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Abstract. Let T
P2
t f (x) denote the solution to the linear Schrödinger equation

at time t, with initial value function f , where P2(ξ) = |ξ|2. In 1980, Carleson asked
for the minimal regularity of f that is required for the pointwise a.e. convergence of

T
P2
t f (x) to f (x) as t → 0. This was recently resolved by work of Bourgain, and Du

and Zhang. This paper considers more general dispersive equations, and constructs
counterexamples to pointwise a.e. convergence for a new class of real polynomial
symbols P of arbitrary degree, motivated by a broad question: what occurs for
symbols lying in a generic class? We construct the counterexamples using number-
theoretic methods, in particular the Weil bound for exponential sums, and the
theory of Dwork-regular forms. This is the first case in which counterexamples
are constructed for indecomposable forms, moving beyond special regimes where
P has some diagonal structure.

1 Introduction

Given a polynomial P(ξ) ∈ R[ξ1, . . . , ξn] of degree k ≥ 2, the operator

TP
t f (x) :=

1

(2π)n

∫

Rn

f̂ (ξ)ei(ξ·x+P(ξ)t)dξ,(1.1)

initially defined for f of Schwartz class on Rn, gives a solution to the linear PDE
{

∂tu − iP(D)u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f (x), x ∈ Rn.
(1.2)

Here D = 1
i
( ∂
∂x1

, . . . , ∂
∂xn

) and P(D) is defined according to its real symbol by

P(D)f (x) =
1

(2π)n

∫

Rn

eiξ·xP(ξ)f̂ (ξ)dξ.

When P(ξ) = |ξ|2, in which case (1.2) is the linear Schrödinger equation,

Carleson famously asked [Car80, Eqn. (14) p. 24]: what is the smallest s > 0 such
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that

lim
t→0

TP
t f (x) = f (x), a.e. x ∈ Rn, for all f ∈ Hs(Rn).(1.3)

This question was resolved for dimension n = 1 quite swiftly by [Car80, DK82],

which established that (1.3) holds if and only if s ≥ 1/4. In higher dimensions,

there is a long history of work on necessary and sufficient conditions for the

Schrödinger pointwise convergence problem, including [Cow83, Car85, Sjö87,

Veg88, Bou95, MVV96, TV00, Lee06, LR17, DGL17, DGLZ18, LR19]. For

several decades it was expected that s = 1/4 might be the critical threshold in

all dimensions, until Bourgain pushed the necessary condition on s above 1/4 in

[Bou13]. It was very recently resolved (up to the endpoint) by Bourgain [Bou16],

who showed that s ≥ 1/4 + δ(n) with δ(n) = (n − 1)/(4(n + 1)) is necessary, while

Du and Zhang [DZ19] showed that s > 1/4 + δ(n) is sufficient.

Bourgain’s counterexample construction was interesting: it cleverly employed

Gauss sums to force sup0<t<1 |TP
t f (x)| to be large (from which a violation of (1.3)

can be deduced) for test functions f defined using exponential sums. Recently,

in [ACP23] we expanded this idea into a more flexible method for producing

counterexamples to pointwise convergence results of the form (1.3) for the ini-

tial value problem (1.2), using the Weil bound for complete exponential sums.

In that initial paper, we demonstrated the new method for symbols of the form

P(X1, . . . ,Xn) = Xk
1 + · · · + Xk

n for any degree k ≥ 3, and we proved that

s ≥ 1/4 + δ(n, k)

is necessary for (1.3) to hold, for δ(n, k) = (n − 1)/(4((k − 1)n + 1)). Subsequently

[EPV22] adapted the method of [ACP23] to achieve a result of the same strength,

for any polynomial whose leading form (homogeneous part of highest degree)

takes the special shape

(1.4) Pk(X1, . . . ,Xn) = Xk
1 + Qk(X2, . . . ,Xn),

where Qk ∈ Q[X2, . . . ,Xn] is a nonsingular form of degree k that is independent

of X1. For degree 2 forms, the special shape (1.4) does not entail a loss of generality,

since any quadratic form can be diagonalized over R, and as we will explain, the

underlying problem allows for such changes of coordinates. However, for k ≥ 3,

forms Pk of the shape (1.4) are quite sparse among degree k forms in Q[X1, . . . ,Xn]

(in a sense we quantify in §8), and it is well-known that in arithmetic problems, a

form with some diagonal structure is generally easier to handle. We are motivated

by the question: what is the minimal regularity required for (1.3) when the real

polynomial symbol P has leading form belonging to a generic class of degree k

forms in Q[X1, . . . ,Xn]?
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For any fixed real symbol P, the key to proving or disproving pointwise con-

vergence as in (1.3) is the associated maximal operator

(1.5) f �→ sup
0<t<1

|TP
t f |.

For a given s, to prove that pointwise convergence (1.3) holds for all f ∈ Hs(Rn), it

suffices to prove (for example) that the maximal operator maps Hs(Rn) to L2
loc(R

n).

In the other direction, to prove that convergence (1.3) fails for some functions

in Hs(Rn), it suffices to prove that the maximal operator is unbounded from Hs(Rn)

to L1
loc(R

n); see for example [Pie20, Appendix A] for a summary of these standard

arguments. Thus we state our main result in terms of showing the maximal operator

(1.5) is unbounded from Hs(Rn) to L1
loc(R

n) for s in a certain range.

For any fixed n ≥ 2 and degree k ≥ 2, nonsingular forms are generic among

degree k forms in Q[X1, . . . ,Xn]. Given a value s > 0, the truth (or falsity) of a

bound of the form

(1.6) ‖ sup
0<t<1

|TP
t f |‖L1

loc(R
n) ≤ Cs‖f‖Hs(Rn) for all f ∈ Hs(Rn)

is invariant underGLn(R)-action on the polynomialP (see §3.5). Thus if onewishes

to understand this putative bound for an arbitrary polynomial P with nonsingular

leading form Pk ∈ Q[X1, . . . ,Xn], it is no loss of generality to first apply a GLn(Q)

change of variable to put Pk in a convenient form. We heavily exploit the following

property: for every nonsingular form in L[X1, . . . ,Xn] for an infinite field L, there

is a GLn(L) change of variables under which the form becomes Dwork-regular

(see the definition in (1.8)). Thus in the study of generic forms, it is no loss of

generality to focus on Dwork-regular forms, and we do so here.

The fact that diagonalization, so convenient for quadratic forms, is out of reach

for most higher-degree forms, is a dominant theme in the study of symmetric

tensors (which, roughly speaking, generalize the symmetric matrix associated to

a quadratic form). This has led to the development of many notions of rank for

degree k forms, including the Schmidt rank (or h-index), Waring rank (symmetric

tensor rank), slicing rank, relative rank, the property of decomposability, and

more. Each such notion of rank is motivated by specific applications in algebraic

invariant theory, number theory, algebraic geometry, computational complexity,

etc. Similarly, our present work leads to a new notion of rank, which we now

define.

Definition (Intertwining rank). A variable Xi intertwines with Xj (with i �= j)

in a form Pk of degree k ≥ 2 if (∂2/∂Xi∂Xj)Pk �≡ 0. By convention, Xi intertwines

with itself. The intertwining rank r(Xi) of Xi in Pk is the number of variables with

which Xi intertwines. The intertwining rank of the form Pk is min1≤i≤n r(Xi).
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For example, X3
1 +X3

2 +X3
3 +X3

4 has intertwining rank 1, while X3
1 +X1X

2
2 +X2X3X4

has intertwining rank 2. Our main result is:

Theorem 1.1. Fix n ≥ 2 and k ≥ 2. Let P ∈ R[X1, . . . ,Xn] be a polynomial

whose leading form Pk ∈ Q[X1, . . . ,Xn] is Dwork-regular in X1, . . . ,Xn over Q

and has intertwining rank r. Suppose there is a constant Cs such that for all

f ∈ Hs(Rn),

(1.7) ‖ sup
0<t<1

|TP
t f |‖L1(Bn(0,1)) ≤ Cs‖f‖Hs(Rn).

Then s ≥ 1
4 + δ(n, k, r) with

δ(n, k, r) =
n − r

4((k − 1)(n − (r − 1)) + 1)
.

We now briefly situate Theorem 1.1 with respect to previous literature, and then

we explain the context of Dwork-regular forms, describe more precisely the notion

of “generic” forms, and illustrate that a strength of the theorem is its application

to indecomposable forms.

1.1 Relation to previous literature on convergence problems. As

an immediate consequence of Theorem 1.1, pointwise convergence as in (1.3)

fails for some f ∈ Hs(Rn) for the initial value problem (1.2) defined by P, for

each s < 1/4 + δ(n, k, r) (following the standard arguments recorded in [Pie20,

AppendixA]).Our presentwork also adapts (in a trivialway) to dimensionn = r = 1

(see Remark 5.1), but we omit the details, since in 1 dimension, (1.3) holds for

all polynomials P of degree k ≥ 2 if s ≥ 1/4 and fails if s < 1/4, by [KPV91,

Cor. 2.6], [DK82, KR83].

The threshold 1/4 is a common sticking point of many methods in the literature

relating to the convergence problem (1.3); see, e.g., the survey in [ACP23, §1.2].

The main content of Theorem 1.1 is for n ≥ 3, k ≥ 3, and 2 ≤ r < n. In

all dimensions, counterexamples to (1.3) and (1.7) for all s < 1/4, for any real

polynomial symbol (with leading form of any intertwining rank r ≥ 1), are due to

Sjölin [Sjö98]. Theorem1.1 is the first result to go beyond1/4 for intertwining rank

r ≥ 2, for all dimensions n ≥ 3. The strength of our result decreases as r increases,

and subsides to the requirement s ≥ 1/4 when r = n. For intertwining rank r = 1,

Theorem 1.1 recovers the special case of diagonal symbols considered in [ACP23],

and the symbols of the form (1.4) considered in [EPV22]. For degree k = 2, by

the spectral theorem, any quadratic leading form is diagonalizable under GLn(R),

which (after further renormalization) reduces the case of quadratic forms to the case

of intertwining rank r = 1. For dimension n = 2, the only cases are intertwining

rank r = 1, in which case Theorem 1.1 recovers a result of [EPV22], and r = 2, in
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which case Theorem 1.1 states s ≥ 1/4, which was previously known. It remains

an interesting open question whether the regularity condition in Theorem 1.1 can

be increased further.

In all dimensions, (1.3) holds for all s > 1/2, for a wide class of differentiable

functions, including any real polynomial P of principal type of order α for α > 1

(meaning |∇P(ξ)| ≫ (1+|ξ|)α−1 for all sufficiently large |ξ|), by [BAD91, Thm. D]

and [RVV06, Remark 2.2]. Positive results proving bounds related to (1.7) for

s ≤ 1/2, such as the celebrated work in the case P(ξ) = |ξ|2 in [DZ19], must

proceed by entirely different methods. For further notes on the vast literature on

convergence results, maximal operators and connections to local smoothing, we

refer to [ACP23, §1.2].

1.2 The role of Dwork-regular forms. Dwork-regular forms have been

extensively developed by Dwork [Dwo62] and later Katz (e.g., [Kat08, Kat09]).

To set the context for their definition, first recall that a form Pk is said to be

nonsingular overQ if the polynomials Pk, ∂Pk/∂X1, . . . , ∂Pk/∂Xn have no common

zeroes in Pn−1
Q

(correspondingly the projective hypersurface defined by Pk = 0

in Pn−1
Q

is nonsingular). (Here and throughout, L denotes a fixed algebraic closure

of a given field L, and Pn−1
L

denotes the (n − 1)-dimensional projective space

over the field L.) In comparison, Pk is said to be Dwork-regular over Q in the

variables X1, . . . ,Xn if there are no simultaneous solutions in Pn−1
Q

to

(1.8) Pk(X1, . . . ,Xn) = 0, Xi

∂Pk

∂Xi

(X1, . . . ,Xn) = 0, 1 ≤ i ≤ n.

A comparison of the definitions shows that any Dwork-regular form over Q is

nonsingular over Q. As mentioned before, any nonsingular form becomes Dwork-

regular under an appropriate change of variables (see §3). Our interest in passing

to Dwork-regular forms is that they are particularly amenable to applications of

the Weil–Deligne bound (Lemma 4.2) even after fixing one or more variables (a

consequence of Proposition 3.3). This allows us to make new progress on the

convergence problem (1.3) despite a central difficulty that appears if each variable

“interacts” with other variables in the leading form Pk. Intertwining rank captures

the amount of such interaction. The novelty in our present work is that we can

prove new results for forms of all intertwining ranks 1 < r < n.

1.3 Genericity: an underlying motivating question. We are moti-

vated by the question: what is the behavior of the initial value problem (1.2)

when Pk is a “generic” form in Q[X1, . . . ,Xn]? Technically, a class of forms is

said to be generic if it corresponds to an open set (in the Zariski topology) in the

moduli space of all degree k homogeneous forms in Q[X1, . . . ,Xn].
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As one example, nonsingular forms are generic. It is equivalent to show that

being singular is a condition on the coefficients of Pk that defines a closed set in

the Zariski topology. Since Pk is singular if and only if Pk, ∂Pk/∂X1, . . . , ∂Pk/∂Xn

have a common nonzero root, then Pk is singular if and only if the resultant of

Pk, ∂Pk/∂X1, . . . , ∂Pk/∂Xn vanishes. This resultant is a (nonzero) polynomial in the

coefficients of Pk, ∂Pk/∂X1, . . . , ∂Pk/∂Xn, so that Pk being singular is characterized

by its coefficients lying in the vanishing set of a polynomial, proving the claim.

As another example, indecomposable forms are generic; we describe this prop-

erty thoroughly in §1.4 below. The union of two Zariski closed sets (e.g., the

set of singular forms and the set of decomposable forms) is closed, and so the

complement (e.g., the set of forms that are nonsingular and indecomposable) is

open, and hence generic. Indeed, any generic condition will include nonsingular

forms (generically), and indecomposable forms (generically). This fact cuts in two

directions, one convenient and one inconvenient. First, on the one hand, even if we

are interested in studying generic forms, it is reasonable only to consider nonsin-

gular forms (which is advantageous for an application of Lemma 4.2). But on the

other hand, it shows that to understand the generic situation, we must understand

the case of indecomposable forms.

One strength of Theorem 1.1 is that it proves the first (nontrivial) counterex-

amples to (1.3) that apply to leading forms Pk that are indecomposable. Thus in

the next section we describe decomposability/indecomposability in more detail.

Nevertheless, Theorem 1.1 falls short of proving nontrivial results for a generic

class of forms: it is only nontrivial for forms of rank strictly smaller than n, and

these are not generic. In §8.4 we compute the codimension of Dwork-regular

forms of intertwining rank r < n, among degree k forms in Q[X1, . . . ,Xn]. This

codimension quantifies that Theorem 1.1 proves nontrivial results for a class of

forms that is not generic, but that nevertheless contains “many more” real symbols

than were tractable in previous works.

1.4 Indecomposable forms of degree k: definition, remarks and

examples. A form is called decomposable (or sometimes of Sebastiani–Thom

type) over a field L if there is a GLn(L) change of variables so that the form can be

written as a sum of at least two forms in disjoint sets of variables, for example

(1.9) P(X1, . . . ,Xn) = Q1(X1, . . . ,Xm) + Q2(Xm+1, . . . ,Xn)

for some 1 ≤ m < n. Otherwise, a form is indecomposable over L. All of

the forms considered in [ACP23, EPV22] were of the special shape (1.4), and

thus have intertwining rank r = 1. All forms with intertwining rank r = 1 are
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decomposable. Yet we are motivated to tackle indecomposable forms, since in the

moduli space of degree k ≥ 3 forms in Q[X1, . . . ,Xn], indecomposable forms are

generic for n ≥ 2, at least for (n, k) �= (2, 3). (This is related, e.g., to [Wan15, §6],

[HLYZ22, Thm. 3.2], [OS03, p. 303]; see further details in §8.)

Note that the intertwining rank of any decomposable polynomial is at most

⌊n/2⌋; this can be seen by inspecting (1.9). We use this to deduce the following

immediate corollary of Theorem 1.1, verified in §3.6.

Corollary 1.2. Fix n ≥ 2 and k ≥ 2. Let P ∈ R[X1, . . . ,Xn] be a polynomial

whose leading form Pk ∈ Q[X1, . . . ,Xn] is decomposable and nonsingular in

X1, . . . ,Xn over Q. Suppose there is a constant Cs such that for all f ∈ Hs(Rn),

‖ sup
0<t<1

|TP
t f |‖L1(Bn(0,1)) ≤ Cs‖f‖Hs(Rn).

Then s ≥ 1
4 + n

4((k−1)(n+2)+2) .

Since it has been remarked that it is challenging to exhibit indecomposable

forms (see, e.g., [Pum06, p. 348], [Wan15, p. 576]), we provide explicit examples.

For each degree k ≥ 3 and rank 2 ≤ r ≤ n, we exhibit indecomposable forms

of degree k that are Dwork-regular over Q in X1, . . . ,Xn with intertwining rank r,

namely

Pk(X1, . . . ,Xn) = Xk
1 + · · · + Xk

n +
∑

2≤j≤r

X1X
k−1
j +

∑

2≤i<j≤n

XiX
k−1
j , k ≥ 3 odd;

Pk(X1, . . . ,Xn) = Xk
1 + · · · + Xk

n +
∑

2≤j≤r

X2
1X

k−2
j +

∑

2≤i<j≤n

X2
i X

k−2
j , k ≥ 4 even.

For example, in dimension n = 3 the examples with intertwining rank 2 are

Pk(X1,X2,X3) = Xk
1 + Xk

2 + Xk
3 + X1X

k−1
2 + X2X

k−1
3 , k ≥ 3 odd;

Pk(X1,X2,X3) = Xk
1 + Xk

2 + Xk
3 + X2

1X
k−2
2 + X2

2X
k−2
3 , k ≥ 4 even.

In §8, we use a criterion of Harrison [Har75, HP88] to verify that these are in-

decomposable forms over Q (and hence in particular cannot be brought to have

intertwining rank 1 by any GLn(Q) change of variables).

1.5 Further directions. By the invariance of (1.6) under GLn(Q)-action

on P, the main result of Theorem 1.1 furthermore applies to any polynomial P with

leading form Pk ∈ Q[X1, . . . ,Xn] lying in the GLn(Q)-orbit of a Dwork-regular

form of intertwining rank r. How big is such an orbit? This points to an interesting

question, which is in fact typical when one encounters a notion of rank for a higher
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degree form. Given a particular notion of rank, in an application one often wants

to manipulate the original form (or class of forms) to make the (particular) rank

more advantageous; the limits of this procedure may depend on the underlying

field (and whether it is algebraically closed). For example, in the case of Schmidt

rank, there is recent work on regularization and a new relative rank in [LZ21],

and the relation to algebraic closure in [LZ22]. In the case of Waring rank, see

the celebrated work of Alexander and Hirschowitz [AH95] over C (and a nice

overview in [RS00]), or more recent work for monomials in [CCG12] and partial

progress overR or Q in [HM22], with intriguing remarks on the dependence on the

underlying field in [Rez13]. For our particular setting, this becomes the question:

howdoes the intertwining rank behave underminimization via GLn(Q)? We pursue

this question, which requires completely different methods, in other work.

1.6 Notation. In this paper we employ the convention e(t) = eit. Cor-

respondingly, f̂ (ξ) =
∫

Rm f (x)e−ix·ξdx and f (x) = (2π)−m
∫

Rm f̂ (ξ)eix·ξdξ, so that

Plancherel’s theorem takes the form ‖f‖2
L2(Rm) = (2π)−m‖f̂‖2

L2(Rm). The Sobolev

space Hs(Rm) is defined to be all f ∈ S′(Rm) with finite Sobolev norm

‖f‖2
Hs(Rm) =

1

(2π)m

∫

Rm

(1 + |ξ|2)s|f̂ (ξ)|2dξ.

We use the convention that Bm(c, r) is the Euclidean ball of radius r centered

at c in Rm. The notation A ≪κ B denotes that |A| ≤ C(κ)B for a constant C(κ).

It is harmless in our argument to allow constants to depend on the dimension n,

the symbol P of degree k, the intertwining rank r, and a Schwartz function φ

we will fix once and for all. Certain small constants, which we can choose

freely, we will denote by c0, c1, c2, . . .; we will demarcate these explicitly in

inequalities when we are preparing to exploit their small size. For v = (v1, . . . , vm),

w = (w1, . . . , wm) ∈ Rm, we define v ◦w = (v1w1, . . . , vmwm). For a multi-index α

we set yα = y
α1

1 · · · yαn
n , α! = α1! · · ·αn!, |α| = α1 + · · · + αn, and ∂α = ∂α1

1 · · · ∂αn
n ; for

two multi-indices α, β, α ≥ β and α − β denote coordinate-wise relations.

2 Method of proof

To prove Theorem 1.1, we construct a family of test functions {fj} that are Fourier-

supported in an annulus {(1/C)Rj ≤ |ξ| ≤ CRj} of radius Rj for a sequence of

Rj → ∞ as j → ∞. By definition

Rs
j‖fj‖L2 ≪C,s ‖fj‖Hs ≪C,s Rs

j‖fj‖L2.

Hence Theorem 1.1 follows immediately from an explicit construction:
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Theorem 2.1. Let n ≥ 2. Let P ∈ R[X1, . . . ,Xn] be a polynomial of degree

k ≥ 2 whose leading form Pk ∈ Q[X1, . . . ,Xn] is Dwork-regular over Q in the

variables X1, . . . ,Xn, and has intertwining rank r ≤ n. Fix any s < 1
4 + δ(n, k, r)

with δ(n, k, r) as in Theorem 1.1. Then there exists an infinite sequence of j → ∞

such that for Rj = 2j, there exists a function fj ∈ L2(Rn), where ‖fj‖L2 = 1 and f̂j is

supported in an annulus {(1/C)Rj ≤ |ξ| ≤ CRj}, and with the property that

lim
j→∞

‖ sup0<t<1 |TP
t fj(x)|‖L1(Bn(0,1))

Rs
j

= ∞.

To prove Theorem 2.1, we define each test function f so that |TP
t f (x)| can

be approximated by an (n − r)-dimensional exponential sum, which we show is

“large” for many x ∈ Bn(0, 1), after choosing t appropriately (depending on x).

This strategy is motivated by ideas of Bourgain (for degree k = 2) as explained in

[Pie20], and the flexible construction (applicable to degree k ≥ 3) developed in our

earlier work [ACP23], for the diagonal case P(X1, . . . ,Xn) = Xk
1 + · · · + Xk

n. How-

ever, a difficulty arises if the leading form Pk of the real symbol has intertwining

rank r > 1: in order to optimize the test functions f to violate the supposed upper

bound (1.7) for s as large as possible, one is naturally led to dilate one variable

within the exponential sum, say X1, by a large parameter. This large dilation

contributes large error terms to certain approximation arguments. We overcome

this by using the notion of intertwining rank. To assist the reader in tracking the

main ideas of the method, we now present a series of heuristic computations that

are not rigorous, but simply emphasize numerology. The remainder of the paper

carries out each step rigorously.

2.1 Heuristic overview. Let 
n(x1, . . . , xn) be a non-negative Schwartz

function with 
n(0) = 1 and 
̂n supported in [−1, 1]n. As in Theorem 2.1, we

think of R as a parameter that will go to infinity. Define a test function

(2.1) f (x) = 
n(S ◦ x)
∑

m∈Zn

mj≈R/�j

e((� ◦ m) · x)

for some parameters S = (S1, . . . , Sn) and � = (�1, . . . ,�n), with each Si,�i

chosen later to be 1,R or a small power of R. Let ‖S‖ =
∏

Sj for the moment, and

similarly for ‖�‖. The Fourier transform f̂ is supported in an annulus of radius

≈ R if each Sj ≪ R, and ‖f‖Hs ≈ Rs‖S‖−1/2Rn/2‖�‖−1/2, so that by normalizing

appropriately, f fits the hypotheses of Theorem 2.1. For this test function,

TP
t f (x) =

1

(2π)n

∫

Rn


̂n(ξ)e((S ◦ ξ) · x)
∑

m∈Zn

mj≈R/�j

e((� ◦ m) · x)e(P(S ◦ ξ + � ◦ m)t)dξ.
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For simplicity we temporarily assume P is a homogeneous form of degree k ≥ 2,

defined in terms of coefficients and multi-indices by

P(y1, . . . , yn) =
∑

|α|=k

cαy
α.

Step 1. Use partial summation to remove all terms in the sum over m that

depend on ξ (i.e., that are “not arithmetic”); this replaces the sum over m (up to an

error term) by

(2.2) ≈ w(R/�1, . . . ,R/�n)
∑

m∈Zn

mj≈R/�j

e((� ◦ m) · x + P(� ◦ m)t),

in which the new sum is the “arithmetic contribution” while

(2.3) w(y1, . . . , yn) = e((P(S ◦ ξ + � ◦ y) − P(� ◦ y))t)

is the “weight” that has been removed by partial summation. The weight

w(R/�1, . . . ,R/�n) contributes to the integral over ξ a factor with a linear phase

in ξ, namely ≈ e(S ◦ ξ · t∇P(R)), where R = (R, . . . ,R).

Step 2. Use integration by parts to remove all terms in the phase of the integral

over ξ that are order 2 or higher in ξ (up to an error term).

Step 3. After Step 2, one may immediately apply Fourier inversion to the

remaining integral over ξ, so that the main contribution to TP
t f (x) is a product of

the arithmetic contribution and

≈ 
n(S ◦ (x + t∇P(R))).

Then place constraints on x and t so that S ◦ (x + t∇P(R)) ≈ 0, so that applying


n(0) = 1 (and continuity of 
n) implies that 
n(S ◦ (x + t∇P(R))) ≈ 1 and hence

(2.4) |TP
t f (x)| ≈

∣

∣

∣

∣

∑

m∈Zn

mj≈R/�j

e((� ◦ m) · x + P(� ◦ m)t)

∣

∣

∣

∣

.

Step 4. Construct a set of x ∈ Rn that is a positive proportion of Bn(0, 1) so that

for each x in the set there exists t ∈ (0, 1) for which the arithmetic contribution

(2.4) is large. Up to some simple changes of variables, the set is a union of boxes

centered at rationals (a1/q, a2/q, . . . , an/q) for primes q ≈ Q, where Q is a small

power of R to be chosen later.

Step 5. Optimize the choices of S = (S1, . . . , Sn), � = (�1, . . . ,�n), and Q,

subject to the constraints that the error terms in all previous steps are acceptable.
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To unravel the chain of dependencies that make these steps efficient and com-

patible, first consider Step 3, which requires that for each j = 1, . . . , n

(2.5) Sj(xj + tRk−1) ≪ 1 ⇐⇒ t ≈ −
xj

Rk−1
+ O

( 1

Rk−1Sj

)

.

(This sketch assumes in particular that ∂1P(R) ≫ Rk−1; to achieve this, we develop

Lemma 3.5.) Given (x1, . . . , xn), if we choose t to satisfy this for x1, then the only

way it can simultaneously satisfy it for x2, . . . , xn is for x2, . . . , xn to all lie in O(S−1
j )

neighborhoods of x1. This is too limiting in Step 4 unless we set S2 = · · · = Sn = 1,

which we now do, so S = (S1, 1, . . . , 1) and ‖S‖ = S1. From now on, because of

the “large” rescaling factor S1, the first coordinate x1 will play a special role.

Next consider Step 2, in which we use iterated integration by parts (coordinate

by coordinate) to remove a “weight” from the integral that contains all terms in the

phase that are order 2 or higher in ξ; this weight takes the approximate form

W(ξ1, . . . , ξn) = e([P(S ◦ ξ + R) − L0(ξ) − L1(ξ)]t)

= e

(

t
∑

|β+γ|=k
|β|≥2

cβ+γC(β, γ)(S ◦ ξ)βRγ

)

,

in which L0 (respectively L1) represents terms in P(S ◦ ξ + R) that are order 0 (re-

spectively order 1) in ξ, and C(β, γ) are positive combinatorial constants. As usual,

the error term when a weight is removed by integration by parts (or summation by

parts) will be smaller if the weight is slowly-varying, and thus we must control the

derivatives of W. The error accrued in Step 2 must be at most a small proportion

of the main term (2.4). This will be achieved if for each nonzero multi-index

κ ∈ {0, 1}n, for all ξ ∈ supp 
̂n ⊆ [−1, 1]n,

(2.6)
∣

∣

∣

∂|κ|

∂ξκ
W(ξ)

∣

∣

∣ ≪ 1 ⇐⇒ t
∑

|β+γ|=k
|β|≥2,β≥κ

cβ+γC(β, γ)(S ◦ ξ)β−κSκ β!

(β − κ)!
Rγ ≪ 1.

From Step 3 we know that t ≈ R−(k−1), so we require the sum above to satisfy

≪ Rk−1. Each term in the sum is roughly of size SβRγ = S
β1

1 Rk−|β| for some |β| ≥ 2.

There are two scenarios: if |β| > β1, this term is ≪ Rk−1 as long as S1 ≪ R.

If β1 = |β|, which can only occur if β1 ≥ 2, then this term is ≪ Rk−1(Sβ1

1 /Rβ1−1),

which is ≪ Rk−1 as long as S1 ≪ R
β1−1

β1 , which is most restrictive when β1 = 2.

Thus we impose the condition S1 ≪ R1/2.

Next consider Step 1, in which the error introduced by iterated partial sum-

mation must be at most a small proportion of the main term (2.4). This will be
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achieved if for each nonzero multi-index κ ∈ {0, 1}n, for all y with yj ≈ R/�j,

(2.7)

∣

∣

∣

∂|κ|

∂yκ
w(y)

∣

∣

∣ ≪ �κR−|κ|

⇐⇒ t
∑

|β+γ|=k
|β|≥1,γ≥κ

cβ+γC(β, γ)(S ◦ ξ)β(� ◦ y)γ−κ�κ γ!

(γ − κ)!
≪ �κR−|κ|.

Note that in contrast to (2.6), in this case the phase in the weight w(y) includes

terms of order 1 in ξ, so that |β| = 1 is allowed in the sum immediately above.

Each term in the sum immediately above is roughly of size

Sβ�κ(� ◦ y)γ−κ ≈ S
β1

1 �κRγ−κ ≈ S
β1

1 Rk−|β| · �κR−|κ|.

Thus the condition (2.7) will be met, recalling t ≈ R−(k−1), as long as

S
β1

1 Rk−|β| ≪ Rk−1

for all |β| ≥ 1. There are again several scenarios: if |β| > β1 or if β1 = |β| ≥ 2,

this term is ≪ Rk−1 by arguing as in Step 2, under our assumption S1 ≪ R1/2. The

problem is that there is now also a third case, with β1 = |β| = 1 in which case the

requirement is asking that S1
1R

k−1 ≪ Rk−1. These problematic terms can be seen

as the contribution to the weight (2.3) that is varying the fastest with respect to y,

namely the portion of the phase that is highest order in y (total degree k − 1) and

linear in ξ. (We also provide an explicit example of such terms in (5.6).) One

way to achieve the requirement S1
1R

k−1 ≪ Rk−1 is to impose S1 ≪ 1, but this is

inefficient in Step 5. The strategy we adopt is to modify the definition of the test

function f so that such terms never appear.

Precisely, in the definition (2.1) of the test function f , we now restrict the sum

over m ∈ Zn to sum only over those coordinates mj with the following property:

for each multi-index α = (α1, . . . , αn), if αj ≥ 1 and α1 ≥ 1 then the coefficient

cα = 0 in the original polynomial P(y). Equivalently, we define the sum to be only

over those coordinates mj such that Xj never appears in a monomial with X1 in the

original polynomial P(y). (Equivalently, set �j ≈ R for each j such that Xj appears

in a monomial with X1, and in all other coordinates take �j = L, for L a small

power of R to be chosen later.)

Because the exponential sum is a source of gain in Steps 4 and 5, we wish

to sum over as many coordinates as possible, so depending on P(y) we relabel

coordinates in the beginning so that X1 is the variable that appears in monomials

with as few other coordinates as possible, say X2, . . . ,Xr with r < n; this is the

motivation for defining intertwining rank. We now let m = (mr+1, . . . ,mn), and
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only sum over these coordinates. The conclusion is that in place of (2.4) we arrive

at a main contribution of the form

(2.8)

|TP
t f (x)|

≈

∣

∣

∣

∣

∑

(mr+1,...,mn)∈Z
n−r

mj≈R/L

e(m · (Lxr+1, . . . ,Lxn) + P(R/L, . . . ,R/L,m)Lkt)

∣

∣

∣

∣

.

(Herewe used homogeneity ofP of degree k; tomakeR/L integral, seeRemark 6.1.)

In Step 4, to construct a set of x forwhich the above sum in (2.8) is “large,” imag-

ine that each Lxj = aj/q and Lkt = a1/q are rationals of prime denominator q ≈ Q,

so that the sum can be regarded as ≈ ((R/L)q−1)n−r copies of a sum where each

coordinate mj runs over a complete set of residues modulo q. Since P(y1, . . . , yn)

is Dwork-regular, even after specializing the first r variables, the remaining poly-

nomial is well-behaved (Proposition 3.3). A major feature of our argument shows

that for a positive proportion (≫ qn−r+1) of choices of a1, ar+1, . . . , an the (n − r)-

dimensional sum mod q is of the optimal size ≈ q(n−r)/2 (Proposition 4.1). Hence

at precisely such a point x and for such a t,

(2.9) |TP
t f (x)| ≈

( R

Lq

)n−r

q(n−r)/2 ≈
( R

LQ1/2

)n−r

.

To achieve a similar result for a positive measure of x, we need to show this

continues to hold for Lxj and Lkt merely “close” to rationals with denomina-

tor q. Typically, deducing this from the case where they are precisely rationals

would follow by applying partial summation to the sum in (2.8). The error in-

curred by partial summation will be too large if the “weight” removed involves

terms of the highest order in m. Thus we must choose t so that (i): Lkt = a1/q

precisely. Fortunately this is possible because of the wiggle room allowed in (ii):

Lkt ≈ −Lkx1/R
k−1+O(Lk/Rk−1S1), from (2.5) in Step 3. Given x1 with −Lkx1/R

k−1

in an interval of length O(1/q) centered at a1/q we can always choose t meeting

both requirements (i) and (ii) as long as Q−1 ≪ Lk/Rk−1S1, which we now assume.

In contrast, the coordinates Lxr+1, . . . ,Lxn appear as coefficients of the lowest-

order (linear) terms in m so that partial summation will contribute reasonable

errors when we allow Lxj to vary in an interval around aj/q. If the interval

is of length V , say, the contributed error will be proportional to (R/L)n−rVn−r

times the size of the main term, so we require (R/L)n−rVn−r ≪ 1. At the same

time, we want V to be large in order for the boxes so constructed to cover a

positive proportion of (xr+1, . . . , xn) ∈ [0, 1]n−r. In this regard the principle of

simultaneous Dirichlet approximation in n − r dimensions motivates the choice

V = 1/qQ1/(n−r) ≈ Q−1−1/(n−r) (see, e.g., [Pie20, Appendix B]). Taken together,

these two requirements force the condition Q−1−1/(n−r) ≪ L/R.
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Cumulatively, this construction yields boxes in the coordinates x1, xn−r, . . . , xn,

each of measure ≈ Q−1Vn−r, centered at around ≫ qn−r+1 rational tuples with

denominator q for each prime q ≈ Q. A naive calculation suggests the total

measure of the union of the boxes could be

≈ (Q/ logQ)Qn−r+1Q−1(Q−1−1/(n−r))n−r ≈ 1/ logQ.

Since the boxes can overlap significantly, a sophisticated justification is required

although the conclusion agrees with the above (Proposition 6.2).

Upon reaching Step 5, these heuristics suggest that for the test function f so

constructed, with ‖f‖Hs ≈ RsS
−1/2
1 (R/L)(n−r)/2, on a set x ∈ Bn(0, 1) of measure

≫ 1/ logQ,

|TP
t f (x)| ≫ (R/LQ1/2)n−r.

This occurs under the constraints

S1 ≤ R1/2, Q−1−1/(n−r) ≪ L/R, Q−1 ≪ Lk/Rk−1S1.

The claim of Theorem 2.1 consequently holds for each s such that

( R
LQ1/2 )

n−r(logQ)−1

S
−1/2
1 (R/L)(n−r)/2

≫ Rs′

for some s′ > s. Upon setting L = Rλ,Q = Rκ, S1 = Rσ this is equivalent to a linear

condition on λ, κ, σ and s subject to linear constraints, and it can be optimized,

which we do in detail in §7.

2.2 Outline of the paper. In §3 we state and prove all the key proper-

ties of Dwork-regular polynomials we will use, including that upon fixing one

or more variables, the resulting polynomial is a Deligne polynomial over Fq

(for all but finitely many primes q). In §4 we prove upper and lower bounds

on (complete and incomplete) exponential sums involving Deligne polynomials.

In §5 we approximate TP
t f , for appropriate test functions f , by an exponential sum.

In §6 we define a set of x ∈ Bn(0, 1) for which we can approximate this sum by

complete exponential sums to which we can apply the arithmetic results of §4.

In §7 we then optimize the choices of all parameters, thus proving Theorem 2.1.

Finally, in §8 we provide details on examples of Dwork-regular, indecomposable

forms of arbitrary intertwining rank and degree, and remark on the codimension

of such forms.
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3 Properties of Dwork-regular forms

In this section we first gather three algebraic properties of Dwork-regular forms

that we will apply throughout the proof. Then in §3.4, we prove a lower bound

on a partial derivative of a Dwork-regular form, in §3.5 we show that boundedness

(or unboundedness) of the maximal operator is invariant under a GLn(Q) change

of variables, in §3.6 we verify Corollary 1.2, and finally in §3.7 we remark that the

PDE’s we consider are dispersive.

It is convenient to work temporarily in a more abstract setting, and simply fix

a field L, which could for example be Q, R or a finite field Fq. We will later

call upon the lemmas we prove both in the setting of infinite fields such as Q

and R and finite fields Fq for q prime. Let L be a field and H ∈ L[X1, . . . ,Xn]

a homogeneous polynomial of degree k ≥ 2. Then H is nonsingular over L

if H, ∂H/∂X1, . . . , ∂H/∂Xn have no common zeroes in Pn−1
L

(correspondingly the

projective hypersurface defined by H = 0 in Pn−1
L

is nonsingular). Recall that H is

Dwork-regular in the variables X1, . . . ,Xn over L if there are no solutions in Pn−1
L

to the simultaneous equations

H(X1, . . . ,Xn) = 0, Xi

∂H

∂Xi

(X1, . . . ,Xn) = 0, 1 ≤ i ≤ n.

If H is Dwork-regular over L, then H is nonsingular over L. However, it can be

thatH is nonsingular but notDwork-regular: for example, Xk
1+· · ·+Xk

n−1+Xn−1X
k−1
n

over Q. However, if the field L is infinite, given any nonsingular form, there exists

a GLn(L) change of variables under which the form becomes Dwork-regular (see

[Dwo62, pp. 67–68] and [Kat09, Lemma 3.1]). (In fact, for a given form, there

are many such changes of variables: the proof of [Kat09, Lemma 3.1] can be

adapted to show that the set of such elements is dense in GLn(L).) We quote from

Katz in [Kat08, p. 1252], that the archetypical Dwork-regular polynomial H would

be of the form H(X) =
∑n

i=1 Xk
i + H̃(X), where H̃ is any polynomial of degree at

most k − 1. The antithesis to a Dwork-regular polynomial, when n = 2m is even

and L has odd characteristic, is something of the form H(X) =
∑m

i=1 XiXm+i. By

Euler’s identity, for a form H of degree k,

kH =
n

∑

i=1

Xi(∂/∂Xi)H,

so that when discussing Dwork-regular forms it is natural to assume that charL ∤ k,

if L is finite.

In this section, we first present an equivalent characterization of Dwork-

regularity that is easier to work with. (This property has previously been remarked

in the context of [Kat09, Lemma 3.1].)
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Lemma 3.1. Let L be a field and let H(X1, . . . ,Xm) ∈ L[X1, . . . ,Xm] be a

homogeneous polynomial of degree d ≥ 2. For every nonempty S ⊆ {1, . . . ,m},

define HS := H|Xj=0,j �∈S. Then H is Dwork-regular in X1, . . . ,Xm over L if and

only if

(1) for all S with |S| = 1, HS is not the zero polynomial, and

(2) for all S with |S| ≥ 2, the hypersurface defined by HS = 0 is nonsingular

in P|S|−1
L̄

in the variables Xi, i ∈ S.

The first condition of Lemma 3.1 implies that a degree d form that is Dwork-

regular in X1, . . . ,Xm necessarily contains a nonzero multiple of each mono-

mial Xd
1 , . . . ,X

d
m.

Second, we verify that if a form H ∈ Z[X1, . . . ,Xm] is Dwork-regular over Q

in the variables X1, . . . ,Xm, then its reduction modulo q is Dwork-regular over Fq

in the variables X1, . . . ,Xm for all but finitely many primes q; in particular this is

true for all primes q ≥ K1 for a finite constant K1 = K1(H). We can describe this

abstractly over any field L as follows:

Lemma 3.2. Let L be a field and let H(X1, . . . ,Xm) ∈ L[X1, . . . ,Xm] be

Dwork-regular over L in the variables X1, . . . ,Xm. Then there exists a finite set S

of finite places of L such that for all finite places p �∈ S, the reduced polyno-

mial H (mod p) is Dwork-regular over the residue field OS/p.

We reserve the precise definitions of the notion of a finite place, a residue field,

and the ring OS to §3.2. In the case when L = Q, a finite place corresponds to a

prime number, and the conclusion of the lemma is that once a finite number of

“bad” primes are excluded, then for all remaining prime numbers q, the reduction

of H modulo q is Dwork-regular over the finite field Fq.

We next recall that a polynomial P ∈ Z[X1, . . . ,Xm] of degree d ≥ 2 is a

Deligne polynomial over a finite field L of characteristic q if

(1) q ∤ d, and

(2) the hypersurface defined by the leading form Pd(X1, . . . ,Xm) = 0 is nonsin-

gular in Pm−1
L

.

(In the case that m = 1, (2) is replaced by Pd(X1) �≡ 0. Recall that the leading form

of a polynomial is the homogeneous part of highest degree.) A crucial fact we

apply later is that after specializing one or more coordinates of a Dwork-regular

form, the remaining polynomial is Deligne:

Proposition 3.3. Let L be a finite field and let H(X1, . . . ,Xm) ∈ L[X1, . . . ,Xm]

be a homogeneous polynomial of degree d that is Dwork-regular over L in the

variables X1, . . . ,Xm, with charL ∤ d. Fix 1 ≤ r ≤ m − 1. Then for any constants

c1, . . . , cr ∈ L, H|X1=c1,...,Xr=cr
is a Deligne polynomial in Xr+1, . . . ,Xm over L.
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In particular, we remark that by Lemma 3.1, the constants ci in Proposition 3.3

can be 0 in L. We now turn to the proof of these results.

3.1 Proof of Lemma 3.1. We suppose H is not Dwork-regular and then

show either (1) or (2) is violated. For H not Dwork-regular, there exists an

a = [a1 : · · · : am] ∈ Pm−1
L̄

such that

H(a) = 0,
(

Xi

∂H

∂Xi

)

(a) = 0 for 1 ≤ i ≤ m.

In particular, aj �= 0 for some 1 ≤ j ≤ m and so for this j, ∂H
∂Xj

(a) = 0. Define

the set S = {j : aj �= 0} ⊆ {1, . . . ,m}. If |S| = 1 then HS is either identically

zero or a monomial in one variable, say in Xj. Moreover, when evaluated at

the point a = [0 : · · · : aj : · · · : 0] ∈ Pm−1
L̄

, the monomial in aj �= 0 satisfies

HS(a) = H(a) = 0. Thus the coefficient of the monomial is zero, and HS ≡ 0

so that (1) is violated. If on the other hand |S| ≥ 2, say S = {i1, . . . , i|S|}, then

let b = [ai1 : · · · : ai|S|
] ∈ P|S|−1

L̄
. Then upon regarding HS as a polynomial

in Xi1, . . . ,Xi|S|
, HS(b) = H(a) = 0. For each i ∈ S, when we evaluate at the point b

(or a respectively),
∂HS

∂Xi

(b) =
∂H

∂Xi

(a) = 0.

This produces a singular point on the projective hypersurface HS = 0 in P|S|−1

L
,

violating (2).

Finally, suppose H is Dwork-regular; we will argue that (1) and (2) must

hold, by contradiction. Indeed, suppose either HS is identically zero for some S

with |S| = 1 or HS = 0 is singular for some S with |S| ≥ 2. Write

S = {i1, . . . , i|S|} ⊆ {1, . . . ,m}.

For the case |S| = 1, define a = [a1 : · · · : am] ∈ Pm−1
L̄

by aj = 1 if j ∈ S and 0

otherwise. Note that H(a) = HS(a) = 0. For i �∈ S, the coordinate Xi(a) = 0 while

for i ∈ S, at the point a,
∂H

∂Xi

(a) =
∂HS

∂Xi

(a) = 0

since HS ≡ 0. Consequently,

H(a) = 0,
(

Xi

∂H

∂Xi

)

(a) = 0 for 1 ≤ i ≤ m,(3.1)

which violatesDwork-regularity ofH, a contradiction. On the other hand, if |S|≥ 2,

let b = [bi1 : · · · : bi|S|
] ∈ P|S|−1

L̄
be such that

HS(b) = 0,
∂HS

∂Xi

(b) = 0 for i ∈ S.
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Define a = [a1 : · · · : am] ∈ Pm−1
L̄

by aj = bj if j ∈ S and 0 otherwise. Then

H(a) = HS(b) = 0. Additionally, for i �∈ S, the coordinate Xi(a) = 0 while for i ∈ S,

(∂H/∂Xi)(a) = (∂HS/∂Xi)(b) = 0.

Thus a satisfies (3.1) and violates Dwork-regularity of H, a contradiction.

3.2 Proof of Lemma 3.2. Lemma 3.2 follows by a standard type of argu-

ment, which applies a version of Nullstellensatz; we provide the projective version

we apply.

Lemma 3.4. Let L be a field. Let I ⊆ L[X1, . . . ,Xm] be a homogeneous ideal.

Define Z(I) = {x ∈ Pm−1
L̄

: f (x) = 0 for all homogeneous f ∈ I} ⊆ Pm−1
L̄

. Then Z(I)

is the empty set if and only if (Xd
1 , . . . ,X

d
m) ⊆ I for some d.

Proof. Suppose Z(I) = ∅ in Pm−1
L̄

. Define the affine set

ZA(I) = {(a1, . . . , am) ∈ Am
L̄ : f (a) = 0 for all homogeneous f ∈ I}.

Then ZA(I) = (0, . . . , 0) and so for each i the monomial Xi vanishes on

ZA(I) = (0, . . . , 0). Then by affine Nullstellensatz [Lan02, Theorem 1.5], X
di

i ∈ I

for some di. For the other direction, suppose (Xd
1, . . . ,X

d
m) ⊆ I for some d.

Let x ∈ Z(I) so that f (x) = 0 for all homogeneous f ∈ I. Then in particular the

monomials Xd
i vanish on x and so xi = 0 for all i. This is a contradiction to x

belonging to Pm−1
L

, so Z(I) = ∅. �

Now to prove Lemma 3.2, let us first recall some terminology. For the field L,

we will denote a finite place by p and its associated valuation by vp. For example,

in the case we will apply, L = Q so if we pick a finite place (prime number) p,

then the associated valuation is vp(x) = max{a ∈ Z : pa|x} for x ∈ Q; for exam-

ple, vp(x) ≥ 0 for all primes p precisely when x is an integer. When working with

polynomials with rational coefficients, it can be convenient to multiply an identity

of polynomials by a sufficiently large integer (say N) to “clear denominators;”

alternatively, we could work in an enlarged set of “integers” that include rational

numbers with denominators only divisible by primes p|N. For example, we could

consider rational numbers with denominators only divisible by powers of 5 and 7;

we call the set of all such rationals S-integers for the set S = {5, 7}. In general let S

be a finite set of finite places of a field L. An associated ringOS called the S-integers

is defined by OS = {x ∈ L : vp(x) ≥ 0 for all finite places p �∈ S}. Finally, for any

finite place p �∈ S we may consider the quotient OS/p, which is the residue field.

In the case L = Q where we apply Lemma 3.2, given a particular prime p �∈ S,

OS/p = OS/pOS is isomorphic to OL/p = Z/pZ ∼= Fp since the map OS → Z/pZ

given by a/b �→ a (mod p) is surjective, and its kernel is pOS.
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To prove the lemma, initially define S to be the set of places p such that

either vp(c) < 0 for some coefficient c of H or vp(c) > 0 for all coefficients of H.

Then H ∈ OS[X1, . . . ,Xm] and hence Xi
∂H
∂Xi

∈ OS[X1, . . . ,Xm]. Define the ideal

I :=
(

H,X1
∂H

∂X1
, . . . ,Xm

∂H

∂Xm

)

⊆ OS[X1, . . . ,Xm].

Since by assumption H is Dwork-regular over L, Z(I) = ∅ in Pm−1
L̄

where we view I

as an ideal in L[X1, . . . ,Xm]. Then by Lemma 3.4, (Xd
1, . . . ,X

d
m) ⊆ I for some d.

In particular for each i, there exist Qi,Qi,1, . . . ,Qi,m ∈ L[X1, . . . ,Xm] such that

Xd
i = HQi + X1

∂H

∂X1
Qi,1 + · · · + Xm

∂H

∂Xm

Qi,m.

Now we enlarge the set S so that it includes places p such that vp(c) < 0 for some

coefficient of at least one of Qi,Qi,1, . . . ,Qi,m. Then

(Xd
1, . . . ,X

d
m) ⊆ I ⊆ OS[X1, . . . ,Xm].

For p �∈ S,

Xd
i ≡ HQi + X1

∂H

∂X1
Qi,1 + · · · + Xm

∂H

∂Xm

Qi,m (mod p)

and so (Xd
1, . . . ,X

d
m) (mod p)⊆ (H,X1

∂H
∂X1

, . . . ,Xm
∂H
∂Xm

) (mod p); that is to say, work-

ing over the residue field L′ = OS/p and viewing the ideals now in L′[X1, . . . ,Xm],

the inclusion (Xd
1, . . . ,X

d
m) ⊆ (H,X1

∂H
∂X1

, . . . ,Xm
∂H
∂Xm

) holds. We apply Lemma 3.4

again, now with L′ = OS/p, to deduce that H,X1
∂H
∂X1

, . . . ,Xm
∂H
∂Xm

have no com-

mon zeros in Pm−1
OS/p

and hence by definition H is Dwork-regular over OS/p in the

variables X1, . . . ,Xm.

3.3 Proof of Proposition 3.3. Let c1, . . . , cr ∈ L be given, and let

G ∈ L[Xr+1, . . . ,Xm]

denote the polynomial H(c1, . . . , cr,Xr+1, . . . ,Xm). Note that G has degree

d := degH; by the remark following Lemma 3.1, H must contain a nonzero multi-

ple of Xd
j for each j and in particular for r + 1 ≤ j ≤ m, so degG = d. In particular,

charL ∤ degG. Next, H can be written as H = GdF0 + Gd−1F1 + · · · + G0Fd where

Gi ∈ L[Xr+1, . . . ,Xm] is homogeneous of degree i and Fi ∈ L[X1, . . . ,Xr] is homo-

geneous of degree i (in particular F0 ≡ 1,G0 ≡ 1). The leading form of G is then

precisely Gd(Xr+1, . . . ,Xm), and Gd = HS for S = {r + 1, . . . ,m}, in the notation

of Lemma 3.1. Thus the leading form of G defines a nonsingular hypersurface

in Pm−r−1
L

(or is not the zero polynomial, if m − r = 1), by Lemma 3.1, completing

the proof.
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3.4 A lower bound for a partial derivative. When constructing coun-

terexamples, it will be important to find a lower bound for a partial derivative of the

leading form Pk of the polynomial symbol. (Explicitly, this is used to guarantee

that for each x in a small neighborhood of the origin in Rn, a choice of t meets

all the requirements of (5.4) simultaneously.) As a motivating example, in the

special case where the symbol has diagonal leading form Pk(X) = Xk
1 + · · · + Xk

n,

one immediately has (∂1Pk)(R,X2, . . . ,Xn) ≫k Rk−1 for all (X2, . . . ,Xn) ∈ Rn−1,

which suffices for our application; here and throughout the paper, R is a large

parameter that will tend to infinity at the end of the argument. If Pk has higher

intertwining rank, we must proceed differently; the following lemma provides an

integral point where the partial derivative is sufficiently large.

Lemma 3.5. Let Pk ∈ Q[X1, . . . ,Xn] be a Dwork-regular form of degree

k ≥ 2 with intertwining rank r < n; without loss of generality, say X1 intertwines

with X1,X2, . . . ,Xr but not with Xr+1, . . . ,Xn. Then there exists a tuple

(M1, . . . ,Mr) ∈ Zr,

with Mi ≥ 1 for all i, such that for all R ≥ 1,

|(∂1Pk)(M1R,M2R, . . . ,MrR,Xr+1, . . . ,Xn)| ≫ Rk−1,

uniformly in (Xr+1, . . . ,Xn) ∈ Rn−r.

Let X′ = (X2, . . . ,Xn) and rewrite Pk in terms of its coefficients cβ as

Pk(X1, . . . ,Xn) =
k

∑

j=0

X
k−j

1

∑

|β|=j

cβX
′β

where β is a multi-index (β2, . . . , βn) with order |β| = β2 + · · · + βn, and

X′β = X
β2

2 · · ·Xβn

n .

By the hypothesis that X1 does not intertwine with Xr+1, . . . ,Xn, for each |β| < k,

cβ = 0 for all β with βℓ > 0 for some ℓ > r. Consequently, the derivative ∂1Pk is a

function of X1, . . . ,Xr and is independent of Xj for j > r:

(∂1Pk)(X1, . . . ,Xn) =
k−1
∑

j=0

(k − j)Xk−j−1
1

∑

|β|=j

cβX
β2

2 · · ·Xβr
r .(3.2)
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Then for any value of a parameter R ≥ 1, after plugging in any (M1, . . . ,Mr) ∈ Zr,

(∂1Pk)(M1R, . . . ,MrR,Xr+1, . . . ,Xn)

=
k−1
∑

j=0

(k − j)(M1R)k−j−1
∑

|β|=j

cβ(M2R)β2 · · · (MrR)βr

= Rk−1
k−1
∑

j=0

(k − j)Mk−j−1
1

∑

|β|=j

cβM
β2

2 · · ·Mβr

r .

Thus we can conclude |(∂1Pk)(M1R, . . . ,MrR,Xr+1, . . . ,Xn)| ≫ Rk−1 (uniformly

in Xr+1, . . . ,Xn) as long as

k−1
∑

j=0

(k − j)Mk−j−1
1

∑

|β|=j

cβM
β2

2 · · ·Mβr
r �= 0.

From (3.2), we see that this condition is equivalent to (∂1Pk)(M1, . . . ,Mr) �= 0

where we view ∂1Pk as an element of Q[X1, . . . ,Xr]. Hence it remains to prove

that there exists an integral point (M1, . . . ,Mr) ∈ Zr with Mi ≥ 1 for all i such that

(∂1Pk)(M1, . . . ,Mr) �= 0.

First we note that ∂1Pk is not the zero polynomial in X1, . . . ,Xr; this follows

from Dwork-regularity, since by (1) of Lemma 3.1, Pk contains a term cXk
1 for

some nonzero c ∈ Q. If r = 1, (∂1Pk)(X1) has at most k − 1 roots, so the claim

holds. For r ≥ 2, by a trivial upper bound (see, e.g., [BCLP22, Lemma 10.1] for

a standard statement), for any B ≥ 1, there are at most ≪ Br−1 integral solutions

in [1,B]r to (∂1Pk)(X1, . . . ,Xr) = 0. Since there are Br integral points in that

box, there exists a sufficiently large B such that there is an integral point, say

(M1, . . . ,Mr) ∈ [1,B]r with (∂1Pk)(M1, . . . ,Mr) �= 0. The lemma is proved.

3.5 Invariance under GLn(Q): nonsingular to Dwork-regular. Let

P ∈ R[X1, . . . ,Xn]

be given, with leading form Pk ∈ Q[X1, . . . ,Xn]. Now let A ∈ GLn(Q) and let Q

denote the polynomial after changing variables, i.e. Q(η1, . . . , ηn) = P(ξ1, . . . , ξn)

with ξi =
∑

j aijηj or equivalently η = A−1ξ. (In particular, by [Kat09, Lemma 3.1],

ifPk is nonsingular, there exists a choice ofA so thatQ(η1, . . . , ηn) isDwork-regular

over Q in η1, . . . , ηn.) Then for any fixed t > 0,

TP
t f (x) =

1

(2π)n

∫

Rn

f̂ (ξ)ei(ξ·x+P(ξ)t)dξ =
1

(2π)n

∫

Rn

f̂ (Aη)ei((Aη)·x+Q(η)t)|A|dη.
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Nowdefine a function g such that ĝ(η) = |A|f̂ (Aη) where |A| denotes the determinant

of A; equivalently g(x) = f ((A−1)Tx). Then

(TP
t f )(x) =

1

(2π)n

∫

Rn

ĝ(η)ei(η·ATx+Q(η)t)dη = (TQ
t g)(ATx).

Now let τ : Rn → (0, 1) be a measurable stopping-time function, so that prov-

ing f (x) �→ sup0<t<1 |TP
t f (x)| is bounded from Hs to L1

loc is equivalent to proving

that f (x) �→ |TP
τ(x)f (x)| is bounded from Hs to L1

loc, independent of the function τ.

For a given stopping-time function τ, the computation above shows that

‖TP
τ(x)f (x)‖L1(Bn(0,1)) =

∫

Bn(0,1)
|(TQ

τ(x)g)(ATx)|dx = |AT |−1

∫

ATBn(0,1)
|(TQ

σ(u)g)(u)|du,

for the stopping-time σ(u) = τ((AT)−1u). Thus

(3.3) ‖TP
τ(x)f (x)‖L1(Bn(0,1)) ≤ Cs‖f‖Hs

is true for all f ∈ Hs, uniformly over all stopping-time functions, if and only if

(3.4) ‖T
Q
σ(x)g(x)‖L1(ATBn(0,1)) ≤ CsC

′
A‖g‖Hs

is true for all g ∈ Hs, uniformly over all stopping-time functions. (Of course,

‖g‖Hs ≪A ‖f‖Hs ≪A ‖g‖Hs .) In particular, if we show for a given real s > 0 that

there is no constant Cs such that
∥

∥

∥ sup
0<t<1

|T
Q
t g(x)|

∥

∥

∥

L1(Bn(0,1))
≤ Cs‖g‖Hs

for all g ∈ Hs, then (3.4) fails for all constants Cs,C′
A and consequently (3.3) fails

for all constants Cs. This invariance under GLn(Q) changes of variables shows

that it is reasonable to study maximal operators for the class of Dwork-regular

polynomial symbols in place of the class of nonsingular polynomial symbols, as

we do. (The invariance demonstrated above holds for GLn(R) as well.)

3.6 Verification of Corollary 1.2. Let, as in the hypothesis,Pk(X1, . . . ,Xn)

be decomposable over Q, so that after an appropriate GLn(Q) change of variables,

Pk(X1, . . . ,Xn) = Q1(X1, . . . ,Xm) + Q2(Xm+1, . . . ,Xn)

holds for some 1 ≤ m < n. Note that Pk is nonsingular as a function of X1, . . . ,Xn

if and only if Q1 is nonsingular as a function of X1, . . . ,Xm and Q2 is nonsingular

as a function of Xm+1, . . . ,Xn. By the disjointness of the variables in Q1 and Q2,

we can apply GLm(Q) (respectively GLn−m(Q)) changes of variables separately
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to Q1 (respectively Q2) so that both become Dwork-regular over Q. This provides

a block diagonal GLn(Q) transformation that makes Pk Dwork-regular and still

decomposed into a form in X1, . . . ,Xm and a second form in Xm+1, . . . ,Xn. In

particular, its intertwining rank remains bounded above by r ≤ ⌊n/2⌋. Since

the parameter δ(n, k, r) in Theorem 1.1 is decreasing as a function of r, then

δ(n, k, r) ≥ δ(n, k, n/2) for r ≤ ⌊n/2⌋, and this verifies the corollary.

3.7 Dispersivity. A description of the broad principle of dispersion, in the

context of an initial value problem like (1.2), can be found for example in [Pal97,

§3.5] or [Tao06, Principle 2.1]. The following lemma verifies that for each real

symbol considered in the main theorem, (1.2) is a dispersive PDE, in the sense of

the criterion presented in [KPV91, Theorem 4.1].

Lemma 3.6. Let P(X1, . . . ,Xn) ∈ R[X1, . . . ,Xn] be a polynomial of de-

gree k ≥ 2 such that its leading form Pk(X1, . . . ,Xn) ∈ Q[X1, . . . ,Xn] is Dwork-

regular over Q in the variables X1, . . . ,Xn. Then ∇Pk(x1, . . . , xn) �= 0 for

all (x1, . . . , xn) ∈ Rn \ {0}. Further, there exists a finite M ∈ N such that for

each i = 1, . . . , n, for all (c1, . . . , ci−1, ci+1, . . . , cn) ∈ Rn−1 and c′ ∈ R, the

equation

(3.5) P(c1, . . . , ci−1, x, ci+1, . . . , cn) = c′,

has at most M solutions.

Proof. Since Pk is Dwork-regular over Q, then Pk is nonsingular over Q, so

that ∇Pk(X1, . . . ,Xn) = 0 has no nontrivial solutions over Q; since Pk has rational

coefficients, this implies that there are no nontrivial solutions over R either. Fix

an 1 ≤ i ≤ n. By the remark following Lemma 3.1, the leading form Pk contains

a term that is a nonzero multiple of Xk
i . Hence P(c1, . . . , ci−1, x, ci+1, . . . , cn) − c′

contains a nonzero multiple of xk, so that (3.5) has at most k solutions. �

4 Upper and lower bounds for exponential sums

Now we prove three results about exponential sums involving a Deligne polyno-

mial, which by Proposition 3.3 apply to Dwork-regular forms over Q with fixed

variables, for all sufficiently large prime moduli. First, we prove in Proposition 4.1

that complete exponential sums with a Deligne polynomial in the phase are often

“large”. Second, we prove in Proposition 4.5 that incomplete exponential sums are

“not too large” (and in particular, only a logarithmic factor larger than complete

exponential sums). Third, in Proposition 4.6 we approximate an exponential sum

with real coefficients by complete exponential sums, up to an acceptable error.
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4.1 A lower bound for many complete exponential sums.

Proposition 4.1. Let Qk(X1, . . . ,Xm) ∈ Z[X1, . . . ,Xm] be a polynomial of de-

gree k ≥ 2 and suppose that for all primes q ≥ K1(Qk), the reduction ofQk modulo q

is a Deligne polynomial over Fq. Define for each prime q and (a, b) ∈ Fq × Fm
q ,

T(a, b; q) :=
∑

x (mod q)m

e
(2π

q
(aQk(x) + b · x)

)

.

Then there exist constants 0 < α1, α2 < 1 with α2 = α2(k,m), and a constant

K2(k,m) such that for every prime q > max{k,K1(Qk),K2(k,m)}, there exist at

least α2q
m+1 choices of (a, b) ∈ Fq × Fm

q such that

α1q
m/2 ≤ |T(a, b; q)| ≤ (k − 1)mqm/2.(4.1)

In fact, we may take α1 = 1/2 and any α2 ≤ (1/8)(k−1)−2m. The Weil–Deligne

bound is a key ingredient in the proof, which we now recall, following [Del74,

Thm. 8.4] as stated in [IK04, Thm. 11.43].

Lemma 4.2. Let f (X1, . . . ,Xm) ∈ Z[X1, . . . ,Xm] be a Deligne polynomial of

degree k ≥ 2 over Fq for q prime. Then

∣

∣

∣

∣

∑

x∈Fm
q

e
(2π

q
f (x1, . . . , xm)

)

∣

∣

∣

∣

≤ (k − 1)mqm/2.

The proof of the proposition is a mild variation on [ACP23, Prop. 2.2]. We first

claim that

(4.2)
∑

a (mod q)
b (mod q)m

|T(a, b; q)|2 = q2m+1.

The left-hand side may be expanded as

∑

x,x̃

∑

a (mod q)

e
(2πa

q
(Qk(x) − Qk(x̃))

)

∑

b (mod q)m

e
(2π

q
b · (x − x̃)

)

.

The innermost sum vanishes unless xi ≡ x̃i (mod q) for all 1 ≤ i ≤ m; in this case

the left-hand side evaluates to q2m+1, as claimed. Next we observe that since Qk is

Deligne over Fq of degree k ≥ 2, so is aQk(x) + b · x for a �= 0 ∈ Fq, so we can

apply Lemma 4.2 to bound T(a, b; q); for a = 0 the sum vanishes unless b = 0 and

we address this below. Since (4.2) shows that T(a, b; q) is of size qm/2 on average,

and the Weil–Deligne bound shows it cannot ever be much larger, we can deduce

that most of the time it is not much smaller either. Precisely, suppose for a given
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pair 0 < α1, α2 < 1 there are < α2q
m+1 choices of (a, b) (mod q)m+1 such that

|T(a, b; q)| ≥ α1q
m/2. Then

∑

a (mod q)
b (mod q)m

|T(a, b; q)|2 = q2m +
∑

a�≡0
|T(a,b;q)|≥α1q

m/2

|T(a, b; q)|2 +
∑

a�≡0
|T(a,b;q)|<α1q

m/2

|T(a, b; q)|2.

Here the first term is the contribution from a ≡ 0. The first sum on the right-

hand side is < α2q
m+1((k − 1)mqm/2)2; the second sum on the right-hand side

is < qm+1(α1q
m/2)2. Hence

∑

a (mod q)
b (mod q)m

|T(a, b; q)|2 < (q−1+α2(k−1)2m+α2
1)q

2m+1 < (1/3+α2(k−1)2m+α2
1)q

2m+1.

This is < q2m+1, contradicting (4.2), for sufficiently small α1, α2; for example, we

may take α1 = 1/2 and any α2 ≤ (1/4)(k − 1)−2m. For such α1, α2, there must

then be ≥ α2q
m+1 choices of (a, b) (mod q)m+1 for which the left-hand inequality

in (4.1) holds.

Finally, the only case in which |T(a, b; q)| > (k−1)mqm/2 is when a = 0 ∈ Fq (in

which case T(a, b; q) is a linear exponential sum which vanishes unless b=0 ∈ Fm
q ).

Thus aside from (a, b) = (0, 0), all those (a, b) satisfying the lower bound in (4.1)

also satisfy the upper bound. We can summarize this by saying that at least α2q
m+1

choices satisfy both bounds, with the modified choice α2 = (1/8)(k − 1)−2m, as

long as we assume q is sufficiently large that (1/4)(k − 1)−2mqm+1 ≥ 2, which is

true for all q ≥ K2, for an appropriate choice of K2 = K2(k,m). The proposition is

proved.

4.2 An upper bound for incomplete exponential sums. To show

the maximal operator associated to TP
t f is large, we will repeatedly approximate

integrals and sums by complete exponential sums. We first state general formulas

for partial summation and partial integration; these are proved simply by iteration

one coordinate at a time, and we omit the proofs. Given a subset J ⊆ {1, . . . , n}, we

define I = {1, . . . , n} \ J and use the notation (x(J), x(I)) ∈ Rn to indicate x(J) ∈ R|J|

is indexed by j ∈ J and x(I) ∈ Rn−|J| is indexed by j ∈ {1, . . . , n} \ J.

Lemma 4.3. Let a(m) be a sequence of complex numbers indexed by

m = (m1, . . . ,mn) ∈ Zn. Let h(y) be a C(n) function on Rn such that for ev-

ery κ = (κ1, . . . , κn) ∈ {0, 1}n, there exists a positive real number Bκ such that

for

∂κh(y) :=
∂κ1+···+κn

∂y
κ1

1 · · · ∂y
κn
n

h(y),



84 R. CHU AND L. B. PIERCE

we have |∂κh(y)| ≤ Bκ uniformly in y ∈ [M, M + N], where M = (M,M, . . . ,M)

and N = (N1,N2, . . . ,Nn). Then

∑

M≤m≤M+N

a(m)e(h(m)) = e(h(M + N))
∑

M≤m≤M+N

a(m) + E

where

|E| ≪n sup
J⊆{1,...,n}

|J|≥1

{

∏

j∈J

Nj · sup
u(J)≤N(J)

|A(u(J), N(I))| · sup
1≤ℓ≤|J|

sup
α1,...,αℓ∈{0,1}n

α1+···+αℓ=1J

ℓ
∏

i=1

Bαi

}

,

in which

A(u(J), N(I)) =
∑

M(I)≤m(I)≤M(I)+N(I)

M(J)≤m(J)≤M(J)+u(J)

a(m(J), m(I)).

Lemma 4.4. Let a < b be real numbers. Let f (t) be an integrable func-

tion supported on [a, b]n and let h(t) be a C(n) function on Rn such that for

every κ = (κ1, . . . , κn) ∈ {0, 1}n, there exists a positive real number Bκ such that

|∂κh(t)| ≤ Bκ, uniformly in t ∈ [a, b]n. Then
∫

[a,b]n
f (t)e(h(t))dt = e(h(b))

∫

[a,b]n
f (t)dt + E

where

|E| ≪n sup
J⊆{1,...,n}

|J|≥1

{

(b − a)|J| sup
u(J)≤b(J)

|F(u(J), b(I))| · sup
1≤ℓ≤|J|

sup
α1,...,αℓ∈{0,1}n

α1+···+αℓ=1J

ℓ
∏

i=1

Bαi

}

,

in which

F(u(J), b(I)) =

∫

[a,b]|I|

∫

· · ·

∫

[a,uj],j∈J

f (t(J), t(I))dt(J)dt(I).

We bound an incomplete exponential sum by completing the sum and applying

the Weil bound:

Proposition 4.5. Let Qk(X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn] be a Deligne polyno-

mial of degree k ≥ 2 overFq for a prime q. Let J ⊆ {1, . . . , n} and I = {1, . . . , n}\J.

Then for H = (H1, . . . ,Hn) with 1 ≤ Hi ≤ q,
∣

∣

∣

∣

∑

1(J)≤m(J)≤q(J),
1(I)≤m(I)≤H(I)

e
(2π

q
Qk(m(J), m(I))

)

∣

∣

∣

∣

≪k,n qn/2(log q)|I|.

The sum on the left-hand side may be written as

∑

1(J)≤m(J)≤q(J)

∑

1(I)≤a(I)≤q(I)

e
(2π

q
Qk(m(J), a(I))

)

∑

1(I)≤m(I)≤H(I) ,

m(I)≡a(I) (mod q)|I|

1.
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By the identity

1m≡a (mod q) =
1

q

∑

1≤h≤q

e
(2π

q
h · (m − a)

)

we can expand the sum as

1

q|I|

∑

h(I)≤q(I)

(

∑

m(J)≤q(J),
a(I)≤q(I)

e
(2π

q
(Qk(m(J), a(I)) − h(I) · a(I))

)

∑

m(I)≤H(I)

e
(2π

q
h(I) · m(I)

)

)

.

Since Qk(X1, . . . ,Xn) is a Deligne polynomial of degree k ≥ 2, so is

Qk(X1, . . . ,Xn) − h(I) · X(I) so by Lemma 4.2, the complete sum over m(J), a(I)

is bounded above by (k−1)nqn/2. For the remaining double sum over h(I) and m(I),

we recall that for each h,H ≥ 1,

∑

1≤m≤H

e(2πhm/q) ≪ min{H, ‖h/q‖−1}.

(Here ‖t‖ temporarily indicates the distance from t to the nearest integer.) By

considering cases 1 ≤ h ≤ q/2 and q/2 < h ≤ q, note that
∑

1≤h≤q

min{H, ‖h/q‖−1} ≪ q log q.

Hence the double sum over h(I) and m(I) is bounded above by (q logq)|I|. In total,

the sum considered in the lemma is thus bounded by ≪ (k − 1)nqn/2(log q)|I|, and

the proof is complete.

4.3 Approximation of a sumwith real coefficientsby complete sums.

We next approximate an exponential sum with real coefficients in the linear term

by complete exponential sums with prime moduli.

Proposition 4.6. Let Qk(X1, . . . ,Xm) ∈ Z[X1, . . . ,Xm] be a Deligne polyno-

mial of degree k ≥ 2 over Fq for a prime q. Let 1 ≤ a < q. Let V ≥ 0 and y ∈ Rm,

and suppose that for each 1 ≤ i ≤ m there exists 1 ≤ bi ≤ q such that

|yi − 2πbi/q| < V.

Then for any M=(M, . . . ,M) ∈ Rm and N=(N1, . . . ,Nm) ∈ Rm with 0≤Ni ≤N,

∣

∣

∣

∣

∑

M≤m≤M+N

e
(2πa

q
Qk(m)+y ·m

)

∣

∣

∣

∣

=
m
∏

i=1

⌊Ni

q

⌋

·

∣

∣

∣

∣

∑

m (mod q)m

e
(2π

q
(aQk(m)+b ·m)

)

∣

∣

∣

∣

+E

where, under the assumption VN ≤ 1,

|E| ≪k,m VN ·

m
∏

i=1

⌊Ni

q

⌋

· qm/2 + sup
|J|<m

∏

j∈J

⌊Nj

q

⌋

· qm/2(log q)m−|J|.



86 R. CHU AND L. B. PIERCE

Remark 4.7. In our later application we will take m = n − r and coordinates

(mr+1, . . . ,mn) ∈ Zn−r. Set N = max{Nr+1, . . . ,Nn}. The bound for |E| is increas-

ing as a function Nj so we can replace each Nj by N. Recalling the hypothesis

VN ≤ 1, the bound for |E| can be crudely estimated by

|E| ≪k,n,r

⌊N

q

⌋n−r

q(n−r)/2
(

VN +
⌊N

q

⌋−1
(log q)n−r

)

.

We need the error to be at most a small proportion (say half the size) of the main

term. To achieve this, we will choose (a, b) ∈ Fq × Fn−r
q so that the exponential

sum in the main term is large (using Proposition 4.1) and we will impose conditions

that force V ≤ d0N
−1 for a constant d0 < 1 as small as we like, and N/q ≫ q�0

for some �0 > 0 (see §6).

To prove the proposition, we apply partial summation with respect to m, fol-

lowing Lemma 4.3, with the function h(m) = (y − 2π
q

b) · m. Since this is linear,

for a multi-index α ∈ {0, 1}n, the ∂α partial derivative as a function of m vanishes

unless |α| = 1, say ∂α = ∂i, in which case

∣

∣

∣∂i

((

y −
2π

q
b
)

· m
)∣

∣

∣ = |yi − 2πbi/q| < V.

Thus using the notation of the lemma, for any nonempty subset J ⊆ {1, . . . ,m},

we only need to consider the following expression in the case each |αi| = 1 (so

that ℓ = |J|):

sup
1≤ℓ≤|J|

sup
α1,...,αℓ∈{0,1}n

α1+···+αℓ=1J

ℓ
∏

i=1

Bαi
=

|J|
∏

i=1

V = V |J|.

Now apply partial summation to see that

(4.3)
∑

M≤m≤M+N

e
(2πa

q
Qk(m) + y · m

)

= e
((

y −
2π

q
b
)

· (M + N)
)

∑

M≤m≤M+N

e
(2π

q
(aQk(m) + b · m)

)

+ E1

where E1 is dominated by

sup
|J|≥1

V |J|
∏

j∈J

Nj · sup
u(J)≤N(J)

∣

∣

∣

∣

∑

M(I)≤m(I)≤M(I)+N(I),
M(J)≤m(J)≤M(J)+u(J)

e
(2π

q
(aQk(m(J), m(I)) + b · (m(J), m(I)))

)

∣

∣

∣

∣

with nonempty J ⊆ {1, . . . ,m} and I = {1, . . . ,m} \ J. The first factor is

≤ (VN)|J| ≤ VN ≤ 1. We may estimate the sum in the error E1 by first break-

ing it into a main term of as many complete sums (complete in all m coordinates)
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as possible, that is,

∏

i∈I

⌊Ni

q

⌋

·
∏

j∈J

⌊uj

q

⌋

·
∑

m (mod q)m

e
(2π

q
(aQk(m(J), m(I)) + b · (m(J), m(I)))

)

,

plus an error term of incomplete sums, that is, of the form

∑

Ĩ⊆I,J̃⊆J,

|Ĩ∪J̃|<m

∏

i∈Ĩ

⌊Ni

q

⌋

·
∏

j∈J̃

⌊uj

q

⌋

·
∑∗

e
(2π

q
(aQk(m(J), m(I)) + b · (m(J), m(I)))

)

in which the starred sum is over 1≤m(Ĩ) ≤q(Ĩ), 1≤m(I\Ĩ) ≤H(I\Ĩ), 1 ≤ m(J̃) ≤ q(J̃),

1 ≤ m(J\J̃) ≤ H(J\J̃), for some H = (H1, . . . ,Hm) with 1 ≤ Hi < q. Since Qk is

a Deligne polynomial of degree k ≥ 2, we may apply the Weil–Deligne bound in

Lemma 4.2 so that the contribution of the complete sums is at most

≪k,m

∏

i∈I

⌊Ni

q

⌋

·
∏

j∈J

⌊uj

q

⌋

·qm/2 ≪

m
∏

i=1

⌊Ni

q

⌋

· qm/2.

Again using that Qk is a Deligne polynomial, we may apply Proposition 4.5 so the

contribution of the incomplete sums is

≪ sup
Ĩ⊆I,J̃⊆J,
|Ĩ∪J̃|<m

∏

i∈Ĩ

⌊Ni

q

⌋

·
∏

j∈J̃

⌊uj

q

⌋

· qm/2(log q)m−(|J̃|+|Ĩ|)

≪ sup
|J|<m

∏

j∈J

⌊Nj

q

⌋

· qm/2(log q)m−|J|.

This is sufficient for bounding E1. Finally we can similarly separate the main term

of the right-hand side of (4.3) into complete and incomplete sums, that is,

m
∏

i=1

⌊Ni

q

⌋

·

∣

∣

∣

∣

∑

m (mod q)m

e
(2π

q
(aQk(m) + b · m)

)

∣

∣

∣

∣

+ E′
1,

where

E′
1 =

∑

|J|<m

∏

j∈J

⌊Nj

q

⌋

·
∑

1(J)≤m(J)≤q(J),
1(I)≤m(I)≤H(I)

e
(2π

q
(aQk(m(J), m(I)) + b · (m(J), m(I)))

)

for some Hi < q. Another application of Proposition 4.5 shows that

|E′
1| ≪ sup

|J|<m

∏

j∈J

⌊Nj

q

⌋

· qm/2(log q)m−|J|.

Combined with the bound for E1, this proves the proposition.
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5 Reducing the maximal operator to an exponential
sum

5.1 Initial definition of the test function. We nowconstruct a collection

of test functions to prove Theorem 2.1. The symbol P ∈ R[X1, . . . ,Xn] has leading

form Pk ∈ Q[X1, . . . ,Xn] that is Dwork-regular in X1, . . . ,Xn over Q and has

intertwining rank r. By relabelling variables we may assume that X1 intertwines

with X1,X2, . . . ,Xr and does not intertwine with Xr+1, . . . ,Xn. By a GLn(Q)

change of variables we may clear denominators and assume from now on that Pk

has integral coefficients. Fix R ≥ 1, which will later be a parameter that tends to

infinity. Let

S1 = Rσ, L = Rλ

where 0 < σ < 1, 0 < λ < 1 are parameters we will choose optimally later.

Once and for all, fix a Schwartz function φ on R with the properties (i) φ ≥ 0,

(ii) φ(0) = (2π)−1
∫

φ̂(ξ)dξ = 1, (iii) supp(φ̂) ⊆ [−1, 1]; such a function may be

constructed in a standard way, such as in [Pie20, §2.1]. Then define for each m ≥ 1

and variables u1, . . . , um that 
m(u1, . . . , um) = φ(u1) · · ·φ(um).

We will define the test function f , tailored to the fact that X1 does not intertwine

with Xr+1, . . . ,Xn. Fix an integral tuple M = (M1,M2, . . . ,Mr) ∈ Zr with Mi ≥ 1

as provided by Lemma 3.5. Define the test function f to be

f (x) := 
r(S1x1, x2, . . . , xr)e((M ◦ R) · (x1, . . . , xr))

× 
n−r(xr+1, . . . , xn)
∑

m∈Zn−r,
R/L≤mj<2R/L

e(Lm · (xr+1, . . . , xn))

where we recall the notation M ◦ R = (M1R, . . . ,MrR). Let

M∗ = max{2,M1,M2, . . . ,Mr}.

The Fourier transform of f is supported in

[M1R − S1,M1R + S1] × [M2R − 1,M2R + 1]

× · · · × [MrR − 1,MrR + 1] × [R − 1, 2R + 1]n−r,

which is contained in Bn(0,
√

nM∗R +
√

nS1) \ Bn(0,
√

nR −
√

nS1). Since S1 = Rσ

with σ < 1 there exists some R1(σ) such that for R ≥ R1(σ), S1 ≤ (1/2)R so that

this region is contained in the annulus {(1/C)R ≤ |x| ≤ CR} with C = 2M∗

√
n,

say, so that C depends only on the symbol P and the dimension n.

Finally, we note for later reference the size of the normof f . Since f̂ is supported

in the annulus stated above, for all R ≥ 1,

Rs‖f‖L2(Rn) ≪s ‖f‖Hs(Rn) ≪s Rs‖f‖L2(Rn).
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Moreover,

(5.1) S
−1/2
1 ⌊R/L⌋

n−r
2 ‖φ‖n

L2(R) ≤ ‖f‖L2(Rn) ≤ S
−1/2
1 ⌈R/L⌉

n−r
2 ‖φ‖n

L2(R).

Explicitly, using the notation ξ = (ξ1, . . . , ξr) and η = (ξr+1, . . . , ξn),

f̂ (ξ, η) =
∑

m∈Zn−r

R/L≤mj<2R/L

gm(ξ, η),

in which

gm(ξ, η) = S−1
1 
̂r(S

−1 ◦ (ξ − M ◦ R))
̂n−r(η − Lm),

where S−1 = (S−1
1 , 1, . . . , 1). Thus gm is supported in the set B + (M ◦ R,Lm),

where B is the box [−S1, S1]× [−1, 1]n−1. In particular, for n ≥ 2, n− r ≥ 1, and

L ≥ 4, the supports of gm as m varies are distinct. Thus by Plancherel’s theorem,

(2π)n‖f‖2
L2(Rn) = ‖f̂‖2

L2(Rn) =
∑

m∈Zn−r

R/L≤mj<2R/L

‖gm‖2
L2(Rn),

and the claim (5.1) holds since by Plancherel’s theorem,

‖gm‖2
L2(Rn) = S−1

1 ‖φ̂‖2n
L2(Rn) = S−1

1 (2π)n‖φ‖2n
L2(Rn).

Remark 5.1. Note that if n = r or n = 1 the above sum is empty; computing

the ‖f‖Hs norm as above and taking σ = 1/2 produces a counterexample to (1.7)

for all s < 1/4, which is the claim of Theorem 1.1 in this case. Thus from now on

we may assume r < n and n ≥ 2.

5.2 Approximation of the maximal operator by an exponential sum.

Since f treats the intertwined variables x1, . . . , xr differently, it is convenient to

define v = (x1, . . . , xr) and w = (xr+1, . . . , xn), and similarly use ξ = (ξ1, . . . , ξr),

η = (ξr+1, . . . , ξn); finally, we will continue to denote S ◦ ξ = (S1ξ1, ξ2, . . . , ξr)

and M ◦ R = (M1R, . . . ,MrR) for (M1, . . . ,Mr) provided by Lemma 3.5. By

definition, for the test function f ,

(5.2)

TP
t f (x) =

1

(2π)n

∫

Rn


̂n(ξ, η)e((S ◦ ξ + M ◦ R) · v + η · w)

×
∑

m∈Zn−r

R/L≤mj<2R/L

e(Lm · w)e(P(S ◦ ξ + M ◦ R, η + Lm)t)dξdη.

The main result of this section is that TP
t f (x) is well-approximated by an ex-

ponential sum defined as follows: for any u ∈ Rn−r with each uj > R/L, and
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any w ∈ Rn−r, t ∈ R set

S(u;w, t) :=
∑

m∈Zn−r

R/L≤mj<uj

e (Lm · w + Pk(M ◦ R,Lm)t) .

For simplicity, when u = (2R/L, . . . , 2R/L), we denote this sum by S(2R/L;w, t).

Fix 0 < c0 < 1/2. Then since φ is smooth and φ(0) = 1, there exists a small

constant δ0 = δ0(c0, φ) such that

φ(y) ≥ 1 − c0/2 for all |y| ≤ δ0.(5.3)

The main result of this section is:

Proposition 5.2. Let 0 < c0 < 1/2 be a small constant and δ0 be as in

(5.3). There exist constants 0 < c1(δ0, k,P), c2(k,P) < 1/2 such that for all

c1 < c1(δ0, k,P), c2 < c2(k,P) and 0 < c3 < 1 as small as we like, the following

holds.

Let x ∈ (−c1,−c1/2] × [−c1, c1]
n−1, σ ≤ 1/2 and R ≥ R2(c1, c2, k,P, σ). Let

t ∈ (0, 1) satisfy

t =
−x1

(∂1Pk)(M ◦ R, R̃)
+ τ, |τ| ≤

c2δ0

S1Rk−1
and t ≤

c3

Rk−1
,(5.4)

in which

R̃ := (L(⌈2R/L⌉ − 1), . . . ,L(⌈2R/L⌉ − 1)) ∈ Rn−r.

Then with w = (xr+1, . . . , xn),

|TP
t f (x)| ≥ (1 − c0)

n|S(2R/L;w, t)| + E1

where

|E1| ≪φ,n,k,r,P c3 sup
u∈[R/L,2R/L]n−r

|S(u;w, t)|.

Since we will bound |S(u;w, t)| by a function that is increasing as a function

of uj, we will obtain |E1| ≪φ,n,k,r,P c3|S(2R/L;w, t)|, so that the error term is at

most half the main term, by taking c3 appropriately small, as we may. For the

conditions in (5.4) to be compatible we need (∂1Pk)(M ◦ R, R̃) to be nonzero and

moreover to be of size Rk−1. This is assured by Lemma 3.5.

To prove the proposition, we first use partial summation to remove all terms

in the sum over m in (5.2) that do not appear in S(2R/L;w, t); to accrue only an

acceptable error, we require the third constraint in (5.4), and intertwining rank

plays a key role. The next step is to use integration by parts to remove all terms in

the phase in (5.2) that are nonlinear in ξ, η, so that we may apply Fourier inversion
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to the integral of 
̂n; this applies the third constraint in (5.4). Finally, after Fourier

inversion, we arrive at a main term involving the evaluation of 
n, and to bound

this from below we use the fact that 
n(0) = 1 forces t to lie in a specified range

around a specific point, which is encoded in the first and second constraints in (5.4).

5.3 Removing non-arithmetic terms in the exponential sum. We

will use the notation

P = Pk + Pk−1 + · · · + P0

where each Pi with 0 ≤ i ≤ k − 1 is a homogeneous polynomial of degree i with

real coefficients. Then by Taylor expansion (multinomial expansion),

P(S ◦ ξ + M ◦ R, η + Lm) = Pk(M ◦ R,Lm) + Q(S ◦ ξ + M ◦ R, η + Lm)

in which we define

Q(u + v) :=
k−1
∑

j=0

Pj(u) +
k

∑

j=0

∑

1≤|α|≤j

(∂αPj)(u)

α!
v α, for any u, v ∈ Rn,

so that

(5.5)

Q(S ◦ ξ+M ◦ R, η + Lm)

=
k−1
∑

j=0

Pj(M ◦ R,Lm) +
k

∑

j=0

∑

1≤|α|≤j

(∂αPj)(M ◦ R,Lm)

α!
(S ◦ ξ, η)α.

Our goal is to extract the non-arithmetic weight e(Q(S◦ξ+M◦R, η+Lm)t) from the

sum over m in (5.2) via partial summation, using the assumption on intertwining

rank. To understand the role of intertwining rank, it is helpful to see a motivating

example.

5.3.1 Example. Suppose the dimension n = 2 andP(X1,X2) = Xβ is simply

a monomial, where β is a multi-index (β1, β2) with β1 + β2 = k. Then

(5.6)

P(S1ξ1 + M1R, ξ2 + Lm2)

=

β1
∑

j=0

(

β1

j

)

(M1R)β1−j(S1ξ1)
j ·

β2
∑

ℓ=0

(

β2

ℓ

)

(Lm2)
β2−ℓξℓ

2.

We isolate the arithmetic term (M1R)β1(Lm2)
β2 (the j = ℓ = 0 term), leaving the

non-arithmetic terms

H(m2) :=
∑

α≤β
α �=(0,0)

β!

α!(β − α)!
(M1R,Lm2)

β−α(S1ξ1, ξ2)
α.
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In this example, we model the sum in (5.2) by summing over m2 :
∑

R/L≤m2<2R/L

e(Lm2x2 + (M1R)β1(Lm2)
β2 t)e(h(m2))

with
h(m2) = H(m2)t.

By partial summation with respect to m2, the weight e(h(m2)) can be removed with

an error term depending on the derivative (∂/∂m2)h(m2). This derivative is

tL
∑

α≤β−(0,1)
α �=(0,0)

β!

α!(β − α − (0, 1))!
(M1R,Lm2)

β−α−(0,1)(S1ξ1, ξ2)
α

≪ tL
∑

α≤β−(0,1)
α �=(0,0)

Rk−|α|−1S
α1

1 ,

where the upper bound holds uniformly for (ξ1, ξ2) ∈ [−1, 1]2, m2 ∈ [R/L, 2R/L).

In order for the resulting error term (after an application of Lemma 4.3) to be

acceptable, we need

tL
∑

α≤β−(0,1)
α �=(0,0)

Rk−|α|−1S
α1

1 ≪ L/R.

Since we will ultimately have t ≈ R−(k−1), this requires Rk−|α|S
α1

1 ≪ Rk−1 for

each α. If the original monomial P(X1,X2) = X
β1

1 X
β2

2 has β1 ≥ 1 and β2 ≥ 1, there

will be a term with |α| = α1 = 1, and this term will force the condition S1 ≪ 1.

If however X2 does not intertwine with X1 in P(X1,X2), β1 = 0 so that α1 = 0,

removing this difficulty. This concludes our example.

In general, we apply Lemma 4.3 to
∑

m∈Zn−r

R/L≤mj<2R/L

e(Lm · w)e(Pk(M ◦ R,Lm)t)e(h(m))(5.7)

with h(m) := Q(S ◦ ξ + M ◦ R, η + Lm)t. We claim that for each multi-index

κ = (κr+1, . . . , κn) ∈ {0, 1}n−r with |κ| ≥ 1,

sup
(ξ,η)∈[−1,1]n

y∈[R/L,2R/L)n−r

∣

∣

∣

∂|κ|

∂yκr+1

r+1 · · · ∂y
κn
n

Q((S ◦ ξ, η) + (M ◦ R,Ly))
∣

∣

∣ ≪n,k,P Rk−1(L/R)|κ|.(5.8)

Note that the derivatives controlled by κ apply only to the last n − r coordinates.

It is in proving this bound that we crucially use the definition of intertwining rank,

and the construction of the test function f to accommodate the fact that X1 does

not intertwine with Xr+1, . . . ,Xn in Pk; in particular, we will use the fact that for

each ℓ > r, the mixed partial ∂ℓ∂1Pk vanishes identically.
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Assume (5.8) for the moment; then for all such κ,

sup
(ξ,η)∈[−1,1]n

y∈[R/L,2R/L)n−r

∣

∣

∣

∂|κ|

∂yκr+1

r+1 · · · ∂yκn
n

h(y)
∣

∣

∣ ≪ Rk−1(L/R)|κ|t =: Bκ,

in the notation of Lemma 4.3. (Herewe also note that Bκ ≡ 0 if any entry in a multi-

index κ exceeds the highest corresponding degree in the polynomial Q. However,

unlike our previous application of partial summation in Proposition 4.6, in this

case the total degree of Q is k − 1 in m, so we could have ℓ = 1 in the application

below.) Consequently, for each nonempty J ⊆ {r + 1, . . . , n}, and ℓ ≤ |J|,

sup
α1,...,αℓ∈{0,1}n−r

α1+···+αℓ=1J

ℓ
∏

i=1

Bαi
= sup

α1,...,αℓ∈{0,1}n−r

α1+···+αℓ=1J

ℓ
∏

i=1

(Rk−1(L/R)|αi|t) = R(k−1)ℓ(L/R)|J|tℓ.

This is ≪ Rk−1t(L/R)|J| under the assumption t ≪ R−(k−1), which we assume from

now on.

Hence by Lemma 4.3 the sum in (5.7) is identical to

S(2R/L;w, t)e(Q(S ◦ ξ + M ◦ R, η + R̃)t) + E1

where we define R̃ := (L(⌈2R/L⌉ − 1), . . . ,L(⌈2R/L⌉ − 1)) ∈ Rn−r and we may

take

|E1| ≪n,k,r,P sup
u∈[R/L,2R/L)n−r

|S(u;w, t)| · Rk−1t,

uniformly in (ξ, η) ∈ [−1, 1]n. Consequently, after integrating E1 trivially in (ξ, η)

by applying the compact support of 
̂n in [−1, 1]n, we conclude that TP
t f (x) is

precisely

(5.9)

1

(2π)n
S(2R/L;w, t)

∫

Rn


̂n(ξ, η)e((S ◦ ξ + M ◦ R) · v + η · w)

×e(Q(S ◦ ξ + M ◦ R, η + R̃)t)dξdη + E2

where

(5.10) |E2| ≪φ,n,k,r,P sup
u∈[R/L,2R/L)n−r

|S(u;w, t)| · Rk−1t.

It remains to verify (5.8). We recall the expansion (5.5), and bound the mixed

partial of each term. First note that for y = (yr+1, . . . , yn) and any ℓ > r, for each

degree j,

|(∂/∂yℓ)(Pj(M ◦ R,Ly))| = L|(∂ℓPj)(M ◦ R,Ly)| ≪ Rj−1L,
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uniformly for y ∈ [R/L, 2R/L)n−r. Thus for each fixed j ≤ k − 1, for each

κ = (κr+1, . . . , κn) ∈ {0, 1}n−r with |κ| ≤ j,

sup
y∈[R/L,2R/L)n−r

∣

∣

∣

∂|κ|

∂y
κr+1

r+1 · · · ∂y
κn
n

Pj(M ◦ R,Ly)
∣

∣

∣ ≪n,Pj
L|κ|Rj−|κ| ≪ Rk−1(L/R)|κ|,

which suffices for (5.8). For the other terms in the expansion (5.5), fix some

multi-index α = (α1, . . . , αn) ∈ Rn with 1 ≤ |α| ≤ k, and recall the multi-index

κ = (κr+1, . . . , κn) ∈ {0, 1}n−r with |κ| ≥ 1 taking derivatives only with respect to

coordinates of y = (yr+1, . . . , yn). For each 0 ≤ j ≤ k, for |κ| ≤ j − |α|,

sup
(ξ,η)∈[−1,1]n

y∈[R/L,2R/L)n−r

∣

∣

∣

∂|κ|

∂yκr+1

r+1 · · · ∂y
κn
n

(∂αPj)(M ◦ R,Ly)
(S ◦ ξ, η)α

α!

∣

∣

∣

≪n,k,P L|κ|Rj−|α|−|κ|S
α1

1 ≪ Rj(L/R)|κ|Sα1

1 R−|α|,

in which we recall that

S ◦ ξ = (S1ξ1, ξ2, . . . , ξr).

If j ≤ k − 1, this already suffices for (5.8), since S1 ≪ R shows that the right-hand

side is visibly ≪ Rk−1(L/R)|κ|. (Effectively, for j ≤ k − 1 we are using that Pj is

already of degree strictly smaller than k.)

Finally for the highest degree j = k piece, we must be more careful, and use

the fact that in the leading form Pk, X1 does not intertwine with the last n − r

coordinates, over which we are carrying out the partial summation. Consider the

expression Rk−1(L/R)|κ|Sα1

1 R−(|α|−1), recalling |α| ≥ 1 in the cases we currently

consider. As explained in the example in §5.3.1 and the heuristics in §2.1, the

problematic case is when |α| = α1 = 1. But since X1 does not intertwine with

Xr+1, . . . ,Xn, ∂j∂1Pk ≡ 0 for each j ≥ r + 1. Consequently, for any α with α1 ≥ 1,

for every κ = (κr+1, . . . , κn) ∈ {0, 1}n−r with |κ| ≥ 1,

∂|κ|

∂yκr+1

r+1 · · · ∂y
κn
n

(∂αPk)(M ◦ R,Ly) ≡ 0.

Thus for the highest degree form Pk, we only need to verify that

Rk−1(L/R)|κ|Sα1

1 R−(|α|−1) ≪ Rk−1(L/R)|κ|

in cases where |α| ≥ 1 and α1 = 0, and this certainly holds. This completes the

proof of (5.8).
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5.4 Removing nonlinear terms in the phase, to apply Fourier in-

version. We return our focus to (5.9), and now we remove all nonlinear terms

in (ξ, η) by integration by parts, in order to apply Fourier inversion. First we Taylor

expand, writing

Q(S ◦ ξ + M ◦ R, η + R̃) =
k−1
∑

j=0

Pj(M ◦ R, R̃) +
∑

1≤|α|≤k

(∂αP)(M ◦ R, R̃)

α!
(S ◦ ξ, η)α

= (∇Pk)(M ◦ R, R̃) · (S ◦ ξ, η) + Q̃(S ◦ ξ + M ◦ R, η + R̃)

where we define Q̃(S ◦ ξ + M ◦ R, η + R̃) to be

k−1
∑

j=0

Pj(M◦R, R̃)+
k−1
∑

j=1

(∇Pj)(M ◦R, R̃) · (S◦ξ, η)+
∑

2≤|α|≤k

(∂αP)(M ◦ R, R̃)

α!
(S◦ξ, η)α.

Then the main term of (5.9) can be written as

S(2R/L;w, t)e((M ◦ R) · v)

×
1

(2π)n

∫

[−1,1]n

̂n(ξ, η)e((S ◦ ξ, η) · ((v,w) + (∇Pk)(M ◦ R, R̃)t))

× e(Q̃(S ◦ ξ + M ◦ R, η + R̃)t)dξdη.

We will apply integration by parts as in Lemma 4.4 to remove the nonlinear

terms in (ξ, η), with h(ξ, η) := Q̃(S ◦ ξ + M ◦ R, η + R̃)t. We claim that for every

κ = (κ1, . . . , κn) ∈ {0, 1}n with |κ| ≥ 1,

sup
(ξ,η)∈[−1,1]n

∣

∣

∣

∂|κ|

∂ξκ1

1 · · · ∂ξκr
r ∂ηκr+1

r+1 · · · ∂ηκn
n

h(ξ, η)
∣

∣

∣ ≪ Rk−1t =: Bκ,(5.11)

in the notation of Lemma 4.4. Then by integration by parts, the integral above

becomes

e(Q̃(S ◦ 1 + M ◦ R, 1 + R̃)t)

×
1

(2π)n

∫

Rn


̂n(ξ, η)e((S ◦ ξ, η) · ((v,w) + t(∇Pk)(M ◦ R, R̃)))dξdη + E3

where |E3|≪φ,n Rk−1t. By Fourier inversion, the integral above evaluates pre-

cisely to


n((S1, 1, . . . , 1) ◦ [(x1, x2, . . . , xn) + t(∇Pk)(M ◦ R, R̃)]).

Consequently, in absolute value, (5.9) is

(5.12)

|S(2R/L;w, t)|

× |
n((S1, 1, . . . , 1) ◦ [(x1, x2, . . . , xn) + t(∇Pk)(M ◦ R, R̃)])|

+ E2 + E4
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with E2 bounded as in (5.10) and

(5.13) |E4| ≪ |S(2R/L;w, t)| · |E3| ≪φ,n |S(2R/L;w, t)|Rk−1t.

Finally, we verify (5.11). We bound each term in the expansion defining Q̃.

The first sum is independent of (ξ, η) so it vanishes when we take partials ∂κ with

|κ| ≥ 1. For each 1 ≤ j ≤ k − 1, recall that (S ◦ ξ) = (S1ξ1, ξ2, . . . , ξr) and R̃ ≪ R,

so that at most

sup
(ξ,η)∈[−1,1]n

∣

∣

∣

∂|κ|

∂ξκ1

1 · · · ∂ξκr
r ∂ηκr+1

r+1 · · · ∂η
κn
n

(∇Pj)(M ◦ R,R̃) · (S ◦ ξ, η)
∣

∣

∣

≪ Rj−1S1 ≪ Rk−2S1.

This is ≪ Rk−1 as desired, since S1 = Rσ < R. Now fix a multi-index 2 ≤ |α| ≤ k.

For each 0 ≤ j ≤ k,

sup
(ξ,η)∈[−1,1]n

∣

∣

∣

∂|κ|

∂ξκ1

1 · · · ∂ξκr
r ∂ηκr+1

r+1 · · · ∂η
κn
n

(∂αPj)(M ◦ R, R̃)

α!
(S ◦ ξ, η)α

∣

∣

∣ ≪ Rj−|α|S
α1

1 .

For all the lower-degree terms with j ≤ k − 1, this is ≪ Rk−1S
α1

1 R−|α| ≪ Rk−1.

Finally, consider Rk−|α|S
α1

1 in the case 2 ≤ |α| ≤ k and j = k. (Note that unlike

in the partial summation in the previous section, we do not need to consider the

case |α| = 1 and j = k, which is singled out as the main term here.) If α1 = 0,

this is ≪ Rk−1. If |α| > α1 ≥ 1, this is ≪ Rk−1(S1/R). If |α| = α1 ≥ 2, then this

is ≪ Rk(S1/R)2 = Rk−1(S2
1/R). For this to be ≪ Rk−1 we impose S1 = Rσ with

(5.14) σ ≤ 1/2.

This proves (5.11) and hence (5.12).

5.5 Restrictions on t to complete the proof of Proposition 5.2. Re-

call from (5.3) that φ(y) ≥ 1 − c0/2 if |y| ≤ δ0. Thus


n((S1, 1, . . . , 1) ◦ [(x1, x2, . . . , xn) + t(∇Pk)(M ◦ R, R̃)]) ≥ (1 − c0/2)n,

which suffices for Proposition 5.2, if we choose

t =
−x1

(∂1Pk)(M ◦ R, R̃)
+ τ, |τ| ≤

c2δ0

S1Rk−1
(5.15)

where c2 < 1 is sufficiently small that c2|(∂jPk)(M ◦ R, R̃)|/Rk−1 < 1/2 for

each 1 ≤ j ≤ n, and furthermore restrict x ∈ [−c1, c1]
n where 0 < c1 < δ0/4

and c1|(∂jPk)(M ◦ R, R̃)/(∂1Pk)(M ◦ R, R̃)| < δ0/4 for each 2 ≤ j ≤ n. (Recall
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from Lemma 3.5 that M is chosen so that |(∂1Pk)(M ◦ R, R̃)| ≫ Rk−1 �= 0 for all R,

and in the other direction it is always true that |(∂jPk)(M ◦ R, R̃)| ≪ Rk−1 for each

1 ≤ j ≤ n.) For then, simultaneously

|S1(x1 + (∂1Pk)(M ◦ R, R̃)t)| = |S1 · (∂1Pk)(M ◦ R, R̃)τ| < δ0/2,

and for j = 2, . . . , n,

|xj + (∂jPk)(M ◦ R, R̃)t| < δ0/4 + δ0/4 + δ0/2.

In fact if x1 ∈ [−c1,−c1/2] then we can ensure t ∈ (0, 1) since for appropriate

c1, c2, for all sufficiently large R ≥ R2 = R2(c1, c2, σ,P, k), we have

c1/(∂1Pk)(M ◦ R, R̃) + c2/(S1R
k−1) < 1

and

c1/(2(∂1Pk)(M ◦ R, R̃)) − c2/(S1R
k−1) > 0.

Finally, to bound E2 and E4, we impose the condition that

t ≤
c3

Rk−1
(5.16)

for some small constant c3 of our choice, and then E1 ≪ E2+E4 is bounded as stated

in Proposition 5.2. For conditions (5.16) and (5.15) to be compatible, we verify

that we can choose c1 and c2 so that |Rk−1t| ≤ c1(R
k−1/(∂1Pk)(M◦R, R̃))+c2(δ0/S1)

is as small as we want.

6 The arithmetic contribution

Wenowestimate the exponential sum S(2R/L;w, t) whichwe extracted fromTP
t f (x)

in Proposition 5.2. It is convenient to define the notation:

s := Lkτ, y1 := −
Lk

(∂1Pk)(M ◦ R, R̃)
x1 (mod 2π), yj := Lxj (mod 2π),(6.1)

for r + 1 ≤ j ≤ n, and set

y = (yr+1, . . . , yn).

(Implicitly, we also take yj = xj (mod 2π) for 2 ≤ j ≤ r, although these vari-

ables do not play a role here.) Then y1 + s = Lkt (mod 2π) and so by recalling

w = (xr+1, . . . , xn) and using homogeneity of Pk,

S(2R/L;w, t) =
∑

m∈Zn−r

R/L≤mj<2R/L

e(Lm · w + LkPk(M ◦ (R/L),m)t)

=
∑

m∈Zn−r

R/L≤mj<2R/L

e(m · y + Pk(M ◦ (R/L),m)(y1 + s)).
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Remark 6.1. Here we encounter a feature that has not arisen in previous

special cases of Pk considered in [ACP23, EPV22], for which the first coordinate

only appears in Pk in a diagonal term Xk
1, so that it can be pulled out of the

exponential sum entirely. In our general setting, to evaluate the sum using number-

theoretic methods, we require each MiR/L to be an integer. We will consider a

sequence of R = Rj → ∞ where each Rj = 2j for a sequence of integers j. Since

L = Rλ for some 0 < λ < 1, we have R/L = 2j(1−λ) which is an integer if and only

if jλ is an integer. We will achieve this by choosing λ = λ1/λ2 to be rational, and

then restricting to j → ∞ along the arithmetic progression j ≡ 0 (mod λ2).

For now, we assume R and L are fixed, and R/L is an integer. We define for any

prime q, and a ∈ Fq, b ∈ Fn−r
q , the complete exponential sum

T(a, b; q) =
∑

m (mod q)n−r

e
(2π

q
(b · m + aPk(M ◦ (R/L),m))

)

.

Let K1(Pk) be the constant provided by Lemma 3.2, so that the reduction of

Pk(X1, . . . ,Xn) is Dwork-regular overFq in X1, . . . ,Xn for every prime q ≥ K1(Pk).

Then for such q, by Proposition 3.3, Pk(M ◦ (R/L),Xr+1, . . . ,Xn) is a Deligne

polynomial in Xr+1, . . . ,Xn over Fq. Thus we will apply Proposition 4.1 to show

that for many a, b the sum T(a, b; q) must be “large.” Consequently, we will

construct a set � of (y1, . . . , yn) ∈ [0, 2π]n with (nearly) full measure on which

|S(2R/L;w, t)|, and hence |TP
t f (x)|, is large. We state two propositions, first

focused on the set �, and then focused on the operator TP
t f (x).

Proposition 6.2. Let R,L be fixed with R/L an integer. There exists a pa-

rameter K3(Pk, k) such that the following holds for all Q > K3. For every prime

q ∈ [Q/2,Q], let G(q) denote the set of all (a, b) ∈ Fq × Fn−r
q for which

(1/2)q(n−r)/2 ≤ |T(a, b; q)| ≤ (k − 1)n−rq(n−r)/2.

For any 0 < c4, c5 < 1 sufficiently small of our choice, define a set � ⊆ [0, 2π]n

by

� =
⋃

Q/2≤q≤Q
q prime

⋃

(a,b)∈G(q)

B(a, b; q),

where each box B(a,b;q) is defined to be

{

|y1 − 2πa/q| ≤ c4q
−1, (y2, . . . , yr) ∈ [0, c1]

r−1,

|yj − 2πbj/q| ≤ c5q
−1−1/(n−r), r + 1 ≤ j ≤ n

}

.

Then |�| ≫c4,c5,n,k (logQ)−1.
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Next, recall that L = Rλ for a parameter 0 < λ < 1 we will choose later, and

from now on we let Q = Rκ for a parameter 0 < κ < 1 we will choose later.

Proposition 6.3. Let R,L be fixed with R/L an integer. Suppose

1

Q
≪

Lk

S1Rk−1
,

1

Q1+1/(n−r)
≪ (R/L)−1, R/L ≫ Q1+�0(6.2)

where 0 < �0 ≤ 1/(n − r). Assume R,Q are sufficiently large, say

R ≥ R3(δ0, c1, c2, k,P, σ, λ, κ) and Q ≥ K4(n, k, r,Pk,�0).

Then there exists a set �∗ ⊆ Bn(0, 1) with |�∗| ≫c1,c4,c5,n,k,r (logQ)−1 and such

that for every x ∈ �∗, there exists a t ∈ (0, 1) such that

|TP
t f (x)| ≥ (1 − c0)

n2−(n−r)−1
( R

LQ1/2

)n−r

− |E1| − |E2|

where

|E1| + |E2| ≪φ,n,k,r,P (c3 + c5 + Q−�0/2)
( R

LQ1/2

)n−r

.

By taking R sufficiently large and choosing the absolute constants c3, c5 suf-

ficiently small, we will ultimately make the error terms less than half the size

of the main term. We prove the propositions and then turn in §7 to the final

choice of parameters, optimizing the counterexample and completing the proof of

Theorem 2.1.

6.1 Proof of Proposition 6.2. Since M ◦ (R/L) ∈ Zr is fixed and Pk

is Dwork-regular, by Proposition 3.3, Pk(M ◦ (R/L),Xr+1, . . . ,Xn) is a Deligne

polynomial in Xr+1, . . . ,Xn over Fq for all primes q ≥ K1(Pk). By Proposi-

tion 4.1, for all primes q > max{k,K1,K2}, α2q
n−r+1 ≤ |G(q)| ≤ qn−r+1 for

some α2 > 0 depending only on n, k, r. We have defined the set � accordingly,

so that for (y1, . . . , yn) ∈ B(a, b; q) for some (a, b) ∈ G(q), a small s can be cho-

sen so that y1 + s = 2πa/q precisely, and (yr+1, . . . , yn) is well-approximated by

(2πbr+1/q, . . . , 2πbn/q). We will use this Diophantine behavior in Proposition 6.3

to show that for (y1, . . . , yn) ∈ B(a, b; q), S(2R/L;w, t) is well-approximated by

⌊R/Lq⌋n−r copies of T(a, b; q) and is hence≫ ⌊R/Lq⌋n−rq(n−r)/2. For nowwe com-

pute a lower bound on the measure of �. This is not immediate, since if n− r > 1,

many of the boxes B(a, b; q) can overlap as q varies; our construction of the set G(q)

is also completely inexplicit about which a, b are chosen. However, we can apply

[ACP23, Lemma 4.1], which shows that if a set of boxes is “well-distributed,”

then the measure of their union is at least a positive proportion of the sum of their

measures.
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Precisely, choose K0 sufficiently large that (by the prime number theorem)

π(x) ≥ (1/4)x/ log x for all x ≥ K0/2. Let I denote the index set of (a, b; q) over

which the unions are taken in the definition of �. Then by [ACP23, Lemma 4.1(ii)],

|�| =

∣

∣

∣

∣

⋃

Q/2≤q≤Q
q prime

⋃

(a,b)∈G(q)

B(a, b; q)

∣

∣

∣

∣

≫
∑

Q/2≤q≤Q
q prime

∑

(a,b)∈G(q)

|B(a, b; q)|

≫ (Q/ logQ)(α2Q
n−r+1)Q−1(Q−1−1/(n−r))n−r ≫ (logQ)−1

(with implied constants depending on c1, c4, c5, n, k, r) as long as all the boxes

B(a, b; q) have comparable size and

(6.3) #{(a, b; q), (a′, b′; q′) ∈ I : B(a, b; q) ∩ B(a′, b′; q′) �= ∅} ≪ |I|,

with an acceptable implied constant. It is clearly true that

1 ≪ |B(a, b; q)|/|B(a′, b′; q′)| ≪ 1

for all pairs of indices (a, b; q) and (a′, b′; q′) ∈ I. The bound (6.3) is a statement

that the boxes are well-distributed since a trivial upper bound for the cardinality

would be |I|2; on the other hand, if all the boxes were pairwise disjoint, the

cardinality would be precisely |I|.

It remains to verify (6.3). Upon requiring Q > 2 max{k,K0,K1,K2} and

recalling the construction of the sets G(q),

(Q/ logQ)Qn−r+1 ≪ |I| ≪ (Q/ logQ)Qn−r+1.

The contribution to (6.3) when (a, b; q) = (a′, b′; q′) as tuples is clearly ≪ I, so

we consider instead the case when the tuples are distinct, and we suppose that

B(a, b; q) ∩ B(a′, b′; q′) �= ∅, so that in particular,

|a/q − a′/q′| ≤
c4

2π
(1/q + 1/q′),

|bj/q − b′
j/q

′| ≤
c5

2π
(1/q1+1/(n−r) + 1/(q′)1+1/(n−r)), r + 1 ≤ j ≤ n.

If q = q′ then by taking c4, c5 < 1, the above relations impose |a − a′| < 1 and

|bj − b′
j| < 1 for all j, so that (a, b; q) = (a′, b′; q′), which is a case we already

considered. So we now assume q �= q′ are distinct primes in [Q/2,Q]. Then the

above relations show that

(6.4)
|aq′ − a′q| ≤

c4

π
Q,

|bjq
′ − b′

jq| ≤
c5C

π
Q1−1/(n−r), r + 1 ≤ j ≤ n
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where C is a constant depending on n, r. Recall that given an integer m, and

distinct primes q, q′, there is a unique choice of a pair a, a′ with 1 ≤ a ≤ q

and 1 ≤ a′ ≤ q′ with aq′ − a′q = m. Indeed, if there were another representation

a0, a′
0 then aq′ − a′q = a0q

′ − a′
0q would imply that (a − a0)q

′ = (a′ − a′
0)q,

so that q′|(a′ − a′
0) and q|(a − a0), implying a = a0 and a′ = a′

0, as claimed.

Thus once a tuple (m1,mr+1, . . . ,mn) of integers is chosen with |m1| ≤ (c4/π)Q

and |mj| ≤ (c5C/π)Q1−1/(n−r) for each j = r + 1, . . . , n, there is at most one choice

of a pair (a, b) ∈ Fq ×Fn−r
q and (a′, b′) ∈ Fq′ ×Fn−r

q′ satisfying the n−r+1 relations

in (6.4) above. Taking into account all possible values of such (m1,mr+1, . . . ,mn),

this shows that given q �= q′, at most

≪c4,c5,n,r Q · (Q1−1/(n−r))n−r ≪ Qn−r

pairs of index tuples (a, b; q) and (a′, b′; q′) can have B(a, b; q) ∩ B(a′, b′; q′) �= ∅.
Taking a union over all pairs of primes q �= q′ ∈ [Q/2,Q] bounds the left-hand side

of (6.3) by ≪ (Q/ logQ)2Qn−r ≪ |I|. This proves (6.3) and completes the proof

of Proposition 6.2.

6.2 Proof of Proposition 6.3. The existence and measure of the

set �∗ ⊆ Bn(0, 1) follows directly from the construction of the set � in Proposi-

tion 6.2. Indeed,�∗ is defined to be the set of those x ∈ Bn(0, 1) such that the change

of variables defining the y-coordinates in (6.1)map x to a point (y1, y2, . . . , yn) ∈ �.

To bound the measure of �∗ from below, one only needs to compute the measure

of the pre-image of � under the change of variables (6.1). Under the assumption

that λ > (k − 1)/k (which will hold for our final choice of λ), this simple rescaling

argument follows precisely the argument given in [ACP23, §4.5], and we omit it.

For every x ∈ �∗ there is thus a corresponding y = (y1, . . . , yn) ∈ � such that

y ∈ B(a, b; q) for some tuple a, b, q for which

(1/2)q(n−r)/2 ≤ |T(a, b; q)| ≪k q(n−r)/2.

By the construction of the box B(a, b; q), |y1 − 2πa/q| ≤ c4q
−1. Thus we may

choose a value of s with |s| ≤ c4q
−1, such that y1 + s = 2πa/q exactly. We make

this choice for s (which corresponds precisely via (6.1) to a choice of the time

parameter t). Again by the construction of the box B(a, b; q),

|yj − 2πbj/q| ≤ c5q
−1−1/(n−r)

for each r + 1 ≤ j ≤ n, so an application of Proposition 4.6 with Nj = R/L for

all r + 1 ≤ j ≤ n and V = c5q
−1−1/(n−r), yields

S(2R/L;w, t) =
⌊ R

Lq

⌋n−r

T(a, b; q) + E2
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with E2 = E as in the proposition. For every q ∈ [Q/2,Q], in the nota-

tion of Proposition 4.6 we have V ≪ c5N
−1 by the second constraint in (6.2),

and N ≫ q1+�0 by the third constraint in (6.2). Hence we may apply the simplified

upper bound for the error term given in Remark 4.7, which in the present setting

yields

(6.5)

|E2| ≪
⌊ R

Lq

⌋n−r

q(n−r)/2(c5 +
⌊ R

Lq

⌋−1
(log q)n−r)

≪ (c5 + Q−�0/2)
⌊ R

LQ1/2

⌋n−r

.

Here we have applied the third condition in (6.2) to see that for all Q sufficiently

large,
( R

LQ

)−1
(logQ)n−r ≪ Q−�0(logQ)n−r ≪ Q−�0/2.

Finally, for all R sufficiently large (with respect to λ, κ), ⌊ R
Lq

⌋ ≥ (1/2)R/Lq, so that

the main term of |S(2R/L;w, t)| satisfies

⌊ R

Lq

⌋n−r

|T(a, b; q)| ≥ 2−(n−r)−1
( R

Lq

)n−r

q(n−r)/2 ≥ 2−(n−r)−1
( R

LQ1/2

)n−r

.

The last step of proving Proposition 6.3 is to control the error term E1 from

Proposition 5.2. By that proposition,

|E1| ≪ sup
R/L≤uj≤2R/L

c3|S(u;w, t)|,

and thus it will suffice to prove that uniformly in R/L ≤ uj ≤ 2R/L, the sum

obeys the upper bound |S(u;w, t)| ≪ (R/LQ1/2)n−r. For this we can again apply

Proposition 4.6 with Nj = uj and V = c5q
−1−1/(n−r), so that

|S(u;w, t)| =
n
∏

j=r+1

⌊uj

q

⌋

· |T(a, b; q)| + E5

with E5 = E as in the proposition. We apply the bound |T(a, b; q)| ≪k q(n−r)/2,

valid for each pair (a, b) ∈ G(q). Upon noting that the expressions for both the

main term and E given in Proposition 4.6 are increasing as each range Nj increases,

we bound both from above by taking uj = 2R/L in each case. Hence we may in

fact apply the upper bound (6.5) also to E5. In conclusion,

|E1| ≪ c3

⌊ R

Lq

⌋n−r

q(n−r)/2 + c3(c5 + Q−�0/2)
( R

LQ1/2

)n−r

≪ c3

( R

LQ1/2

)n−r

.



GENERALIZATIONS OF THE SCHRÖDINGER MAXIMAL OPERATOR 103

7 Choosing parameters and conclusion of the proof

From Proposition 6.3, by taking R sufficiently large (relative to φ, δ0, c1, c2, n, k, r,

P, σ, λ, κ) and choosing c3, c5 sufficiently small (relative to φ, c0, n, k, r,P) we may

conclude that under the hypotheses of the proposition,

sup
0<t<1

|TP
t f (x)| ≥

1

2
(1 − c0)

n2−(n−r)−1
( R

LQ1/2

)n−r

.

It then follows from the measure of �∗ and the computation (5.1) of ‖f‖L2 that

‖ sup0<t<1 |TP
t f (x)|‖L1(Bn(0,1))

‖f‖L2

≫
( R

LQ1/2

)n−r

S
1/2
1 (R/L)−(n−r)/2(logQ)−1.

Set

δ(n, k, r) =
n − r

4((k − 1)(n − (r − 1)) + 1)
.

To finish the proof of Theorem 2.1, it suffices to show that we can define the

parameters S1 = Rσ, L = Rλ and Q = Rκ such that R/L is an integer, (5.14) and

(6.2) are satisfied, and for every s < 1
4 + δ(n, k, r),

( R

LQ1/2

)n−r

S
1/2
1 (R/L)−(n−r)/2(logQ)−1 ≥ AsR

s′

(7.1)

for some s′ > s (and some nonzero constant As). Note that verifying (7.1) is

equivalent to choosing σ, λ, κ such that

s <
σ

2
+

n − r

2
− (κ + λ)

n − r

2
,(7.2)

while (5.14) imposes σ ≤ 1/2 and (6.2) imposes

(7.3) κ + kλ ≥ k − 1 + σ,
n − (r − 1)

n − r
κ + λ ≥ 1, λ ≤ 1 − κ(1 + �0).

By taking a linear combination of the first two relations in the line above (namely

1/(k − 1) times the first relation plus n − r times the second relation), we obtain

(7.4) κ + λ ≥
n − (r − 1) + σ/(k − 1)

n − (r − 1) + 1/(k − 1)
.

To maximize the right-hand side of (7.2), we choose κ, λ so that equality holds in

this relation, and substitute the resulting value for κ + λ into (7.2). For all k ≥ 2

the coefficient of σ on the right-hand side of (7.2) is then positive, so in order to

enlarge the region in (7.2) as much as possible, we take σ = 1/2. Now solving for κ

and λ that obey the first two relations in (7.3) and satisfy equality in (7.4) reveals

κ =
n − r

2((k − 1)(n − (r − 1)) + 1)
, λ = 1 −

n − (r − 1)

2((k − 1)(n − (r − 1)) + 1)
.
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It is then true that 0 < κ, λ < 1. Moreover, λ = 1− κ(1 +�0) with �0 = 1/(n− r),

so that the third relation in (7.3) holds. Additionally, λ > (k−1)/k, as was required

in §6.2. Finally, λ = λ1/λ2 is a rational number and hence we take a sequence

of integers j → ∞ with j ≡ 0 (mod 2((k − 1)(n − (r − 1)) + 1)). Then for each

R = Rj = 2j and L = Lj = Rλ
j as j → ∞ in this sequence, we have Rj/Lj = 2j(1−λ) is

an integer, as required in Remark 6.1. Finally, we conclude that with these choices,

(7.1) holds for all s < 1/4 + δ(n, k, r), which ends the proof of Theorem 2.1.

8 Forms and intertwining rank: examples and remarks

8.1 Examples of Dwork-regular forms of any intertwining rank.

For each k ≥ 3 and 2 ≤ r ≤ n, we now prove the following forms of degree k are

Dwork-regular over Q in X1, . . . ,Xn with intertwining rank r, namely

Pk(X1, . . . ,Xn) = Xk
1 + · · · + Xk

n +
∑

2≤j≤r

X1X
k−1
j +

∑

2≤i<j≤n

XiX
k−1
j , k ≥ 3 odd;

Pk(X1, . . . ,Xn) = Xk
1 + · · · + Xk

n +
∑

2≤j≤r

X2
1X

k−2
j +

∑

2≤i<j≤n

X2
i X

k−2
j , k ≥ 4 even.

These visibly have intertwining rank r. In the next sections we additionally prove

these forms are indecomposable, and we compute the codimension of all Dwork-

regular forms of intertwining rank r < n, thus quantifying the set of forms for

which Theorem 1.1 proves a new result.

First we prove that each example Pk defined above is Dwork-regular. We

provide a full proof in the case k ≥ 3 is odd; this relies on the fact that k − 1 is

then even. In the case that k ≥ 4 is even, the proof is analogous, and relies on the

fact that k − 2 is even. By Lemma 3.1, it suffices to check that for all nonempty

S ⊆ {1, . . . , n}, PS := P|Xi=0,i �∈S is nonzero if |S| = 1 andPS is nonsingular if |S| ≥ 2.

It is clear that PS is nonzero for |S| = 1, so henceforth we assume |S| ≥ 2. Suppose

S = {ℓ1, . . . , ℓm} with ℓ1 < · · · < ℓm. If 1 �∈ S then PS is of the form

Xk
ℓ1

+ · · · + Xk
ℓm

+
∑

2≤ℓi<ℓj≤n,
ℓi,ℓj∈S

Xℓi
Xk−1

ℓj
.(8.1)

If 1 ∈ S and S \ {1} ⊆ {r + 1, . . . , n} then PS is of the form

Xk
1 + Xk

ℓ2
+ · · · + Xk

ℓm
+

∑

2≤ℓi<ℓj≤n,
ℓi,ℓj∈S

Xℓi
Xk−1

ℓj
.

This is the sum of Xk
1 and a polynomial P̃S of the form (8.1), and so it is nonsingular

if and only if P̃S is nonsingular. (Note that when |S| = 2 this is diagonal and hence
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nonsingular.) Lastly if 1 ∈ S and S \ {1} �⊆ {r + 1, . . . , n} then PS is of the form

Xk
1 + Xk

ℓ2
+ · · · + Xk

ℓm
+

∑

2≤ℓj≤r,
ℓj∈S

X1X
k−1
ℓj

+
∑

2≤ℓi<ℓj≤n,
ℓi,ℓj∈S

Xℓi
Xk−1

ℓj
.(8.2)

In particular, if |S| = 2 then PS is of the form

Xk
1 + Xk

ℓ2
+ X1X

k−1
ℓ2

.(8.3)

Consequently, in all cases (after relabelling variables) it suffices to check that for

each m ≥ m′ ≥ 2 and α ∈ {0, 1},

Q(Y1, . . . ,Ym) := Yk
1 + · · · + Yk

m +
∑

2≤j≤m′

Y1Y
k−1
j + α

∑

2≤i<j≤m

YiY
k−1
j

is nonsingular. (The case m′ = m, α = 1 corresponds to (8.1) with Yi = Xℓi
,

the case m′ < m, α = 1 corresponds to (8.2), and the case m′ = m = 2, α = 0

corresponds to (8.3).)

Suppose there exists a = [a1 : · · · : am] ∈ Pm−1 that is a simultaneous solution

to the system

∂Q

∂Y1
= kYk−1

1 +
∑

1<j≤m′

Yk−1
j = 0,

∂Q

∂Yℓ

= kYk−1
ℓ + (k − 1)Y1Y

k−2
ℓ + α(k − 1)

∑

2≤i<ℓ

YiY
k−2
ℓ + α

∑

ℓ<j≤m

Yk−1
j = 0,

2 ≤ ℓ ≤ m′,

∂Q

∂Yℓ

= kYk−1
ℓ + α(k − 1)

∑

2≤i<ℓ

YiY
k−2
ℓ + α

∑

ℓ<j≤m

Yk−1
j = 0, m′ + 1 ≤ ℓ ≤ m.

Since k is odd, k − 1 is even, and so the vanishing of ∂Q/∂Y1 forces aℓ = 0 for

1 ≤ ℓ ≤ m′. If α = 0, then the vanishing of the partials ∂Q/∂Ym′+1, . . . , ∂Q/∂Ym

forces aℓ = 0 for m′ + 1 ≤ ℓ ≤ m. Otherwise if α = 1, then the vanishing

of ∂Q/∂Ym′ forces aℓ = 0 for m′ + 1 ≤ ℓ ≤ m (by recalling aℓ = 0 for 1 ≤ ℓ ≤ m′).

So [a1 : · · · : am] cannot represent a point in Pm−1. Thus Q is nonsingular, as

needed.

8.2 A criterion to check if a form is indecomposable. We will next

prove that the examples given above are indecomposable, and in particular, there

is no GLn(Q) change of variables that bring them to the shape Xk
1 + Qk(X2, . . . ,Xn)

(e.g., the shape required in previous work [ACP23, EPV22]). We refer to the

results of Harrison [Har75] and Harrison–Pareigis [HP88], who studied the theory
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of higher-degree forms using the analogous theory for symmetric spaces. (Being

decomposable is also referred to as being of Sebastiani–Thom type in algebraic

geometry literature, for example in the literature on Carlson and Griffiths’ result

[CG80] that the generic polynomial can be reconstructed (up to a constant mul-

tiplicative factor) from its Jacobian ideal; see the explicit relation to ST-type in

[Wan15].)

Let L be a field, in our case with characteristic zero. A symmetric space of

degree k over L is a pair (V, θ) where V is a vector space over L of dimension n

and θ : Vk → L is a symmetric multilinear map. This is equivalent to Symk(V∗),

the kth symmetric power of V∗, which is naturally identified with the space of

homogeneous polynomials of n variables and degree k (see standard texts such

as [DF04],[Har92]). To describe explicitly the identification between forms and

symmetric spaces, write a homogeneous polynomial F ∈ L[X1, . . . ,Xn] in the

following symmetric form,

F(X1, . . . ,Xn) =
∑

1≤i1,...,ik≤n

ci1···ikXi1 · · ·Xik,

where ci1···ik = cσ(i1)···σ(ik) for all σ ∈ Sk and Sk is the symmetric group on {1, . . . , k}.

Let V be an n-dimensional vector space over the field L (we may view V as Ln),

and let v1, . . . , vn be a basis of V . Define θ(vi1, . . . , vik) = ci1···ik . Then for all

x1, . . . , xn ∈ L, we have the relation

F(x1, . . . , xn) = θ

( n
∑

i=1

vixi, . . . ,

n
∑

i=1

vixi

)

.

By definition, a symmetric space (V, θ) is nondegenerate if θ(v, v2, . . . , vk) = 0

for all v2, . . . , vk ∈ V implies v = 0. Further, a symmetric space is decomposable

if there exist nonzero symmetric spaces (U, φ) and (W, ψ) such that

(V, θ) = (U, φ) ⊕ (W, ψ).

Harrison showed that the decomposability of a symmetric space (V, θ) is charac-

terized by its center Z(V, θ) which is defined as

Z(V, θ) = {f ∈ EndL(V) : θ(f (v1), v2, . . . , vk) = θ(v1, f (v2), v3, . . . , vk)}.

Note that this also implies

θ(v1, . . . , f (vi), . . . , vj, . . . , vk) = θ(v1, . . . , vi, . . . , f (vj), . . . , vk)

for any i, j since θ is symmetric. Precisely, Harrison proves in [Har75, Proposi-

tion 4.1]: let (V, θ) be a nondegenerate symmetric space of degree k ≥ 3 over a
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field L of characteristic zero. Then (V, θ) is indecomposable if and only if Z(V, θ)

has no nontrivial idempotents. (An idempotent in a ring is an element a such

that a2 = a. The trivial idempotent elements are the 0 and 1, respectively the

additive identity and the multiplicative identity in the ring.)

To translate this into the language of homogeneous polynomials, we define the

center of a form F, following [HP88], as

Z(F) = {A ∈ Mn(L)|ATHF = HFA}

where HF denotes the Hessian matrix (∂2F/∂Xi∂Xj)1≤i,j≤n. Then the center, and the

decomposability, of a form coincide with those of its associated symmetric space.

Precisely, let F ∈ L[X1, . . . ,Xn] be a form of degree k ≥ 3 and let (V, θ) be the

symmetric space associated to F. Then it can be shown that Z(F) ∼= Z(V, θ), and F

is indecomposable as a form if and only if (V, θ) is indecomposable as a symmetric

space. Thus to show a form is indecomposable, it is equivalent to show that its

center has no nontrivial idempotents. This is the criterion we will exploit.

It is convenient to note that over a field L (with charL ∤ k), a form is called

central if Z(F) ≃ L. Harrison showed that if a form is central (over L), then it is

absolutely indecomposable (that is, indecomposable over any field extension of L).

In our case, to show F is indecomposable overQ it suffices to show that Z(F) ≃ Q,

so the form has the even stronger property of being central. We remarked earlier

that indecomposable forms are generic. This is implied for (n, k) �= (2, 3) over C

by [HLYZ22, Thm. 3.2] (which shows the set of central forms is open and dense

in the moduli space over C; this proof can be adapted to hold over Q). It is also

shown directly for n ≥ 3, k ≥ 3 over C by [Wan15, Ex. 4.3, 4.4, Cor. 6.1]. The

case (n, k) = (2, 3) is more complicated, and we defer its study to a different work.

8.3 The examples are indecomposable. For k≥3, n ≥ 2 and 2 ≤r≤ n,

the example form Pk defined above is indecomposable; we will prove this next by

showing Z(Pk) has no nontrivial idempotents. Precisely, when (n, k) �= (2, 3), we

show that Z(Pk) ≃ Q; for (n, k) = (2, 3), the example P3 is also indecomposable,

but with a different center. (Note that if r = 1, the form is decomposable since X1

only appears in a diagonal term. Thus we need only consider 2 ≤ r ≤ n.)

We present the full proof for all odd k ≥ 5, n ≥ 2 and 2 ≤ r ≤ n; the proof

for k = 3 and for all even k ≥ 4 is fundamentally analogous. Fix P = Pk to be the

example form defined above. Let HP denote the Hessian of P. Then HP/(k − 1) is
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the n × n matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

kXk−2
1 Xk−2

2 · · · Xk−2
r 0 · · · 0

Xk−2
2 kXk−2

2 + Q2 · · · Xk−2
r Xk−2

r+1 · · · Xk−2
n

...
. . .

...

Xk−2
r Xk−2

r · · · kXk−2
r + Qr Xk−2

r+1 · · · Xk−2
n

0 Xk−2
r+1 · · · Xk−2

r+1 kXk−2
r+1 + Qr+1 · · · Xk−2

n

...
. . .

...

0 Xk−2
n · · · Xk−2

n Xk−2
n · · · kXk−2

n + Qn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where Qℓ = (k − 2)
∑

1≤i<ℓ XiX
k−3
ℓ for ℓ ≤ r and Qℓ = (k − 2)

∑

2≤i<ℓ XiX
k−3
ℓ

for ℓ > r. Note that each Qℓ �≡ 0. For k ≥ 5, each Qℓ consists of monomials that

differ from each other and from the entries of HP/(k − 1) that are off the diagonal,

and so the vanishing of any linear combination ci1Qi1 + · · · + cimQim ≡ 0 would

imply cij = 0 for all 1 ≤ j ≤ m.

Let A = (aij) ∈ Mn(Q) and write

HP/(k − 1) = (hij).

Let BA denote (ATHP − HPA)/(k − 1). Then A ∈ Z(P) if and only if BA = 0. Note

that a priori we have {cIn : c ∈ Q} ⊆ Z(P). The assumption that all entries of BA

are 0 implies constraints on the entries of A that show the reverse inclusion

Z(P) ⊆ {cIn : c ∈ Q},

from which we deduce the equality Z(P) = {cIn : c ∈ Q} ≃ Q.

Write BA = (bij) so that bij =
∑n

ℓ=1(aℓihℓj − hiℓaℓj). Note that since HP is

symmetric, bii = 0 and BT
A = −BA. Hence it suffices to consider the (n2 − n)/2

entries above the diagonal, i.e., bij with i < j. Each entry bij is a polynomial, so

it is ≡ 0 if and only if the coefficient of each term (after regrouping) is zero. We

split the (n2 − n)/2 entries of bij with i < j into the following five cases of (i, j),

based on the shapes of the rows and columns:

(1) (1, j) with 2 ≤ j ≤ r,

(2) (i, j) with 2 ≤ i < j ≤ r,

(3) (1, j) with r + 1 ≤ j ≤ n,

(4) (i, j) with r + 1 ≤ j ≤ n and 2 ≤ i ≤ r, and

(5) (i, j) with r + 1 ≤ i < j ≤ n.

It suffices to learn from the assumption that bij ≡ 0 in the cases (1), (3), (4).
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For case (1) with (1, j) with 2 ≤ j ≤ r, we compute

b1j = −a1jkX
k−2
1 −

j−1
∑

ℓ=2

aℓjX
k−2
ℓ +

( j−1
∑

ℓ=1

aℓ1 + aj1k − ajj

)

Xk−2
j

+
r

∑

ℓ=j+1

(aℓ1 − aℓj)X
k−2
ℓ +

n
∑

ℓ=r+1

aℓ1X
k−2
ℓ + aj1Qj.

The assumption b1j ≡ 0 for all 2 ≤ j ≤ r can be seen to imply that

aii = a11, 2 ≤ i ≤ r,(8.4)

ai1 = 0, 2 ≤ i ≤ n,(8.5)

aij = 0, 1 ≤ i �= j ≤ r.

These give the desired conditions on the top left r × r block and the first column

of A. If r = n, the proof is complete; otherwise for r < n we continue, as cases (3),

(4) are non-vacuous.

For case (3), (1, j) with r + 1 ≤ j ≤ n, we compute

b1j = −a1jkX
k−2
1 −

r
∑

ℓ=2

aℓjX
k−2
ℓ +

( j−1
∑

ℓ=2

aℓ1 + aj1k

)

Xk−2
j +

n
∑

ℓ=j+1

aℓ1X
k−2
ℓ + aj1Qj.

Thus the assumption b1j ≡ 0 gives in particular the new condition

aij = 0, 1 ≤ i ≤ r, r + 1 ≤ j ≤ n.

This is the desired result for the top right r × (n − r) block of A.

For case (4), (i, j) with r + 1 ≤ j ≤ n and 2 ≤ i ≤ r, we compute

bij = −

( i−1
∑

ℓ=1

aℓj + aijk

)

Xk−2
i −

j−1
∑

ℓ=i+1

aℓjX
k−2
ℓ +

( j−1
∑

ℓ=2

aℓi + ajik − ajj

)

Xk−2
j

+
n

∑

ℓ=j+1

(aℓi − aℓj)X
k−2
ℓ − aijQi + ajiQj.

The assumption bij ≡ 0 for all r + 1 ≤ j ≤ n and 2 ≤ i ≤ r implies that

aii = a22, 2 ≤ i ≤ n,

aij = 0, r + 1 ≤ i ≤ n, 2 ≤ j ≤ r,

aij = 0, 2 ≤ i ≤ n, r + 1 ≤ j ≤ n, i �= j.

The second condition combined with (8.5) confirms that the entries in the lower-

left (n − r) × r block of A are zeroes, while the third condition finalizes that the
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off-diagonal entries of the lower-right (n − r) × (n − r) block of A are zeroes.

Finally, combined with (8.4) the first condition shows that all diagonal entries in

the lower-right block are also equal to a11. Thus A = a11In, and this completes the

proof that Z(P) ⊆ {cIn : c ∈ Q}.

The above computations focused on the case of k ≥ 5 odd. If k ≥ 4 is even,

the argument follows exactly the same structure; the assumption that bij ≡ 0 for

indices in case (1) proves the top left r × r block has the desired structure, and (if

r < n) indices from cases (3) and (4) complete the information about the remaining

matrix. If k = 3, the proof is more complicated, because the polynomialsQℓ defined

above now must be grouped with various other terms (the monomials appearing

are no longer all distinct). Nevertheless, if n ≥ 3, the assumption bij ≡ 0 in the

cases (1)–(4) shows that Z(P3) ≃ Q. If (n, k) = (2, 3), we need only consider

rank r = 2, and only the index case (1) is non-vacuous. From bij ≡ 0 in case (1)

we conclude 3a12 − a21 = 0 and a11 − a22 + 3a21 = 0 so that

Z(P3) =

{(

α − 9β β

3β α

)

: α, β ∈ Q

}

.

Any idempotent A ∈ Z(P3) must satisfy A2 = A, by definition of being an idempo-

tent. Ifβ = 0, this forcesα = 0 or 1, corresponding to the A being either of the trivial

idempotents (the zero matrix or the identity matrix). If β �= 0, the identity A2 = A

produces three independent equations in α, β, and in particular, inspection of these

equations shows that α must satisfy a quadratic equation with no rational roots.

Thus Z(P3) contains no nontrivial idempotents over Q. In conclusion, P3 is not

central over Q but it is indecomposable over Q. (It is incidentally decomposable

over Q, since its center contains nontrivial idempotents over Q.)

8.4 Codimension of the class of forms. Let M denote the moduli space

of forms P ∈ Q[X1, . . . ,Xn] of degree k ≥ 2. Then dimM =
(

n+k−1
n−1

)

. To see this

by a “stars and bars” argument, note that dimM is the number of monomials of

degree k in n variables. Each such monomial can be represented as a configuration

of k stars and n − 1 bars (e.g., X1X
2
2 when k = 3 and n = 4 would be represented

by the configuration ∗| ∗ ∗||.) The number of such configurations is equal to the

number of ways to choose the location of the n − 1 bars (among k + n − 1 possible

places), and this is the binomial coefficient
(

n+k−1
n−1

)

.

Let D ⊆ M denote the set of Dwork-regular forms, and let Pr denote the set of

forms of intertwining rank ≤ r, for 1 ≤ r ≤ n, so that P1 ⊆ P2 ⊆ · · · ⊆ Pn = M.

(We remark that the set of forms that have intertwining rank precisely r, that is,

the set P̃r = Pr \ Pr−1, has dimension equal to that of Pr, since it can be shown
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that dim Pr−1 < dim Pr.) For each 1 ≤ r < n, Theorem 1.1 proves a nontrivial

result for all real symbols P with leading form Pk ∈ D ∩Pr. Here we compare the

codimension of D ∩ Pn−1 in M (the largest class to which our theorem applies)

to the codimension of D ∩ P1 in M (equivalent to the largest class to which the

previous works [ACP23, EPV22] applied); we focus on a brief summary, since

a more complete study of such forms (and their GLn(Q)-orbits) will be given in

other work.

Fix 1 ≤ r ≤ n. First, D is open in M, and it can be shown that Pr is a

finite union of (irreducible) affine varieties in M, say Pr,i for i = 1, . . . ,N, so that

Pr =
⋃N

i=1 Pr,i. Then D ∩Pr is a quasi-affine variety, and consequently by [Har77,

Prop 1.10], dim D ∩ Pr = dim D ∩ Pr. In general, if U ⊆ Am is an open set

and X =
⋃N

i=1 Xi ⊆ Am is a union of irreducible affine varieties Xi, then as long

as U ∩ Xi �= ∅ for every i, it follows that U ∩ X = X. For each i, it can be shown

that D ∩Pr,i is nonempty, by precisely the examples stated above (up to re-ordering

coordinates). Thus we conclude that D ∩ Pr = Pr, so that it suffices to compute

dim Pr in M.

We focus on the cases of P1 and Pn−1; it is easier to count the codimension.

By symmetry considerations, the dimension of Pn−1 is the dimension of the class

of forms for which X1 does not intertwine with Xn, or equivalently all those forms

that do not contain monomials with the factor X1Xn. Equivalently, all coefficients

of terms of the form X1XnQk−2(X1, . . . ,Xn) with Qk−2 of degree k − 2, must be

zero. This constrains the coefficients of
(

n+(k−2)−1
n−1

)

monomials, so that

codim(Pn−1) =

(

n + k − 3

n − 1

)

.

On the other hand, by symmetry considerations, the dimension of P1 is the

dimension of the class of forms cXk
1 + Qk(X2, . . . ,Xn), where Qk has degree k;

the dimension of such polynomials is
(

n+k−2
n−2

)

+ 1. Equivalently,

codim(P1) =

(

n + k − 1

n − 1

)

−

(

n + k − 2

n − 2

)

−1 = codim(Pn−1) +

(

n + k − 3

n − 2

)

−1.

Thus Pn−1 is a larger class of forms, with dim(Pn−1) − dim(P1) =
(

n+k−3
n−2

)

− 1

behaving asymptotically like ∼ cnk
n−2 if n is fixed and k → ∞, or like ∼ ckn

k−1

if k is fixed and n → ∞.
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[Sjö87] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987),
699–715.
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