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The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H,S0O,), stabilized by
ammonia (NH3). However, in marine and polar regions, NH; is generally low, and H,SOy, is frequently
found together with iodine oxoacids [HIO,, i.e., iodic acid (HIO3) and iodous acid (HIO,)]. In experiments
performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the
interplay of H,SO,4 and HIO, during atmospheric particle nucleation. We found that HIO, greatly enhances
H»S04(-NH3) nucleation through two different interactions. First, HIO3 strongly binds with H,SO4 in
charged clusters so they drive particle nucleation synergistically. Second, HIO, substitutes for NH3, forming
strongly bound H,S04-HIO, acid-base pairs in molecular clusters. Global observations imply that HIO, is
enhancing H,SO4(-NHs) nucleation rates 10- to 10,000-fold in marine and polar regions.

erosols influence climate by acting as
cloud condensation nuclei (CCN) and by
scattering solar radiation. Secondary
aerosol and CCN formation continue to
be two of the largest uncertainties hin-
dering accurate projection of climate change (7).
Only a few types of vapors in the atmosphere can
nucleate to form new aerosol particles, which
can further grow to CCN sizes. Sulfuric acid
(H5SO,) is considered to be the primary vapor
(2) driving particle formation in the atmo-
sphere of both polluted environments (3, 4)
and pristine environments (5-7). However, as
H,S0,-H,0 binary nucleation is slow, stabilizing

vapors, such as ammonia (NH3), amines, and
oxidized organics, are generally needed to
explain observed particle formation rates
(3-11).

In terms of radiative balance, marine clouds,
especially low-level marine stratocumulus (72),
are key players because they have strong long-
wave emission and efficiently reflect solar radia-
tion back to space. As marine cloud formation
is often limited by low CCN number concen-
trations, it is important to reach a comprehen-
sive understanding of new particle formation
in marine environments. New particle and
subsequent CCN formation in marine regions

NH; (5, 14). However, a recent global survey of
aerosol acidity suggests that global models
substantially overestimate NH; concentrations;
in particular, the polar atmosphere and high
altitudes are characterized by low NH; con-
centrations (75). Assuming solely H,SO,, nucle-
ation, advanced Earth system models struggle
to reproduce aerosol number concentrations
measured by aircraft (16), leading to low con-
fidence for estimates of aerosol radiative forc-
ing. Iodine-driven nucleation (17-21) has not
yet been incorporated into Earth system mod-
els; iodine oxoacids (HIO,, x = 2 to 3 in this
study) can drive rapid particle formation under
low NH;3 conditions, and they may play an im-
portant role in polar, marine, and free tropo-
spheric particle formation.

In the marine atmosphere, iodine and sulfur
precursors emitted from the ocean surface lead
to the formation of both H,SO, and HIO,, (22).
HIO, has generally been observed at con-
centrations similar to or lower than H,SO,
(6, 18, 21, 23). Despite the higher nucleation
potential of HIO, compared with H,SO, (18),
iodine-driven new particle formation has hith-
erto been considered important only in re-
gions with considerably higher concentrations
of iodic acid (HIO3) than of H,SO,, such as
coastal zones and specific regions in the Arctic
(17, 18, 20, 21, 24, 25). However, new particle
formation from the mixed chemical system
HIO,-H,SO,(-NHj) has not been reported so far.

Particle formation experiments in CLOUD

Here we report laboratory experiments per-
formed in the CERN CLOUD (Cosmics Leaving
OUtdoor Droplets) chamber (5) (see methods
in the supplementary materials for details)
between September 2018 and December 2019
under conditions relevant for marine and polar
environments. We performed particle forma-
tion experiments using HIO,-H,SO4(-NH;) va-
pors produced from the following precursors:
molecular iodine (I,,), sulfur dioxide (SO,), ammo-
nia (NH3), ozone (Os), and water vapor (H,0).
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Fig. 1. New particle formation from HIO,-H,SO,4 and HIO,-H,S04-NH3

at -10°C. (A and B) vapor concentrations and (C and D) nucleation rates. Solid
black lines show the measured nucleation rates at 1.7 nm and solid red lines
present predicted J; 7 from H,SO4-NH3 nucleation alone (14). Dashed lines
represent vapor concentrations, and vertical gray bars show experimental stages.
The experiments show that the rapid nucleation rates cannot be explained by
the H,SO4-NH3 mechanism alone. HIO, significantly enhances H,SO,4-NH3
nucleation at comparable HIO3 and H,SO, concentrations. The NH;3 concentra-

tion in (A) is below the detection limit of the H30*-CIMS (~4 pptv). An NH3
concentration of 4 pptv is used to conservatively estimate the H,S04-NH3
nucleation rates in (C). The experimental conditions are 41.1 parts per billion by
volume (ppbv) 03, 63.5% relative humidity (RH), 2.3 ppbv SO, and 17.4 pptv
I> [(A) and (C)]; and 40.8 ppbv O3, 62.3% RH, 1.6 ppbv SO,, and 67.2 pptv I,
[(B) and (D)]. Stages a, ¢, d, ¢, f, and g enhanced the UVH light intensity
(higher OH production rates), and stage b increased the green light intensity
(higher I, photolysis rate).

To investigate possible synergies in HIO,-
H,SO4(-NHj3) nucleation, green and ultraviolet
light sources were used to drive photochem-
ical production of HIO, and H,SO, from I,
and SO,. An example experiment at —10°C is
shown in Fig. 1 and fig. S1, and at 10°C in fig.
S2. Experiments were first performed with-
out any added NH; [<4 parts per trillion by
volume (pptv) contaminant level]; these are
shown in the left-hand panels of Fig. 1 and
figs. S1 and S2. A second set of experiments
were performed with NH; added to the cham-
ber (right-hand panels of Fig. 1 and figs. S1 and
S2). At both temperatures, a significantly higher
nucleation rate at 1.7 nm, J;, is observed in
the presence of HIO, than the J;; expected
from H,SO,-NHj3 nucleation (5, 14), both with-
out and with added NH.

In Fig. 2, we present .J; ; for the HIO,-H,SO,
system (hollow markers) and the HIO,-H,SO,4-
NH; system (filled markers) at 10°C (circles) and
—-10°C (squares). The concentration ranges of
HIO, and H,SO, closely match ambient val-
ues, spanning from <10° em ™ to nearly 10° cm™
(6, 17, 18, 20, 21, 23). We show the measured J;;
for these mixed systems for various possible
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drivers: H,SO, (Fig. 2A), HIO; + HySO,, (Fig. 2B),
and (HIO; + H,SO,) x HIO, (Fig. 2C) (HIO,,
iodous acid). The data at both temperatures be-
come progressively less scattered when plotted
against these variables, as well as more con-
sistent with parameterizations (14, 18). The
H,SO,-NH; mechanism cannot predict the nu-
cleation rates, even when the HIO,, concentra-
tion is much lower than that of H,SO,, (Fig. 2A).
For instance, J;; at 10°C from HIO,-H,SO.,
with NHj < 4 pptv (Fig. 2A, hollow circles) is
roughly 60 times faster than J; ; from H,SO.,
with NH; at 4 pptv; this is as fast as nucleation
from H,SO, with NHj at 500 pptv. Therefore,
sub-pptv levels of HIO, are as effective at
stabilizing H,SO, as 500 pptv of NH3. Hence,
HIO, may replace NH; as a nucleation driver
in pristine marine and polar environments,
where NH; concentrations are typically below
a few tens of parts per trillion by volume or
lower (26, 27).

Figure 2B shows the observed J;, versus
total acid concentration (HIO; + H,SO,) and
compares these rates to the values predicted
by the H,SO.(-NH3) parameterizations (14),
applying (HIO; + H,SO,) as H,SO,. The J;; of

15 December 2023

the HIO,~-H,SO,, system without added NHj
(hollow markers) remains higher than the pre-
diction for H,SO,(-NHj3) nucleation. This indi-
cates that HIO,, contributes more prominently
to nucleation than by simply increasing the acid
concentration. Moreover, the relatively mild
sensitivity to NHj suggests that the base sta-
bilization comes from another source. This is
supported by Fig. 2C, which indicates that
HIO, is effectively providing base stabilization
in the molecular clusters. To further investi-
gate the underlying mechanisms, we studied
the molecular composition of nucleating parti-
cles under neutral (ion-free) and charged (ion-
induced) conditions, as described below.

HIO, accelerates neutral nucleation

To measure neutral clusters, we used a nitrate
chemical ionization mass spectrometer (nitrate-
CIMS). The concentrations of monomers HIOs,
H,SO,, and HIO, are presented in Fig. 3A,
together with four product dimers in Fig. 3B.
Although the HIO, concentration was one to
two orders of magnitude lower than that of
HIO; or H,SO,, the most prominent dimers,
HIO3-HIO, and H,SO,-HIO,, both contain HIO..
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Fig. 2. Nucleation rates of HIO,-H,S04(-NH3) systems. Nucleation rates at
1.7 nm versus (A) HpSO4, (B) HIO3 + H2S0O4, and (C) (HIO3 + H2S0O4) x HIO, at
+10° and -10°C. All data points and lines show experiments carried out at
galactic cosmic ray ionization conditions, except for the atmospheric cluster
dynamics code (ACDC) simulations in (C) (orange band and filled diamonds), which
represent the theoretical prediction for the neutral nucleation rates (see methods).
The color bar represents HIO3 concentration (per cubic centimeter). H,SO4-NH3
mechanism fails to predict the overall nucleation rates, even with HIO, is much
lower than H,SO4. The J;7 from experiments with high H,SO, is also higher
than that predicted by pure iodine oxoacids (18). The nucleation rates become
less spread when plotted against (HIO3 + H,SQ4) x HIO,, as well as more
consistent with parameterizations and ACDC predictions. The results show that

Despite HIO3-HIO, clusters having been re-
ported before (18, 28), we believe this is the
first observation of H,SO,-HIO, dimers.
While HIO, enables H,SO,-HIO, dimer for-
mation, its role in larger clusters is not clear.
We address this with a combination of quan-
tum chemical calculations and cluster dynam-
ics modeling (29). We optimized the geometries
of HQSOQ'HIOQ, HIOg'HIOQ, and HQSOQ'H103'
HIO, clusters and calculated their formation
free energies and evaporation rates (fig. S3).
Clusters containing HIO, are the most stable
and, moreover, show an exceptionally wide
range of stable combinations of molecules.
The cluster geometries suggest that HIO, en-
hances H,SO, neutral nucleation in the same
way as it does for HIO5 neutral nucleation (I8).
Specifically, HIO, accepts the proton donated
either by H,SO, or HIO,, thereby function-
ing as a base. Furthermore, HIO, forms strong
halogen bonds with H,SO,, and HIOs, further
enhancing the cluster stability. Clusters includ-
ing HIO, are even more stable than H,SO,4-
DMA (dimethyl amine) clusters (fig. S3), which
is known to cluster at the collision limit for
sulfuric acid with only 4 pptv DMA (3). How-
ever, the predicted neutral nucleation rates
for the H,SO,4-HIO, and HIO3-HIO, systems
still underestimate our measured nucleation
rates [galactic cosmic ray (GCR) conditions,
the sum of neutral and ion-induced chan-
nels] at —-10°C (Fig. 2C, orange band). On the

He et al., Science 382, 1308-1314: (2023)

other hand, the predicted HIO,-H,SO, neu-
tral nucleation rates approximately agree with
CLOUD observations (Fig. 2C, squares and di-
amonds). The consistency between theoretical
predictions and the CLOUD measurements at
—-10°C suggests that neutral nucleation domi-
nates at this temperature, which is also indicated
by the fact that the nucleation rates far exceed
the ion-pair production rate limit (2 to 10 cm ™ s7).
Additionally, this suggests that the control-
ling mechanism is indeed a synergy of three
molecules (HIO3, H,SO,, and HIO,) and not
simply the combined neutral nucleation of
any two molecules. Given that HIO, behaves
as a base, we show in Fig. 2C our observed .J,;
versus (HIO; + H,SO,4) x HIO,. This expres-
sion is proportional to the formation rate of the
dimer (H,SO4-HIO, or HIO;-HIO,), which rep-
resents the initial nucleating cluster. We find
that the HIO,-H,SO4(-NHj3) nucleation rates
fall near the prediction from HIO, nucleation
(J17 versus HIO; x HIO,; HySO, is absent in
pure iodine oxoacid nucleation, but it is added
to the HIO; concentration given its identical
role) (18), implying that HIO, indeed plays the
key role as stabilizer both for HIO; and H,SO,
and that NH;3 plays a minor role.

While the formation mechanism for HIO;
has recently been established (22), the path-
way for HIO, formation remains uncertain. A
quantum chemical study provided a potential
energy surface describing formation of HIO,

15 December 2023

HIO3 and HIO, have to be considered together with H,SO,4 to predict the
nucleation rates in this multicomponent system. H,SO4-NH3 nucleation rates
(dotted and dash-dotted lines) are calculated following Dunne et al. (14), whereas
HIO, nucleation rates (solid lines) are calculated on the basis of J; 7, HIO3, and
recalculated HIO, from He et al. (18), applying HIO3 x HIO, as (HIO3 + H,SO4) x
HIO,, to guide the eye. The experimental conditions for HIO,-H,SO4(-NH3)
experiments are 38.4 to 53.2 ppbv O3, 41.9 to 75.3% RH, 0.6 to 11.2 ppbv SO,,
and 10.0 to 57.7 pptv I,. The NH3 concentrations for the filled squares and filled
circles range from 30 to 42 pptv and from 176 to 261 pptv, respectively. The
error bars show one standard deviation during the data selection periods. Overall
systematic scale errors on the HIO3 concentrations of -=33% and +50% and on
the nucleation rates of a factor of 10 are not shown on the data points.

from iodooxy hypoiodite, 1,0, + HyO (30). We
have extended this study with high-level quan-
tum chemical calculations and provide a re-
vised potential energy surface in fig. S4A. We
also present a potential new pathway for HIO,
formation from iodine dioxide (OIO) and the
hydroperoxyl radical (HO,) (fig. S4B). Our cal-
culations show that both the singlet and trip-
let channels are exothermic. Further studies
are needed to quantify the relative importance
in the atmosphere of these two channels.
Because complex reactions are involved in
the formation of HIO; and HIO,, it is impor-
tant to confirm that the HIO5:HIO, ratio in the
CLOUD chamber matches ambient conditions.
Figure S5 shows that both the ratio and ab-
solute concentrations of HIO; and HIO, fall
within the range measured at Mace Head (17)
and Ny-Alesund (21), confirming that the results
from our study are relevant to the atmosphere.

HIO3; enhances ion-induced nucleation

Tons can stabilize embryonic molecular clus-
ters, leading to ion-induced nucleation (IIN)
(5,18, 19, 31, 32). To investigate the influence of
ions on HIO,-H,SO, nucleation, we increased
the ionization rate in the chamber in three steps
at 10°C: (i) neutral (ion-free), (ii) GCR ion-
ization (~1000 ion pairs cm™2), and (iii) beam-
enhanced ionization (~6000 ion pairs cm™>)
(fig. S6). Compared with neutral conditions,
Ji7 at GCR ionization rates is enhanced by
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Fig. 3. Neutral and charged cluster s~
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A neutral monomer

B neutral dimer

+10°C
o -10°C |

—

-

(C and D) Negatively charged cluster
compositions of HIO,-H,SO4 nucleation

H,80, | HOO; | HIO,

H,S0, HpSO, | H,SO,4-HIO,

H,SO,HIO, | HIOsHIO,

at +10° and -10°C, respectively. c
(E and F) Negatively charged cluster
compositions of HIO,-H,S04-NH3 nucle-
ation at +10° and -10°C, respectively.
As indicated in (B), the dominant
neutral dimers are H,SO4-HIO, and
HIO3-HIO, clusters—despite very low
HIO, concentrations—which represent
the initial molecular clusters during
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which suggests that NH3 has a
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conditions are 38.5 to 43.9 ppbv O3, 0
61.6 to 75.2% RH, 0.7 to 11.0 ppbv
SO, and 14.4 to 44.5 pptv I.

~50 times at 2 x 107 cm ™2 H,S0, and 5 x 10 cm™
HIO;. As with HIO,, ion-induced HIO,-H,SO,,
nucleation only occurs with negative ions (com-
pare fig. S6A and fig. S6B). Interestingly, six
times larger ion concentrations formed by
the pion beam only enhance J; ; by a factor of
two. This is likely because the increased ion-
ion recombination rate, and hence the shorter
charge lifetime, neutralizes some clusters be-
fore they have become stable against evapo-
ration when neutral. When NHj is added to
the HIO,-H,SO,, system, it initiates positive
IIN that is as strong as negative IIN at —10°C
(fig. S1ID). Adding NH; approximately doubles
the overall Jy .

To measure the molecular composition of
charged clusters, we used an atmospheric pres-
sure interface time-of-flight mass spectrome-
ter. For HIO,~-H,SO,, IIN without NH; injection
(Fig. 3, C and D), we observe a series of charged
clusters with the empirical formula (HIO3),-
(H,S0,),,-HSO,~ (cyan triangles), which indicate
synergistic IIN of HIO; and H,SO,. We identify
these clusters as (n+m+1)-mer (which include
the ion; fig. S7). At 10°C, monomers, dimers, and
trimers consist primarily of H,SO,, whereas
HIO; appears in clusters starting from the tetra-
mers and becomes equal to the H,SO, mole
fraction already in the hexamers. At -10°C, HIO3
appears in the dimers and becomes equal to the
H,SO, starting with the tetramers.
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In these experiments, the HIO5:H,SO, ratio
in the gas phase is between 0.3 and 1.4, and the
molar ratios of I:S in the larger clusters tend
toward 1:1. We also know that pure ion-induced
HIO; nucleation proceeds at the collision limit
(18, 19) but that ion-induced H,SO,, nucleation
is slower than the collision limit (5). We there-
fore conclude that H,SO, condensation is en-
hanced by HIO; for a cluster stoichiometry up
to 1:1, beyond which the net rate of H,SO,, con-
densation slows, while HIO; condensation is
limited by the collision rate under our exper-
imental conditions.

We performed additional experiments in
which NH; was added to the HIO,-H,SO, sys-
tem. Notably, none of the charged pure iodine
(i.e., HoSO,-free) clusters contained NHg, which
indicates a negligible role of NHj in ion-induced
HIO; nucleation. This was independently con-
firmed by raising NH3 from the background
level (<4 pptv) to 100 pptv in an iodine oxoacid
nucleation experiment without H,SO, (fig.
S8). The measured nucleation rate at 1.7 nm
remained constant throughout the experi-
ment, indicating that HIO5;(-HIO,) nucleation
is unaffected by NHs.

On the other hand, we found a set of clusters
with the composition (H,SO,),-INHj),,-HSO,~
and (HIOj3),-(H5S04),,-(NH3),-HSO,™ in the
mass spectra of charged clusters (Fig. 3, E

and F), similar to the clusters reported near
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the coast of Antarctica (6). We found that NH;
is only present in charged tetramers and above,
consistent with its behavior in H,SO,-NH; IIN
(5). The iodine and sulfur molar fraction dis-
tributions remained unchanged after adding
NH; to the system, likely because the HIO;-
H,SO, negative IIN had already reached the
collision limit (fig. S7). The presence of NH;
only converted some of the (HIOs),-(HySO.,),,-
HSO;[ to (HIOg)n'(HQSO4)m‘(NH3)j'HSO;[ ions
and gives rise to positive IIN (fig. S1).

Particle growth

Since the atmospheric concentration of HIO,
is less than one-tenth that of HIOj, its role in
particle growth is minor (Z8). To evaluate the
role of HIO; and H,SO, in particle growth, we
compare in fig. SOA our measured growth rates
between 1.8 and 3.2 nm (GR;g35) With those
calculated assuming condensation of H,SO,
and HIO3 (I8, 33) at the collision limit. The
good agreement indicates that H,SO, and
HIO; are the main condensing vapors driving
particle growth (18, 33) while other iodine
species contribute little to particle mass. We
show in fig. S9B the measured and predicted
particle survival probability, J, 5/J;7, which
increases at faster growth rates and approaches
unity above growth rates of ~10 nm hour™*
for the CLOUD chamber (2.2 x 102 s wall loss
rate). In the marine atmosphere, condensation
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Fig. 4. HIO, enhancement of H,S04-NH;3 nucleation. (A) Box plot statistics of HIO3:H,SOy ratios measured
around the globe, showing median values with 10 and 90% percentiles in the whiskers. The gray labels show
the site name and months, with data covering >50% of the days. (B) Nucleation enhancement by HIO, is
calculated by dividing the measured Jyo, —,50,nH, to predict Jy,so,—nn, Using CLOUD parameterizations (14).
The median ratios at all sites are greater than 0.1, which infers at least a 10-fold nucleation rate enhancement
by HIO,. The enhancement is especially pronounced in polar regions where the HIO3:H,SOy ratio is consistently
higher than 0.1. Thin symmetric error bars represent one standard deviation during the data selection periods. In the
experiments without NHs injection (hollow markers), the NH3 concentrations were below the instrument
detection limit (4 pptv), which is adopted as a conservative estimate of Jy,so,_H,. However, the actual NH3
concentration is expected to be below 1 ppty, as all charged clusters are essentially NH5 free (Fig. 3). The
thick asymmetric error bars represent the systematic uncertainty assuming NHs equals 1 pptv. The NH3
concentrations in experiments with NH3 injection (filled markers) are well measured, and thus without
asymmetric errors. The field observation sites are summarized in the methods.

of other compounds, such as MSA and oxi-
dized organic molecules, can also contribute
to early particle growth, in addition to H,SO,,
and HIO;.

Climate implications

Atmospheric observations show that both
iodine oxoacid and sulfuric acid-ammonia
nucleation can be important particle sources
in specific regions of the pristine boundary
layer (6, 17, 18, 20, 21). So far, HIO; and HIO,
have been thought to be important only in
regions where they are more abundant than
H,SO,. In polar and marine environments, it
is currently thought that H,SO,-NHj constitutes

He et al., Science 382, 1308-1314: (2023)

the primary source of new particle formation,
despite the perceived scarcity of NH; (75). This
picture is challenged by our findings. Our data
support the reverse: H,SO,-NH; nucleation
plays a major role only when H,SO, is sub-
stantially more abundant than HIO3; and HIO,.
The role of HIO,, in atmospheric aerosol nuclea-
tion may have been overlooked, as studies could
easily be deceived by relatively higher H,SO,,
than HIO,, in parts of the pristine atmosphere.

To assess the atmospheric importance of
HIO,-H,SO4(-NH3) nucleation, we calculated
the J;; enhancement factor [the ratio of J;,
from HIO,-H,SO4(-NHj) to that from H,SO,4-
NH;] (I4) as a function of the HIO5;:H,SO,
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concentration ratio (Fig. 4B). The enhance-
ment factors are large, ranging from 10 to 10*
for atmospherically relevant HIO;:H,SO,, ra-
tios. Even when the HIO5:H,SO,, ratio is 0.1,
the enhancement factor is 10. Observations at
marine and polar sites from the North Pole to
Antarctica show median HIO3:H,SO,, ratios
larger than 0.1 (Fig. 4A), implying that syn-
ergistic HIO,-H,SO,(-NHj3) nucleation may
have global importance and yet has hitherto
been overlooked. This conclusion is supported
by our calculations of sulfuric acid nucleation
enhanced by HIO,, which are shown in fig.
S10. At -10°C, which is representative of the
marine free troposphere, fast nucleation rates
of up to 10 em™ s7* are estimated for ambient
acid concentrations. The pronounced temper-
ature dependence of HIO,-H,SO,(-NH3) nu-
cleation that we find in our study may help
explain why nucleation in the marine bound-
ary is rarely observed, whereas nucleation is
frequently found in the free troposphere or the
upper marine boundary layer after passage of
a cold front (23, 34, 35).

New particle formation from HIO,-H,SO,
has notable implications for the future cli-
mate. Iodine oxoacids may enhance CCN and
cloud formation in the Arctic (20), which would,
in turn, affect both long- and shortwave radia-
tive forcing at the surface (36). The absence
of iodine oxoacid nucleation mechanisms in
climate models may help explain why they
systematically underestimate the CCN number
concentration around the coast of Antarctica
(37, 38). Iodine has also been observed in both
gas and particle phases in the polar and ma-
rine free troposphere and the upper tropo-
sphere and lower stratosphere (39, 40). These
regions are characterized by low temperatures
and extremely low NH; concentrations (I5),
conditions that strongly favor HIO,-H,SO,
or pure HIO,, nucleation over H,SO,-NH; nu-
cleation. While global anthropogenic SO,
emissions continue to fall as a result of emission
policies, iodine emissions have tripled since
the 1950s, and this trend continues (41, 42).
As a result, nucleation mechanisms involv-
ing iodine oxoacids are anticipated to become
even more important in future. To sharpen the
understanding of marine aerosol-cloud radia-
tive forcing, it is important that representa-
tions of new particle formation in global
climate models now include iodine oxoacids
together with sulfuric acid.
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Editor’s summary

How are new particles formed in the air above the oceans, where ammonia, an important species in the process, is
not very abundant? He et al. report that iodine oxoacids, which are plentiful in marine environments, can substantially
increase the rate of new particle formation in the low-ammonia conditions commonly found in pristine marine and
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fraction of incident solar radiation back into space and have an important influence on global radiation balance and
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Materials and Methods

The CLOUD experiments

The experiments presented in this study were conducted in the CERN CLOUD (Cosmics Leaving
OUtdoor Droplets) chamber, an electropolished, stainless-steel, 26.1 m* chamber which allows
studying new particle formation under the full range of tropospheric and lower-stratospheric
conditions. The thermal housing around the chamber is able to control the temperature from 208
to 373 K with high precision (£ 0.1 K)(44). Ultra-pure synthetic air is derived from mixing
cryogenic liquids (21% oxygen and 79% nitrogen) and is continuously injected into the chamber
ensuring scrupulous cleanliness and minimal contamination(5, 45). CLOUD deploys various light
sources to drive photochemistry selectively. Hydroxyl radical production is initiated by
illuminating Oz with an ultra-violet fiber-optic system (UVH), including four 200 W Hamamatsu
Hg-Xe lamps with a wavelength between 250 and 450 nm or a KrF excimer UV laser at 248 nm,
both with adjustable powers. A green light saber centered at 528 nm is used to photolyze molecular
iodine (I2). All light systems are continuously monitored by a spectrometer and an array of
photodiodes at the bottom of the chamber. Dedicated actinometry experiments allow quantitative

determination of actinic fluxes of the light system at different intensities.

Particle formation under different ionization conditions is simulated by combining a strong electric
field (£ 30 kV) which eliminates natural ions in under 1 second, and the pion beam produced by
CERN Proton Synchrotron which enhances ion production. Two magnetically coupled stainless-
steel fans mounted at the top and bottom of the chamber enable uniform spatial mixing of particles
and vapors within a few minutes. The chamber is characterized by a low loss rate (e.g., 0.0022 s™!
for sulfuric acid, H>SO4) which is comparable to the condensation sink values observed in pristine
environments. The chamber is cleaned by rinsing the chamber walls with ultra-pure water and
heating to 373 K for over 24 h between different experimental programs to avoid cross-
contamination and to ensure extremely low NH3 levels. I in the chamber was sourced from
crystalline iodine (I2, Sigma-Aldrich, 99.999% purity) in a temperature-controlled evaporator, and
was injected at the bottom of CLOUD. The SO» was injected into the chamber from a pressurized

gas cylinder (CARBAGAS, AG, 100 ppm in N») and NH3 was provided by a pressurized gas
cylinder containing 1% NH3 in N> (CARBAGAS, AG).



The results reported in this study were obtained from two CLOUD campaigns: 1) the CLOUDI13
campaign from September to November 2018 and 2) the CLOUD14 campaign from September to
November 2019. All the experiments at —10 °C (squares in Fig. 2) and HIOx-H>SO4 (iodic acid,
HIO3; iodous acid, HIO» and sulfuric acid, H>SO4) experiments at 10 °C (hollow circles in Fig. 2)
were carried out during CLOUDI13. Repeated HIO, experiments (larger hollow triangles), HIOx-
NHj3 experiments (filled triangles) and HIO.-H>SO4-NH3 experiments (filled circles) at 10 °C were
carried out during CLOUD14. Repeated standard experiments such as photochemical production
of H>SO4 and alpha-pinene ozonolysis experiments were carried out prior to physical experiments

to ensure data consistency among different campaigns.

Instrumentation

Naturally charged clusters were measured with two atmospheric pressure interface time-of-flight
mass spectrometer (APi-TOF, Aerodyne Inc.) operating at negative ion mode(46). The first APi-
TOF was equipped with a multi-scheme chemical ionization inlet(47) (MION) operating at the
APi-TOF mode (Fig. 3C, D). The second APi-TOF was coupled with an ion-molecule reaction
chamber and a regular stainless-steel inlet into the chamber (Fig. 3E, F). Charged particle size
distribution and mobilities both in negative and positive polarities were measured with a neutral
cluster and air ion spectrometer (NAIS)(48, 49) in the size range of 0.8 to 42 nm. Particle number
size distribution between 1 and 3 nm was measured by nano-condensation nucleus counter
(nCNC), consisting of a particle size magnifier (PSM, Airmodus Oy) coupled to a condensation
particle counter (CPC). The PSM is an aerosol pre-conditioner, which uses diethylene glycol to
grow aerosol particles as small as 1 nm to sizes that are easily detectable by a CPC(50). An
additional butanol CPC (TSI 3776) was utilized to measure the total number concentration of

particles with diameters larger than 2.5 nm.

The particle size distribution between 6 and 65 nm was measured by a nano scanning mobility
particle sizer (TSI 3938)(57) and the particles bigger than 65 nm were measured by a custom-built
long SMPS. In parallel, a differential mobility analyzer — train (DMA-train)(52) consisting of 6

DMASs measured the particle number size distribution between 1.8 and 8 nm, from which growth



rates in the size ranges 1.8-3.2 nm and 3.2-8 nm were retrieved with high precision. With these

instruments, the particle size distribution from 1 nm to 1 pm is measured.

Gas monitors were used to measure sulfur dioxide (SO», Thermo Fisher Scientific Inc. 42i-TLE)
and ozone (O3 Thermo Environmental Instruments TEI 49C) and a cavity-enhanced differential
optical absorption spectrometer (CE-DOAS) was used to measure molecular iodine, 1. I> was
additionally measured by a bromide chemical ionization mass spectrometer coupled with a multi-
scheme chemical ionization inlet (Br-MION-CIMS)(47, 53) and was calibrated at CLOUD13 by
comparing the measured normalized I, signal from Br-MION-CIMS to the absolute value
measured by the CE-DOAS(53). Ammonia (NH3) was measured by H;O"-CIMS at CLOUD13
with a detection limit of 4 pptv at 278 K and 80 % RH(54). For a conservative calculation of the
enhancement of HIO, on H>SO4-NHj3 nucleation in this study, we assume the chamber NHj3
background equals 4 pptv at CLOUDI13. However, it is worth noting that the actual NHj
concentration in the chamber is very likely below 1 pptv, as evident from the fact that few of the
charged clusters contain NH3 in experiments without active NHs injection (Fig. 3C, D). In
CLOUDI14, a proton transfer reaction mass spectrometer 3 (PTR3)(55) was used to measure NH3
as the H3O"-CIMS was not available. The PTR3 had a significantly higher NH3 background due
to the NH3 — inlet wall interaction and an NHs-collecting Teflon ball valve placed in between the
instrument and the CLOUD chamber(56). The Teflon piece was needed as the PTR3 was regularly
calibrated against standard volatile organic compounds during the experiments. In order to ensure
NHjs-free initial conditions (NH3 < 1 pptv), we alternatively used the APi-TOF as a qualitative NH3
detector. The APi-TOF has been proven to be an extremely sensitive NH3 detector once H2SO4 is
present in the chamber as they form charged clusters efficiently(5). Therefore, prior to the
experiments presented in this study from CLOUD14, H,SO4 nucleation experiments were carried
out and we only found a few charged clusters containing NHj3, indicating the chamber was
essentially NH3 free. Additionally, the chamber was roasted at 100 °C for over 12 h to ensure
removing any NH3 wall residue. Despite the high NH3 background, the PTR3 was still sensitive to
the NH3 changes in the chamber(56) and the final NH3 values reported from CLOUDI14 were

background corrected by values before the NH3 injection.



Sulfuric acid (H2SOs4), iodic acid (HIO3), iodous acid (HIO;) and neutral dimers were measured
with a nitrate chemical ionization mass spectrometer (NO3-CIMS). A NO;™-CIMS is an APi-TOF
coupled with a chemical ionization inlet that utilizes nitric acid (HNO3) as the reagent gas to charge
analytes in samples(57). An ion-filter was installed before the chemical ionization source to avoid
interferences from naturally charged ions from the chamber. The details of the chemical ionization
inlet used to measure the reported data points in this study can be found in our earlier study(58).
The quantification of these acids follows a standard calibration method as described in Kiirten et

al. 2012(59).

Given the extensive research on H>SO4 and HIO;3 detection, and the fact that both are measured at
the collision limit, we assess the efficiency of HIO; detection by combining experimental and
theoretical evidence in this study. In our experiments, HIO, is primarily detected as HIO»-HNO:3-
NO3™ (comprising 95%) using the NO;™-CIMS. Our calculations (see details in quantum chemical
calculations part) indicate that the preferred dissociation channel yields HIO>-NO3~ and HNO3 as
the products, with a formation enthalpy of 35.5 kcal mol™!, thereby preserving the chemical signal
of HIO.. It is essential to note that a secondary dissociation channel forms HIO, and HNO3-NO3~
as the products and therefore causes the chemical signal of HIO; to be lost, owing to a slightly
higher enthalpy of 35.7 kcal mol~'. Since the preferred dissociation channel accounts for only 5%
of total HIO; signals in the form of HIO,-NOs~, we anticipate that the secondary dissociation
channel leads to less than a 5% loss in the total HIO> signal. Consequently, HIO; is detected nearly

at the collision limit.

Additionally, an independently calibrated NO3;~-CIMS-2 with a different inlet design(57) was used
to cross-check the concentrations reported by the NO;-CIMS in CLOUDI2. During the
CLOUDI13, the Br -MION-CIMS was used to validate the reported acid concentrations. In both
campaigns, the differences were within the reported systematic error of —33%/+50%. The data
points reported in CLOUD14 were primarily provided by the NO3™-CIMS (calibrated) as the NO3™-
CIMS-2 was absent. However, we note that the reported results from CLOUD14 (larger triangles
and filled circles) are consistent with those reported from CLOUD12 and CLOUD13.



Calculation of the nucleation, growth rates and particle survival probability

The nucleation rate, J17, is calculated at the 1.7 nm mobility diameter (1.4 nm in physical
diameter(60)). Particles at 1.7 nm are commonly considered to be larger than their critical cluster
sizes, and are therefore stable. In the absence of other particle sources than particle nucleation, the
formation rates can be calculated from the time evolution of the particle concentration, taking into
account the different loss processes that also affect the concentration. Since the loss processes in
a chamber are different from those in the atmosphere, the method needs to be adjusted for chamber
experiments(6/). For the calculation of the formation rate (Jap), we need to consider the losses
specific to the CLOUD chamber, including dilution, wall and coagulation losses. In our case, it is

calculated as below:

dN
]dp = E + Sqil + Swan + Scoag

Where dN/dt is the time derivative of the total particle concentration above a certain particle size
(here >1.7 nm for J;7and >2.5 nm for J2 5) and Sail, Swant and Scoag are the size-dependent particle

losses due to dilution, wall and coagulation.

The particle growth rates are calculated using the 50% appearance time method as described in
Dada et al.(67) and Lehtipalo et al.(62) and the theoretical derivation of the 50% appearance time
method at the molecular level is provided in He et al.(/9). Growth rates between 1.8 and 3.2 nm

are derived from the DMA-train data(52).

The particle survival probability(63) in this study is defined as the probability of particles growing
from 1.7 nm to 2.5 nm (both in mobility diameter) calculated by dividing the J> 5 by the Ji.7 which
both include the size-dependent losses to dilution, to the wall and to coagulation. The theoretical
survival probability is calculated using Lehtinen et al.(64), an updated version of Kerminen and

Kulmala equation(63).



Field observations

The acid concentrations from the Arctic Ocean were adopted from the MOCCHA campaign on
board the Swedish I/B Oden in August and September 2018 as part of the Arctic Ocean expedition
2018(20). The campaign was especially characterized by over four weeks of ice-drift operation at
latitudes higher than 88 °N, thus providing valuable information from the center of the Arctic

Ocean.

The Villum research station is located in the northeast of Greenland. It is on Prinsesse Ingeborg
Halve peninsula. The data reported in this study is cited from a field observation carried out in

March-August, 2015(17).

The Ny-Alesund acid concentrations were measured at the Gruvebadet Observatory located at
about 50 meters above sea level, 800 meters southwest of the village of Ny-Alesund. The
experiments were carried out between mid-February 2015 (data reported in this study starting from

March 2015) until the end of August 2015(217).

The field observation at Helsinki was carried out between June and August 2018 during the
summertime blooms in the Baltic Sea. The site is surrounded by forests, coastal waterbodies and

a major road connecting the city center and suburban areas(65).

The Virrio research station is located in the north part of Finland. Measurements were done on top
of Kotovaara hill (390 meters a.s.l.). The measurement period of reported data was from April to

October 2019(66).

Réunion Island is located in the southwestern part of the Indian Ocean. The observation site was a
modern research station on top of an old volcanic caldera (Maido-OPAR observatory,
L'observatoire de physique de 1'atmosphére de La Réunion). The site is located at 2160 m above
sea level and is regularly exposed to free tropospheric air masses. The data reported in this study

were obtained in April 2018(22).



The Antarctic Circumnavigation Expedition (ACE) was carried out between December 2016 (data
reported in this study starting from January 2017) to March 2017 on board the Russian icebreaker
Akademik Tryoshnikov(23). The expedition sailed around Antarctica and across the Southern

Ocean, providing rare information on atmospheric trace gases.

The Finnish Antarctic research station (Aboa) is located on Basen Nunatak at Vestfjella mountains
in Queen Maud Land, Eastern Antarctica. The measurement site is roughly 480 meters above sea
level and 130 km south of the sea ice. The data reported in this study were obtained from December

2014 to January 2015(6).

Quantum chemical calculations and Kinetics modeling

We investigated cluster formation of the binary HIO3-HIO», H>SO4-HIO, and the ternary H>SOs-
HIO3-HIO; systems by employing quantum chemical calculations and kinetics modeling. Similar
to previous studies(67—69), the global minimum structures of (H2SO4)13(HIO2)13 and
(H2S04)x(HIO3),(HIO2). (2 < x + y <3, z = 1-3) clusters were identified using a multistep global
minimum sampling scheme. The geometries of pure (H2SO4)1-3 and (HIO3)0-3(HIO2)o-3 were taken
from our previous studies(28, 67). Briefly, around 5000-9000 initial configurations for each cluster
were randomly generated, and then underwent a stepwise screening process with a series of
theoretical methods to find the configuration with the lowest Gibbs free energy. The employed
theoretical methods for configuration optimization and single-point energy calculations include
PM7, M06-2X/def2-TZVP, M06-2X/aug-cc-pVTZ(-PP) and DLPNO-CCSD(T)/aug-cc-pVTZ(-
PP) (aug-cc-pVTZ-PP for I atoms and aug-cc-pVTZ for H, O, S atoms). The GoodVibes
program(70) was employed to recalculate the Gibbs free energy correction term (via quasi-
harmonic correction) of clusters at the M06-2X/aug-cc-pVTZ(-PP) level with a low frequency
cutoff value of 100 cm™'. Finally, the conformer with the lowest Gibbs free energy at 298.15 K
(the sum of single point energies at the DLPNO-CCSD(T)/aug-cc-pVTZ(-PP) level and the
recalculated Gibbs free energy correction terms by GoodVibes) was determined as the global
minimum for a given cluster. Additionally, we have obtained Gibbs free energies for all the global
minima at other temperatures by combining the single point energies at the DLPNO-
CCSD(T)/aug-cc-pVTZ(-PP) level and the recalculated Gibbs free energy correction terms by

GoodVibes at corresponding temperature. Geometry optimization, frequency, and single-point



energy calculations using the PM7 and M06-2X methods were performed in the Gaussian 16
program(7/) and DLPNO-CCSD(T)/aug-cc-pVTZ(-PP) calculations were performed using
ORCA 4.0.0 program(72) with tight SCF and PNO convergence criteria. The formation free energy
(AG) values for individual clusters were obtained by subtracting the sum of Gibbs free energies of

their constituent molecules from that of the clusters at the considered temperature.

The atmospheric cluster dynamics code (ACDC)(29) was employed to simulate cluster formation
rates for the comparison with CLOUD experiments. Here, the ACDC simulation system was
performed on (H2S04),(HIO3),(HIOz). (0 < x+y < 3, z = 0-3) clusters. The (H2S04)4(HIO>)4,
(H2S04)3(HIO2)4, (HIO3)4(HIO2)3, (HIO3)3(HIO2)4, (H2SO4).(HIO3)(HIO2)3 (x + y = 4) and
(H2S04)x(HIO3),(HIO2)4 (x + y = 3) clusters were selected as boundary clusters that are allowed
to leave the H>SO4-HIO;-HIO: simulation system and contribute to cluster formation rates, and
their physical diameters were estimated to be ~ 1.2 nm, which is comparable to the mass diameter
of 1.4 nm for the reported nucleation rates of cloud experiments. The selection of (H2SO4)4(HIO?)4
instead of (H2SO4)4(HIO>)s is due to the higher evaporation rate (7 x 1072 s7!) of the latter. As
(H2S04)4(HIO2)4 has an evaporation rate of 3 x 107 s7!, it is stable enough to be considered as the
boundary cluster. Since the enhancement factor for collision rate coefficients of H>SO4 molecules
from hard sphere kinetic gas theory is around 2.3 due to attractive van der Waals forces(33, 73)
and we approximately estimated the enhancement factor to be 2.4 for HIO3-HIO: collision in our
recent study(28), the enhancement factor is approximated to be 2.3 for H>SO4-HIO3-HIO> system
here. To compare directly with CLOUD experiments, the simulations were run under the same
precursor concentrations (concentrations of HIO3, H>SO4 and HIO,) and wall loss rates as the
CLOUD experiments for each cluster at —10 °C (Fig. 2C). In addition, we also ran ACDC
simulations for the binary HIO3-HIO, system and H>SO4-HIO; system using a “3 % 3” box as a
comparison with the ternary H>SO4-HIO3;-HIO> system. (HIO3)4(HIO2)3 and (HIO3)3(HIO?)a,
(H2S04)3(HIO2)4 and (H2S04)4(HIO2)4 clusters were set as the boundary clusters for HIO3-HIO»
system and H>SO4-HIO, system respectively, and other settings were similar to those of the HoSOs-

HIO3-HIO; system.



The formation mechanisms of HIO:

Quantum chemical calculations were employed in order to investigate the formation mechanisms
of'iodous acid, HIO». The reactants, intermediates, transition states and products for reactions [>O»
+ H,0 — HIO; + HOI (R1) and OIO + HO, — HIO: + O (R2) have multiple possible conformers.
A systematic conformer sampling was carried out using the MMFF method in the Spartan ‘18
program. The conformer sampling algorithm with Spartan allows for pre-optimization and the
elimination of duplicate structures, which is computationally more efficient than other conformer
sampling approaches like MS-TOR. Geometry optimization and frequencies were calculated with
MO06-2X/aug-cc-pVTZ(-PP) method with the ultrafine grid using the Gaussian 16 program(77).
This was followed by coupled-cluster single-point energy corrections at the CCSD(T)/aug-cc-
pVTZ(-PP) level of theory using the ORCA 4.2.1 program(74). lodine pseudopotentials were taken
from the Environmental Molecular Sciences Laboratory (EMSL) basis set library(75, 76). The
stability of the wavefunction was checked at the CCSD(T) stage to ensure that the lowest lying
wavefunction was found for the intermediates and transition states along R1 and R2. This was
carried out by running Hartree-Fock calculations with 15 HOMOs ad 15 LUMOs switched
randomly and generating 100 input files with the orbital rotations applied. These calculations were
carried out with the def2-TZVPP basis set and using the ORCA program. This is a much more
robust approach for checking wavefunction stability than e.g., the standard Stable=Opt check in

Gaussian.

The formation of HIO> via R2 along the triplet surface was also checked and found to have a low
barrier of ca. 2.5 kcal mol™! above the intermediate (and —9.4 kcal mol™! below the reactants OIO
+ HO»). Additionally, this leads to the formation of a triplet O (+singlet HIO»), which is a
significantly exothermic process (ca. =36 kcal mol~! below the reactants). The triplet transition
state also has a very low imaginary frequency of —45 cm™!, which likely indicates that the reaction

1s close to barrierless.
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Fig. S1. Ion number size distribution from HIO-H:SOs (A, C, E) and HIO«-H2SO4+-NH3 (B, D, F) at -10 °C. (A,
B) Negative ion number size distribution, (C, D) positive ion number size distribution and (E, F) ion concentrations.
Ion-induced nucleation at background level of NH3 levels only occurs at the negative channel (A) and the negative
ion concentration is significantly higher than positive ions (E). However, ion-induced nucleation turns to bipolar (B,
D) at ca. 40 pptv of NH3 and the ion concentrations at both polarities are similar. The experimental conditions are the
same as in Fig. 1: 41.1 ppbv O3, 63.5% RH, 2.3 ppbv SOz and 17.4 pptv 12 (A, C, E), and 40.8 ppbv O3, 62.3% RH,
1.6 ppbv SO2 and 67.2 pptv 12 (B, D, F) with varying light intensities. Stages (a, c, d, e, f, g) enhanced the UVH light
intensity (higher OH production rates) and stage (b) increased the green light intensity (higher 1> photolysis rate). The
results suggest that ion-induced HIO.-H2SO4 nucleation proceeds in the negative channel, while ion-induced HIOx-

H>SO4-NH3 nucleation proceeds in both the negative and positive channels.
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Fig. S2. New particle formation from HIOx-H2SO4 (A, C, E) and HIO»-H:SO4-NH3 (B, D, F) at 10 °C. (A, B)
Negative ion number size distribution, (C, D) positive ion number size distribution and (E, F) vapor concentrations
and nucleation rates. Solid lines show measured nucleation rates at 1.7 nm, Ji1.7 (solid black) and predicted J1.7 from
H2SO4-NHs nucleation alone (solid red)(/4). Dashed lines represent ion and vapor concentrations. The NH3
concentration in panel E is the detection limit of H3O™-CIMS instrument(54) and the actual NH3 concentration is
expected to be below 1 pptv as all charged clusters are essentially NH3 free (Fig. 3).The experimental conditions are
42.7 ppbv O3, 75.3 % RH, 1.8 ppbv SOz and 27.4 pptv > (A, C, E), and 43.3 ppbv O3, 42.4 % RH and 0.6 ppbv SO2
(B, D, F). I» concentration was not measured at 10 °C. Vertical grey bars (a-c) show the experimental stages of
increasing SOz concentrations, (d) represents elevating the green light intensity, (e) indicates elevating both the green
light and UVH intensities. The experiments clearly show that HIOx significantly enhances H2SO4-NH3 nucleation at
comparable HIO; and H2SO4 concentrations at 10 °C. Additionally, ion-induced nucleation at background NHj3 levels

only occurs at the negative channel (A) but it turns to bipolar (B, D) at ca. 200 pptv of NHs.
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Fig. S6. Effect of ions on HIO-H2SO4 nucleation at 10 °C. (A) Negative ion size distribution, (B) positive ion size
distribution and (C) vapor concentrations and nucleation rates. Solid lines show measured nucleation rates at 1.7 nm,
J1.7 (solid black) and predicted Ji.7 from H2SO4-NH3 nucleation alone (solid red)(/4). Dashed lines represent ion and
vapor concentrations. The experiments were carried out at the beginning at ion-free conditions (neutral) and were
continued at galactic cosmic ray conditions (GCR) and finally at beam enhancement conditions (Beam). The ion
production rate enhancement at the beam condition is estimated by the ratio of ion concentrations from the beam
condition to those from the GCR condition. A significant ion effect is observed in this set of experiments. The
experimental conditions are 42.5 ppbv Os, 75.2 % RH and 4.5 ppbv SOz. Our results suggest that ground level of
ionization rate significantly enhances HIO»-H2SO4 nucleation while further enhanced ionization rate only moderately

enhances the nucleation rate.
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The results show that HIO; enhances H2SOs4 stability in charged clusters under background NHs levels. At equal
amounts of HIO3 and H2SO4, NH3 does not further enhance the H2SO4 molar ratio. Additionally, HIOs contributes to

charged cluster formation starting at dimers at —10 °C and at tetramers at 10 °C.
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Fig. S8. Effect of NH3 on HIO\ nucleation. (A) Negative ion size distribution, (B) positive ion size distribution and
(C) vapor concentrations and nucleation rates. The results show that NH3 has a negligible effect on HIOx nucleation.
Dashed lines represent total ion concentrations (dashed black), HIOs; concentrations (dashed purple) and NHj3
concentrations (dashed yellow). The NHs concentrations are scaled down by a factor of 10 to optimize data
presentation. The solid black line shows measured nucleation rates at 1.7 nm, Ji.7. The experimental conditions are
42.1 ppbv Os and 43.3 % RH. The results show that NH;s up to 100 pptv does not significantly enhance iodine oxoacid

nucleation.
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Fig. S9. Growth rate and survival probability. (A) measured growth rates between 1.8 to 3.2 nm by DMA-train
versus the expected growth rates from kinetic H2SO4(33) and HIO3(/8) condensation at the concentrations
corresponding to the measurement conditions. (B) survival probability of 1.7 nm particle growing to 2.5 nm, J25 / J1.7.
The J25 is measured with a condensation particle counter and the Ji.7 is measured with a particle size magnifier. The
estimated survival probability is calculated based on Lehtinen et al.(63, 64). Error bars show one standard deviation
during the data selection period. Systematic errors resulting from uncertainties in the vapor concentrations (for
estimating growth rates) and instrument cut-off sizes are not included in the plots. The results show that HIO3; enhances
H2SOs stability in charged clusters under background NHs levels. At equal amounts of HIO3; and H2SOs, NH3 does
not further enhance the H>SO4 molar ratio. Additionally, HIOs contributes to charged cluster formation starting at

dimers at —10 °C and at tetramers at 10 °C.
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Fig. S10. Nucleation rate of HIO.-H2SO4(-NH3) and the enhancement by HIOx at —10 °C. A) nucleation rate of
HIO:-H2SO4(+NH3) estimated by summing up HIOx-H2SO4 and H2SO4-NH3 nucleation rates. The NHs concentration
is assumed to be 10 pptv in pristine environments and the HIO2 concentration is fitted from the experiments carried
out at —10 °C (squares in Fig. S5). The condensation sink is assumed to be 0.0022 s™! in the calculations. The nucleation
rate of H2SO4-NH3 is calculated from our earlier studies(/4). The 10 % and 90 % ranges from polar observations are
drawn on top of the nucleation rates by dashed lines. B) Nucleation rate enhancement factor (EF), is calculated by
dividing the nucleation rate from the sum of HIO.»-H2SO4 and H2SO4-NH3 (10 pptv) nucleation rates to the H2SOas-
NH3 nucleation rate alone. The 10 and 90 percentiles from polar observations are drawn on top of the EF indicating
that the nucleation rates might be significantly underestimated if not considering HIO.. The results show H2SO4-NH3

nucleation might be significantly enhanced by HIO. under ambient conditions.
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