Z) such that F(xA) € Z[x>, ..., X,].

(4) When viewed as a morphism A7, — A%, F factors through a linear map A7 — A%_l, i.e., there exists
an integral n x (n — 1) matrix B and f € Z[x,, ..., x,] such that F(x) = f(xB).

(5) For almost all prime numbers q (all but finitely many), the reduction of F modulo q is invariant
under some nontrivial translation in Fg.

(6) For infinitely many prime numbers q, the reduction of F modulo q is invariant under some nontrivial

translation in I]_:Z
We now also require an analogue of this over a field k.

Lemma 3.3. Let k be a perfect field. Let F € k[xy, ..., x,] and suppose that deg F < chark if k is
of positive characteristic. Let x be the row vector (x1, ..., X,) of indeterminates. Then the following

are equivalent:

(1) F is invariant under some nontrivial translation in k", i.e., there exists 0 “£m e k" such that
F(x)=F(x+m).

(2) F is invariant under some nontrivial translation in k", i.e., there exists 0 = m € k" such that
F(x)=F(x+m).
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(3) F can be made independent of one of the indeterminates by a linear change of coordinates, i.e., there
exists A € GL,, (k) such that F(xA) € k[xa, ..., x,].

(4) When viewed as a morphism A} — A,i, F factors through a linear map A} — A,’c’_l, i.e., there exists
an n x (n—1) matrix B with entries in k, and f € k[x3, ..., x,] such that F(x) = f(xB).

Proof of Lemma 3.3. (1) = (2): Let0 #m = (my, ..., m,) € k" be such that F(x) = F(x +m), and
assume without loss of generality that m; # 0. By iteration, F(x +tm) — F(x) = 0 as a function of x,
for all r € Z, hence for all ¢ € ko, the prime field inside k, if char k > 0. We consider separately the case
of characteristic zero: if chark = 0 we directly conclude that F(x +tm) — F(x) = 0 as a polynomial
in k[xy, ..., x,, t] since a nonzero polynomial cannot have infinitely many roots (namely all # € Z). In
the positive characteristic case, we learn that rehark _ ¢ divides F(x + tm) — F(x) as polynomials in
k[xi,...,xp, t]. Under the assumption deg F < chark, it therefore must be the case that

F(x+tm)— F(x) =0 (3-1)

as a polynomial in k[x1, ..., x,, t]. Now let E be the field generated by m 1, ..., m, over k, and choose any
t € E such that Trg (1) € k\ {0}; such a 7 is guaranteed as long as E/k is separable, which holds because
we assumed that k is perfect. (For u € E" we will let Trg /i (u) = (Trg i (u1), . .., Trg/x(u,)).) Then since
my #0, we see that also Trg / (tm/m) € k" \ {0}. We will now observe that F (x+Trg/c(tm/m1)) = F(x),
concluding the proof of (2). Since F has coefficients in k, then for any ¢ € Gal(E/k), we have
F(x)=F(x +o(tm/m)). Consequently, we have F(x) = F(x + Trg/,(tm/my)), as desired.

2)= (3): Let0 #m = (my, ..., my) € k" be such that F (x) = F(x + m); then proceeding as in the
previous argument, this implies that F (x +tm) = F(x) as polynomials in k[x1, ..., x,, t]. We will show
that there exists A € GL, (k) such thatm = (1,0, ..., 0)A. Once we have this matrix, we observe that
F(xA)=F(xA+m)=F((x+(1,0,...,0))A) so that upon defining G (x) = F'(x A), we have that G (x)
is invariant under translation x — x 4 (1, 0, ..., 0). Consequently, when regarded as polynomial in xi,

G(-xlv-xz""v-xn)_G(O’ -x2""5-xn) (3_2)

has all integers as its roots, and hence all elements in kg as its roots if chark > 0. In the charac-
teristic zero case, this implies that (3-2) is the zero polynomial in x|, and hence F(xA) = G(x) =
G, x3,...,x,) € k[x2,...,x,]. If chark > 0, we learn that xfhark — x1 divides (3-2), but since
deg F' < chark, it must be the case that (3-2) is identically the zero polynomial over k. Hence as
before we have F(x A) = G(x) =G0, x3, ..., x,) € k[x2, ..., x,], concluding the proof.

Finally, we construct the matrix A. Note that GL,, (k) acts transitively on nonzero vectors in k", since any
such vector is an element in a basis for k", and there exists a unique element in GL,,, (k) mapping one ordered
basis to another. Thus in particular there exists A € GL, (k) such that m = (1,0, ..., 0)A, as desired.

(3)=>(4): Suppose that F (x A)= f(x, ..., x,) forsome f €k[xs, ..., x,],50 F(x)=F((x A~ A)=
f((xA™N,, ..., (xA™1),), where A~! € GL,, (k). Then it suffices to define B to be the matrix constructed
of the last n — 1 columns of A~
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(4) = (1): Now we suppose that there exists such an n x (n—1) matrix B and f € k[xo, ..., x,] such
that F(x) = f(xB). Since multiplication by B is a linear map from k" to k"', the nullspace of this map
is nontrivial and hence there exists 0 = m € k" such that m B = 0; consequently

Fx)=fxB)=f(xB+mB)= f((x+m)B)=F(x +m).
This implies (2), which certainly implies (1), concluding the proof of the lemma. (|

3C. All but finitely many primes. In the introduction we stated that forms that are “admissible” over Z
are “admissible” over [, for all but finitely many primes. The formal statement is here:

Lemma 3.4. Let A > 1 be fixed. Let F € Z|[x1, ..., x,] and suppose F factors as F = G*H with
G, He/Z]xy, ...,x,] and H being A-th power-free over Z. Furthermore, assume that H is nondegenerate
over 7, in the sense that there is no A € GL,(Z) such that H(x A) € Z[x3, . .., x,]. Then for all but finitely
many primes q, the reduction of F modulo q is (A, g)-admissible.

Proof. For a fixed prime ¢, we reduce F, G, H modulo g to f, g, h € Fy[xy, ..., x,]. By Lemma 3.22
of [Xu 2018], since H is A-th power-free over Z then for all but finitely many primes g, & is A-th
power-free over [,. Letting Q1 denote this finite set of exceptional primes, then for all ¢ ¢ O, we have
that f = g®h with & being A-th power-free over F,. As a consequence of Lemma 3.2 (6), since H is
nondegenerate over Z, the reduction 4 of H modulo g can be invariant under a nontrivial translation in Fg
only for finitely many primes ¢; we will call this exceptional set O». Finally, let Q3 denote the primes
q < deg F. We now proceed to consider the primes g ¢ Q1 U Q2 U Q3; for such primes, £ is not invariant
under any nontrivial translation in F?, and (3) in Lemma 3.3 shows that 4 cannot be made independent of
any indeterminate by a linear change of variables in GL, (F,). This proves the lemma. (Here we excluded
primes in Q3 because we cite Lemma 3.3, but we note that the specific implications of this lemma that
we employ here do not need the assumption g > deg F.) U

3D. Permutations of variables. Within the Burgess method, we will use a variant of the Menshov—
Rademacher method for deducing bounds for maximal moments from nonmaximal moments. To carry

out this argument in our setting, we will need to reorder the variables xy, x3, ..., X, in F(x) so that a
corresponding tuple of parameters (ky, ..., k,) satisfies the ordering k; <k, < --- <k,. Thus we are led
to consider forms resulting from F when the variables are permuted. For any permutation 7 of {1, ..., n},

define the form F5 (X) from the form F(X) by setting I (X1, ..., X,) = F(Xzq), .. Xz@))-

Lemma 3.5. Let A > 1 and a prime q be fixed. If a form F € [x1, ..., x,] has the property that its
reduction modulo q is (A, q)-admissible, then for every permutation w on a set of n elements, the
reduction modulo q of Fy is (A, q)-admissible.

Proof. Letting f denote the reduction of F modulo ¢, we write f = gh with h being A-th power-free
over [F,; then correspondingly for the permuted versions, if f; denotes the reduction of F, modulo g
then f, = (g5)*h, with h, being A-th power-free over [F,. Moreover, h can be made independent of at
least one variable after a GL, ([F;) change of variable if and only if &, can. O
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4. The stratification of complete character sums

In this section we recall the stratification of complete character sums proved in [Xu 2018] and show how
to deduce a slightly stronger formulation that we believe will be of independent interest, as well as being
useful in this paper. In our presentation, we will replace the dimension r in the original work by the
dimension 2r in each instance, but the content of this section would apply in an analogous way for any
dimension r (odd or even).

4A. The stratification obtained by Xu. We first recall the statement of [Xu 2018, Theorem 1.1 and
Corollary 1.8] in our setting of dimension 2r. For each fixed n, r > 1, we define a set of parameters 0,
for 1 < j <n, as follows:

0 if j =0,
g. - | =D/m=D] ifj=1,....n=2, 4-1)
! r—1 if j=n—1,

nr if j =n.

Note that this differs superficially from the definition of 6; in [Xu 2018, p. 2]: we are working with
dimension 2r in place of r and the floor function results in slightly different formulas. (Precisely, from

Xu’s work we may take
b=12r—D/Cn-2)]=[(r-1D/(n—-1)] (4-2)
and then we set 0; = j0; for 1 < j <n — 1. In particular for j =n —1,
Op_1=1QCr—10/2]=r—1.

In fact, Xu’s original theorem allows a slightly larger value of 6; > jO; it is later apparent in (7-13) that
this slightly larger choice, leading to a slightly stronger version of Theorem A, would not significantly
improve our current application.)

Theorem A [Xu 2018, Theorem 1.1]. Let integers n,r, A, D > 1 be fixed. There exist integers C =
Cn,r,D)>1and C'=C'(n,r, A, D) > 1 and a finite set S = S(n, r, A, D) of primes such that the
following holds.

Let k denote a finite field with algebraic closure denoted by k. For each 1 <i <2r, let x; : &k — C*
be a multiplicative character (extended to k by setting x;(0) = 0) and assume that d; == ord(y;)|A > 0.
Let F; € k(x1, ..., Xxy) be a di-th power-free rational function of degree at most D and assume that

Tp,:={m ek": Fi(x) = F;(x +m)} 4-3)

is finite for each 1 <i < 2r. Then upon defining

2r
S(x(l), L x(2r)) — Z l_[ xi (F;(m +x(l')))’ (4-4)

mek" =1
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we have that whenever chark &€ S, there exist subschemes
A =XoD X DXyD---DX,
such that for each 1 < j <n,

(1) the sum of the degrees of irreducible components of X  is at most C’;
(2) dim X ; < 2nr — 0; with 0; defined as in (4-1);
(3) forall (xV, ... x®)) e A2 (k) \ X;(x),

1S, .. xC)| < Cie) D2,

Remark. The hypothesis that for each 1 <i <2r, x; has order d; > 0 could allow that yx; is the principal
character. However, if y; is principal then d; = 1 and hence to be d;-th power-free F; € k (x1, ..., x;)
must be a constant function. This implies that TF, is infinite, thus excluding this possibility from the
theorem. This remark applies to Corollary B, below, and the resulting Theorem 4.1 and Corollary 4.2.

Remark. Note that while the subschemes X ; may depend on the F;, the parameters C, C’, 6; depend
only on the maximum degree D of the F;. The constant C = C(n, r, D) noted above is bounded above
by (4r(D+ 1) +1)" as computed in [Katz 2001, Theorem 11] (see the remarks following Theorem 1.1 in
[Xu 2018], again recalling that we have 2r in place of r). The constant C’ (and later C” in Corollary 4.3)
only depends on n, r, D, A but is not explicitly determined. For further details on the dependence of C’
and C” see [Xu 2018, Section 2.1, and the remark following Theorem 1.1] and Corollary 4.3.

Next, we must convert Theorem A into a count for the number of points (@D, x@y e A2 (k)
(later denoted as collections {xV, ..., x®7}) such that a given upper bound for [S(xV, ..., x@")| holds.
It is convenient to define for each 0 < j < and any sequence 1 < k; <k, <--- <k, < oo the function

1 if j =0,
ky =KL i -2,
Bu, (i k) =B, (ki ... ky) = Kt = k! if j=n—1, (4-5)
(ki - knp2)* if j =n, n even,

(k] e 'k(n—l)/2)2rkfn+1)/2 lfJ =n,n odd.

(To aid comparison to Xu’s original notation [2018] involving parameters denoted by ng, , we make the
simple observation that for j =n and 6; = nr, if n is even we write nr = (n/2)2r (with no =n/2 and
n = 0) and when »n is odd we write nr = ((n — 1)/2) - 2r +r (with no = (n — 1)/2 and n = r), so that
Xu’s original notation results in the expression stated above for B, ,(j, k) in the case j = n, and with
ambient dimension 2r.)

Corollary B [Xu 2018, Corollary 1.8]. Let integers n,r, A, D > 1 be fixed. There exist integers
C=Cm,r,D)>1and C' =C'(n,r, A, D) > 1 and a finite set S = S(n,r, A, D) of primes such
that the following holds.
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Let k denote a finite field with algebraic closure denoted by k. For each 1 <i <2r,let x; : k* — C*
be a multiplicative character (extended to k by setting x;(0) = 0) and assume that d; := ord(y;)|A > 0.
Let F; € k(x1, . .., Xp) be a d;i-th power-free rational function of degree at most D and assume that TF, as
defined in (4-3) is finite for each 1 <i <2r.

Let {M;}}_, be subsets of k such that 1 <|M| <|Mz| <---<|M,| <00, and define M =[T'_, M; Ck"
and |M|| := ]_[?:1 |M;|. Then whenever chark ¢ S, foreach 1 < j <n,

#HaD L x®)y e M S, L x@)| > Ce) D2
< CIM|” Bur (s ML, ., M) (4-6)

4B. The stratification in our setting. Now we state the new versions of Theorem A and Corollary B
that we use in this paper.

Theorem 4.1. Let k = [F,, g prime. The result of Theorem A holds if we replace the hypothesis that
foreach 1 <i <2r, the form F; is d;-th power-free and TF, is finite, by the weaker hypothesis that for
each 1 <i < 2r, the reduction modulo g of the form F; is (d;, q)-admissible, and for each 1 <i <2r,

deg F; < gq.

Corollary 4.2. Let k =F,, g prime. The result of Corollary B holds if we replace the hypothesis that for
each 1 <i <2r, the form F; is d;-th power-free and TF, is finite, by the weaker hypothesis that for each
1 <i < 2r, the reduction modulo q of the form F; is (d;, q)-admissible.

In the above corollary, we are able to omit the condition deg F; < g seen in Theorem 4.1 by possibly
enlarging C’; see (4-9). Through similar considerations, we can remove consideration of the set S, as we
record here:

Corollary 4.3. In addition, given n, r, A, D in either Corollary B or Corollary 4.2, we may take the set
S =38(n,r, A, D) to be the empty set, at the expense of replacing C' = C'(n,r, A, D) by a possibly
larger constant C"" = C"(n, r, A, D).

Within the Burgess argument, we will consider the sum

2r
Y x(Fmy= > J]xFm+x?))

m (mod q) m (mod q) i=1

in which we have fixed a multiplicative Dirichlet character x of order A modulo a prime ¢ and then set
xi = x if i is odd and y; = ¥ if i is even. This is then clearly of the form S(x", ..., x@")) as defined
in (4-4), with the choice that all the F; are equal to our fixed F' € [,[x, ..., x,] of degree D. For later
reference, we record the following immediate consequence of Theorem 4.1 and Corollary 4.3 (choosing
the subset M; of k to be (0, k;] foreach 1 <i <2r).

Theorem 4.4. Let integers n,r, A, D > 1 be fixed. Then there exist constants C = C(n,r, D) and
C"=C"(n,r, A, D) such that the following holds.
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Fix a prime g and let x be a multiplicative Dirichlet character of order A modulo q. Suppose
F € Z[x1, ..., x,] has the property that its reduction modulo q is (A, q)-admissible and define Fix,(X)
accordingly as in (2-6). Then for every 1 < j < n, for every tuple k = (ky,...,k,) € 7" with
Il<ki<ky=<---<kis=gq,

#{(x“),...,x<2’>>e<0,k12’:\ > X(Fym) >Cq<"+f“/2}sc”nkuz’Bn,r(j;k)1, (4-7)
m (mod q)

in which B, ,(j; k) is defined as in (4-5).

Remark. Note that the trivial upper bound in (4-7) is | k|| 2’ The fundamental consequence of Theorem 4.4
is that it shows that generically among {x} € (0, k]*", square-root cancellation holds, as soon as r is
sufficiently large relative to n. Precisely, as soon as » > n, so that the exponent | (r —1)/(n—1) | appearing
in B, ,(1; k) is strictly positive, the number of {x} € (0, k1% such that square-root cancellation is violated
is 0(||k||2’k]_1), which suffices for our claim, as long as k; is at least a positive power of || k||.

Also, to aid in understanding the role of the function B, ,(j; k) in this result, we note that the
bound (4-7) is in the format of (2-11) with the choice R = 2nr and with the R-dimensional box being

O,ki]x---x0,k1]x---x(0,k,] x---x(0,k,],

in which each factor (0, k;] appears 2r times. Thus when 6; < 2r (this holds for j <n — 1), we only
save factors of k. In the final case j = n when 6,, = nr, we save some factors of k; for 1 <i < [n/2] as
well. This leads to the definition of B, ,(j; k). Finally, we remark for later reference that by construction,
under the hypotheses of the theorem, we always have

Ik By (s )~ = 1. 4-8)

Remark. Conjecturally, one might hope to improve the result of Theorem 4.4 by proving that one can take
larger values for the codimension 6; used to define the savings factor B, ,(j; k)~!. (Precise implications
may be found in Section A.2, where we show that even the conjecturally best possible values for the
codimension do not significantly change our main result.) For comparison, in the most extreme case, it is
not hard to see that we must have 6, < nr, and hence certainly must also have 6; < nr for all j < n. For
recall from Theorem A that X, is a subscheme of Az”’ such that for all (x(, ..., x®)) e Ai”’ \ Xn(k),
1S, ..., xC)| < C@#r)"'/2. In fact, Xu’s paper shows the stronger result that for all finite extensions
k/ic and (xD, ..., x@7) € A" \ X, (k), it holds that |Sk(xV, ..., x@))| < C(#k)"~1/2; here Sy is
defined analogously to § but summing over m € k" and with x; replaced by x; (N (-)). That is, all

(xM ..., x@)) such that [Sp(x, ..., x@))| > C#k)*~'/? must lie in X, (k). Then we claim that
dim X, > nr (and consequently 6, < nr). To see this, we consider any tuple (x(l), R x(zr)) for which
x) = xU*") for j =1,...,r. There are (#k)"" such tuples, and each of them has the property that

1Se(x D, ..., x @) = (#k)". Thisis > C(#k)" /2 if #k is sufficiently large (which we can choose it to be).
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4C. Deduction of the corollaries. Corollary 4.2 follows from Theorem 4.1 in an identical fashion to
how Corollary B follows from Theorem A in [Xu 2018] (see Corollary 1.8 in that paper) and we do not
repeat the proof here. We only note that in Corollary 4.2 we no longer need to assume that deg F; < q.
For indeed, suppose that for some 1 <i < 2r we have deg F; > char x. Then we note that trivially

IS(x(l), e x(2r))| < (#K)an — q2nr < D2nr (4_9)

forall (x®, ..., x@®)) e Az’", so that upon enlarging C’ if necessary so that C’ > D" the results of
Corollary 4.2 hold (here we also use the fact (4-8)).

To obtain Corollary 4.3 in which formally S = &, we note that for any g € S(n, r, A, D), we may
write the trivial upper bound C’||M |>" < C’'¢*"" on the right-hand side of (4-6). Thus in order to state a
version of Corollary B or Corollary 4.2 with S = &, we simply replace C’ in the statement of the corollary
by C"(n,r, A, D) =max{C’, ¢*"" :q € S(n, r, A, D)}.

4D. Proof of Theorem 4.1. Theorem 4.1 follows from a small modification inside the proof of Theorem A
in [Xu 2018]. To be clear, we will state exactly the change that is made (recalling that in our setting we
use 2r where [Xu 2018] uses r; our modifications would of course work for any dimension r).

The main idea is that even if there is an i € {1, ..., 2r} such that F; is not d;-th power-free, we can write
F; = Gfl" 17, in which 17, is d;-th power-free, and has T}, finite, under the assumption that the reduction of
F; modulo q is (d;, g)-admissible, and then at a key moment in the proof we work with I?, instead of F;.

To be precise, recall that for any xM, ., x@)) e 2,
2r
Sx®, . x®) =" [ ae(Fitm +xD)). (4-10)
mek" =1
We also define for any tuple (mV, ..., m®9) € k** and each 1 <i < 2r the function
Tm, ..., m®) =" Xi(Fim(x)),
xek"
in which

S 2s
Fim@) = [[Fm? +x) [ FmY +x)%".
Jj=1 j=s+1

The proof of Theorem A and hence of Corollary B relies on four ingredients.

(I) The first ingredient [Xu 2018, Proposition 1.2] is an identity between 2s-moments of the sums S with
2r-multilinear averages of the sums 7;, namely

2r
> 1S®, L x @) = > [[7i@m®. ... .m®). (4-11)

x(2r))€K2nr (m(l) ..... m(2~V))EK2”S i=1

yeeny

We will refer to the left-hand side as the moment M, (7, s); it has a natural generalization to a moment
My (r, s) defined in an appropriately analogous manner over any finite extension k/«k, with y;(-) replaced

by xi (N (+)).
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(IT) The second ingredient [Xu 2018, Proposition 1.5] relates the moments My (r, s) for finite extensions k /«
to the dimension of the subschemes X ;.

(IIT) The third ingredient [Xu 2018, Proposition 1.6 (a)] is an upper bound of O ((#k)"*) (that is, of
square-root strength) for the number of tuples (mV, ..., m?9) € k** such that F; (my(x) 1s a perfect

d;-th power in k(x1, ..., xp).

(IV) The fourth ingredient [Xu 2018, Proposition 1.6 (b)] is an application of the Weil bound to save one
factor of (#k)!/? off the trivial bound (#k)" for an n-dimensional character sum that is a generalization
of T; in an extension k/«. Precisely, it is the statement that uniformly in finite extensions k/x and tuples

mW, ..., m®) ek, if Fi(my € k(x1, ..., x,) is not a perfect d;-th power in E(xl, ..., Xy), then
D xi (Nigie (Fr iy (x)) = O (k)" ~112). (4-12)
xek"

These four ingredients are applied in a bootstrapping process. The general philosophy is that a weak
bound with very few exceptions can be bootstrapped into a stronger bound with possibly more exceptions.
More precisely, ingredients (III) and (IV) are the initial input, showing that a small savings holds for
the sums 7;, aside from possibly O ((#k)"*) many (that is, square-root many) exceptional choices of
(mW, ..., m®) e k>, For the possible exceptional choices, a trivial upper bound of O ((#k)") is applied
in place of (4-12).

This input step provides a savings, on average, for the sums 7; on the multilinear right-hand side of the
identity (4-11) in ingredient (I) and hence for the moment of S on the left-hand side of (I). Ingredient (II)
then expresses this savings on the moment of S as a stratification in terms of a lower bound on codimX ; for
each j. This result holds uniformly for sums § of the shape (4-10). Since each 7; is also a sum of this shape
(with s, x;, F; defined appropriately), the resulting bound for sums S can be applied to each 7;, yielding
an improvement over the initial savings for 7;. This argument then bootstraps to prove the final result.

With this outline in hand, we may now briefly verify Theorem 4.1. The only point at which this
argument utilized the assumption that each F; is d;-th power-free and has TF, finite was at the initial input
to the bootstrapping, when ingredient (III) was used once; see [Xu 2018, §2.3]. Thus all we must do is
show that this step, namely [Xu 2018, Proposition 1.6 (a)] can be proved under the alternate assumption
that for each i, the reduction of F; modulo g is (d;, g)-admissible, and that deg F; < q. We will replace
[Xu 2018, Proposition 1.6 (a)] with the following proposition.

Proposition 4.5. Let k = [, with q prime and fix a rational function F € k(x1, ..., x,) withdeg F < g
such that the reduction of F modulo q is (d, q)-admissible. Fix s € N. Then for each finite extension k [k,
the number of (m"V, ..., m®)) € k¥ such that Funy(x) is a perfect d-th power over k is at most
O ((#K)™).

Once this has been proved, this replaces [Xu 2018, Proposition 1.6 (a)] as ingredient (III) in Xu’s
proof, and the results of Theorem A and Corollary B follow under our alternative hypotheses, thus

verifying Theorem 4.1.



Burgess bounds for short character sums evaluated at forms 1931

We prove Proposition 4.5 as follows. Suppose that F has the property that its reduction modulo g
is (d, ¢)-admissible. Write F = G?F in which G, F € k(x1, ..., x,) and F is d-th power-free, with
deg F < char k. Under the assumption that the reduction modulo g of F is (d, g)-admissible, by definition
there is no linear change of variables A € GL,, (I;) such that F (xA) ely[xz, ..., x,]. Hence by Lemma 3.3
(which we may apply since deg F< q), the only value of m € i”* such that F(x)=F(x+m) is m =0, so that

Tﬁ::{me/?”H?(x)zI?(x—i-m)}

is certainly finite. Thus we may apply the following lemma to F (which we quote without repeating
the proof):

Lemma 4.6 [Xu 2018, Lemma 3.16]. Fixr, D > 1. There exists Co = Cy(r, D) such that the following
holds. Let k be a finite field and k its prime field. Let H € k(x1, ..., x,) be a d-th power-free rational

function of degree at most D, and assume that
Ty={meck"|H(x)=H(x +m)}

is finite. For any finite extension k /x and {a,-}l.zi1 C Z such that gcd(d, a;) =1 for each 1 <i <2r,let Py
be the collection of tuples (mV, ..., m®") € k*'" such that the rational function ]_[12;1 H(x +m)% s
a perfect d-th power over k. Then

#Py < Co(#K)"" (#Ty)". (4-13)

Now note that for any such set of exponents {a; %;1, we have that ]_[12;1 F (x +m®)% is a perfect d-th
power if and only if

2r 2r 2r d
l_[ F(x +m) = l_[ Fx+m®)% < 1_[ G(x + m(i))“f)
i=1 i=1 i=1
is. Thus if we define P, respectively Pf, to be the collection of tuples (m", ..., m®") € k*"" such
that the rational function ]_[12;1 F(x +m®)% is a perfect d-th power over i (or analogously for F ), we
have by Lemma 4.6 that

#Pp =#Pp < Co(#k)"".

This concludes the verification of Proposition 4.5 and hence of Theorem 4.1.

5. Initiation of the Burgess argument

We now derive the first steps of the Burgess method, generalizing the approach of [Gallagher and Mont-
gomery 2010; Heath-Brown 2013] from the one-variable case and [Pierce 2016] in the multi-variable case.
The central complications that are distinctive to our new stratified setting are mainly addressed in Section 6.

We make the observation that given a character sum S(F; N, H) with data F, N, H, we may reorder
the variables xi, ..., x, so that the lengths Hy, ..., H, satisfy

H < H) <--- < H,. (5-1)
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In particular, if the reduction of F modulo g is (A, g)-admissible, then it stays (A, g)-admissible after
any reordering of the variables (Lemma 3.5). We will assume (5-1) from now on, and will prove the
statement of Theorem 1.1 with H| = Hyin and H, = Hpax.

Fix a prime p { g such that p < Hy,, and split each coordinate x; € (N;, N; + H;] into residue classes
modulo p by writing x = ga + pm with a, m € 7", where 0 < a; < p and m; € (N/, N/ + H!], for which
we define

N{=(N;i—aiq)/p, H/=H/p
foreachi =1, ...,n. Then
S(F;N.H)= ) > x(F(ga+ pm)).
a (mod p) me(N',N'+H’']
By the fact that x has period ¢, the homogeneity of F' and the multiplicativity of ,
S(F; N, H)=x(p”) ) > x(Fmy),
a (mod p) me(N',N'+H']
so that
IS(F; N, H)| < > [S(F;N', H).
a (mod p)
We now average over a set P of primes, P = {P < p <2P : ptq}, so that [P| > P(log P)~'. We will
later choose P so that

P < H;, 1<i<n. (5-2)
Then |
SN )| < o Y. Y. IS(F;N, H) (5-3)

PEP a (mod p)

Here we recall that N’ and H' depend on a and p. We now average over the starting points N’ and the

lengths H' in order to make them independent of a, p.

Lemma 5.1. Fix M e R" and L < Rgl. Forany K <L,

S(F; M, K)| <2*"|L|™ S(F;m, k)|
8¢ I=2ILI™ Yo max |S(Fim. k)|

me(M—L.M]" ~
Proof. The first observation is that for any fixed M, K, and any fixed m with m; < M; foralli=1,...,n,
S(FiM . Ky= Y (-DDS(Fim,M—m+(1-38)-K), (5-4)
6:(81 ----- 811)
8;€{0,1}

where 0 (8) =), 8;. We will prove this momentarily, but first we see how it implies Lemma 5.1. For any
K; < L;, and any m; with M; — L; < m; < M;, we have

0<M;—m; +(1—-6;)K; <2L;,
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for either choice of §; € {0, 1}. Hence for any m with M — L <m < M, (5-4) shows that

IS(F; M, K)|§2"l£g%>£|5(F;m,k)l- (5-5)

There are at least L;/2 integers with M; — L; < m; < M;, so that there are at least 27"||L|| values m in
the range M — L < m < M, and the lemma now follows by averaging (5-5) over these values.
Finally, we prove (5-4). This is simple to see in the case of dimension n = 1: for any m| < M, we

observe that as intervals,
(M, My + K] = (my, My + K1)\ (my, M;].
Thus in terms of the sums over these intervals,
S(F;M,K))=S(F;my,Mi—m;+K{)—S(F,m;, M| —m).

For general dimensions n > 1, (5-4) follows from the principle of inclusion-exclusion. Explicitly, the sum
S(F; M, K) has a range of summation over the box W := ]_[?Zl(M,-, M; + K;]. Temporarily, for ease of
notation, let S(W) denote this sum, with range of summation over the box W; similarly, given any box W’
defined below, we will let S(W’) denote the corresponding sum, with range of summation over the box W’

Suppose m < M is fixed. Let W* be the larger box W* :=[]/_,(m;, M; + K;]. Foreach j =1,...,n,
let W) be the box defined as a product of intervals for 1 <i < n, with “short” interval (m;, M;] in the
Jj-th coordinate and “long” interval (m;, M; + K;] in every other coordinate, for i # j. For each j let
W) be the complement of W) inside W*, Precisely, W is a product of intervals for 1 <i <n, with
interval (M, M; + K ;] in the j-th coordinate and interval (m;, M; + K;] for i # j. Observe that our
box W of interest is W = [_, W), Then by the principle of inclusion-exclusion,

n
SW)y=SWH=> SWN+ > sWnwP)+... 4 (=1)"swOnwn...aw™).

i=1 1<ji<j2<n

We can recognize that this is the identity (5-4) as follows. First, on the left-hand side, S(W) is by
definition our desired sum S(F; M, K). Next, we observe that the entries on the right-hand side are in
bijection with the entries on the right-hand side of (5-4). Precisely, fix a tuple (31, ..., 8,) with §; € {0, 1}.
Suppose that this tuple has k entries of 1, occurring at the indices jj, ..., jx. If K =0 then in the notation
of the identity (5-4), the sum S(F; m, M —m+ (1—4) - K) is precisely the sum S(W*). If 1 <k <n, then
S(F;m, M —m+ (1-38)-K) is precisely S(WU) N...N WUx) appearing in the inclusion-exclusion
identity above. In each case, the signs (—1)°® = (—1)* agree as well. 0

We apply Lemma 5.1 to (5-3) with L; = H; /P > 1. We obtain

IS(F; N, H) < [PI7' Y > 2| H|T'Pr max_|S(F;m, k). (5-6)
pEP a (mod p) me(N'—H/P,N’] k<2H/P
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After rearranging,

IS(F; N, H)| < [PI”'2"[H||7' P" ) A(m) max |S(F;m, k)], (5-7)
— k<2H/P
where we have defined
A(m):#{a,p:peP,az(al,...,an),OSai<p : S S <mi<+,i=1,...

We record the following facts about .A(m), whose proof we defer to Section 7B.
Lemma 5.2. The quantity A(m) vanishes unless m satisfies |m;| < 2q for each i. Moreover, if

H;P <gq, 1<i<n, (5-8)
then

Y A(m) < PIHI, ) A(m)> < P|H|.

Applying Holder’s inequality twice to (5-7), we obtain

IS(F; N, H)|
1-1/r 1/(2r) 1/(2r)
-1 —1pn 2 . 2r
<|PI7MIH| P(%A(m)) (;Am)) (; ké?%’jp'S(F’m”‘)') :
|m;|<2q
Thus applying the results of Lemma 5.2 shows that
1/@r)
IS(F; N, H)| < <logP)P"—”2’||H||—”2’( (nax |S(Fm, k>|2’) . (59
<
m

Imi|<2q

It is sufficient to look at the internal sum over m modulo ¢; in fact obtaining this complete character sum
is the main accomplishment of the manipulations up to this point.

We ignore for the moment the maximum over k <2H /P and focus first on estimating the nonmaximal
moment. We rewrite S(F'; m, k) as

S(Fim )= Y x(F@x)= ) x(F(m+x)),
xe(m,m+k) xe(0,k]
so that upon expansion,

> osEmbF= Y | Y X(F(m—l—x))‘zr > | Y xRy 610

m (mod q) m (mod q) x€(0,k] *D . x@) m (modq)

.....

where Fiy, is defined in terms of the original form F and the collection {x® . x@y by (2-6).



Burgess bounds for short character sums evaluated at forms 1935

6. Stratification and a Menshov—-Rademacher argument

6A. Application of the stratification for character sums. We now come to a critical novel step, which
is to estimate how often we obtain a certain quality of upper bound for the complete character sum

> X(Fiay(m)).
m (mod q)

For this, we call upon the stratification of complete character sums stated in Theorem 4.4. Let us suppose
that ky < ... <k, <q. Foreach 1 < j <n, define

Y; :={{x}e(0,k12’:\ Y. X(Fix(m) >Cq<"+“>/2},
m (mod q)

in which C = C(n, r, D) is the constant provided by Theorem 4.4. Then by Theorem 4.4, we have
0,k =YD Y1 DY2D--- DY, DYyy1:=2, and #Y; < C"||k||* B, »(j; k)~". Upon employing the
decomposition (0, k]*" = U?:o Y;\Y;11in (5-10) we have

YoISEm <Y Y ‘ > x(F{x}(m»‘ (6-1)

m (mod q) Jj=0{x}€Y;\Y;11 "m (mod q)

n
< Z(#Yj)cq(n+(j+1)*l)/2
j=0

n
<C-C'IkI” Y q" By, (il
j=0

To summarize, we have proved:

Lemma 6.1. Fix n,r, D, A > 1, a prime q, and a multiplicative Dirichlet character x of order A
modulo q. Then for every form F € Z[Xy, ..., X,] of degree D such that its reduction modulo q is
(A, g)-admissible, the following holds. For every k = (ky, ..., ky) with1 <k <k, <--- <k, <gq, then

n
> ASF m ) Lnrpa kT g PPB, (i k), (6-2)
m (mod q) j=0
with By, »(j; k) as defined in (4-5), and with the implicit constant dependent on n, r, D, A but independent
qus Xa F? k

However recall that the actual quantity we must bound in (5-9) is a moment of |[S(F; m, k)| that
includes a maximum over k <2H /P. To do so, we will employ a Menshov—Rademacher argument.

6B. A Menshov—Rademacher argument with permutations. The Menshov—Rademacher argument
[Menshov 1923; Rademacher 1922] may be employed in a wide variety of circumstances; in general
it allows one to replace a supremum of a function | f(u;)| over an index set of size U by a sum of
differences | f (u;) — f(u;—1)| over an index set of size O (log U). In our present setting, these differences
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are differences of partial sums over a box, which are themselves partial sums of the same kind, so that the
Menshov—Rademacher device is a useful tool.

However a typical Menshov—Rademacher argument would not immediately apply in our case, since we
cannot save a power of | k|| but typically only a power of knn, the shortest side of the box. We see this
phenomenon is already present in Lemma 6.1, since we have assumed an ordering k| <k, <- - - <k, for the
side-lengths of the box. Even if we assume in the beginning that we have such an ordering, certain internal
steps in the Menshov—Rademacher argument do not preserve such an ordering, and thus arranging the argu-
ment so that we may apply Lemma 6.1 will require delicate considerations of permutations of the variables.

Our main result in this section is the following:

Proposition 6.2. If1 < K| <K, <--- <K, <gq, then

n
> max|S(F;m, ) <urp.a IKIP (og K)* Y q" 2B, (j; K)~! (6-3)
k<K

m ‘:
mil<2q j=0

with the implicit constant dependent on n, r, D, A but independent of q, x, K, and with

1 if j=0,
0, e
B, (j: K) = K yi=L....n =1, (6-4)
’ (Kl"'Kn/z)(zr_]) if j=n, neven,

(K1 Ka-12)* D (Kpinp)  if j=n, nodd,

Note that En ~(n; K)~! loses one power in decay compared to B, ,(n; K )~1. In contrast, in the one-
dimensional case, no decay is lost when passing from the nonmaximal estimate to the maximal estimate;
this minor loss will not affect our final outcome, and we explain why it arises below.

6C. A dyadic decomposition. It suffices to prove Proposition 6.2 for K = (K4, ..., K;;) where each K;
is a power of 2, say K; =21, in which case we naturally have t; <t, <--- <t,, under the hypotheses of the

proposition. We fix m and suppose that S(F'; m, k) assumes its maximum for k < K at k = (ky, ..., k),
and for each i we decompose
k=Y 207
§;€D;
where D; is a set of distinct nonnegative integers §; < ;. Let § = (81, ..., §,) denote a tuple with §; € D;
foreachi. Lett = (11, ..., t,) and define the notation 2/~% = (21=%1 _ 2@~%) Given a tuple v, we
define 2! % ov = (2h=%y,, ..., 2% y,). Furthermore let Vin.s be an n-tuple defined such that the i-th

entry is (Vi.s)i = 2% % vy 5.;, where
Umsi = E 20i—ei - di
eiGDi,ei<5,-
Then we may express

S(Fim k)= Y S(Fim+ Vs 270
3,5,’€'D,’
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After taking absolute values, we can obtain an upper bound by increasing the sum to run over all tuples §
with §; <t;. We get

IS(Fim, k) < Y [S(Fim+ Vi s, 270,

)
0=<8; <t

Then by Holder’s inequality,

n 2r—1
|S(F:m. k)" < (H(z,- + 1)) D) IS(Fim 420w, 20,
§ v

i=1
0<8;<t; 0<v;<2%
where we have possibly enlarged the right-hand side by summing over all possible values for vy, s.; up to 2%.
Recalling that for each m we chose k above to be the length at which the maximum is attained, we then have

SF, ,k 2r<T2r—1 SF, 2!—8 ’2t—5 2r
D max|S(Fm ol < Z;;I(an 0v,2'7%)]

m )
|m;|<2q 0<6;<t; 0<v; <2% |m;|<2q

LT Y28 Y IS(Fim 2,
§ m (mod q)
0=<é;<t;
where T :=[]/_,(#i + 1). Now we perform the key step that accommodates the fact that we only achieve
a saving in the smallest direction of the box.

6D. Application of the nonmaximal upper bound. We would like to apply Lemma 6.1 to the innermost
sums over m. Fix § (with 0 < §; <t; for each i). Notice that we may nothave t; —§; <tp—& <---<t,—6,
even though t; <, <--- <t,, so we may need to reorder ¢ — § before applying Lemma 6.1. Let o be a
permutation of {1, 2, ..., n} (depending on §) such that

lo() = 8o (1) Slo@) —862) <+ < lo@m) — So(n)- (6-5)
Given an n-tuple x, let X, = (X5 (1), X6(2), - - - » Xo(n)), and 2lo=% — (Rl =y Dlemw—dom) Recall
the discussion on permutations of variables in Section 3D; for any permutation 7 of {1, ..., n} define the
form F;(X) by setting Fr (X1, ..., X,) = F(Xz1), ..., Xzm)-
Letting o ~! be the permutation inverse of o, then
S(Fim, 2 %)= > x(F(x)= Y X(Fp1(x6)) = S(Fyo1:mg, 20 75),
xe(m,m+2t-9) Xg (Mg ,my 4200 —80)

Note that m, ranges over all n-tuples with coordinates modulo g as m does, and that the last argument in
S(Fy-1; mg, 2‘“_5“) satisfies the requirement (6-5) so that we may apply Lemma 6.1 withn, r, D, A, q, x
as before but now to the form F_-1; here we use the uniformity of Lemma 6.1 with respect to the form.
(We recall from Lemma 3.5 that the reduction modulo g of F_ -1 is (A, g)-admissible if and only if F is.)
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We may conclude (using the fact that ||2% =% || = [|2¢=8|| = ||2¢] - |2%]|") that

n
D max IS m O Kanpa T70 D 22T Y q B (i 20T

) j=0
|m;i|<2q 0<8; <t;
n
— T2r71 Z ”2t”2r”28”7(2r71) Zq(n+J)/2Bn,r(Ja 2t(7765)71
) j=0
0<6; <t;
n
— T2r—1 I|2t||2r Zq(}’l-fl)/Z Z ||26||_(2r_1)Bn,r(j; 2ta—5(,)—1
j=0 )
0<éi<t;

n
<TYIKIP Y g2 max {12817V B, (j: 277! (66)
Jj=0 0<é;<t;
Here we recall that ||2/|| = || K||. Note that in the case of dimension n = 1 (and 6; = r), the sum over j is
comprised of the two terms

qn/2278(2r71) +qn275(2r71)(2t75)7r < qn/2+qn27rt :qn/2+qu7r’

familiar from the classical 1-dimensional Burgess argument.

Now in general for n > 2 we must reinterpret B, ,(j; 2t-=9)=1 i terms of the coordinates of K = 27,
in which we recall that 1| <, < ... <t,; this argument is more complicated, and in particular for j =n
we will get a positive power of 2° we cannot ignore as in the case of n = 1 (e.g., compare to the top line
of [Heath-Brown 2013, p. 204]). We summarize the necessary result:

Lemma 6.3. For K =2" witht) <--- <t,, foreach § <t, let o be a permutation of the indices {1, ..., n}
such that to(1) — 35(1) < =lom) — 50(,1). Then

1 if j =0,
—0; e _
||23||—(2F—1)Bnr(j;2ta—3(7)—1 < Kl ) lf‘_]—l,,n 1,
’ (Ky- Kppp)~ @D if j =n, neven,
(Ky--- K(n—l)/z)f(zrfl)l((;il)/z if j=n, nodd.

Once we apply this lemma to (6-6), upon noting that T2 < 22" (log, K )2 < (log K,)?™, we have
proved Proposition 6.2.

6E. Proof of Lemma 6.3: rearrangement. We recall the definition of B, ,(j; k) in (4-5) so that for a
tuple k= (ky, ..., k,) withk; <k, <---<k,, B, ,(j; k)=1for j =0, B, ,(j; k):k?" forj=1,...,n—1,
and for j =n we have B, ,(j; k) = (k; - - -kn/2)2r ifnisevenand B, ,(j; k) = (kg - - 'k(n—l)/2)2rkfn+1)/2
if n is odd.

We may quickly dispatch the case j = 0, in which case

128)=Cr=D B, (j; 25707l = 1287 =D < 1,
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For the remaining cases of j > 1, it is helpful to invert, and take the logarithm, and prove for fixed § and
fixed j a lower bound for the quantity

log, (1221 =V B,, . (j; 27 7%7)).

First we consider the case of 1 < j <n — 1; for each of these j (using the fact that Zi 8o (i) = Zi 8i),
n
log, (1281 # "V B, (ji: 27 7%)) = (2r — 1)(25(,@) +0;(te1) — 1)
i=1

n
=0its1)+ Q2r—1-0;)8;1)+ Q2r—1) 250(1‘) > 0t5(1)-
i=2

Here we used that for 1 < j <n —1 we have 6; <r — 1, and moreover é,(;y > 0 for all 1 <i <n. Thus

1287 @r =D B, (js 2t 70y Tl <2700 <070 = K

’

upon recalling that t; <#, <--. <t,.

Now we turn to the more complicated case of j = n. First we assume that n is even. Now we have

n n/2
1og, (1221777 B, (3 2°7%)) = @r = 1) D80y +2r Y (o) — 5))-
i=1 i=1
It is convenient to set temporarily for each i = 1, ..., n the parameter ®,; =2r if 1 <i <n/2 and
®,.; =01if n/2 <i < n. Then upon recalling that each §; < t;, we have

log, (1221 %=V B, . (j; 2 7%))

n n n n
=Q2r—-1 Z 8o iy + Z On,i(toi) — o)) = Z On,ilo i) + 2(21’ —1=0,,):)
i=1

i=1 i=1 i=1

n n n
> Onitsiyt D, @ —1-Oudloinyt+ Y, @r—1-6,)-0
i—1 i—1 i=1
l 2r—ll—®,,,,-<0 2r—ll—®n,i20
n

= Z 2r — Ditsy + Z On.its (). (6-7)

i=1 i=1
2r—1-0,,;<0 2r—1-0,,;>0

(Here in the inequality, equality can occur for those & such that §; =¢; forall 1 <i <n/2 and §; =0
for n/2 <i < n. The inequality is where we see that if ©, ; = 2r, we must replace 8, ;) by t5(;) rather
than by O; this is why in the final statement of the inequality we lose slightly in the maximal moment,
compared to the nonmaximal moment. This effect is not possible in dimension n = 1.) Now by the
definition of ®, ;, the first sum is over 1 <i < n/2; the second sum is over n/2 < i <n, in which range
®,.; = 0 so that the second sum is vacuous. Now we use the following simple observation.
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Lemma 6.4 (rearrangement inequality). Let t; <1, <--- <t, be a fixed nondecreasing sequence of real
numbers and ay > - - - > a, a fixed nonincreasing sequence of real numbers. Then for any permutation o
on{l,...,n},andforany 1 <M <n,

M M
Z ait; < Z Aito (i) (6-8)
i=1

i=1

This is a variant of a standard rearrangement inequality; for completeness we give a brief proof in
Section 7B. Applying this observation in (6-7) with M = n/2, we have shown that

n/2

logy (122127~ V By (i 2°7%)) = 2r = 1) Y 1,
i=1

so that in the case of j = n even,
”28||_(2r_1)Bn,r(j; 2t5—3g)—1 5 (21‘1 .. 2tn/2)—(2r—1) — (Kl . Kn/z)—(Zr—l)‘

The argument is similar for j =n with n odd, and we only specify the necessary changes, starting with

(n=1)/2
logy (I12°11*7 Y By (j; 2 7%)) (2r—1)25a(1)+2r Z (to (i) = 85)) +1 (to ((n41)/2) = Bo ((n+1)/2))-

It is convenient to set temporarily for eachi =1, ..., n the parameter ®,,; =2rif 1 <i <(n—1)/2,
On,(ty2=rand O, ; =01if (n+1)/2 <i <n. With this notation, the argument then proceeds as before,
until we reach the statement of (6-7), which now holds with this new definition of ®, ;. Now the first sum
on the right-hand side of (6-7) is over 1 <i < (n — 1)/2, while the second sum on the right-hand side is
overi > (n+1)/2, and has its only nonzero contribution coming from i = (n+1)/2. We may conclude that

(n=1)/2

log> (122 1%7 DBy s (j: 2°7%)) = Y 2r = Dlo iy + ot 1/2)-
i=1

We now apply (6-8) from Lemma 6.4 to conclude that

(n=1)/2

logy (12817 VB (5 2°7%)) = Y (2r = Dy +rtguiny o,
i=1

or equivalently,

||28||_(2r_1)Bn,r(j; ztg—sg)—l <(@n.. .2f<n_1>/z)—(2r—l)(zt(n+1>/z)—’ =(K;--- K(n—l)/z)_(zr_l)K(;;l)/z.

This completes the proof of Lemma 6.3.



Burgess bounds for short character sums evaluated at forms 1941

7. Conclusion of the Burgess argument

We now apply Proposition 6.2 to (5-9) with K = 2H /P, recalling that we are working under the
assumption (5-1) that H; < Hy <--- < H,. (Also recall that K,, < H,, < q.) We conclude that

g (MHIN S iz .
S(F: N, H)*" <p.roa.p (logg)” "V P 1| H| 1(7 > q"tIPB, . (j: H/P)™!
j=0
n
= (log ) "V H|* ' P~1q"* Y "I B, (j: H/P)™", (7-1)

J=0

in which we recall the definition of the function En’,( -, -) from (6-4).

At this stage of the Burgess argument in the one-dimensional setting n = 1, one knows that 6y = 0 and
01 = r, so that the sum over j € {0, 1} contributes (1 + q1/2(H1/P)_r). To balance this, we would then
choose P to be an integer with

1H\q Ve <P <Hq V. (7-2)
Thus when n = 1, we recover
|SCF; N, HD| < [ H|'~17q "D/ (log g)2,
which agrees with Burgess’s statement (1-1) up to a logarithm. Now for n > 2, we observe:
Lemma7.1. For 1 < K| <K; <---<K,,
n
D aPBu (i KT < 1
j=0
precisely when
g’k < 1. (7-3)
Under this assumption, the sum over j is dominated by the terms with j =0, 1.

In particular, this lemma (whose proof we defer to Section 7B) shows that the sum is > 1 if the
relation (7-3) does not hold; hence it is advantageous to assume (7-3). Under this assumption, we can
dominate the sum by the terms with j =0, 1 and hence we conclude from (7-1) that

IS(F; N, H)[* <nr.a.p logg)” O H > P~ 1g"2(1 4+ "2 (H  P)™™).

To balance the last two terms within parentheses, we choose P to be an integer with

e 7-4
2q1/C0) = = g1/Co” (7-4)

where we recall that 6 = | (r — 1)/(n — 1) ] if n > 2. We recall that earlier in (5-2) and (5-8) we had the
requirements that P < H; for all i and H; P < ¢ for all i. The first is clearly true; the second we may
verify as long as we assume H, H; < g'*1/2%) a5 we do in our theorem statement.
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With this choice for P, we have
IS(Fs N, HDPP roap | HIPTHH g2 G0 (log g)2 D,
and hence we conclude that
|S(F; Ny H)| o, |1 H'HCD HVED g0t D40 (log )+,

This proves Theorem 1.1, upon recalling that we have reduced to the setting in which Hy, = Hj,
H,.x = H,, and we have set

o=0=|;1]

ifn>2.

7A. Proof of Corollaries 1.3 and 1.4. Below, we prove Corollaries 1.3 and 1.4 simultaneously; for the
case of Corollary 1.3, simply set ¢co = 1 in each instance below. We recall from Theorem 1.1 that

_ —-1/2 e e
|S(F, N, H)| < ”Hlll 1/(2")Hmln/( i’)q(nO+1)/4rO(10g q)n-i-l’ (7_5)

where for every r > 1 we have set

0=0,,=|"1]

n—1
First let us determine for a given n > 2 the threshold governing for which lengths H the bound (7-5) is

nontrivial, that is o(||H ), under the assumption that | H||!/" = ¢# and Hpi, > || H||/" = g“P. Then
the bound (7-5) is nontrivial as long as

! 1 P c0ﬁ+n®+1 5
—— |nB — — < np,
2r 2r 4r®

that is,

n®+1 1 cp® —1
B>Bp,yi=m————— =~ — ——————. (7-6)
20(n+cy) 2 20(m+cp)

Givenn > 2 and 0 < ¢y <1, as long as we take r sufficiently large that ® = ®,, , > 1/co, we have 8, , < %

(In particular if co = 1, note that ®, , > 1 when (r —1)/(n — 1) > 2, or equivalently, r > 2n — 1.) On the
other hand, note that for fixed n > 2, forall r > 1

1 C()@ —1 1 co 1 1

_— > — >
2 20(m—+cy) 2 2n+cy)

2 2n+1)
for all 0 < ¢p < 1, and this a limitation on the range of § for which the bound is nontrivial.

We now compute that the bound (7-5) is of the form || H ||q_‘S where

n—+co n®+1
6= — . 7-7
2r p 4r® -7
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We make the approximation that ® = (r — 1) /(n — 1), which is an identity when n = 2, and will not be
far from the truth, when we later take r very large. Then we compute that after this approximation, § can
be represented as a function of r by

Fone(r) a br—c
\r)y =
a.b.c roorir=1’°
where
(n+co)p n 1
a=—- b=—, c=-.
2 4 4
As a function of r, this attains a maximum at
r=(@-b"a-co)tv@—c?—(a—c)a—b)} (7-8)
To have r > 0 we must have (a — b) > 0, that is
n 1 co

B> B (7-9)

T 2ntcy) 2 2+tcy)
agreeing with our previous observation. Thus from now on we assume 8 = B, ., + « for some small «,
and we will study how § = §,(k) behaves as k — 0. From (7-7) with 8 = B, ., + « (and without
approximating ®), we see that for any r,
n+co 1
K——.
2r 4r®

To maximize this, according to (7-8), as x — 0 we will take r to be the integer closest to

8§ =206,() =

n—1
k(n+co)
For an approximation, we set r = (n — 1)/(k(n + cp)) in the expression for &,(«x), and using the
approximation ® &~ r/(n — 1) (which is reasonable as k — 0 since then r — 00), we see that

~ (n +CO)2 2

T

(7-10)

as k — 0. Here we use & because we have made two types of approximations: first, we used approximations
of the value of ® and r for simplicity, which introduced errors that become vanishing small, relative to
the true size of §, (k), as k — 0. Second, to simplify certain expressions, we used the fact that we are in
the limiting case x — 0.

Alternatively, we can encapsulate the restriction (7-9) by recording it as the restriction

| H || Hmin 3> | H |60/ s> (g"PyHeo/n,

where B = B, ¢, + k for any small x > 0. Therefore we will obtain a nontrivial bound as long as
| H || Hpin > ¢"/*** for any small x > 0.
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7B. Proof of technical lemmas.

Proof of Lemma 5.2. This argument originates in [Heath-Brown 2013, §4] and is similar but not identical
to lemmas in [Heath-Brown and Pierce 2015; Pierce 2016]; for completeness we provide an argument.
The first property in Lemma 5.2 is a direct result of the definition of .4(m). Since each A(m) is a

D Am) <) A(m)y?,

and it suffices to prove the third property. We write

nonnegative integer,

Ni —a; N; —d,
ZA(m)2=Z#{P,P/,a,alimi§lTalq<mi+Hi/P,mi§l—,a’q<mi+Hi/P}
m m
n
H; Ni—aiq N;—a
<<(]_[—)#{p,p/,a,a’:0§‘ e SH,-/P}
i=1 P p p
=[H|IP™" Y M(p.p), (7-11)

p.p'€P

where
Ni—ajq N;—aq
P P’

M(p,p/):#{a,a’,OSai<p,0§alf<p/:05 §Hl~/P}.

First consider p = p’. Then

M(p, p) <#{a.a":|(N; —aiq) — (Ni —ajq)| < p(H;/P) <2H;, i =1,...,n}
<#{a,a’:|a;—a]| <2H;/q <2, i=1,...,n}.

Here we have used H; < ¢. This shows that once a is chosen, there are at most 3" choices for a’, so that
M(p, p) < P" and hence ) » M(p,p) K P™*1 which suffices for our desired bound for (7-11).

p=rp'e
Next, consider the case p # p’. Foreachi =1, ..., n we choose (by Bertrand’s postulate) a prime /;
such that
2
i <[; < —q
H; H;

(Here we use the assumption that H; < g for each i.) For each i, let M; = [N;l;/q) or M; = [N;l;/q]+1,
so that [;  M;. Then |N;l; /g — M;| < 1 implies that |[N; —gM;/I;| < q/1;, so that

P I =P Lp Lp

qM,-/li—aiq_in/li—al{q <Hi_|_ 4q q , ':1,...,n}

M(p, p) < #{a, a:

<#la,a' :|(p'—p)M; — (a;ip' —a]p)li| <12P, i=1,...,n}.
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Given p, p’ and an integer 8, for each fixed index i there is at most one way to choose g;, a. with
0<a; <p, 0<a; < p'suchthata;p’—ap =35. Thus

D M. ph<#{p#Ep €Pou=(ur. ... u), lu| <12P: M;(p'—p)=u; (modl), i=1,...,n}.
p#p'EP
Now we use the fact that /; + M;. Thus for a fixed i, the condition M;(p’ — p) = u; (mod [;) determines
p’ — p uniquely modulo /;, and hence uniquely in Z, as long as P < [;, which is guaranteed by the
assumption P < g/ H;, that is P H; < q. In particular, there is at most one value for the difference p’ — p
that will satisfy all n conditions. So we may choose p freely and then p’ is determined. As a result, after
counting up the possible choices for u, we conclude that

Y Mp,ph< P
p#P'EP

Applying this in (7-11), we conclude that
> " Am)? < | H|P. O
m

Proof of Lemma 6.4. We may restrict our attention to permutations that map {1, ..., M} to itself, or
equivalently, we may suppose going forward that M = n. For indeed, any indices i that occur in the sums
such that i < M but o (i) > M, clearly contribute no more to the left-hand side than to the right-hand side,
since #; < t5(j).

Now let o be the permutation that minimizes

altn(l)+"‘+ant6(n); (7'12)

if there is more than one such permutation, we choose o to be the one with the greatest number of
fixed points. We will show that o is the identity. For suppose otherwise, and let i be the smallest index
such that o (i) # i. Then o (i) > i and hence #,(;) > ;. Furthermore, denoting by k the index such that
o (k) =i, we must also have that k > i and hence a; < a;. We then see that (t54) — t;)(a; —ax) > 0, or
equivalently, t5ya; + tiax > tja; + tyiyax. Define a new permutation ¢’ by o'(u) =u foru=1,...,1,
o'(k) = o(i), and o'(u) = o(u) for all the remaining u € {i +1,...,n}\ {k}. Then we see that
o ()i + o () Ak = 1o/ ()ai + o' () SO that (7-12) does not increase in value if we replace o by ¢”, and ¢’
must also be a minimizer. Yet o’ has one more fixed point than o, which is a contradiction. We conclude

that o is the identity. U
Proof of Lemma 7.1. By the definition of the 6;, the sum over j =0, 1,...,n — 1 takes the form
n—1 n—2 ) n—1
LY g PKT =143 g PR 4 g VPR O <143 (g KR (7-13)
j=1 j=1 j=1

in which 8; = [(r — 1)/(n — 1)]. Here we have used the fact that for j =n—-1,0,_; =r —1 >
m—DLr—1)/(n—-1)] = (@ —1)8;,. Now we see from the right-most expression that under the
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assumption (7-3), all terms j > 2 are dominated by j = 0, 1. On the other hand, we see from the middle
expression that if (7-3) does not hold, then that expression is > 1, as claimed.
It remains to examine the terms with j = n, which we divide into the even and odd cases. For n > 2

even, the j = n term is
ql’l/Z(Kl . Kn/z)—(Zr—l) S qn/zKl—(Zr—l)n/Z S (q]/ZKl—el)n’

where we have used the ordering K| < K <---< K, and the factthat 2r—1)(n/2) >n(r—1)/(n—1) > né,
holds when n > 2. Thus the above expression is < 1 under the assumption (7-3).
For n > 3 odd, the j = n term is

—@2r=1) p— —{@r-D@m-1/2 -0
q"/z(Kl o Ko1y2) @r DK(anl)/z Sqn/zKl {@r=1)(n=1)/2+r} < (ql/zKl H

upon verifying that n > 2 suffices to show that 2r —1)(n —1)/2+r >n(r —1)/(n — 1) > nb;. Under
the assumption (7-3) we see that the j = n term is also < 1. This concludes the proof of Lemma 7.1. [J

Appendix

A.1. The role of the stratification. It is useful to remark on the crucial role that the stratification plays
in obtaining our main theorem. Suppose that instead of Theorem A we only gained information about X1,
without any further stratification into X», ..., X,. Then for those (x(, ..., x®") ¢ A%Zr \ X1 (F,), we

would have

1S, 2@ < g,

but for those (xV, ..., x7) € X, (F,) we could have an upper bound as bad as the trivial (#F,)". We
would then have only the instance j = 1 of Theorem 4.4, namely

#{{x}e(o, DS x(F{x}(m))\>Cq"/2}sc”nkn”kle'.

m (mod q)

In place of (6-1) and Lemma 6.1 we would now have

Yo SFEmbT< Y | Y x(F{x}<m>>‘+ o) x(F{x}<m>>‘
m (mod q) {x}e(0,k)? 'm (mod q) {x}e(0,k]? 'm (mod q)
{x}eXo\ X, {x}eX)

<< ||k||2rcqn/2 + C//||k||2ran1_61-

The second term has the worst growth g” appearing in (6-2) combined with the least savings kl_e‘ =
B,.,(1; k)~ Proceeding with Menshov—Rademacher and the remaining argument, we would obtain

IS(F; N, H)|”" < (log ) ™V H|* ' P~1¢"2(1 +¢"/*B, . (1; H/P)™").
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The last factor is 14 ¢"/?(H,/P)~%, which we balance by choosing P = Hyq~"/?%). This is a smaller
choice than (7-4), hence provides smaller savings; ultimately this yields the bound

|S(F, N, H)l < ”H”1—1/2}’H;l/zrq(n91+n)/4r91 (logq)n-‘rl (A-l)
This is worse than our main theorem by a factor of g—D/4 %1

A.2. Conditional results: assuming a stronger stratification result. In our Theorem 1.1, the larger
® =0, , is as a function of r, the better the bound is asymptotically in n. We briefly explore how one
could hope to increase the value of ®,, .. The key is to improve Theorem A, and hence Theorem 4.4, by
obtaining larger values for the codimensions 6;.

At present, Theorem 4.4 holds with 6y = 0 and 8, = nr; for the intermediate values 1 < j <n —1, we

9j=er_1J%j<r_l) (A-2)

n—1 n—1

currently obtain values

However, suppose that in the stratification result of Theorem A (and hence in Theorem 4.1 and its
corollaries under the modified hypotheses), we were able to take the larger values

0 = jr. l1<j<n. (A-3)

This is a natural hypothesis since it is the linear interpolation between 8y = 0 and 6, = nr. In fact, note
from the definition (A-2) that we very nearly achieve (A-3) in the case of n = 2.

Supposing that we can take 9} as large as in (A-3) in Theorem A, we could deduce that the statement
of Theorem 4.4 would hold with the function B, ,(j; k) replaced by the modified function B,E,,( ji k)
defined for 0 < j <nand k = (ky, ..., k,) with k] <k, <--- <k, by

1 if j=0,
Bfl’r(j; k)= (ky ---kj/z)zr if j > 1is even,
(ky - - .k(j_l)/2)2rk(j+l)/2 if j > 11is odd.

Proceeding through the Burgess argument in this paper with the function B, ,(j; k) replaced in each
instance by B,E,,( Jj; k), we would arrive at the analogue of (7-1), which now takes the form

n
IS(F: N, H)*" <proa.p (logg) VI H|” =1 P~g" Y "¢/ B (j: H/P)™", (A-4)
j=0

in which for any k with k; <k, <--- <k, we define
1 if j =0,
B: .(ji k)= (ky---kjj)>=! if j > 1is even,
(kl e k(j—l)/Z)zr_lk€j+])/2 lf] > 1 is odd.
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Recall that we assume H| < H, <--- < H,. We choose (cf. (7-2) and (7-4)) P to be an integer such that

H; H;
e =P = e

which balances the j =0 and j = 2 contributions. Under this choice, a simple computation shows that

for each j =0, ..., n we can verify that
TR .
¢'*B; (i H/P)™' <1,

upon using the fact that H; < Hy <... < H, and the definition of the function Eﬁ,r(- , +) given above.
Applying this in (A-4) would give

_ —1/2 i oy
IS(F; N, H)| Kpponp | H||'~120 HTVP O D/ (166 gyt

with the definition
_2r—1 . 1
2 2°
We can compute that this is nontrivial for H satisfying the analogues of (1-6) or (1-8) with ®* in place
of ®; in the limit as n — oo we quantify the strength of the bound near the threshold 8, = % —1/2n+1)).

Letting 8 = B, + «, then our bound is of the form || H|¢g %, where

n+1 1 n—+1 1
= K — ~ K——.
2r 4r 8 2r 4r2

ef

8

The maximum
(n+1)?
4

~
~

K2

is achieved when r is the nearest integer to

1
ST
Thus this conjectural improvement to the stratification would yield a stronger savings near the threshold §,,,
but would not alter the fundamental threshold g,,. Similar computations to those above show that even if
we could conjecturally improve the 6; values to the strongest possible values Gjb. =nr for 1 < j <n, this
bound will not be improved substantially, and the threshold 8, will not change.

A.3. Fourier methods for incomplete sums that are not short. Roughly speaking, the threshold H; <g'/?

appears as a natural constraint of the ranges for which our main results hold. This is not a deficit, for
recall that on the other side of this threshold, different methods, which also rely on Weil bounds, become

172

feasible, for appropriate F. To bound S(F; N, H) in cases where H; > g '/, an advantageous strategy is

to “complete the sum,” writing

S(F;N,Hy= ) x(F@) Y Lica@mog:
a=(ay,...,a) xeZ"
a; (mod q) x; €(N;,Ni+H;]
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One then expands the sum over x using
1

k-(x—
p Y ek (x—a))

k (mod g)

1xza (mod g) =

so that |
S(F;N, Hy=— 3" Y x(F@)e,(—k-a)Ei(ai/q) - Enlan/q),

n
k (mod ¢) a (mod q)

<

in which Z(a) = min{H;, |la|| "'}, where |la|| denotes the distance from « to the nearest integer. One then
aims to show that under appropriate assumptions on the smoothness of F € [ [xy, ..., x,], for generic k
a Weil bound applies so that the internal sum over a is O(g"/?). (Note that this does require the deep
input of a Weil-strength bound for a multi-dimensional mixed character sum; see, e.g., [Katz 2006].) The
resulting sum over k is then expected to be roughly on the order of O (q~"/?||H || +¢"/?>(log ¢)"), which is
o(||H||) in the case that H; > q'/?logg foreachi =1, ..., n, that is, the setting that is complementary to
that of this paper. In a hybrid case, in which some H; are smaller than ¢'/? and some are larger, one could
adopt a hybrid strategy; this regime is closely related to [Pierce 2006; Heath-Brown and Pierce 2012].
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