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We establish a Burgess bound for short multiplicative character sums in arbitrary dimensions, in which
the character is evaluated at a homogeneous form that belongs to a very general class of “admissible”
forms. This n-dimensional Burgess bound is nontrivial for sums over boxes of sidelength at least qβ , with
β > 1/2− 1/(2(n+ 1)). This is the first Burgess bound that applies in all dimensions to generic forms
of arbitrary degree. Our approach capitalizes on a recent stratification result for complete multiplicative
character sums evaluated at rational functions, due to the second author.

1. Introduction

The celebrated Burgess bound [1957] proves that for χ a nonprincipal multiplicative Dirichlet character
modulo a prime q, the character sum

S(N , H)=
∑
x∈Z

N<x≤N+H

χ(x)

is bounded for every integer r ≥ 1 by

|S(N , H)| �r H 1−1/r q(r+1)/4r2
log q. (1-1)

From this it can be deduced that S(N , H) admits a nontrivial bound o(H) for H as small as H = q1/4+κ ,

for any κ > 0. Bounds for S(N , H) have many applications, and as we survey in Section 1C, Burgess’s
influential work set records that remain the best known today.

This paper proves the first n-dimensional Burgess bound for short multiplicative character sums evalu-
ated at generic homogeneous polynomial arguments of arbitrarily large degree. Let χ be a nonprincipal
multiplicative character modulo a prime q . Let n ≥ 1 be a fixed dimension, and F ∈ Z[x1, . . . , xn] a form
of degree D. For any N = (N1, . . . , Nn) ∈ Rn , H = (H1, . . . , Hn) ∈ Rn

≥1, define

S(F; N, H)=
∑
x∈Zn

xi∈(Ni ,Ni+Hi ]

χ(F(x)). (1-2)

Given H, we will define ‖H‖ = H1 · · · Hn , so that in particular, ‖H‖ is a trivial bound for |S(F; N, H)|.
Previous to the work of this paper, when the lengths Hi are short, that is� q1/2+ε, nontrivial bounds for
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S(F; N, H) of the form o(‖H‖) were known only in special cases, such as when F is a product of n
linear forms that are linearly independent over Fq , or when n = 2 and F is a binary quadratic form (see
Section 1C2 for details). In this paper, we prove nontrivial bounds for S(F; N, H) in any dimension n
for a very general class of “admissible” forms F, as long as

‖H‖Hmin� qn/2+κ ,

for some κ > 0, where Hmin = mini Hi . In particular, this is satisfied when H = (H, . . . , H) with
H = qβn+κ for any κ > 0, where

βn =
1
2
−

1
2(n+1)

. (1-3)

1A. Statement of the main theorem. We now provide a formal statement of the condition that a form F
must satisfy in order to be “admissible” for our main result. We only need to rule out those forms F for
which a nontrivial bound for S(F; N, H) would naively fail, such as when F is a perfect 1-th power
and χ is order 1, or when F can be made to depend on fewer than n variables.

Condition ((1, q)-admissible). Let q be a fixed prime and 1 ≥ 1 a fixed integer. We will say that a
polynomial f ∈ Fq [x1, . . . , xn] is (1, q)-admissible if the following holds. Factorize f = g1h, where
g, h ∈ Fq [x1, . . . , xn] and h is 1-th power-free over Fq . Then h has the property that it cannot be made
independent of (at least) one variable after a linear transformation, i.e., there exists no linear change of
variables A ∈ GLn(Fq) such that h(x A) ∈ Fq [x2, . . . , xn].

See Section 3 for further details on this condition, and a precise definition of being 1-th power-free.
If 1≥ 2 is a fixed integer, any form F ∈ Z[x1, . . . , xn] such that F = G1H with G, H ∈ Z[x1, . . . , xn]

where H is 1-th power-free and nondegenerate with respect to changes of variables in GLn(Z), has
the property that its reduction modulo q is (1, q)-admissible for all but finitely many primes q; see
Lemma 3.4. For any D, the form x D

1 + · · · + x D
n is an example of such a form. Moreover, such forms

are generic among all forms in Z[x1, . . . , xn] of degree at most D, since those that violate the conditions
depend on fewer parameters.

Our main result is as follows:

Theorem 1.1. Let χ be a nonprincipal multiplicative Dirichlet character of order 1 modulo a prime q.
Let n ≥ 2 be fixed. For each r ≥ 1, define

2=2n,r =

⌊ r−1
n−1

⌋
.

Let H = (H1, . . . , Hn) ∈ Rn
≥1 have maximum element Hmax and minimum element Hmin, and assume

Hmax Hmin < q1+1/(22). For every degree D form F ∈ Z[x1, . . . , xn] such that its reduction modulo q is
(1, q)-admissible, then uniformly in N = (N1, . . . , Nn), for every integer r ≥ 1,

|S(F; N, H)| � ‖H‖1−(1/2r)H−1/2r
min q(n2+1)/4r2(log q)n+1, (1-4)

in which the implied constant depends only on D,1, n, r and is otherwise independent of F.
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If one carries through our method of proof in the case n = 1, we may define 2 = 21,r = r for all
r ≥ 1 and recover the Burgess bound (1-1) (up to the power of the logarithm). This result may also be
extended to apply to a rational function F = f1/ f2 if it is appropriately regarded as f1 f 1−1

2 . Analogous
to the proof of the Pólya–Vinogradov inequality, Fourier-based methods can prove a nontrivial bound for
S(F; N, H) for suitable forms F when Hi � q1/2+ε (see Section A.3); thus the upper bound restriction
on Hi in the hypothesis of the theorem is compatible with our interest in the range Hi � q1/2+ε.

For purposes of comparison, we state a direct corollary of Theorem 1.1 in the case that all coordinates
of H are of equal size.

Corollary 1.2. Assume the hypotheses of Theorem 1.1. Suppose H=(H, H, . . . , H)with H<q1/2+1/(42).
For every degree D form F ∈ Z[x1, . . . , xn] such that its reduction modulo q is (1, q)-admissible, then
uniformly in N = (N1, . . . , Nn), for every integer r ≥ 1,

|S(F; N, H)| � H n−(n+1)/2r q(n2+1)/4r2(log q)n+1, (1-5)

in which the implied constant depends only on D,1, n, r and is otherwise independent of F.

Remark. The upper bound in Burgess’s original work is independent of the order of the character. In
our results, there is a possible dependence on the order 1. In our approach, this possible dependence
on 1 appears in the constant C ′′ provided by Theorem 4.4, which we apply to count the number of tuples
(x(1), . . . , x(2r)) that could result in “large” complete character sum values. In turn, the constant C ′′

provided by Theorem 4.4 can depend on 1 because it encodes the sum of the degrees of the irreducible
components of certain subschemes, that are determined by n, r, D and 1. See Section 4 and [Xu 2018,
Section 2.1] for details.

1B. The strength of Theorem 1.1: quantifications. In general, for a Burgess-style result such as (1-1),
which holds for a range of integers r , to assess its strength for H near the lower-bound threshold that
yields a nontrivial bound for |S(N , H)|, we must compute which value of r produces maximum savings.
For example, in Burgess’s original result, if H = q1/4+κ the bound (1-1) with parameter value r yields the
upper bound |S(N , H)| � Hq−δ where δ = (4κr −1)/(4r2). Computing the maximum of δ with respect
to r , we see that by choosing r to be the nearest integer to 1/(2κ) we may obtain the best value δ ≈ κ2.

We perform an analogous optimization of our result, summarized in two corollaries.

Corollary 1.3. For each n ≥ 2 and r ≥ 1, Theorem 1.1 with the parameters n, r provides a nontrivial
upper bound |S(F; N, H)| = on,r,1,D(‖H‖) for all H = (H, . . . , H) with H = qβ with β in the range

1
2
−

2−1
22(n+1)

< β ≤
1
2
+

1
42

, (1-6)

in which 2 = 2n,r = b(r − 1)/(n− 1)c. This range includes a nonempty interval of β < 1
2 as soon as

r ≥ 2n− 1, so that 2=2n,r > 1. In particular, this range always requires β > βn with

βn :=
1
2
−

1
2(n+1)

. (1-7)
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For H = qβn+κ for small κ , we obtain a nontrivial bound ‖H‖q−δn with savings approximately of size

δn ≈
(n+ 1)2

4(n− 1)
κ2

as κ→ 0.

Remark. In the approximate value of the savings δn stated above (and similarly in Corollary 1.4 below),
the symbol ≈ is used to denote that certain approximations were used in the derivation, such as (i) letting
the value θ1 = b(r − 1)/(n− 1)c be approximated by r/(n− 1), which is reasonable, for fixed n, for the
very large values of r = r(κ) that are chosen when κ→ 0; and (ii) considering the limiting case κ→ 0 in
order to isolate the main term in computations. More details are given in Section 7A.

The threshold βn defined in (1-7) has appeared in n-dimensional Burgess bounds that were previously
proved in very special cases, such as [Burgess 1967b; 1968; Davenport and Lewis 1963] (see Section 1C2
for an overview, including the stronger results [Chang 2008; 2009; Bourgain and Chang 2010; Heath-
Brown 2016]).

In full generality, our main result Theorem 1.1 is in fact stronger than Corollary 1.3, as it can allow
one or more of the lengths Hi to be smaller than qβn , as long as other Hi are commensurably larger.
We cannot let Hi vary in a completely uncontrolled fashion, since our savings comes from the smallest
parameter Hmin; thus we assume that H is proportionate, in the sense that Hmin ≥ ‖H‖c0/n for some
constant 0< c0 ≤ 1. The relation (1-9) below shows that if we take c0 smaller so that Hmin becomes a
decreasing proportion of ‖H‖, for our Burgess bound to be nontrivial the geometric mean ‖H‖1/n is
forced into an ever shorter range near q1/2.

Corollary 1.4. For each n ≥ 2 and r ≥ 1, Theorem 1.1 with the parameters n, r provides a nontrivial
upper bound |S(F; N, H)| = on,r,1,D(‖H‖) for all H = (H1, . . . , Hn) with Hmin Hmax < q1+1/22 as
long as Hmin ≥ ‖H‖c0/n for some 0< c0 ≤ 1 and ‖H‖1/n

= qβ with β in the range

1
2
−

c02−1
22(n+c0)

< β ≤
1
2
+

1
42

, (1-8)

in which 2 = 2n,r = b(r − 1)/(n− 1)c. This range includes a nonempty interval of β < 1
2 as soon as

r ≥ (1/c0+ 1)(n− 1)+ 1, so that c02> 1. In particular this range always requires ‖H‖1/n
= qβ with

β > βn,c0 =
1
2
−

c0
2(n+c0)

≥
1
2
−

1
2(n+1)

. (1-9)

Alternatively, we can state that Theorem 1.1 obtains a nontrivial upper bound if

‖H‖Hmin� qn/2+κ

for some small κ . As κ→ 0 we obtain a nontrivial bound ‖H‖q−δn with

δn ≈
(n+ c0)

2

4(n− 1)
κ2.
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1C. Overview of previous literature. To situate our results, we recall previous literature on Burgess
bounds and in particular for the sums S(F; N, H).

1C1. The classical Burgess bound. For any integer q ≥ 1, the Pólya–Vinogradov inequality states that
|S(N , H)| � q1/2 log q (see [Pólya 1918; Vinogradov 1918] or for a modern treatment [Iwaniec and
Kowalski 2004, §12.4]). This provides a nontrivial upper bound for |S(N , H)| as long as H � q1/2+ε

for some ε > 0. When H is shorter than this range, the sum is considered to be “short,” and obtaining an
o(H) bound is much more difficult. Conjecturally, under the generalized Riemann hypothesis, a bound as
strong as |S(0, H)| �ε H 1/2qε should hold for all ε > 0, thus leading to a nontrivial upper bound in any
range H �ε q3ε (see, e.g., [Iwaniec and Kowalski 2004, Equation (12.54)], or [Friedlander et al. 2013,
Equation (9.6)]; see also the more general Conjecture Cn in [Friedlander et al. 2013, §9]).

Burgess [1957; 1962; 1963; 1986] showed that for χ a primitive character to a prime modulus q, for
all integers r ≥ 1, the inequality (1-1) holds, with an implied constant uniform in N, yielding a nontrivial
bound for H � q1/4+κ, κ > 0. More generally, with log q replaced by qε for arbitrarily small ε, Burgess
proved that this bound also holds for cube-free moduli q for all r ≥ 1, and for any integer q, for r ≤ 3.
The q1/4+κ “threshold” of the Burgess bound remains essentially unimproved since its inception, despite
significant interest, due to its applications.

As a consequence of (1-1), Burgess [1963] proved a landmark subconvexity bound∣∣L( 1
2 + i t, χ

)∣∣�t,ε q1/4−1/16+ε

for all ε > 0, with χ a nonprincipal Dirichlet character modulo q as above; there is a corresponding
hybrid subconvexity bound

∣∣L( 1
2 + i t, χ

)∣∣�ε (|t |q)1/4−1/16+ε of Heath-Brown [1980]. This remains the
best bound known to hold for all Dirichlet L-functions. (Special cases of the modulus q in which a better
subconvexity bound is known include: smooth moduli [Graham and Ringrose 1990; Goldmakher 2010;
Chang 2014; Irving 2016]; prime-power moduli [Postnikov 1956; Barban et al. 1964; Gallagher 1972;
Milićević 2016], or powerful moduli [Iwaniec 1974]. Most recently, Petrow and Young [2018] proved a
better Weyl-strength subconvex estimate of size q1/6 for all cube-free moduli q .1) There is great interest
in establishing bounds of at least the strength of a “Burgess exponent” for analogous bounds in higher
rank contexts. For example, in the GL(2) setting, the “Burgess bound” for an L-function of a Hecke cusp
form g twisted by a primitive Dirichlet character χ modulo q is

∣∣L( 1
2 + i t, g⊗χ

)∣∣�g,ε q1/2−1/8+ε for
all ε > 0 (as has been obtained in [Bykovskii 1996; Blomer and Harcos 2008]). Reaching the Burgess
exponent in new settings, or even re-proving such Burgess bounds is currently an important proving
ground for new methods (e.g., [Munshi 2018] via a GL(2) delta method and subsequently [Aggarwal
et al. 2018] via a trivial delta method).

In another direction, the Burgess bound establishes an upper bound for the least quadratic non-
residue n(p) modulo a prime p. Vinogradov conjectured that n(p)�ε pε for every ε > 0; Burgess’s

1After the writing of this paper, Petrow and Young [2019] posted a preprint proving a Weyl-strength subconvex estimate for
all Dirichlet L-functions, without a restriction on the modulus q . This breakthrough result also implies a small improvement on
the classical Burgess upper bound (1-1) for the cases r = 2, 3 but not for larger r .
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bound (1-1) proves n(p)�ε p(4
√

e)−1
+ε for any ε > 0, which held the record from [Burgess 1957] until

the quantification in [Banks and Guo 2017]. In this vein, there are continued efforts toward the goal
of improving the inequality (1-1) directly, such as reducing the power of the logarithm (see [Iwaniec
and Kowalski 2004, Equation (12.58) and Remark p. 329; Kerr et al. 2019]), deducing improvements in
certain special cases from conjectural improvements on the Pólya–Vinogradov inequality [Fromm and
Goldmakher 2019], and making connections to the Elliott–Halberstam conjecture and “Type II sums” in
sieve methods [Tao 2015, Conjecture 1.5, Theorem 1.6, Remark 1.7].

1C2. Previous literature on special cases of S(F; N, H). In the n-dimensional setting of the sums
S(F; N, H), previous literature mainly focused on two special cases. Burgess [1967b; 1968] considered
the case in which

F(x)=
n∏

i=1

L i (x) (1-10)

is a product of n linear forms L i ∈ Z[x1, . . . , xn] that are linearly independent over Fq , for q prime. In
this multilinear setting, he proved a nontrivial bound |S(F; N, H)| = O(‖H‖q−δ) for H = (H, . . . , H)
and a certain δ = δ(κ) > 0 as long as H = qβn+κ for some κ > 0, with βn as defined in (1-7). Bourgain
and Chang [2010] incorporated ideas from additive combinatorics to improve this significantly, proving a
nontrivial bound |S(F; N, H)| = O(‖H‖q−δ) for H = (H, . . . , H) and a certain δ = δ(κ) > 0 as long
as H = q1/4+κ for some κ > 0, thus obtaining an n-dimensional result as strong as the original Burgess
threshold in each dimension.

The second case in which significant results are known is in dimension n = 2 when F is a binary
quadratic form. In this special case, the work of Burgess above, for bilinear sums in n = 2, combined with
results of Davenport and Lewis [1963] on analogues of the Burgess bound over Fq2 , initially provided
a nontrivial upper bound for S(F, N, H) for q prime and Hi > q1/3+κ (that is Hi > qβ2+κ with β2 as
in (1-7)), where F is any binary quadratic form that is not a perfect square over Fq ; that is for any
F(x1, x2) = x2

1 + ax1x2+ bx2
2 with a2

6≡ 4b (mod q). Chang [2009, Theorem 11] introduced ideas of
additive combinatorics to this setting, and improved this to a nontrivial upper bound for S(F, N, H) for
H1, H2 > q1/4+κ, i.e., a 2-dimensional result as strong as the original Burgess threshold in each dimension.
Most recently, Heath-Brown [2016, Theorem 3] proved that this latter result continues to hold for any
odd square-free modulus q such that (q, det(F))= 1.

Remark. It remains an interesting open question to bound S(F; N, H), with all Hi as short as q1/4+κ

for κ > 0, in the general case of an arbitrary form F whose reduction modulo q is (1, q)-admissible.

1C3. Further related literature. We briefly mention certain other results that are related to multivariate
sums similar to S(F; N, H), although not of exactly the type we consider in this paper. Davenport and
Lewis [1963] considered the case of χ a nonprincipal character of F∗qn for q prime, and a linear form
F(x1, . . . , xn)= ω1x1+· · ·+ωnxn for ω1, . . . , ωn a fixed basis of Fqn . They proved that S(F, N, H)=
O(‖H‖q−δ) for some δ = δ(κ) where Hi > qβn+κ for some κ > 0. As remarked in [Burgess 1968], for
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n = 2 this provides a corresponding upper bound for S(F; N, H) in the case that F is an irreducible
binary quadratic form x2

1 + ax1x2 + bx2
2 over Fq , in which case χ(F(x1, x2)) is a character (mod q)

of x1 + ωx2 ∈ Q(ω), where ω = 1
2a + 1

2

√
a2− 4b. In the n-dimensional setting, if one assumes that

ω1, . . . , ωn is a certain special type of basis (such as a power basis), stronger results have also been
obtained; Burgess [1967a] and Karatsuba [1970] proved nontrivial upper bounds in the stronger range
Hi > q1/4+κ. Without such special assumptions, Chang [2008] improved on Davenport and Lewis (for
n ≥ 5) by proving a nontrivial bound as soon as ‖H‖ > q2n/5+κ for some κ > 0, and furthermore in
dimension n = 2 Chang [2009, Theorem 5] proved that Hi � q1/4+κ suffices for any κ > 0. See also
[Chang 2008] for certain results of Burgess-type for multiplicative character sums over sumsets.

Finally, we mention work on mixed character sums in multivariate settings, of the form

S(F, g; N, H)=
∑

x∈(N,N+H]

e(g(x))χ(F(x)),

with a polynomial g ∈ R[x1, . . . , xn]. In [Pierce 2016] the first author proved nontrivial upper bounds
for such multivariate sums in the regime Hi � q1/4+κ, in the special case F(x)= x1 · · · xn (generalizing
[Heath-Brown and Pierce 2015] in dimension n = 1). This was later generalized by Kerr [2014] to
the case of F(x) multilinear as in (1-10). A second paper in this series will prove Burgess bounds for
S(F, g; N, H) for any form F whose reduction modulo q is (1, q)-admissible.

1D. Outline of the paper. We present in Section 2 a heuristic overview of the proof of Theorem 1.1,
which illustrates how the stratification result of the second author [Xu 2018] plays a key role. In Section 3
we gather together the lemmas we need to motivate and utilize the condition of (1, q)-admissibility. In
Section 4 we give a convenient restatement and strengthening of the stratification results of [Xu 2018];
we expect this version will be of independent interest in other applications. In Section 5 we begin the
n-dimensional Burgess argument, reaching the key new novel steps in Section 6, which carries out the
stratification and a Menshov–Rademacher argument involving permuting variables. In Section 7 we
complete the Burgess argument and choose parameters optimally; subsequently we verify the corollaries.
In the Appendix we provide a comparison illustrating the utility of the stratification, and a conditional
argument that assumes a stronger stratification result, which shows that the threshold βn is stable under
such an improvement.

1E. Notation. We will use the notation x ∈ (N, N + H] to denote the range of a sum over a box
(N, N + H] =

∏
i (Ni , Ni + Hi ], and will let ‖H‖ =

∏
i Hi for any tuple H. We will write aq to mean

(a1q, . . . , anq) and a/q to mean (a1/q, . . . , an/q). We will also use notations such as x ≤ a to denote
xi ≤ ai for i = 1, . . . , n and a (mod p) to mean we regard each ai (mod p). We define Hmax :=maxi Hi

and Hmin :=mini Hi . We will use the Vinogradov notation A� B to denote that there exists a constant C
such that |A| � C B, and A�κ B to denote that C may depend on the parameter κ . In the following
work, all implied constants may depend on n, r, D,1 := ordχ and possibly an arbitrarily small ε > 0
without further specification, but will never depend on N, H, q.
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2. Method of proof: an overview

In this section we recall the main points of the Burgess method in dimension 1, outline the difficulties that
arise in n ≥ 2 dimensions, and then sketch how we overcome these difficulties to obtain our main theorem.

At its heart, the Burgess method in the classical 1-dimensional setting builds from a character sum
S(N ; H) of length H < q, a character sum over a complete set of residues modulo q. Doing so by a
Fourier expansion only works efficiently if the sum is not too short, that is, if the character sum is of
length at least H � q1/2+ε (see Section A.3). When H � q1/2+ε, Burgess’s method instead dissects
and translates the “short” sum into many “short-short” sums of length H/p for some prime p of size
roughly P (with P to be chosen optimally in terms of H and q). Averaging this process over sufficiently
many choices of p, the short-short sums become distributed across a long interval of length q. If this
process is done with enough redundancy, the starting points of these short-short sums nearly cover a full
set of residues modulo q. Simultaneously, Burgess considers not just an average of these short-short
sums, but a 2r -th moment, leading to the study of a sum over starting points m, of the form∑

m

max
k≤2H/P

|S(m, k)|2r . (2-1)

At this point, positivity allows one to sum over all 1 ≤ m ≤ q so that the sum over m is a complete
set of residues. The Menshov–Rademacher technique allows one to deduce a bound for this maximal
moment (2-1) from a bound for the nonmaximal moment∑

m (mod q)

|S(m, k)|2r (2-2)

in which we think of m as varying over the starting points of the short-short sums and k ≤ 2H/P as being
the new short-short length. We may write (2-2) equivalently as∑

x1,...,x2r∈(0,k]

∑
m (mod q)

χ(F{x}(m)), (2-3)

in which F{x}(m) = (m + x1)(m + x2)
1−1
· · · (m + x2r )

1−1. If F{x}(m) is not a perfect 1-th power
modulo q, then the Weil bound O(q1/2) applies to the sum over m, and we say the tuple x is “good”
(which is the generic case); otherwise x is “bad” (which is a sparse case) and we apply the trivial bound
O(q) to the sum over m. Balancing the contributions of these two cases leads to the optimal choice of P
and the Burgess bound (1-1).

Generalizing this argument to the n-dimensional case, we will prove in (5-9) that for any r ≥ 1,

|S(F; N, H)| � (log P)Pn−1/2r
‖H‖−1/2r

( ∑
m

|mi |≤2q

max
k≤2H/P

|S(F;m, k)|2r
)1/(2r)

. (2-4)
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This will ultimately reduce the problem of bounding |S(F; N, H)| to bounding∑
m (mod q)

|S(F;m, k)|2r
≤

∑
x(1),...,x(2r)

x(i)∈(0,k]

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣, (2-5)

where we define for each collection {x} = {x(1), . . . , x(2r)
} with x(i) ∈ Zn the polynomial

F{x}(X)= F{x}(X1, . . . , Xn)=

2r∏
i=1

(F(X + x(i)))δ(i), (2-6)

where δ(i) = +1 if i is odd and 1− 1 if i is even. One would hope that if the x(i) are appropriately
independent (that is, the “good” case), a generalization of the Weil bound would yield square-root
cancellation, that is an O(qn/2) bound for∣∣∣ ∑

m (mod q)

χ(F{x}(m))
∣∣∣. (2-7)

But achieving such a bound has been a critical barrier to generalizing the Burgess method to this
n-dimensional setting. One difficulty is that the leading form of F{x}(X) (the homogeneous part of highest
degree) defines a highly singular projective variety, whereas previous literature on Weil bounds required
this either to be a nonsingular projective variety [Katz 2002], or could only allow certain singular varieties
that are not general enough for our application; see, e.g., [Rojas-León 2005; 2006].

Moreover, in dimensions n ≥ 2, as well as the two extremal cases in which the sum (2-7) is O(qn/2)

or O(qn), there may be intermediate cases O(q(n+ j−1)/2) for j = 1, . . . , n + 1. Indeed, suppose we
partition the {x(1), . . . , x(2r)

} ∈ (0, k]2r into the following types: those belonging to a good set denoted
by Good(k), are such that ∣∣∣ ∑

m (mod q)

χ(F{x}(m))
∣∣∣≤ Cqn/2

for a certain constant C , and those belonging to the j-th bad set, denoted by Bad j (k), are such that∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣> Cq(n+ j−1)/2 but

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣≤ Cq(n+ j)/2.

Then according to this dissection,

∑
m (mod q)

|S(F;m, k)|2r
≤ C |Good(k)|qn/2

+C
n∑

j=1

|Bad j (k)|q(n+ j)/2. (2-8)

Certainly |Good(k)| ≤ ‖k‖2r. The real question is how to bound |Bad j (k)| for each j = 1, . . . , n.
The recent work of the second author [Xu 2018] proves a set of bounds that are perfectly suited for our
purposes. This takes the form of a “stratification,” in the spirit of [Fouvry 2000, Proposition 1.0; Laumon
2000, Proposition 3.2, Theorem 3.3; Fouvry and Katz 2001, Theorems 1.1 and 1.2].



1920 Lillian B. Pierce and Junyan Xu

To give the flavor of this stratification, we state here a special case in dimension n = 2 (see Section 4
and in particular Theorem 4.4 for the full setting). Let k = (k, k, . . . , k) be a fixed tuple in Zn, with
k ≥ 1. We will consider tuples x ∈ Zn that lie in the box x ∈ (0, k], and more generally, a collection
{x} = {x(1), . . . , x(2r)

} ∈ (0, k]2r of 2r such n-tuples.

Theorem 2.1. Let n=2 and let r,1, D≥1 be fixed. There exists a constant C=C(n, r, D) and a constant
C ′′ = C ′′(n, r,1, D) such that the following holds. For any prime q , for any nonprincipal multiplicative
Dirichlet character χ of order 1 modulo q, and for any F ∈ Fq [x1, x2] that is (1, q)-admissible, for
every tuple k = (k, k),

#
{
{x(1), . . . , x(2r)

} ∈ (0, k]2r
:

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣> Cq(n+ j−1)/2

}
≤ C ′′


k4r if j = 0,

k3r+1 if j = 1,
k2r if j = 2.

We can interpret this as follows: for n = 2, the trivial bound for the number of collections {x} in the
box (0, k]2r

⊂ Z2nr is k4r. When j = 1, we see that at most O(k3r+1) collections can violate square-root
cancellation, i.e., as soon as r ≥ 2, generically square-root cancellation holds. This stratification, in its
general formulation (Theorem 4.4) is the key input which allows us to prove the Burgess bound for all
dimensions n ≥ 2. (See Section A.1 for a further demonstration of why the full stratification is useful.)

We stated Theorem 2.1 for simplicity in the case where the length k has identical values in each coordi-
nate. In our argument, we must instead allow k= (k1, . . . , kn) with ki varying independently; in particular
this arises in the step when we deduce a bound for the maximal moment in (2-4) from the nonmaximal
moment in (2-5). This raises another difficulty in the multi-dimensional setting, which we now outline.

Xu’s stratification (Theorem A, Theorem 4.1) shows that for each j = 1, . . . , n, the collections
{x(1), . . . , x(2r)

} counted by Bad j (k) lie on a certain subscheme over Fq with a certain codimension. In
general, fix a dimension R, let X ⊂ AR

Fq
be a subscheme of codimension $ and let U be the sum of the

degrees of its irreducible components. Given subsets Mi ⊂ Fq , define the “box” M =
∏R

i=1 Mi ⊂ AR
Fq

.
We require a bound for

IX (M) := #
(

X (Fq)∩

R∏
i=1

Mi

)
, (2-9)

which depends only on the codimension of X and the degree of the irreducible components of X. A trivial
bound, best possible if codim X = 0, is IX (M)≤ ‖M‖ :=

∏R
i=1 |Mi |. We need to improve on this when

codim X ≥ 1.
To gain an intuition, consider the case of R = 2 and X of codimension 1. A naive hope might be

that IX (M)≤ ‖M‖1/2 = ‖M‖ · |M1|
−1/2
|M2|

−1/2. But this need not be true. Supposing for example that
|M1| ≈ 1 is very small while |M2| is very large, it could happen that X of codimension 1 lies along the
subset M2 of M, thus leading to the bound IX (M)� |M2| = ‖M‖ · |M1|

−1
≈ ‖M‖. Thus in general, in

estimating IX (M) we can only expect to save factors corresponding to the smallest components of the
“box” M.
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Concretely, for X of codimension $ , we use the fact that if

1≤ |M1| ≤ |M2| ≤ · · · ≤ |MR|<∞, (2-10)

then by [Xu 2018, Lemma 1.7],

IX (M)≤U‖M‖ · |M1|
−1
|M2|

−1
· · · |M$ |

−1, (2-11)

where U is the sum of the degrees of the irreducible components of X. In our setting, we will apply such
bounds in Section 6 when using a Menshov–Rademacher technique to deduce a bound for a maximal
moment from a nonmaximal moment. Here, in order to guarantee the ordering (2-10) we must permute
variables in a delicate argument, and apply rearrangement inequalities in order to conclude. This is
another novel aspect of our method.

3. Preliminaries

3A. Power-free conditions. We say that F ∈ Z[x1, . . . , xn] is d-th power-free if each nonconstant irre-
ducible factor of F over Z (or equivalently over Q, by Gauss’s lemma) appears with multiplicity strictly
less than d. In general, given a field k, we say that F ∈ k[x1, . . . , xn] is d-th power-free over k when
F = cFa1

1 Fa2
2 · · · F

a`
` with c ∈ k×, all ai < d and all Fi ∈ k[x1, . . . , xn] are irreducible and pairwise non-

associate. (We say G,G ′ ∈ k[x1, . . . , xn] are nonassociate if there is no c ∈ k× such that G = cG ′.) (Note
that a constant may be regarded as a d-th power-free polynomial. In lemmas or theorems which assume a
polynomial is d-th power-free, other hypotheses will rule out the case of the polynomial being a constant.)

To be precise, we recall that the property of being d-th power-free may be specified equivalently over
a field k or the separable closure of k:

Lemma 3.1. Let k be a field and ks its separable algebraic closure, so ks
= k if k is perfect, and in

particular if k is finite. Then for any F ∈ k[x1, . . . , xn], F is a perfect d-th power over k (up to a nonzero
multiplicative constant) if and only if F is a perfect d-th power over ks. Similarly, F is d-th power-free
over k if and only if F is d-th power-free over ks.

Proof. We begin with the second claim. Certainly if F is d-th power-free over ks then it is over k. For the
other direction, write F = cFa1

1 Fa2
2 · · · F

a`
` with c ∈ k×, all ai < d and all Fi ∈ k[x1, . . . , xn] irreducible

and pairwise nonassociate. For each such Fi , we recall from [Xu 2018, Lemma 3.15 (2)] that the fact
that Fi is irreducible over k implies that Fi is square-free as a polynomial in ks

[x1, . . . , xn]. Thus upon
factoring Fi over ks we have Fi =Gi,1Gi,2 · · ·Gi,bi in which each Gi, j is irreducible in ks and as j varies
the Gi, j are pairwise nonassociate. Thus the factorization of F over ks is

c(Ga1
1,1Ga1

1,2 · · ·G
a1
1,b1
)(Ga2

2,1Ga2
2,2 · · ·G

a2
2,b2
) · · · (Ga`

`,1Ga`
`,2 · · ·G

a`
`,b`).

Next we recall from [Xu 2018, Lemma 3.15 (3)] that if Fi , Fi ′ ∈ k[x1, . . . , xn] are nonassociate irreducible
polynomials, then Fi and Fi ′ have no common factors in ks

[x1, . . . , xn]. From this we conclude that
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Gi, j and Gi ′, j ′ are nonassociate when (i, j) 6= (i ′, j ′). Thus as i and j vary the Gi, j are all pairwise
nonassociate over ks, so that F remains d-th power-free over ks.

Finally, if F is a perfect d-th power over k then it also is over ks. In the other direction, if F is a perfect
d-th power over ks, then in the factorization above, all ai must be multiples of d , so that F factors over k
as F = cGd with G = Fa1/d

1 · · · Fa`/d
` . �

3B. Translation invariance conditions. It is natural to impose on F that it be appropriately nondegener-
ate, in the sense that it cannot be made independent of one or more variables. Indeed, if there exists a
linear change of coordinates x 7→ x A with A ∈GLn(Z) such that F(x A) ∈ Z[x2, . . . , xn] then we would
not expect |S(F; N, H)| to obey bounds of the full n-dimensional strength that we will obtain. We will
require several equivalent formulations for the condition that F is nondegenerate in this sense.

We recall six equivalent statements about a polynomial F ∈ Z[x1, . . . , xn] having the property that it
can be made independent of one of the indeterminates by a linear change of coordinates over Z.

Lemma 3.2 [Xu 2018, Lemma 3.20]. Let F ∈ Z[x1, . . . , xn] and let x = (x1, . . . , xn) be the row vector
of indeterminates. Then the following are equivalent:

(1) F is invariant under some nontrivial translation in Qn, i.e., there exists 0 6= m ∈ Qn such that
F(x)≡ F(x+m).

(2) F is invariant under some nontrivial translation in Zn, i.e., there exists 0 6= m ∈ Zn such that
F(x)≡ F(x+m).

(3) F can be made independent of one of the indeterminates by a linear change of coordinates, i.e., there
exists A ∈ GLn(Z) such that F(x A) ∈ Z[x2, . . . , xn].

(4) When viewed as a morphism An
Z→A1

Z, F factors through a linear map An
Z→An−1

Z , i.e., there exists
an integral n× (n− 1) matrix B and f ∈ Z[x2, . . . , xn] such that F(x)≡ f (x B).

(5) For almost all prime numbers q (all but finitely many), the reduction of F modulo q is invariant
under some nontrivial translation in Fn

q .

(6) For infinitely many prime numbers q , the reduction of F modulo q is invariant under some nontrivial
translation in Fn

q .

We now also require an analogue of this over a field k.

Lemma 3.3. Let k be a perfect field. Let F ∈ k[x1, . . . , xn] and suppose that deg F < char k if k is
of positive characteristic. Let x be the row vector (x1, . . . , xn) of indeterminates. Then the following
are equivalent:

(1) F is invariant under some nontrivial translation in kn, i.e., there exists 0 6= m ∈ kn such that
F(x)≡ F(x+m).

(2) F is invariant under some nontrivial translation in kn , i.e., there exists 0 6= m ∈ kn such that
F(x)≡ F(x+m).
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(3) F can be made independent of one of the indeterminates by a linear change of coordinates, i.e., there
exists A ∈ GLn(k) such that F(x A) ∈ k[x2, . . . , xn].

(4) When viewed as a morphism An
k → A1

k , F factors through a linear map An
k → An−1

k , i.e., there exists
an n× (n−1) matrix B with entries in k, and f ∈ k[x2, . . . , xn] such that F(x)≡ f (x B).

Proof of Lemma 3.3. (1) =⇒ (2): Let 0 6= m = (m1, . . . ,mn) ∈ kn be such that F(x) ≡ F(x+m), and
assume without loss of generality that m1 6= 0. By iteration, F(x+ tm)− F(x)≡ 0 as a function of x,
for all t ∈ Z, hence for all t ∈ k0, the prime field inside k, if char k > 0. We consider separately the case
of characteristic zero: if char k = 0 we directly conclude that F(x + tm)− F(x) = 0 as a polynomial
in k[x1, . . . , xn, t] since a nonzero polynomial cannot have infinitely many roots (namely all t ∈ Z). In
the positive characteristic case, we learn that tchar k

− t divides F(x + tm)− F(x) as polynomials in
k[x1, . . . , xn, t]. Under the assumption deg F < char k, it therefore must be the case that

F(x+ tm)− F(x)= 0 (3-1)

as a polynomial in k[x1, . . . , xn, t]. Now let E be the field generated by m1, . . . ,mn over k, and choose any
t ∈ E such that TrE/k(t)∈ k \{0}; such a t is guaranteed as long as E/k is separable, which holds because
we assumed that k is perfect. (For u∈ En we will let TrE/k(u)= (TrE/k(u1), . . . ,TrE/k(un)).) Then since
m1 6=0, we see that also TrE/k(tm/m1)∈kn

\{0}. We will now observe that F(x+TrE/k(tm/m1))≡ F(x),
concluding the proof of (2). Since F has coefficients in k, then for any σ ∈ Gal(E/k), we have
F(x)≡ F(x+ σ(tm/m1)). Consequently, we have F(x)≡ F(x+TrE/k(tm/m1)), as desired.
(2)=⇒ (3): Let 0 6=m= (m1, . . . ,mn) ∈ kn be such that F(x)≡ F(x+m); then proceeding as in the

previous argument, this implies that F(x+ tm)≡ F(x) as polynomials in k[x1, . . . , xn, t]. We will show
that there exists A ∈ GLn(k) such that m = (1, 0, . . . , 0)A. Once we have this matrix, we observe that
F(x A)≡ F(x A+m)≡ F((x+(1, 0, . . . , 0))A) so that upon defining G(x)= F(x A), we have that G(x)
is invariant under translation x 7→ x+ (1, 0, . . . , 0). Consequently, when regarded as polynomial in x1,

G(x1, x2, . . . , xn)−G(0, x2, . . . , xn) (3-2)

has all integers as its roots, and hence all elements in k0 as its roots if char k > 0. In the charac-
teristic zero case, this implies that (3-2) is the zero polynomial in x1, and hence F(x A) = G(x) =
G(0, x2, . . . , xn) ∈ k[x2, . . . , xn]. If char k > 0, we learn that xchar k

1 − x1 divides (3-2), but since
deg F < char k, it must be the case that (3-2) is identically the zero polynomial over k. Hence as
before we have F(x A)= G(x)= G(0, x2, . . . , xn) ∈ k[x2, . . . , xn], concluding the proof.

Finally, we construct the matrix A. Note that GLn(k) acts transitively on nonzero vectors in kn, since any
such vector is an element in a basis for kn, and there exists a unique element in GLn(k)mapping one ordered
basis to another. Thus in particular there exists A ∈ GLn(k) such that m = (1, 0, . . . , 0)A, as desired.
(3)=⇒ (4): Suppose that F(x A)≡ f (x2, . . . , xn) for some f ∈k[x2, . . . , xn], so F(x)≡F((x A−1)A)≡

f ((x A−1)2, . . . , (x A−1)n), where A−1
∈GLn(k). Then it suffices to define B to be the matrix constructed

of the last n− 1 columns of A−1.
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(4)=⇒ (1): Now we suppose that there exists such an n× (n−1) matrix B and f ∈ k[x2, . . . , xn] such
that F(x)≡ f (x B). Since multiplication by B is a linear map from kn to kn−1, the nullspace of this map
is nontrivial and hence there exists 0 6= m ∈ kn such that mB = 0; consequently

F(x)≡ f (x B)≡ f (x B+mB)≡ f ((x+m)B)≡ F(x+m).

This implies (2), which certainly implies (1), concluding the proof of the lemma. �

3C. All but finitely many primes. In the introduction we stated that forms that are “admissible” over Z

are “admissible” over Fq for all but finitely many primes. The formal statement is here:

Lemma 3.4. Let 1 ≥ 1 be fixed. Let F ∈ Z[x1, . . . , xn] and suppose F factors as F = G1H with
G, H ∈Z[x1, . . . , xn] and H being1-th power-free over Z. Furthermore, assume that H is nondegenerate
over Z, in the sense that there is no A ∈GLn(Z) such that H(x A)∈Z[x2, . . . , xn]. Then for all but finitely
many primes q, the reduction of F modulo q is (1, q)-admissible.

Proof. For a fixed prime q, we reduce F,G, H modulo q to f, g, h ∈ Fq [x1, . . . , xn]. By Lemma 3.22
of [Xu 2018], since H is 1-th power-free over Z then for all but finitely many primes q, h is 1-th
power-free over Fq . Letting Q1 denote this finite set of exceptional primes, then for all q 6∈ Q1, we have
that f = g1h with h being 1-th power-free over Fq . As a consequence of Lemma 3.2 (6), since H is
nondegenerate over Z, the reduction h of H modulo q can be invariant under a nontrivial translation in Fn

q

only for finitely many primes q; we will call this exceptional set Q2. Finally, let Q3 denote the primes
q ≤ deg F. We now proceed to consider the primes q /∈ Q1∪ Q2∪ Q3; for such primes, h is not invariant
under any nontrivial translation in Fn

q , and (3) in Lemma 3.3 shows that h cannot be made independent of
any indeterminate by a linear change of variables in GLn(Fq). This proves the lemma. (Here we excluded
primes in Q3 because we cite Lemma 3.3, but we note that the specific implications of this lemma that
we employ here do not need the assumption q > deg F.) �

3D. Permutations of variables. Within the Burgess method, we will use a variant of the Menshov–
Rademacher method for deducing bounds for maximal moments from nonmaximal moments. To carry
out this argument in our setting, we will need to reorder the variables x1, x2, . . . , xn in F(x) so that a
corresponding tuple of parameters (k1, . . . , kn) satisfies the ordering k1 ≤ k2 ≤ · · · ≤ kn . Thus we are led
to consider forms resulting from F when the variables are permuted. For any permutation π of {1, . . . , n},
define the form Fπ (X) from the form F(X) by setting Fπ (X1, . . . , Xn)= F(Xπ(1), . . . , Xπ(n)).

Lemma 3.5. Let 1 ≥ 1 and a prime q be fixed. If a form F ∈ [x1, . . . , xn] has the property that its
reduction modulo q is (1, q)-admissible, then for every permutation π on a set of n elements, the
reduction modulo q of Fπ is (1, q)-admissible.

Proof. Letting f denote the reduction of F modulo q, we write f = g1h with h being 1-th power-free
over Fq ; then correspondingly for the permuted versions, if fπ denotes the reduction of Fπ modulo q
then fπ = (gπ )1hπ with hπ being 1-th power-free over Fq . Moreover, h can be made independent of at
least one variable after a GLn(Fq) change of variable if and only if hπ can. �
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4. The stratification of complete character sums

In this section we recall the stratification of complete character sums proved in [Xu 2018] and show how
to deduce a slightly stronger formulation that we believe will be of independent interest, as well as being
useful in this paper. In our presentation, we will replace the dimension r in the original work by the
dimension 2r in each instance, but the content of this section would apply in an analogous way for any
dimension r (odd or even).

4A. The stratification obtained by Xu. We first recall the statement of [Xu 2018, Theorem 1.1 and
Corollary 1.8] in our setting of dimension 2r . For each fixed n, r ≥ 1, we define a set of parameters θ j

for 1≤ j ≤ n, as follows:

θ j =


0 if j = 0,

jb(r − 1)/(n− 1)c if j = 1, . . . , n− 2,
r − 1 if j = n− 1,

nr if j = n.

(4-1)

Note that this differs superficially from the definition of θ j in [Xu 2018, p. 2]: we are working with
dimension 2r in place of r and the floor function results in slightly different formulas. (Precisely, from
Xu’s work we may take

θ1 = b(2r − 1)/(2n− 2)c = b(r − 1)/(n− 1)c (4-2)

and then we set θ j = jθ1 for 1≤ j ≤ n− 1. In particular for j = n− 1,

θn−1 = b(2r − 1)/2c = r − 1.

In fact, Xu’s original theorem allows a slightly larger value of θ j ≥ jθ1; it is later apparent in (7-13) that
this slightly larger choice, leading to a slightly stronger version of Theorem A, would not significantly
improve our current application.)

Theorem A [Xu 2018, Theorem 1.1]. Let integers n, r,1, D ≥ 1 be fixed. There exist integers C =
C(n, r, D) ≥ 1 and C ′ = C ′(n, r,1, D) ≥ 1 and a finite set S = S(n, r,1, D) of primes such that the
following holds.

Let κ denote a finite field with algebraic closure denoted by κ . For each 1≤ i ≤ 2r , let χi : κ
×
→ C×

be a multiplicative character (extended to κ by setting χi (0)= 0) and assume that di := ord(χi )|1> 0.
Let Fi ∈ κ(x1, . . . , xn) be a di -th power-free rational function of degree at most D and assume that

TFi := {m ∈ κ
n
: Fi (x)≡ Fi (x+m)} (4-3)

is finite for each 1≤ i ≤ 2r . Then upon defining

S(x(1), . . . , x(2r)) :=
∑

m∈κn

2r∏
i=1

χi (Fi (m+ x(i))), (4-4)
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we have that whenever char κ 6∈ S, there exist subschemes

A2nr
κ = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn

such that for each 1≤ j ≤ n,

(1) the sum of the degrees of irreducible components of X j is at most C ′;

(2) dim X j ≤ 2nr − θ j with θ j defined as in (4-1);

(3) for all (x(1), . . . , x(2r)) ∈ A2nr (κ) \ X j (κ),

|S(x(1), . . . , x(2r))| ≤ C(#κ)(n+ j−1)/2.

Remark. The hypothesis that for each 1≤ i ≤ 2r , χi has order di > 0 could allow that χi is the principal
character. However, if χi is principal then di = 1 and hence to be di -th power-free Fi ∈ κ(x1, . . . , xn)

must be a constant function. This implies that TFi is infinite, thus excluding this possibility from the
theorem. This remark applies to Corollary B, below, and the resulting Theorem 4.1 and Corollary 4.2.

Remark. Note that while the subschemes X j may depend on the Fi , the parameters C,C ′, θ j depend
only on the maximum degree D of the Fi . The constant C = C(n, r, D) noted above is bounded above
by (4r(D+1)+1)n as computed in [Katz 2001, Theorem 11] (see the remarks following Theorem 1.1 in
[Xu 2018], again recalling that we have 2r in place of r ). The constant C ′ (and later C ′′ in Corollary 4.3)
only depends on n, r, D,1 but is not explicitly determined. For further details on the dependence of C ′

and C ′′ see [Xu 2018, Section 2.1, and the remark following Theorem 1.1] and Corollary 4.3.

Next, we must convert Theorem A into a count for the number of points (x(1), . . . , x(2r)) ∈ A2nr (κ)

(later denoted as collections {x(1), . . . , x(2r)
}) such that a given upper bound for |S(x(1), . . . , x(2r))| holds.

It is convenient to define for each 0≤ j ≤ n and any sequence 1≤ k1 ≤ k2 ≤ · · · ≤ kn <∞ the function

Bn,r ( j; k)= Bn,r ( j; k1, . . . , kn)=



1 if j = 0,
kθ j

1 = k jb(r−1)/(n−1)c
1 if j = 1, . . . , n− 2,

kθn−1
1 = kr−1

1 if j = n− 1,
(k1 · · · kn/2)

2r if j = n, n even,
(k1 · · · k(n−1)/2)

2r kr
(n+1)/2 if j = n, n odd.

(4-5)

(To aid comparison to Xu’s original notation [2018] involving parameters denoted by n0, η, we make the
simple observation that for j = n and θ j = nr , if n is even we write nr = (n/2)2r (with n0 = n/2 and
η = 0) and when n is odd we write nr = ((n− 1)/2) · 2r + r (with n0 = (n− 1)/2 and η = r), so that
Xu’s original notation results in the expression stated above for Bn,r ( j, k) in the case j = n, and with
ambient dimension 2r .)

Corollary B [Xu 2018, Corollary 1.8]. Let integers n, r,1, D ≥ 1 be fixed. There exist integers
C = C(n, r, D) ≥ 1 and C ′ = C ′(n, r,1, D) ≥ 1 and a finite set S = S(n, r,1, D) of primes such
that the following holds.
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Let κ denote a finite field with algebraic closure denoted by κ . For each 1≤ i ≤ 2r , let χi : κ
×
→ C×

be a multiplicative character (extended to κ by setting χi (0)= 0) and assume that di := ord(χi )|1> 0.
Let Fi ∈ κ(x1, . . . , xn) be a di -th power-free rational function of degree at most D and assume that TFi as
defined in (4-3) is finite for each 1≤ i ≤ 2r .

Let {Mi }
n
i=1 be subsets of κ such that 1≤|M1|≤ |M2|≤ · · ·≤ |Mn|<∞, and define M :=

∏n
i=1 Mi ⊂κ

n

and ‖M‖ :=
∏n

i=1 |Mi |. Then whenever char κ /∈ S, for each 1≤ j ≤ n,

#
{
(x(1), . . . , x(2r)) ∈ M2r

: |S(x(1), . . . , x(2r))|> C(#κ)(n+ j−1)/2}
≤ C ′‖M‖2r Bn,r ( j; |M1|, . . . , |Mn|)

−1. (4-6)

4B. The stratification in our setting. Now we state the new versions of Theorem A and Corollary B
that we use in this paper.

Theorem 4.1. Let κ = Fq , q prime. The result of Theorem A holds if we replace the hypothesis that
for each 1 ≤ i ≤ 2r , the form Fi is di -th power-free and TFi is finite, by the weaker hypothesis that for
each 1 ≤ i ≤ 2r , the reduction modulo q of the form Fi is (di , q)-admissible, and for each 1 ≤ i ≤ 2r ,
deg Fi < q.

Corollary 4.2. Let κ = Fq , q prime. The result of Corollary B holds if we replace the hypothesis that for
each 1≤ i ≤ 2r , the form Fi is di -th power-free and TFi is finite, by the weaker hypothesis that for each
1≤ i ≤ 2r , the reduction modulo q of the form Fi is (di , q)-admissible.

In the above corollary, we are able to omit the condition deg Fi < q seen in Theorem 4.1 by possibly
enlarging C ′; see (4-9). Through similar considerations, we can remove consideration of the set S, as we
record here:

Corollary 4.3. In addition, given n, r,1, D in either Corollary B or Corollary 4.2, we may take the set
S = S(n, r,1, D) to be the empty set, at the expense of replacing C ′ = C ′(n, r,1, D) by a possibly
larger constant C ′′ = C ′′(n, r,1, D).

Within the Burgess argument, we will consider the sum

∑
m (mod q)

χ(F{x}(m))=
∑

m (mod q)

2r∏
i=1

χi (F(m+ x(i)))

in which we have fixed a multiplicative Dirichlet character χ of order 1 modulo a prime q and then set
χi = χ if i is odd and χi = χ if i is even. This is then clearly of the form S(x(1), . . . , x(2r)) as defined
in (4-4), with the choice that all the Fi are equal to our fixed F ∈ Fq [x1, . . . , xn] of degree D. For later
reference, we record the following immediate consequence of Theorem 4.1 and Corollary 4.3 (choosing
the subset Mi of κ to be (0, ki ] for each 1≤ i ≤ 2r ).

Theorem 4.4. Let integers n, r,1, D ≥ 1 be fixed. Then there exist constants C = C(n, r, D) and
C ′′ = C ′′(n, r,1, D) such that the following holds.
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Fix a prime q and let χ be a multiplicative Dirichlet character of order 1 modulo q. Suppose
F ∈ Z[x1, . . . , xn] has the property that its reduction modulo q is (1, q)-admissible and define F{x}(X)
accordingly as in (2-6). Then for every 1 ≤ j ≤ n, for every tuple k = (k1, . . . , kn) ∈ Zn with
1≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ q ,

#
{
(x(1), . . . , x(2r)) ∈ (0, k]2r

:

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣> Cq(n+ j−1)/2

}
≤ C ′′‖k‖2r Bn,r ( j; k)−1, (4-7)

in which Bn,r ( j; k) is defined as in (4-5).

Remark. Note that the trivial upper bound in (4-7) is ‖k‖2r . The fundamental consequence of Theorem 4.4
is that it shows that generically among {x} ∈ (0, k]2r , square-root cancellation holds, as soon as r is
sufficiently large relative to n. Precisely, as soon as r ≥ n, so that the exponent b(r−1)/(n−1)c appearing
in Bn,r (1; k) is strictly positive, the number of {x} ∈ (0, k]2r such that square-root cancellation is violated
is O(‖k‖2r k−1

1 ), which suffices for our claim, as long as k1 is at least a positive power of ‖k‖.
Also, to aid in understanding the role of the function Bn,r ( j; k) in this result, we note that the

bound (4-7) is in the format of (2-11) with the choice R = 2nr and with the R-dimensional box being

(0, k1]× · · · × (0, k1]× · · · × (0, kn]× · · · × (0, kn],

in which each factor (0, ki ] appears 2r times. Thus when θ j ≤ 2r (this holds for j ≤ n− 1), we only
save factors of k1. In the final case j = n when θn = nr , we save some factors of ki for 1≤ i ≤ dn/2e as
well. This leads to the definition of Bn,r ( j; k). Finally, we remark for later reference that by construction,
under the hypotheses of the theorem, we always have

‖k‖2r Bn,r ( j; k)−1
≥ 1. (4-8)

Remark. Conjecturally, one might hope to improve the result of Theorem 4.4 by proving that one can take
larger values for the codimension θ j used to define the savings factor Bn,r ( j; k)−1. (Precise implications
may be found in Section A.2, where we show that even the conjecturally best possible values for the
codimension do not significantly change our main result.) For comparison, in the most extreme case, it is
not hard to see that we must have θn ≤ nr , and hence certainly must also have θ j ≤ nr for all j ≤ n. For
recall from Theorem A that Xn is a subscheme of A2nr

κ such that for all (x(1), . . . , x(2r)) ∈ A2nr
κ \ Xn(κ),

|S(x(1), . . . , x(2r))|≤C(#κ)n−1/2. In fact, Xu’s paper shows the stronger result that for all finite extensions
k/κ and (x(1), . . . , x(2r)) ∈ A2nr

k \ Xn(k), it holds that |Sk(x(1), . . . , x(2r))| ≤ C(#k)n−1/2; here Sk is
defined analogously to S but summing over m ∈ kn and with χi replaced by χi (Nk/κ( · )). That is, all
(x(1), . . . , x(2r)) such that |Sk(x(1), . . . , x(2r))| > C(#k)n−1/2 must lie in Xn(k). Then we claim that
dim Xn ≥ nr (and consequently θn ≤ nr ). To see this, we consider any tuple (x(1), . . . , x(2r)) for which
x( j)
= x( j+r) for j = 1, . . . , r . There are (#k)nr such tuples, and each of them has the property that

|Sk(x(1), . . . , x(2r))|= (#k)n. This is>C(#k)n−1/2 if #k is sufficiently large (which we can choose it to be).
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4C. Deduction of the corollaries. Corollary 4.2 follows from Theorem 4.1 in an identical fashion to
how Corollary B follows from Theorem A in [Xu 2018] (see Corollary 1.8 in that paper) and we do not
repeat the proof here. We only note that in Corollary 4.2 we no longer need to assume that deg Fi < q.
For indeed, suppose that for some 1≤ i ≤ 2r we have deg Fi ≥ char κ . Then we note that trivially

|S(x(1), . . . , x(2r))| ≤ (#κ)2nr
= q2nr

≤ D2nr (4-9)

for all (x(1), . . . , x(2r)) ∈ A2nr
κ , so that upon enlarging C ′ if necessary so that C ′ ≥ D2nr the results of

Corollary 4.2 hold (here we also use the fact (4-8)).
To obtain Corollary 4.3 in which formally S = ∅, we note that for any q ∈ S(n, r,1, D), we may

write the trivial upper bound C ′‖M‖2r
≤ C ′q2nr on the right-hand side of (4-6). Thus in order to state a

version of Corollary B or Corollary 4.2 with S =∅, we simply replace C ′ in the statement of the corollary
by C ′′(n, r,1, D)=max{C ′, q2nr

: q ∈ S(n, r,1, D)}.

4D. Proof of Theorem 4.1. Theorem 4.1 follows from a small modification inside the proof of Theorem A
in [Xu 2018]. To be clear, we will state exactly the change that is made (recalling that in our setting we
use 2r where [Xu 2018] uses r ; our modifications would of course work for any dimension r ).

The main idea is that even if there is an i ∈ {1, . . . , 2r} such that Fi is not di -th power-free, we can write
Fi = Gdi

i F̃i in which F̃i is di -th power-free, and has TF̃i
finite, under the assumption that the reduction of

Fi modulo q is (di , q)-admissible, and then at a key moment in the proof we work with F̃i instead of Fi .
To be precise, recall that for any (x(1), . . . , x(2r)) ∈ κ2nr,

S(x(1), . . . , x(2r)) :=
∑

m∈κn

2r∏
i=1

χi (Fi (m+ x(i))). (4-10)

We also define for any tuple (m(1), . . . ,m(2s)) ∈ κ2ns and each 1≤ i ≤ 2r the function

Ti (m(1), . . . ,m(2s))=
∑
x∈κn

χi (Fi,{m}(x)),

in which

Fi,{m}(x) :=
s∏

j=1

Fi (m( j)
+ x)

2s∏
j=s+1

Fi (m( j)
+ x)di−1.

The proof of Theorem A and hence of Corollary B relies on four ingredients.

(I) The first ingredient [Xu 2018, Proposition 1.2] is an identity between 2s-moments of the sums S with
2r -multilinear averages of the sums Ti , namely

∑
(x(1),...,x(2r))∈κ2nr

|S(x(1), . . . , x(2r))|2s
=

∑
(m(1),...,m(2s))∈κ2ns

2r∏
i=1

Ti (m(1), . . . ,m(2s)). (4-11)

We will refer to the left-hand side as the moment Mκ(r, s); it has a natural generalization to a moment
Mk(r, s) defined in an appropriately analogous manner over any finite extension k/κ , with χi ( · ) replaced
by χi (Nk/κ( · )).
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(II) The second ingredient [Xu 2018, Proposition 1.5] relates the moments Mk(r, s) for finite extensions k/κ
to the dimension of the subschemes X j .

(III) The third ingredient [Xu 2018, Proposition 1.6 (a)] is an upper bound of O((#k)ns) (that is, of
square-root strength) for the number of tuples (m(1), . . . ,m(2s)) ∈ k2ns such that Fi,{m}(x) is a perfect
di -th power in k(x1, . . . , xn).

(IV) The fourth ingredient [Xu 2018, Proposition 1.6 (b)] is an application of the Weil bound to save one
factor of (#k)1/2 off the trivial bound (#k)n for an n-dimensional character sum that is a generalization
of Ti in an extension k/κ . Precisely, it is the statement that uniformly in finite extensions k/κ and tuples
(m(1), . . . ,m(2s)) ∈ k2ns, if Fi,{m} ∈ k(x1, . . . , xn) is not a perfect di -th power in k(x1, . . . , xn), then∑

x∈kn

χi (Nk/κ(Fi,{m}(x))= O((#k)n−1/2). (4-12)

These four ingredients are applied in a bootstrapping process. The general philosophy is that a weak
bound with very few exceptions can be bootstrapped into a stronger bound with possibly more exceptions.
More precisely, ingredients (III) and (IV) are the initial input, showing that a small savings holds for
the sums Ti , aside from possibly O((#k)ns) many (that is, square-root many) exceptional choices of
(m(1), . . . ,m(2s))∈ k2ns. For the possible exceptional choices, a trivial upper bound of O((#k)n) is applied
in place of (4-12).

This input step provides a savings, on average, for the sums Ti on the multilinear right-hand side of the
identity (4-11) in ingredient (I) and hence for the moment of S on the left-hand side of (I). Ingredient (II)
then expresses this savings on the moment of S as a stratification in terms of a lower bound on codimX j for
each j. This result holds uniformly for sums S of the shape (4-10). Since each Ti is also a sum of this shape
(with s, χi , Fi defined appropriately), the resulting bound for sums S can be applied to each Ti , yielding
an improvement over the initial savings for Ti . This argument then bootstraps to prove the final result.

With this outline in hand, we may now briefly verify Theorem 4.1. The only point at which this
argument utilized the assumption that each Fi is di -th power-free and has TFi finite was at the initial input
to the bootstrapping, when ingredient (III) was used once; see [Xu 2018, §2.3]. Thus all we must do is
show that this step, namely [Xu 2018, Proposition 1.6 (a)] can be proved under the alternate assumption
that for each i , the reduction of Fi modulo q is (di , q)-admissible, and that deg Fi < q . We will replace
[Xu 2018, Proposition 1.6 (a)] with the following proposition.

Proposition 4.5. Let κ = Fq with q prime and fix a rational function F ∈ κ(x1, . . . , xn) with deg F < q
such that the reduction of F modulo q is (d, q)-admissible. Fix s ∈N. Then for each finite extension k/κ ,
the number of (m(1), . . . ,m(2s)) ∈ k2ns such that F{m}(x) is a perfect d-th power over κ is at most
O((#k)ns).

Once this has been proved, this replaces [Xu 2018, Proposition 1.6 (a)] as ingredient (III) in Xu’s
proof, and the results of Theorem A and Corollary B follow under our alternative hypotheses, thus
verifying Theorem 4.1.
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We prove Proposition 4.5 as follows. Suppose that F has the property that its reduction modulo q
is (d, q)-admissible. Write F = Gd F̃ in which G, F̃ ∈ κ(x1, . . . , xn) and F̃ is d-th power-free, with
deg F̃ < char κ . Under the assumption that the reduction modulo q of F is (d, q)-admissible, by definition
there is no linear change of variables A∈GLn(Fq) such that F̃(x A)∈Fq [x2, . . . , xn]. Hence by Lemma 3.3
(which we may apply since deg F̃<q), the only value of m∈κn such that F̃(x)≡ F̃(x+m) is m=0, so that

TF̃ := {m ∈ κ
n
| F̃(x)≡ F̃(x+m)}

is certainly finite. Thus we may apply the following lemma to F̃ (which we quote without repeating
the proof):

Lemma 4.6 [Xu 2018, Lemma 3.16]. Fix r, D ≥ 1. There exists C0 = C0(r, D) such that the following
holds. Let κ be a finite field and κ0 its prime field. Let H ∈ κ(x1, . . . , xn) be a d-th power-free rational
function of degree at most D, and assume that

TH = {m ∈ κn
| H(x)≡ H(x+m)}

is finite. For any finite extension k/κ and {ai }
2r
i=1 ⊂ Z such that gcd(d, ai )= 1 for each 1≤ i ≤ 2r , let PH

be the collection of tuples (m(1), . . . ,m(2r)) ∈ k2nr such that the rational function
∏2r

i=1 H(x+m(i))ai is
a perfect d-th power over κ . Then

#PH ≤ C0(#k)nr (#TH )
r . (4-13)

Now note that for any such set of exponents {ai }
2r
i=1, we have that

∏2r
i=1 F̃(x+m(i))ai is a perfect d-th

power if and only if

2r∏
i=1

F(x+m(i))ai =

2r∏
i=1

F̃(x+m(i))ai

( 2r∏
i=1

G(x+m(i))ai

)d

is. Thus if we define PF , respectively PF̃ , to be the collection of tuples (m(1), . . . ,m(2r)) ∈ k2nr such
that the rational function

∏2r
i=1 F(x+m(i))ai is a perfect d-th power over κ (or analogously for F̃), we

have by Lemma 4.6 that
#PF = #PF̃ ≤ C0(#k)nr .

This concludes the verification of Proposition 4.5 and hence of Theorem 4.1.

5. Initiation of the Burgess argument

We now derive the first steps of the Burgess method, generalizing the approach of [Gallagher and Mont-
gomery 2010; Heath-Brown 2013] from the one-variable case and [Pierce 2016] in the multi-variable case.
The central complications that are distinctive to our new stratified setting are mainly addressed in Section 6.

We make the observation that given a character sum S(F; N, H) with data F, N, H, we may reorder
the variables x1, . . . , xn so that the lengths H1, . . . , Hn satisfy

H1 ≤ H2 ≤ · · · ≤ Hn. (5-1)
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In particular, if the reduction of F modulo q is (1, q)-admissible, then it stays (1, q)-admissible after
any reordering of the variables (Lemma 3.5). We will assume (5-1) from now on, and will prove the
statement of Theorem 1.1 with H1 = Hmin and Hn = Hmax.

Fix a prime p - q such that p ≤ Hmin, and split each coordinate xi ∈ (Ni , Ni + Hi ] into residue classes
modulo p by writing x = qa+ pm with a,m ∈ Zn, where 0≤ ai < p and mi ∈ (N ′i , N ′i + H ′i ], for which
we define

N ′i = (Ni − ai q)/p, H ′i = Hi/p

for each i = 1, . . . , n. Then

S(F; N, H)=
∑

a (mod p)

∑
m∈(N ′,N ′+H ′]

χ(F(qa+ pm)).

By the fact that χ has period q , the homogeneity of F and the multiplicativity of χ ,

S(F; N, H)= χ(pD)
∑

a (mod p)

∑
m∈(N ′,N ′+H ′]

χ(F(m)),

so that
|S(F; N, H)| ≤

∑
a (mod p)

|S(F; N ′, H ′)|.

We now average over a set P of primes, P = {P < p ≤ 2P : p - q}, so that |P| � P(log P)−1. We will
later choose P so that

P ≤ Hi , 1≤ i ≤ n. (5-2)

Then
|S(F; N, H)| ≤

1
|P|

∑
p∈P

∑
a (mod p)

|S(F; N ′, H ′)|. (5-3)

Here we recall that N ′ and H ′ depend on a and p. We now average over the starting points N ′ and the
lengths H ′ in order to make them independent of a, p.

Lemma 5.1. Fix M ∈ Rn and L ∈ Rn
≥1. For any K ≤ L,

|S(F;M, K )| ≤ 22n
‖L‖−1

∑
m∈(M−L,M]

max
k≤2L
|S(F;m, k)|.

Proof. The first observation is that for any fixed M, K, and any fixed m with mi ≤ Mi for all i = 1, . . . , n,

S(F;M, K )=
∑

δ=(δ1,...,δn)
δi∈{0,1}

(−1)σ(δ)S(F;m, M −m+ (1− δ) · K ), (5-4)

where σ(δ)=
∑

i δi . We will prove this momentarily, but first we see how it implies Lemma 5.1. For any
Ki ≤ L i , and any mi with Mi − L i < mi ≤ Mi , we have

0≤ Mi −mi + (1− δi )Ki ≤ 2L i ,
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for either choice of δi ∈ {0, 1}. Hence for any m with M − L ≤ m ≤ M, (5-4) shows that

|S(F;M, K )| ≤ 2n max
k≤2L
|S(F;m, k)|. (5-5)

There are at least L i/2 integers with Mi − L i < mi ≤ Mi , so that there are at least 2−n
‖L‖ values m in

the range M − L < m ≤ M, and the lemma now follows by averaging (5-5) over these values.
Finally, we prove (5-4). This is simple to see in the case of dimension n = 1: for any m1 ≤ M1, we

observe that as intervals,

(M1,M1+ K1] = (m1,M1+ K1] \ (m1,M1].

Thus in terms of the sums over these intervals,

S(F;M1, K1)= S(F;m1,M1−m1+ K1)− S(F,m1,M1−m).

For general dimensions n ≥ 1, (5-4) follows from the principle of inclusion-exclusion. Explicitly, the sum
S(F;M, K ) has a range of summation over the box W :=

∏n
i=1(Mi ,Mi + Ki ]. Temporarily, for ease of

notation, let S(W ) denote this sum, with range of summation over the box W ; similarly, given any box W ′

defined below, we will let S(W ′) denote the corresponding sum, with range of summation over the box W ′.
Suppose m≤ M is fixed. Let W ∗ be the larger box W ∗ :=

∏n
i=1(mi ,Mi +Ki ]. For each j = 1, . . . , n,

let W ( j) be the box defined as a product of intervals for 1≤ i ≤ n, with “short” interval (m j ,M j ] in the
j-th coordinate and “long” interval (mi ,Mi + Ki ] in every other coordinate, for i 6= j. For each j let
W ( j) be the complement of W ( j) inside W ∗. Precisely, W ( j) is a product of intervals for 1≤ i ≤ n, with
interval (M j ,M j + K j ] in the j-th coordinate and interval (mi ,Mi + Ki ] for i 6= j. Observe that our
box W of interest is W =

⋂n
i=1 W ( j). Then by the principle of inclusion-exclusion,

S(W )= S(W ∗)−
n∑

i=1

S(W ( j))+
∑

1≤ j1< j2≤n

S(W ( j1) ∩W ( j2))+ · · ·+ (−1)n S(W (1)
∩W (2)

∩ · · · ∩W (n)).

We can recognize that this is the identity (5-4) as follows. First, on the left-hand side, S(W ) is by
definition our desired sum S(F;M, K ). Next, we observe that the entries on the right-hand side are in
bijection with the entries on the right-hand side of (5-4). Precisely, fix a tuple (δ1, . . . , δn) with δi ∈ {0, 1}.
Suppose that this tuple has k entries of 1, occurring at the indices j1, . . . , jk . If k = 0 then in the notation
of the identity (5-4), the sum S(F;m, M−m+(1−δ) ·K ) is precisely the sum S(W ∗). If 1≤ k ≤ n, then
S(F;m, M −m+ (1− δ) · K ) is precisely S(W ( j1) ∩ · · · ∩W ( jk)) appearing in the inclusion-exclusion
identity above. In each case, the signs (−1)σ(δ) = (−1)k agree as well. �

We apply Lemma 5.1 to (5-3) with L i = Hi/P ≥ 1. We obtain

|S(F; N, H)| ≤ |P|−1
∑
p∈P

∑
a (mod p)

22n
‖H‖−1 Pn

∑
m∈(N ′−H/P,N ′]

max
k≤2H/P

|S(F;m, k)|. (5-6)
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After rearranging,

|S(F; N, H)| ≤ |P|−122n
‖H‖−1 Pn

∑
m

A(m) max
k≤2H/P

|S(F;m, k)|, (5-7)

where we have defined

A(m)= #
{

a, p : p ∈P, a= (a1, . . . , an), 0≤ ai < p :
Ni − ai q

p
−

Hi

P
<mi ≤

Ni − ai q
p

, i = 1, . . . , n
}
.

We record the following facts about A(m), whose proof we defer to Section 7B.

Lemma 5.2. The quantity A(m) vanishes unless m satisfies |mi | ≤ 2q for each i . Moreover, if

Hi P < q, 1≤ i ≤ n, (5-8)

then ∑
m

A(m)� P‖H‖,
∑

m
A(m)2� P‖H‖.

Applying Hölder’s inequality twice to (5-7), we obtain

|S(F; N, H)|

� |P|−1
‖H‖−1 Pn

(∑
m

A(m)
)1−1/r(∑

m
A(m)2

)1/(2r)( ∑
m

|mi |≤2q

max
k≤2H/P

|S(F;m, k)|2r
)1/(2r)

.

Thus applying the results of Lemma 5.2 shows that

|S(F; N, H)| � (log P)Pn−1/2r
‖H‖−1/2r

( ∑
m

|mi |≤2q

max
k≤2H/P

|S(F;m, k)|2r
)1/(2r)

. (5-9)

It is sufficient to look at the internal sum over m modulo q; in fact obtaining this complete character sum
is the main accomplishment of the manipulations up to this point.

We ignore for the moment the maximum over k≤ 2H/P and focus first on estimating the nonmaximal
moment. We rewrite S(F;m, k) as

S(F;m, k)=
∑

x∈(m,m+k]

χ(F(x))=
∑

x∈(0,k]

χ(F(m+ x)),

so that upon expansion,∑
m (mod q)

|S(F;m, k)|2r
=

∑
m (mod q)

∣∣∣ ∑
x∈(0,k]

χ(F(m+ x))
∣∣∣2r
≤

∑
x(1),...,x(2r)

x(i)∈(0,k]

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣, (5-10)

where F{x} is defined in terms of the original form F and the collection {x(1), . . . , x(2r)
} by (2-6).
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6. Stratification and a Menshov–Rademacher argument

6A. Application of the stratification for character sums. We now come to a critical novel step, which
is to estimate how often we obtain a certain quality of upper bound for the complete character sum∑

m (mod q)

χ(F{x}(m)).

For this, we call upon the stratification of complete character sums stated in Theorem 4.4. Let us suppose
that k1 ≤ . . .≤ kn ≤ q . For each 1≤ j ≤ n, define

Y j :=

{
{x} ∈ (0, k]2r

:

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣> Cq(n+ j−1)/2

}
,

in which C = C(n, r, D) is the constant provided by Theorem 4.4. Then by Theorem 4.4, we have
(0, k]2r

=: Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yn ⊃ Yn+1 :=∅, and #Y j ≤ C ′′‖k‖2r Bn,r ( j; k)−1. Upon employing the
decomposition (0, k]2r

=
∐n

j=0 Y j \ Y j+1 in (5-10) we have

∑
m (mod q)

|S(F;m, k)|2r
≤

n∑
j=0

∑
{x}∈Y j\Y j+1

∣∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣∣ (6-1)

≤

n∑
j=0

(#Y j )Cq(n+( j+1)−1)/2

≤ C ·C ′′‖k‖2r
n∑

j=0

q(n+ j)/2 Bn,r ( j; k)−1.

To summarize, we have proved:

Lemma 6.1. Fix n, r, D,1 ≥ 1, a prime q, and a multiplicative Dirichlet character χ of order 1
modulo q. Then for every form F ∈ Z[X1, . . . , Xn] of degree D such that its reduction modulo q is
(1, q)-admissible, the following holds. For every k= (k1, . . . , kn) with 1≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ q , then∑

m (mod q)

|S(F;m, k)|2r
�n,r,D,1 ‖k‖2r

n∑
j=0

q(n+ j)/2 Bn,r ( j; k)−1, (6-2)

with Bn,r ( j; k) as defined in (4-5), and with the implicit constant dependent on n, r, D,1 but independent
of q, χ, F, k.

However recall that the actual quantity we must bound in (5-9) is a moment of |S(F;m, k)| that
includes a maximum over k ≤ 2H/P. To do so, we will employ a Menshov–Rademacher argument.

6B. A Menshov–Rademacher argument with permutations. The Menshov–Rademacher argument
[Menshov 1923; Rademacher 1922] may be employed in a wide variety of circumstances; in general
it allows one to replace a supremum of a function | f (u j )| over an index set of size U by a sum of
differences | f (u j )− f (u j−1)| over an index set of size O(log U ). In our present setting, these differences
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are differences of partial sums over a box, which are themselves partial sums of the same kind, so that the
Menshov–Rademacher device is a useful tool.

However a typical Menshov–Rademacher argument would not immediately apply in our case, since we
cannot save a power of ‖k‖ but typically only a power of kmin, the shortest side of the box. We see this
phenomenon is already present in Lemma 6.1, since we have assumed an ordering k1≤ k2≤· · ·≤ kn for the
side-lengths of the box. Even if we assume in the beginning that we have such an ordering, certain internal
steps in the Menshov–Rademacher argument do not preserve such an ordering, and thus arranging the argu-
ment so that we may apply Lemma 6.1 will require delicate considerations of permutations of the variables.

Our main result in this section is the following:

Proposition 6.2. If 1≤ K1 ≤ K2 ≤ · · · ≤ Kn ≤ q, then∑
m

|mi |≤2q

max
k≤K
|S(F;m, k)|2r

�n,r,D,1 ‖K‖2r (log Kn)
2nr

n∑
j=0

q(n+ j)/2 B̃n,r ( j; K )−1 (6-3)

with the implicit constant dependent on n, r, D,1 but independent of q, χ, K, and with

B̃n,r ( j; K )=


1 if j = 0,

K θ j
1 if j = 1, . . . , n− 1,

(K1 · · · Kn/2)
(2r−1) if j = n, n even,

(K1 · · · K(n−1)/2)
(2r−1)(K(n+1)/2)

r if j = n, n odd.

(6-4)

Note that B̃n,r (n; K )−1 loses one power in decay compared to Bn,r (n; K )−1. In contrast, in the one-
dimensional case, no decay is lost when passing from the nonmaximal estimate to the maximal estimate;
this minor loss will not affect our final outcome, and we explain why it arises below.

6C. A dyadic decomposition. It suffices to prove Proposition 6.2 for K = (K1, . . . , Kn) where each Ki

is a power of 2, say Ki = 2ti , in which case we naturally have t1≤ t2≤ · · ·≤ tn , under the hypotheses of the
proposition. We fix m and suppose that S(F;m, k) assumes its maximum for k ≤ K at k = (k1, . . . , kn),
and for each i we decompose

ki =
∑
δi∈Di

2ti−δi ,

where Di is a set of distinct nonnegative integers δi ≤ ti . Let δ = (δ1, . . . , δn) denote a tuple with δi ∈Di

for each i . Let t = (t1, . . . , tn) and define the notation 2t−δ
= (2t1−δ1, . . . , 2tn−δn ). Given a tuple v, we

define 2t−δ
◦ v = (2t1−δ1v1, . . . , 2tn−δnvn). Furthermore let Vm,δ be an n-tuple defined such that the i-th

entry is (Vm,δ)i = 2ti−δivm,δ,i , where

vm,δ,i =
∑

ei∈Di ,ei<δi

2δi−ei < 2δi .

Then we may express

S(F;m, k)=
∑
δ,δi∈Di

S(F;m+ Vm,δ, 2t−δ).
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After taking absolute values, we can obtain an upper bound by increasing the sum to run over all tuples δ
with δi ≤ ti . We get

|S(F;m, k)| ≤
∑
δ

0≤δi≤ti

|S(F;m+ Vm,δ, 2t−δ)|.

Then by Hölder’s inequality,

|S(F;m, k)|2r
≤

( n∏
i=1

(ti + 1)
)2r−1 ∑

δ
0≤δi≤ti

∑
v

0≤vi<2δi

|S(F;m+ 2t−δ
◦ v, 2t−δ)|2r ,

where we have possibly enlarged the right-hand side by summing over all possible values for vm,δ,i up to 2δi .
Recalling that for each m we chose k above to be the length at which the maximum is attained, we then have∑

m
|mi |≤2q

max
k≤K
|S(F;m, k)|2r

≤ T 2r−1
∑
δ

0≤δi≤ti

∑
v

0≤vi<2δi

∑
m

|mi |≤2q

|S(F;m+ 2t−δ
◦ v, 2t−δ)|2r

� T 2r−1
∑
δ

0≤δi≤ti

‖2δ‖
∑

m (mod q)

|S(F;m, 2t−δ)|2r ,

where T :=
∏n

i=1(ti + 1). Now we perform the key step that accommodates the fact that we only achieve
a saving in the smallest direction of the box.

6D. Application of the nonmaximal upper bound. We would like to apply Lemma 6.1 to the innermost
sums over m. Fix δ (with 0≤ δi ≤ ti for each i). Notice that we may not have t1−δ1≤ t2−δ2≤· · ·≤ tn−δn

even though t1 ≤ t2 ≤ · · · ≤ tn , so we may need to reorder t − δ before applying Lemma 6.1. Let σ be a
permutation of {1, 2, . . . , n} (depending on δ) such that

tσ(1)− δσ(1) ≤ tσ(2)− δσ(2) ≤ · · · ≤ tσ(n)− δσ(n). (6-5)

Given an n-tuple x, let xσ = (xσ(1), xσ(2), . . . , xσ(n)), and 2tσ−δσ = (2tσ(1)−δσ(1), . . . , 2tσ(n)−δσ(n)). Recall
the discussion on permutations of variables in Section 3D; for any permutation π of {1, . . . , n} define the
form Fπ (X) by setting Fπ (X1, . . . , Xn)= F(Xπ(1), . . . , Xπ(n)).

Letting σ−1 be the permutation inverse of σ , then

S(F;m, 2t−δ)=
∑

x∈(m,m+2t−δ)

χ(F(x))=
∑

xσ∈(mσ ,mσ+2tσ−δσ )

χ(Fσ−1(xσ ))= S(Fσ−1;mσ , 2tσ−δσ ).

Note that mσ ranges over all n-tuples with coordinates modulo q as m does, and that the last argument in
S(Fσ−1;mσ , 2tσ−δσ ) satisfies the requirement (6-5) so that we may apply Lemma 6.1 with n, r, D,1, q, χ
as before but now to the form Fσ−1 ; here we use the uniformity of Lemma 6.1 with respect to the form.
(We recall from Lemma 3.5 that the reduction modulo q of Fσ−1 is (1, q)-admissible if and only if F is.)
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We may conclude (using the fact that ‖2tσ−δσ ‖ = ‖2t−δ
‖ = ‖2t

‖ · ‖2δ‖−1) that∑
m

|mi |≤2q

max
k≤K
|S(F;m, k)|2r

�n,r,D,1 T 2r−1
∑
δ

0≤δi≤ti

‖2δ‖‖2tσ−δσ ‖2r
n∑

j=0

q(n+ j)/2 Bn,r ( j; 2tσ−δσ )−1

= T 2r−1
∑
δ

0≤δi≤ti

‖2t
‖

2r
‖2δ‖−(2r−1)

n∑
j=0

q(n+ j)/2 Bn,r ( j; 2tσ−δσ )−1

= T 2r−1
‖2t
‖

2r
n∑

j=0

q(n+ j)/2
∑
δ

0≤δi≤ti

‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1

≤ T 2r
‖K‖2r

n∑
j=0

q(n+ j)/2 max
δ

0≤δi≤ti

{
‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1}. (6-6)

Here we recall that ‖2t
‖ = ‖K‖. Note that in the case of dimension n = 1 (and θ1 = r ), the sum over j is

comprised of the two terms

qn/22−δ(2r−1)
+ qn2−δ(2r−1)(2t−δ)−r

≤ qn/2
+ qn2−r t

= qn/2
+ qn K−r ,

familiar from the classical 1-dimensional Burgess argument.
Now in general for n ≥ 2 we must reinterpret Bn,r ( j; 2tσ−δσ )−1 in terms of the coordinates of K = 2t,

in which we recall that t1 ≤ t2 ≤ · · · ≤ tn; this argument is more complicated, and in particular for j = n
we will get a positive power of 2δ we cannot ignore as in the case of n = 1 (e.g., compare to the top line
of [Heath-Brown 2013, p. 204]). We summarize the necessary result:

Lemma 6.3. For K = 2t with t1≤ · · · ≤ tn , for each δ≤ t , let σ be a permutation of the indices {1, . . . , n}
such that tσ(1)− δσ(1) ≤ · · · ≤ tσ(n)− δσ(n). Then

‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1
≤


1 if j = 0,

K−θ j
1 if j = 1, . . . , n− 1,

(K1 · · · Kn/2)
−(2r−1) if j = n, n even,

(K1 · · · K(n−1)/2)
−(2r−1)K−r

(n+1)/2 if j = n, n odd.

Once we apply this lemma to (6-6), upon noting that T 2r
≤ 22nr (log2 Kn)

2nr
� (log Kn)

2nr, we have
proved Proposition 6.2.

6E. Proof of Lemma 6.3: rearrangement. We recall the definition of Bn,r ( j; k) in (4-5) so that for a
tuple k= (k1, . . . , kn)with k1≤k2≤· · ·≤kn , Bn,r ( j; k)=1 for j=0, Bn,r ( j; k)=kθ j

1 for j=1, . . . , n−1,
and for j = n we have Bn,r ( j; k)= (k1 · · · kn/2)

2r if n is even and Bn,r ( j; k)= (k1 · · · k(n−1)/2)
2r kr

(n+1)/2

if n is odd.
We may quickly dispatch the case j = 0, in which case

‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1
= ‖2δ‖−(2r−1)

≤ 1.
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For the remaining cases of j ≥ 1, it is helpful to invert, and take the logarithm, and prove for fixed δ and
fixed j a lower bound for the quantity

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
.

First we consider the case of 1≤ j ≤ n− 1; for each of these j (using the fact that
∑

i δσ(i) =
∑

i δi ),

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
= (2r − 1)

( n∑
i=1

δσ(i)

)
+ θ j (tσ(1)− δσ(1))

= θ j tσ(1)+ (2r − 1− θ j )δσ(1)+ (2r − 1)
n∑

i=2

δσ(i) ≥ θ j tσ(1).

Here we used that for 1≤ j ≤ n− 1 we have θ j ≤ r − 1, and moreover δσ(i) ≥ 0 for all 1≤ i ≤ n. Thus

‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1
≤ 2−θ j tσ(1) ≤ 2−θ j t1 = K−θ j

1 ,

upon recalling that t1 ≤ t2 ≤ · · · ≤ tn .
Now we turn to the more complicated case of j = n. First we assume that n is even. Now we have

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
= (2r − 1)

n∑
i=1

δσ(i)+ 2r
n/2∑
i=1

(tσ(i)− δσ(i)).

It is convenient to set temporarily for each i = 1, . . . , n the parameter 2n,i = 2r if 1 ≤ i ≤ n/2 and
2n,i = 0 if n/2< i ≤ n. Then upon recalling that each δi ≤ ti , we have

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
= (2r − 1)

n∑
i=1

δσ(i)+

n∑
i=1

2n,i (tσ(i)− δσ(i))=
n∑

i=1

2n,i tσ(i)+
n∑

i=1

(2r − 1−2n,i )δσ(i)

≥

n∑
i=1

2n,i tσ(i)+
n∑

i=1
2r−1−2n,i<0

(2r − 1−2n,i )tσ(i)+
n∑

i=1
2r−1−2n,i≥0

(2r − 1−2n,i ) · 0

=

n∑
i=1

2r−1−2n,i<0

(2r − 1)tσ(i)+
n∑

i=1
2r−1−2n,i≥0

2n,i tσ(i). (6-7)

(Here in the inequality, equality can occur for those δ such that δi = ti for all 1 ≤ i ≤ n/2 and δi = 0
for n/2< i ≤ n. The inequality is where we see that if 2n,i = 2r , we must replace δσ(i) by tσ(i) rather
than by 0; this is why in the final statement of the inequality we lose slightly in the maximal moment,
compared to the nonmaximal moment. This effect is not possible in dimension n = 1.) Now by the
definition of 2n,i , the first sum is over 1≤ i ≤ n/2; the second sum is over n/2< i ≤ n, in which range
2n,i = 0 so that the second sum is vacuous. Now we use the following simple observation.
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Lemma 6.4 (rearrangement inequality). Let t1 ≤ t2 ≤ · · · ≤ tn be a fixed nondecreasing sequence of real
numbers and a1 ≥ · · · ≥ an a fixed nonincreasing sequence of real numbers. Then for any permutation σ
on {1, . . . , n}, and for any 1≤ M ≤ n,

M∑
i=1

ai ti ≤
M∑

i=1

ai tσ(i). (6-8)

This is a variant of a standard rearrangement inequality; for completeness we give a brief proof in
Section 7B. Applying this observation in (6-7) with M = n/2, we have shown that

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
≥ (2r − 1)

n/2∑
i=1

ti ,

so that in the case of j = n even,

‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1
≤ (2t1 · · · 2tn/2)−(2r−1)

= (K1 · · · Kn/2)
−(2r−1).

The argument is similar for j = n with n odd, and we only specify the necessary changes, starting with

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
= (2r−1)

n∑
i=1

δσ(i)+2r
(n−1)/2∑

i=1

(tσ(i)−δσ(i))+r(tσ((n+1)/2)−δσ((n+1)/2)).

It is convenient to set temporarily for each i = 1, . . . , n the parameter 2n,i = 2r if 1 ≤ i ≤ (n− 1)/2,
2n,(n+1)/2= r and2n,i = 0 if (n+1)/2< i ≤ n. With this notation, the argument then proceeds as before,
until we reach the statement of (6-7), which now holds with this new definition of 2n,i . Now the first sum
on the right-hand side of (6-7) is over 1≤ i ≤ (n− 1)/2, while the second sum on the right-hand side is
over i ≥ (n+1)/2, and has its only nonzero contribution coming from i = (n+1)/2. We may conclude that

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
≥

(n−1)/2∑
i=1

(2r − 1)tσ(i)+ r tσ((n+1)/2).

We now apply (6-8) from Lemma 6.4 to conclude that

log2
(
‖2δ‖(2r−1)Bn,r ( j; 2tσ−δσ )

)
≥

(n−1)/2∑
i=1

(2r − 1)ti + r t(n+1)/2,

or equivalently,

‖2δ‖−(2r−1)Bn,r ( j; 2tσ−δσ )−1
≤ (2t1 · · · 2t(n−1)/2)−(2r−1)(2t(n+1)/2)−r

= (K1 · · · K(n−1)/2)
−(2r−1)K−r

(n+1)/2.

This completes the proof of Lemma 6.3.
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7. Conclusion of the Burgess argument

We now apply Proposition 6.2 to (5-9) with K = 2H/P, recalling that we are working under the
assumption (5-1) that H1 ≤ H2 ≤ · · · ≤ Hn . (Also recall that Kn ≤ Hn < q .) We conclude that

|S(F; N, H)|2r
�n,r,1,D (log q)2r(n+1)P2nr−1

‖H‖−1
(
‖H‖
Pn

)2r n∑
j=0

q(n+ j)/2 B̃n,r ( j; H/P)−1

= (log q)2r(n+1)
‖H‖2r−1 P−1qn/2

n∑
j=0

q j/2 B̃n,r ( j; H/P)−1, (7-1)

in which we recall the definition of the function B̃n,r ( · , · ) from (6-4).
At this stage of the Burgess argument in the one-dimensional setting n = 1, one knows that θ0 = 0 and

θ1 = r , so that the sum over j ∈ {0, 1} contributes (1+ q1/2(H1/P)−r ). To balance this, we would then
choose P to be an integer with

1
2 H1q−1/(2r)

≤ P ≤ H1q−1/(2r). (7-2)

Thus when n = 1, we recover

|S(F; N, H)| � ‖H‖1−1/r q(r+1)/4r2
(log q)2,

which agrees with Burgess’s statement (1-1) up to a logarithm. Now for n ≥ 2, we observe:

Lemma 7.1. For 1≤ K1 ≤ K2 ≤ · · · ≤ Kn ,
n∑

j=0

q j/2 B̃n,r ( j; K )−1
�n,r 1

precisely when
q1/2K−θ1

1 ≤ 1. (7-3)

Under this assumption, the sum over j is dominated by the terms with j = 0, 1.

In particular, this lemma (whose proof we defer to Section 7B) shows that the sum is � 1 if the
relation (7-3) does not hold; hence it is advantageous to assume (7-3). Under this assumption, we can
dominate the sum by the terms with j = 0, 1 and hence we conclude from (7-1) that

|S(F; N, H)|2r
�n,r,1,D (log q)2r(n+1)

‖H‖2r−1 P−1qn/2(1+ q1/2(H1/P)−θ1).

To balance the last two terms within parentheses, we choose P to be an integer with

H1

2q1/(2θ1)
≤ P ≤

H1

q1/(2θ1)
, (7-4)

where we recall that θ1 = b(r − 1)/(n− 1)c if n ≥ 2. We recall that earlier in (5-2) and (5-8) we had the
requirements that P ≤ Hi for all i and Hi P < q for all i . The first is clearly true; the second we may
verify as long as we assume Hn H1 < q1+1/(2θ1), as we do in our theorem statement.
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With this choice for P, we have

|S(F; N, H)|2r
�n,r,1,D ‖H‖2r−1 H−1

1 qn/2+1/(2θ1)(log q)2r(n+1),

and hence we conclude that

|S(F; N, H)| �n,r,1,D ‖H‖1−1/(2r)H−1/(2r)
1 q(nθ1+1)/4rθ1(log q)n+1.

This proves Theorem 1.1, upon recalling that we have reduced to the setting in which Hmin = H1,
Hmax = Hn , and we have set

2= θ1 =

⌊ r−1
n−1

⌋
if n ≥ 2.

7A. Proof of Corollaries 1.3 and 1.4. Below, we prove Corollaries 1.3 and 1.4 simultaneously; for the
case of Corollary 1.3, simply set c0 = 1 in each instance below. We recall from Theorem 1.1 that

|S(F; N, H)| � ‖H‖1−1/(2r)H−1/(2r)
min q(n2+1)/4r2(log q)n+1, (7-5)

where for every r ≥ 1 we have set

2=2n,r =

⌊ r−1
n−1

⌋
.

First let us determine for a given n ≥ 2 the threshold governing for which lengths H the bound (7-5) is
nontrivial, that is o(‖H‖), under the assumption that ‖H‖1/n

= qβ and Hmin� ‖H‖c0/n
= qc0β . Then

the bound (7-5) is nontrivial as long as(
1−

1
2r

)
nβ −

c0

2r
β +

n2+ 1
4r2

< nβ,

that is,

β > βn,r :=
n2+ 1

22(n+ c0)
=

1
2
−

c02− 1
22(n+ c0)

. (7-6)

Given n≥ 2 and 0< c0≤ 1, as long as we take r sufficiently large that2=2n,r > 1/c0, we have βn,r <
1
2 .

(In particular if c0 = 1, note that 2n,r > 1 when (r − 1)/(n− 1)≥ 2, or equivalently, r ≥ 2n− 1.) On the
other hand, note that for fixed n ≥ 2, for all r ≥ 1

1
2
−

c02− 1
22(n+ c0)

>
1
2
−

c0

2(n+ c0)
≥

1
2
−

1
2(n+ 1)

,

for all 0< c0 ≤ 1, and this a limitation on the range of β for which the bound is nontrivial.
We now compute that the bound (7-5) is of the form ‖H‖q−δ where

δ =
n+ c0

2r
β −

n2+ 1
4r2

. (7-7)
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We make the approximation that 2= (r − 1)/(n− 1), which is an identity when n = 2, and will not be
far from the truth, when we later take r very large. Then we compute that after this approximation, δ can
be represented as a function of r by

fa,b,c(r)=
a
r
−

br − c
r(r − 1)

,

where

a =
(n+ c0)β

2
, b =

n
4
, c =

1
4
.

As a function of r , this attains a maximum at

r = (a− b)−1
{(a− c)±

√
(a− c)2− (a− c)(a− b)}. (7-8)

To have r > 0 we must have (a− b) > 0, that is

β > βn,c0 :=
n

2(n+ c0)
=

1
2
−

c0

2(n+ c0)
, (7-9)

agreeing with our previous observation. Thus from now on we assume β = βn,c0 + κ for some small κ ,
and we will study how δ = δn(κ) behaves as κ → 0. From (7-7) with β = βn,c0 + κ (and without
approximating 2), we see that for any r ,

δ = δn(κ) :=
n+ c0

2r
κ −

1
4r2

.

To maximize this, according to (7-8), as κ→ 0 we will take r to be the integer closest to

n− 1
κ(n+ c0)

.

For an approximation, we set r = (n − 1)/(κ(n + c0)) in the expression for δn(κ), and using the
approximation 2≈ r/(n− 1) (which is reasonable as κ→ 0 since then r→∞), we see that

δn(κ)≈
(n+ c0)

2

4(n− 1)
κ2 (7-10)

as κ→0. Here we use≈ because we have made two types of approximations: first, we used approximations
of the value of 2 and r for simplicity, which introduced errors that become vanishing small, relative to
the true size of δn(κ), as κ→ 0. Second, to simplify certain expressions, we used the fact that we are in
the limiting case κ→ 0.

Alternatively, we can encapsulate the restriction (7-9) by recording it as the restriction

‖H‖Hmin�‖H‖1+c0/n
� (qnβ)1+c0/n,

where β = βn,c0 + κ for any small κ > 0. Therefore we will obtain a nontrivial bound as long as
‖H‖Hmin� qn/2+κ for any small κ > 0.
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7B. Proof of technical lemmas.

Proof of Lemma 5.2. This argument originates in [Heath-Brown 2013, §4] and is similar but not identical
to lemmas in [Heath-Brown and Pierce 2015; Pierce 2016]; for completeness we provide an argument.
The first property in Lemma 5.2 is a direct result of the definition of A(m). Since each A(m) is a
nonnegative integer, ∑

m
A(m)≤

∑
m

A(m)2,

and it suffices to prove the third property. We write

∑
m

A(m)2 =
∑

m
#
{

p, p′, a, a′ : mi ≤
Ni − ai q

p
< mi + Hi/P,mi ≤

Ni − a′i q
p′

< mi + Hi/P
}

�

( n∏
i=1

Hi

P

)
#
{

p, p′, a, a′ : 0≤
∣∣∣∣Ni − ai q

p
−

Ni − a′i q
p′

∣∣∣∣≤ Hi/P
}

= ‖H‖P−n
∑

p,p′∈P

M(p, p′), (7-11)

where

M(p, p′)= #
{

a, a′, 0≤ ai < p, 0≤ a′i < p′ : 0≤
∣∣∣∣Ni − ai q

p
−

Ni − a′i q
p′

∣∣∣∣≤ Hi/P
}
.

First consider p = p′. Then

M(p, p)≤ #
{

a, a′ : |(Ni − ai q)− (Ni − a′i q)| ≤ p(Hi/P)≤ 2Hi , i = 1, . . . , n
}

≤ #
{

a, a′ : |ai − a′i | ≤ 2Hi/q < 2, i = 1, . . . , n
}
.

Here we have used Hi < q . This shows that once a is chosen, there are at most 3n choices for a′, so that
M(p, p)� Pn and hence

∑
p=p′∈P M(p, p′)� Pn+1, which suffices for our desired bound for (7-11).

Next, consider the case p 6= p′. For each i = 1, . . . , n we choose (by Bertrand’s postulate) a prime li

such that
q
Hi
< li ≤

2q
Hi
.

(Here we use the assumption that Hi < q for each i .) For each i , let Mi = [Ni li/q] or Mi = [Ni li/q]+ 1,
so that li - Mi . Then |Ni li/q −Mi | ≤ 1 implies that |Ni − q Mi/ li | ≤ q/ li , so that

M(p, p′)� #
{

a, a′ :
∣∣∣∣ q Mi/ li − ai q

p
−

q Mi/ li − a′i q
p′

∣∣∣∣≤ Hi

P
+

q
li p
+

q
li p′

, i = 1, . . . , n
}

� #
{

a, a′ : |(p′− p)Mi − (ai p′− a′i p)li | ≤ 12P, i = 1, . . . , n
}
.
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Given p, p′ and an integer δ, for each fixed index i there is at most one way to choose ai , a′i with
0≤ ai < p, 0≤ a′i < p′ such that ai p′− a′i p = δ. Thus∑
p 6=p′∈P

M(p, p′)�#
{

p 6= p′∈P, u= (u1, . . . , un), |ui |≤12P :Mi (p′− p)≡ui (mod li ), i=1, . . . , n
}
.

Now we use the fact that li - Mi . Thus for a fixed i , the condition Mi (p′− p)≡ ui (mod li ) determines
p′ − p uniquely modulo li , and hence uniquely in Z, as long as P < li , which is guaranteed by the
assumption P < q/Hi , that is P Hi < q . In particular, there is at most one value for the difference p′− p
that will satisfy all n conditions. So we may choose p freely and then p′ is determined. As a result, after
counting up the possible choices for u, we conclude that∑

p 6=p′∈P

M(p, p′)� Pn+1.

Applying this in (7-11), we conclude that∑
m

A(m)2�‖H‖P. �

Proof of Lemma 6.4. We may restrict our attention to permutations that map {1, . . . ,M} to itself, or
equivalently, we may suppose going forward that M = n. For indeed, any indices i that occur in the sums
such that i ≤ M but σ(i) > M, clearly contribute no more to the left-hand side than to the right-hand side,
since ti ≤ tσ(i).

Now let σ be the permutation that minimizes

a1tσ(1)+ · · ·+ antσ(n); (7-12)

if there is more than one such permutation, we choose σ to be the one with the greatest number of
fixed points. We will show that σ is the identity. For suppose otherwise, and let i be the smallest index
such that σ(i) 6= i . Then σ(i) > i and hence tσ(i) ≥ ti . Furthermore, denoting by k the index such that
σ(k)= i , we must also have that k > i and hence ak ≤ ai . We then see that (tσ(i)− ti )(ai − ak)≥ 0, or
equivalently, tσ(i)ai + ti ak ≥ ti ai + tσ(i)ak . Define a new permutation σ ′ by σ ′(u)= u for u = 1, . . . , i ,
σ ′(k) = σ(i), and σ ′(u) = σ(u) for all the remaining u ∈ {i + 1, . . . , n} \ {k}. Then we see that
tσ(i)ai + tσ(k)ak ≥ tσ ′(i)ai + tσ ′(k)ak so that (7-12) does not increase in value if we replace σ by σ ′, and σ ′

must also be a minimizer. Yet σ ′ has one more fixed point than σ , which is a contradiction. We conclude
that σ is the identity. �

Proof of Lemma 7.1. By the definition of the θ j , the sum over j = 0, 1, . . . , n− 1 takes the form

1+
n−1∑
j=1

q j/2K−θ j
1 = 1+

n−2∑
j=1

q j/2K− jθ1
1 + q(n−1)/2K−(r−1)

1 ≤ 1+
n−1∑
j=1

(q1/2K−θ1
1 ) j (7-13)

in which θ1 = b(r − 1)/(n − 1)c. Here we have used the fact that for j = n − 1, θn−1 = r − 1 ≥
(n − 1)b(r − 1)/(n − 1)c = (n − 1)θ1. Now we see from the right-most expression that under the
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assumption (7-3), all terms j ≥ 2 are dominated by j = 0, 1. On the other hand, we see from the middle
expression that if (7-3) does not hold, then that expression is� 1, as claimed.

It remains to examine the terms with j = n, which we divide into the even and odd cases. For n ≥ 2
even, the j = n term is

qn/2(K1 · · · Kn/2)
−(2r−1)

≤ qn/2K−(2r−1)n/2
1 ≤ (q1/2K−θ1

1 )n,

where we have used the ordering K1≤K2≤· · ·≤Kn and the fact that (2r−1)(n/2)≥n(r−1)/(n−1)≥nθ1

holds when n ≥ 2. Thus the above expression is� 1 under the assumption (7-3).
For n ≥ 3 odd, the j = n term is

qn/2(K1 · · · K(n−1)/2)
−(2r−1)K−r

(n+1)/2 ≤ qn/2K−{(2r−1)(n−1)/2+r}
1 ≤ (q1/2K−θ1

1 )n,

upon verifying that n ≥ 2 suffices to show that (2r − 1)(n− 1)/2+ r ≥ n(r − 1)/(n− 1)≥ nθ1. Under
the assumption (7-3) we see that the j = n term is also� 1. This concludes the proof of Lemma 7.1. �

Appendix

A.1. The role of the stratification. It is useful to remark on the crucial role that the stratification plays
in obtaining our main theorem. Suppose that instead of Theorem A we only gained information about X1,
without any further stratification into X2, . . . , Xn . Then for those (x(1), . . . , x(2r)) ∈ A2nr

Fq
\ X1(Fq), we

would have

|S(x(1), . . . , x(2r))| ≤ Cqn/2,

but for those (x(1), . . . , x(2r)) ∈ X1(Fq) we could have an upper bound as bad as the trivial (#Fq)
n . We

would then have only the instance j = 1 of Theorem 4.4, namely

#
{
{x} ∈ (0, k]2r

:

∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣> Cqn/2

}
≤ C ′′‖k‖2r k−θ1

1 .

In place of (6-1) and Lemma 6.1 we would now have∑
m (mod q)

|S(F;m, k)|2r
≤

∑
{x}∈(0,k]2r

{x}∈X0\X1

∣∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣∣+ ∑
{x}∈(0,k]2r

{x}∈X1

∣∣∣∣ ∑
m (mod q)

χ(F{x}(m))
∣∣∣∣

�‖k‖2r Cqn/2
+C ′′‖k‖2r qnk−θ1

1 .

The second term has the worst growth qn appearing in (6-2) combined with the least savings k−θ1
1 =

Bn,r (1; k)−1. Proceeding with Menshov–Rademacher and the remaining argument, we would obtain

|S(F; N, H)|2r
� (log q)2r(n+1)

‖H‖2r−1 P−1qn/2(1+ qn/2 B̃n,r (1; H/P)−1).
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The last factor is 1+ qn/2(H1/P)−θ1, which we balance by choosing P = H1q−n/(2θ1). This is a smaller
choice than (7-4), hence provides smaller savings; ultimately this yields the bound

|S(F; N, H)| � ‖H‖1−1/2r H−1/2r
1 q(nθ1+n)/4rθ1(log q)n+1. (A-1)

This is worse than our main theorem by a factor of q(n−1)/4rθ1 .

A.2. Conditional results: assuming a stronger stratification result. In our Theorem 1.1, the larger
2=2n,r is as a function of r , the better the bound is asymptotically in n. We briefly explore how one
could hope to increase the value of 2n,r . The key is to improve Theorem A, and hence Theorem 4.4, by
obtaining larger values for the codimensions θ j .

At present, Theorem 4.4 holds with θ0 = 0 and θn = nr ; for the intermediate values 1≤ j ≤ n− 1, we
currently obtain values

θ j = j
⌊ r−1

n−1

⌋
≈ j

( r−1
n−1

)
. (A-2)

However, suppose that in the stratification result of Theorem A (and hence in Theorem 4.1 and its
corollaries under the modified hypotheses), we were able to take the larger values

θ
]
j = jr, 1≤ j ≤ n. (A-3)

This is a natural hypothesis since it is the linear interpolation between θ0 = 0 and θn = nr . In fact, note
from the definition (A-2) that we very nearly achieve (A-3) in the case of n = 2.

Supposing that we can take θ ]j as large as in (A-3) in Theorem A, we could deduce that the statement

of Theorem 4.4 would hold with the function Bn,r ( j; k) replaced by the modified function B]n,r ( j; k)
defined for 0≤ j ≤ n and k = (k1, . . . , kn) with k1 ≤ k2 ≤ · · · ≤ kn by

B]n,r ( j; k)=


1 if j = 0,

(k1 · · · k j/2)
2r if j ≥ 1 is even,

(k1 · · · k( j−1)/2)
2r kr

( j+1)/2 if j ≥ 1 is odd.

Proceeding through the Burgess argument in this paper with the function Bn,r ( j; k) replaced in each
instance by B]n,r ( j; k), we would arrive at the analogue of (7-1), which now takes the form

|S(F; N, H)|2r
�n,r,1,D (log q)2r(n+1)

‖H‖2r−1 P−1qn/2
n∑

j=0

q j/2 B̃]n,r ( j; H/P)−1, (A-4)

in which for any k with k1 ≤ k2 ≤ · · · ≤ kn we define

B̃]n,r ( j; k)=


1 if j = 0,

(k1 · · · k j/2)
2r−1 if j ≥ 1 is even,

(k1 · · · k( j−1)/2)
2r−1kr

( j+1)/2 if j ≥ 1 is odd.
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Recall that we assume H1 ≤ H2 ≤ · · · ≤ Hn . We choose (cf. (7-2) and (7-4)) P to be an integer such that

H1

2q1/(2r−1) ≤ P ≤
H1

q1/(2r−1)

which balances the j = 0 and j = 2 contributions. Under this choice, a simple computation shows that
for each j = 0, . . . , n we can verify that

q j/2 B̃]n,r ( j; H/P)−1
≤ 1,

upon using the fact that H1 ≤ H2 ≤ . . .≤ Hn and the definition of the function B̃]n,r ( · , · ) given above.
Applying this in (A-4) would give

|S(F; N, H)| �n,r,1,D ‖H‖1−(1/2r)H−1/2r
1 q(n2

]
+1)/4r2](log q)n+1

with the definition
2] =

2r−1
2
= r − 1

2
.

We can compute that this is nontrivial for H satisfying the analogues of (1-6) or (1-8) with 2] in place
of2; in the limit as n→∞ we quantify the strength of the bound near the threshold βn =

1
2−1/(2(n+1)).

Letting β = βn + κ , then our bound is of the form ‖H‖q−δ, where

δ =
n+ 1

2r
κ −

1
4r2]

≈
n+ 1

2r
κ −

1
4r2 .

The maximum

δ ≈
(n+ 1)2

4
κ2

is achieved when r is the nearest integer to

r ≈
1

κ(n+ 1)
.

Thus this conjectural improvement to the stratification would yield a stronger savings near the threshold βn ,
but would not alter the fundamental threshold βn . Similar computations to those above show that even if
we could conjecturally improve the θ j values to the strongest possible values θ [j = nr for 1≤ j ≤ n, this
bound will not be improved substantially, and the threshold βn will not change.

A.3. Fourier methods for incomplete sums that are not short. Roughly speaking, the threshold Hi≤q1/2

appears as a natural constraint of the ranges for which our main results hold. This is not a deficit, for
recall that on the other side of this threshold, different methods, which also rely on Weil bounds, become
feasible, for appropriate F. To bound S(F; N, H) in cases where Hi � q1/2, an advantageous strategy is
to “complete the sum,” writing

S(F; N, H)=
∑

a=(a1,...,an)

ai (mod q)

χ(F(a))
∑
x∈Zn

xi∈(Ni ,Ni+Hi ]

1x≡a (mod q).
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One then expands the sum over x using

1x≡a (mod q) =
1

qn

∑
k (mod q)

eq(k · (x− a))

so that

S(F; N, H)=
1

qn

∑
k (mod q)

∑
a (mod q)

χ(F(a))eq(−k · a)41(a1/q) · · ·4n(an/q),

in which 4(α)=min{Hi , ‖α‖
−1
}, where ‖α‖ denotes the distance from α to the nearest integer. One then

aims to show that under appropriate assumptions on the smoothness of F ∈ Fq [x1, . . . , xn], for generic k
a Weil bound applies so that the internal sum over a is O(qn/2). (Note that this does require the deep
input of a Weil-strength bound for a multi-dimensional mixed character sum; see, e.g., [Katz 2006].) The
resulting sum over k is then expected to be roughly on the order of O(q−n/2

‖H‖+qn/2(log q)n), which is
o(‖H‖) in the case that Hi� q1/2 log q for each i = 1, . . . , n, that is, the setting that is complementary to
that of this paper. In a hybrid case, in which some Hi are smaller than q1/2 and some are larger, one could
adopt a hybrid strategy; this regime is closely related to [Pierce 2006; Heath-Brown and Pierce 2012].
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