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Abstract. Let T,P 2f(x) denote the solution to the linear Schrodinger equation
at time 7, with initial value function f, where P»(&) = |€]%. In 1980, Carleson asked
for the minimal regularity of f that is required for the pointwise a.e. convergence of
T,sz(x) to f(x) as t = 0. This was recently resolved by work of Bourgain, and Du
and Zhang. This paper considers more general dispersive equations, and constructs
counterexamples to pointwise a.e. convergence for a new class of real polynomial
symbols P of arbitrary degree, motivated by a broad question: what occurs for
symbols lying in a generic class? We construct the counterexamples using number-
theoretic methods, in particular the Weil bound for exponential sums, and the
theory of Dwork-regular forms. This is the first case in which counterexamples
are constructed for indecomposable forms, moving beyond special regimes where
P has some diagonal structure.

1 Introduction

Given a polynomial P(¢) € R[&, ..., &,] of degree k > 2, the operator

1 F i(E-x+P())
o L e

(1.1) TFf(x) =
initially defined for f of Schwartz class on R”, gives a solution to the linear PDE

ou—iPMDu=0, (x,1)eR" xR,

(1.2)
u(x, 0) = f(x), x € R".
Here D = %(5‘31, e, %) and P(D) is defined according to its real symbol by
PO = 5 | P
(271') R

When P(&) = |&|%, in which case (1.2) is the linear Schrodinger equation,
Carleson famously asked [Car80, Eqn. (14) p. 24]: what is the smallest s > 0 such
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that
(1.3) lir% TtPf(x) =f(x), ae.xeR" forallfe H'®R").
—

This question was resolved for dimension n = 1 quite swiftly by [Car80, DK82],
which established that (1.3) holds if and only if s > 1/4. In higher dimensions,
there is a long history of work on necessary and sufficient conditions for the
Schrédinger pointwise convergence problem, including [Cow83, Car85, Sj687,
Veg88, Bou95, MVV96, TV0O, Lee06, LR17, DGL17, DGLZ18, LR19]. For
several decades it was expected that s = 1/4 might be the critical threshold in
all dimensions, until Bourgain pushed the necessary condition on s above 1/4 in
[Boul3]. It was very recently resolved (up to the endpoint) by Bourgain [Boul6],
who showed that s > 1/4 + d(n) with 6(n) = (n — 1)/(4(n + 1)) is necessary, while
Du and Zhang [DZ19] showed that s > 1/4 + d(n) is sufficient.

Bourgain’s counterexample construction was interesting: it cleverly employed
Gauss sums to force supy_, |T,P f(x)] to be large (from which a violation of (1.3)
can be deduced) for test functions f defined using exponential sums. Recently,
in [ACP23] we expanded this idea into a more flexible method for producing
counterexamples to pointwise convergence results of the form (1.3) for the ini-
tial value problem (1.2), using the Weil bound for complete exponential sums.
In that initial paper, we demonstrated the new method for symbols of the form
P(X1, ..., Xy) =Xt + -+ XX for any degree k > 3, and we proved that

s> 1/4+dn, k)

is necessary for (1.3) to hold, for d(n, k) = (n — 1)/(4((k — 1)n+ 1)). Subsequently
[EPV22] adapted the method of [ACP23] to achieve a result of the same strength,
for any polynomial whose leading form (homogeneous part of highest degree)
takes the special shape

(1.4) Pi(X1, .. X)) = X+ Qu(Xa, . .., Xy),

where Q; € Q[X3, ..., X,] is a nonsingular form of degree & that is independent
of X;. For degree 2 forms, the special shape (1.4) does not entail a loss of generality,
since any quadratic form can be diagonalized over R, and as we will explain, the
underlying problem allows for such changes of coordinates. However, for k > 3,
forms P;. of the shape (1.4) are quite sparse among degree k forms in Q[ X1, ..., X,]
(in a sense we quantify in §8), and it is well-known that in arithmetic problems, a
form with some diagonal structure is generally easier to handle. We are motivated
by the question: what is the minimal regularity required for (1.3) when the real
polynomial symbol P has leading form belonging to a generic class of degree k
forms in Q[ X4, ..., X,]?
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For any fixed real symbol P, the key to proving or disproving pointwise con-
vergence as in (1.3) is the associated maximal operator
(1.5) f = sup |T/f].

O<r<1

For a given s, to prove that pointwise convergence (1.3) holds for all f € H*(R"), it
suffices to prove (for example) that the maximal operator maps H*(R") to LIZOC(R").
In the other direction, to prove that convergence (1.3) fails for some functions
in H°(R"), it suffices to prove that the maximal operator is unbounded from H*(R")
to LL..(R™); see for example [Pie20, Appendix A] for a summary of these standard
arguments. Thus we state our main result in terms of showing the maximal operator
(1.5) is unbounded from H*(R") to LIIOC(R") for s in a certain range.

For any fixed n > 2 and degree k > 2, nonsingular forms are generic among

degree k forms in Q[X}, ..., X,]. Given a value s > 0, the truth (or falsity) of a
bound of the form
(1.6) I sup T f 1y ey < Collflasn  forall f € H'(R™)

O<t<1

is invariant under GL,(R)-action on the polynomial P (see §3.5). Thus if one wishes
to understand this putative bound for an arbitrary polynomial P with nonsingular
leading form P, € Q[X1, ..., X,], itis no loss of generality to first apply a GL,(Q)
change of variable to put P, in a convenient form. We heavily exploit the following
property: for every nonsingular form in L[X], ..., X,] for an infinite field L, there
is a GL, (L) change of variables under which the form becomes Dwork-regular
(see the definition in (1.8)). Thus in the study of generic forms, it is no loss of
generality to focus on Dwork-regular forms, and we do so here.

The fact that diagonalization, so convenient for quadratic forms, is out of reach
for most higher-degree forms, is a dominant theme in the study of symmetric
tensors (which, roughly speaking, generalize the symmetric matrix associated to
a quadratic form). This has led to the development of many notions of rank for
degree k forms, including the Schmidt rank (or A-index), Waring rank (symmetric
tensor rank), slicing rank, relative rank, the property of decomposability, and
more. Each such notion of rank is motivated by specific applications in algebraic
invariant theory, number theory, algebraic geometry, computational complexity,
etc. Similarly, our present work leads to a new notion of rank, which we now
define.

Definition (Intertwining rank). A variable X; intertwines with X; (with i # j)
in a form Py of degree k > 2 if (&*/ 0X;0X;)Py # 0. By convention, X; intertwines
with itself. The intertwining rank r(X;) of X; in Py is the number of variables with
which X; intertwines. The intertwining rank of the form Py is min; <;<, 7(X;).
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For example, X; + X3 +X3 +X; has intertwining rank 1, while X7 +X; X5 +X2X3X4
has intertwining rank 2. Our main result is:

Theorem 1.1. Fixn > 2 and k > 2. Let P € R[X, ..., X,] be a polynomial
whose leading form P, € Q[Xy, ..., X,] is Dwork-regular in Xy, ..., X, over Q

and has intertwining rank r. Suppose there is a constant Cg such that for all
f e H'R"),

(1.7) Il sup 177,01y < Csllf s

O<r<1
Then s > t +(n, k, r) with
n—r
4k—Dn—r—1)+1)
We now briefly situate Theorem 1.1 with respect to previous literature, and then

o(n, k, r) =

we explain the context of Dwork-regular forms, describe more precisely the notion
of “generic” forms, and illustrate that a strength of the theorem is its application
to indecomposable forms.

1.1 Relation to previous literature on convergence problems. As
an immediate consequence of Theorem 1.1, pointwise convergence as in (1.3)
fails for some f € H*(R") for the initial value problem (1.2) defined by P, for
each s < 1/4 + d(n, k, r) (following the standard arguments recorded in [Pie20,
Appendix A]). Our present work also adapts (in a trivial way) todimensionn=r = 1
(see Remark 5.1), but we omit the details, since in 1 dimension, (1.3) holds for
all polynomials P of degree k > 2 if s > 1/4 and fails if s < 1/4, by [KPVO9I,
Cor. 2.6], [DK82, KR83].

The threshold 1/4 is a common sticking point of many methods in the literature
relating to the convergence problem (1.3); see, e.g., the survey in [ACP23, §1.2].
The main content of Theorem 1.1 is forn > 3, k > 3, and 2 < r < n. In
all dimensions, counterexamples to (1.3) and (1.7) for all s < 1/4, for any real
polynomial symbol (with leading form of any intertwining rank » > 1), are due to
Sjolin [Sjo98]. Theorem 1.1 is the firstresult to go beyond 1 /4 for intertwining rank
r > 2, for all dimensions n > 3. The strength of our result decreases as r increases,
and subsides to the requirement s > 1/4 when r = n. For intertwining rank r = 1,
Theorem 1.1 recovers the special case of diagonal symbols considered in [ACP23],
and the symbols of the form (1.4) considered in [EPV22]. For degree k = 2, by
the spectral theorem, any quadratic leading form is diagonalizable under GL,(R),
which (after further renormalization) reduces the case of quadratic forms to the case
of intertwining rank » = 1. For dimension n = 2, the only cases are intertwining
rank r = 1, in which case Theorem 1.1 recovers a result of [EPV22], and r = 2, in
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which case Theorem 1.1 states s > 1/4, which was previously known. It remains
an interesting open question whether the regularity condition in Theorem 1.1 can
be increased further.

In all dimensions, (1.3) holds for all s > 1/2, for a wide class of differentiable
functions, including any real polynomial P of principal type of order a for o > 1
(meaning |VP(&)| > (1+]&])*~! for all sufficiently large |&]), by [BAD91, Thm. D]
and [RVV06, Remark 2.2]. Positive results proving bounds related to (1.7) for
s < 1/2, such as the celebrated work in the case P(&) = |£]? in [DZ19], must
proceed by entirely different methods. For further notes on the vast literature on
convergence results, maximal operators and connections to local smoothing, we
refer to [ACP23, §1.2].

1.2 The role of Dwork-regular forms. Dwork-regular forms have been
extensively developed by Dwork [Dwo62] and later Katz (e.g., [Kat08, Kat09]).
To set the context for their definition, first recall that a form P; is said to be
nonsingular over Q if the polynomials Py, 6P;/0X1, . . ., 0P /08X, have no common
zeroes in IE%‘I (correspondingly the projective hypersurface defined by P, = 0
in IE%‘1 is nonsingular). (Here and throughout, L denotes a fixed algebraic closure
of a given field L, and IP’%_I denotes the (n — 1)-dimensional projective space
over the field L.) In comparison, P; is said to be Dwork-regular over QQ in the

variables X1, ..., X,, if there are no simultaneous solutions in IP’%‘I to
OPy, .
(1.8) Pi(Xy,...,X,) =0, Xiﬁ(Xl, .., X)=0, 1<i<n.
i

A comparison of the definitions shows that any Dwork-regular form over Q is
nonsingular over Q. As mentioned before, any nonsingular form becomes Dwork-
regular under an appropriate change of variables (see §3). Our interest in passing
to Dwork-regular forms is that they are particularly amenable to applications of
the Weil-Deligne bound (Lemma 4.2) even after fixing one or more variables (a
consequence of Proposition 3.3). This allows us to make new progress on the
convergence problem (1.3) despite a central difficulty that appears if each variable
“interacts” with other variables in the leading form Py. Intertwining rank captures
the amount of such interaction. The novelty in our present work is that we can
prove new results for forms of all intertwining ranks 1 < r < n.

1.3 Genericity: an underlying motivating question. We are moti-
vated by the question: what is the behavior of the initial value problem (1.2)
when Py is a “generic” form in Q[X1, ..., X,]? Technically, a class of forms is
said to be generic if it corresponds to an open set (in the Zariski topology) in the
moduli space of all degree kK homogeneous forms in Q[X{, ..., X,].
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As one example, nonsingular forms are generic. It is equivalent to show that
being singular is a condition on the coefficients of P, that defines a closed set in
the Zariski topology. Since Py is singular if and only if Py, 0P;/dX1, . .., 0Py /0X,
have a common nonzero root, then Py is singular if and only if the resultant of
Py, 0Py /0X4, . .., OPy/0X, vanishes. Thisresultantis a (nonzero) polynomial in the
coefficients of Py, 0P /0X1, . .., OPy/0X,, so that P being singular is characterized
by its coefficients lying in the vanishing set of a polynomial, proving the claim.

As another example, indecomposable forms are generic; we describe this prop-
erty thoroughly in §1.4 below. The union of two Zariski closed sets (e.g., the
set of singular forms and the set of decomposable forms) is closed, and so the
complement (e.g., the set of forms that are nonsingular and indecomposable) is
open, and hence generic. Indeed, any generic condition will include nonsingular
forms (generically), and indecomposable forms (generically). This fact cuts in two
directions, one convenient and one inconvenient. First, on the one hand, even if we
are interested in studying generic forms, it is reasonable only to consider nonsin-
gular forms (which is advantageous for an application of Lemma 4.2). But on the
other hand, it shows that to understand the generic situation, we must understand
the case of indecomposable forms.

One strength of Theorem 1.1 is that it proves the first (nontrivial) counterex-
amples to (1.3) that apply to leading forms P; that are indecomposable. Thus in
the next section we describe decomposability/indecomposability in more detail.
Nevertheless, Theorem 1.1 falls short of proving nontrivial results for a generic
class of forms: it is only nontrivial for forms of rank strictly smaller than », and
these are not generic. In §8.4 we compute the codimension of Dwork-regular
forms of intertwining rank r < n, among degree k forms in Q[X, ..., X,,]. This
codimension quantifies that Theorem 1.1 proves nontrivial results for a class of
forms that is not generic, but that nevertheless contains “many more” real symbols
than were tractable in previous works.

1.4 Indecomposable forms of degree k: definition, remarks and
examples. A form is called decomposable (or sometimes of Sebastiani—Thom
type) over a field L if there is a GL,(L) change of variables so that the form can be
written as a sum of at least two forms in disjoint sets of variables, for example

(19) P(Xla .. '5Xn) = Ql(Xla .. '5Xm)+Q2(Xm+15 . '5Xn)

for some 1 < m < n. Otherwise, a form is indecomposable over L. All of
the forms considered in [ACP23, EPV22] were of the special shape (1.4), and
thus have intertwining rank r = 1. All forms with intertwining rank r = 1 are
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decomposable. Yet we are motivated to tackle indecomposable forms, since in the
moduli space of degree k > 3 forms in Q[X4, ..., X},], indecomposable forms are
generic for n > 2, at least for (n, k) # (2, 3). (This is related, e.g., to [Wanl15, §6],
[HLYZ22, Thm. 3.2], [OS03, p. 303]; see further details in §8.)

Note that the intertwining rank of any decomposable polynomial is at most
n/2]; this can be seen by inspecting (1.9). We use this to deduce the following
immediate corollary of Theorem 1.1, verified in §3.6.

Corollary 1.2. Fixn >2andk > 2. Let P € R[X4, ..., X,,] be a polynomial
whose leading form P, € Q[Xy, ..., X,] is decomposable and nonsingular in
X1, ..., X, over Q. Suppose there is a constant C; such that for all f € H*(R"),

P
I sup |7} fllls,0,1) < Csllf lsn)-
1

O<t<

n

1
Then s > Z+m

Since it has been remarked that it is challenging to exhibit indecomposable
forms (see, e.g., [PumO6, p. 348], [Wanl5, p. 576]), we provide explicit examples.
For each degree k > 3 and rank 2 < r < n, we exhibit indecomposable forms
of degree k that are Dwork-regular over QQ in X1, . .., X,, with intertwining rank r,
namely

PeXp, .., X)) =X{+-+ X5+ Y XX '+ ) XX, k>3 odd;

2<j<r 2<i<j<n
PeXt, ..., X)=X{+- -+ X5+ Y XiXFP+ > XPXE?, k>4 even.
2<j<r 2<i<j<n

For example, in dimension n = 3 the examples with intertwining rank 2 are

Pi(X1, X2, X3) = Xk + X5 + X5 + X X571 + X, x5!, k > 3 odd;
Pi(X1, X2, X3) = XV + X5 + X5 + XIx52 + X5x52, k > 4 even.

In §8, we use a criterion of Harrison [Har75, HP88] to verify that these are in-
decomposable forms over Q (and hence in particular cannot be brought to have
intertwining rank 1 by any GL,(Q) change of variables).

1.5 Further directions. By the invariance of (1.6) under GL,,(Q)-action
on P, the main result of Theorem 1.1 furthermore applies to any polynomial P with
leading form P, € Q[Xy, ..., X,] lying in the GL,(Q)-orbit of a Dwork-regular
form of intertwining rank ». How big is such an orbit? This points to an interesting
question, which is in fact typical when one encounters a notion of rank for a higher
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degree form. Given a particular notion of rank, in an application one often wants
to manipulate the original form (or class of forms) to make the (particular) rank
more advantageous; the limits of this procedure may depend on the underlying
field (and whether it is algebraically closed). For example, in the case of Schmidt
rank, there is recent work on regularization and a new relative rank in [LZ21],
and the relation to algebraic closure in [LZ22]. In the case of Waring rank, see
the celebrated work of Alexander and Hirschowitz [AH95] over C (and a nice
overview in [RS00]), or more recent work for monomials in [CCG12] and partial
progress over R or Q in [HM22], with intriguing remarks on the dependence on the
underlying field in [Rez13]. For our particular setting, this becomes the question:
how does the intertwining rank behave under minimization via GL,(Q)? We pursue
this question, which requires completely different methods, in other work.

1.6 Notation. In this paper we employ the convention e(f) = €. Cor-
respondingly, f(&) = [p.f(X)e™¢dx and f(x) = 27)™" [ou f(E)e$dE, so that
Plancherel’s theorem takes the form |U”||i2(Rm) = (27r)_m|[f||i2(Rm). The Sobolev
space H*(R™) is defined to be all f € 8'(R™) with finite Sobolev norm

1 N
e = G [, 1+ P IOPAE

We use the convention that B,,(c, r) is the Euclidean ball of radius r centered
at ¢ in R™. The notation A <, B denotes that |[A] < C(x)B for a constant C(x).
It is harmless in our argument to allow constants to depend on the dimension n,
the symbol P of degree k, the intertwining rank r, and a Schwartz function ¢
we will fix once and for all. Certain small constants, which we can choose
freely, we will denote by co, c1, ¢2,...; we will demarcate these explicitly in
inequalities when we are preparing to exploit their small size. Foro = (vy, ..., vy),
w=(w,...,w,) € R" wedefinevow = (vywy, ..., v,w,). Foramulti-index a
wesety* =yl' -y al=o!---a,!, lal =a;+-- - +a,, and 6* = " - - - O; for
two multi-indices a, £, @ > f and a — S denote coordinate-wise relations.

2 Method of proof

To prove Theorem 1.1, we construct a family of test functions {f;} that are Fourier-
supported in an annulus {(1/C)R; < |{| < CR;} of radius R; for a sequence of
R; — oo as j — oo. By definition

Rl <cs Willa <cs RIS -

Hence Theorem 1.1 follows immediately from an explicit construction:
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Theorem 2.1. Letn > 2. Let P € R[Xy, ..., X,] be a polynomial of degree
k > 2 whose leading form P, € Q[Xy, ..., X,] is Dwork-regular over Q in the
variables X1, . .., X,, and has intertwining rank r < n. Fix any s < ﬁ +d(n, k, r)
with d(n, k, r) as in Theorem 1.1. Then there exists an infinite sequence of j — 00
such that for R; = 2, there exists a function f; € L*(R"), where ||f;|l;2 = | and f; is
supported in an annulus {(1/C)R; < |{| < CR;}, and with the property that

. |Isupg,4 |TtP]§'(X)|||L1(B (0,1))
lim Lo =00
j—00 R;

To prove Theorem 2.1, we define each test function f so that |T7f(x)| can
be approximated by an (n — r)-dimensional exponential sum, which we show is
“large” for many x € B,(0, 1), after choosing ¢ appropriately (depending on x).
This strategy is motivated by ideas of Bourgain (for degree k = 2) as explained in
[Pie20], and the flexible construction (applicable to degree k > 3) developed in our
earlier work [ACP23], for the diagonal case P(Xi, ..., X,) = X} +--- + X*. How-
ever, a difficulty arises if the leading form P; of the real symbol has intertwining
rank » > 1: in order to optimize the test functions f to violate the supposed upper
bound (1.7) for s as large as possible, one is naturally led to dilate one variable
within the exponential sum, say X;, by a large parameter. This large dilation
contributes large error terms to certain approximation arguments. We overcome
this by using the notion of intertwining rank. To assist the reader in tracking the
main ideas of the method, we now present a series of heuristic computations that
are not rigorous, but simply emphasize numerology. The remainder of the paper
carries out each step rigorously.

2.1 Heuristic overview. Let ®,(xy,...,x,) be a non-negative Schwartz
function with ®,(0) = 1 and @, supported in [—1, 1]”. As in Theorem 2.1, we
think of R as a parameter that will go to infinity. Define a test function

2.1) f@)=®,(Sox) > e((Aom)-x)
RN,
for some parameters S = (Sy,...,S,) and A = (Ay, ..., A,), with each S;, A;

chosen later to be 1, R or a small power of R. Let ||S|| = []S; for the moment, and
similarly for ||A||. The Fourier transform f is supported in an annulus of radius
~ R if each S; < R, and ||f||z= &~ R*||S||~'/?R"/?||A||~/2, so that by normalizing
appropriately, f fits the hypotheses of Theorem 2.1. For this test function,

1
Qm)"

TPf(x) = /R DuDe((S0)-x) Y e((Aom)-x)e(P(So &+ Ao mpd.

meZ"
mj%R/Aj
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For simplicity we temporarily assume P is a homogeneous form of degree k > 2,
defined in terms of coefficients and multi-indices by

POy, ...y = Y ca)™.

o=k

Step 1. Use partial summation to remove all terms in the sum over m that
depend on £ (i.e., that are “not arithmetic”); this replaces the sum over m (up to an
error term) by

2.2) ~ wR/AL, .. RIAD) S e((Aom)-x+P(Aomi),
meZ"
mj%R/Aj

in which the new sum is the “arithmetic contribution” while
(2.3) w1, ..., yn) =e(P(So+ Aoy)— P(Aoy))r)

is the “weight” that has been removed by partial summation. The weight
w(R/A1, ...,R/A,) contributes to the integral over ¢ a factor with a linear phase
in &, namely =~ e(S o ¢ - tVP(R)), where R=(R, ..., R).

Step 2. Use integration by parts to remove all terms in the phase of the integral
over ¢ that are order 2 or higher in & (up to an error term).

Step 3. After Step 2, one may immediately apply Fourier inversion to the
remaining integral over &, so that the main contribution to T7f(x) is a product of
the arithmetic contribution and

~ ©,(S o (x+1VPR))).

Then place constraints on x and ¢ so that S o (x + tVP(R)) = 0, so that applying
®,,(0) =1 (and continuity of ®,) implies that ®,(S o (x + tVP(R))) =~ 1 and hence

(2.4) IT I~ | > e((Aom)-x+P(Aomy)|.
m;gGRZ/”Aj

Step 4. Construct a set of x € R” that is a positive proportion of B, (0, 1) so that
for each x in the set there exists # € (0, 1) for which the arithmetic contribution
(2.4) is large. Up to some simple changes of variables, the set is a union of boxes
centered at rationals (a,/q, az/q, . . . , a,/q) for primes g =~ Q, where Q is a small
power of R to be chosen later.

Step 5. Optimize the choices of S = (S, ...,5,), A = (A, ..., A,), and Q,
subject to the constraints that the error terms in all previous steps are acceptable.
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To unravel the chain of dependencies that make these steps efficient and com-

patible, first consider Step 3, which requires that foreachj=1,...,n
k—1 ~__ % 1
2.5) S+ R <1 = 1~ - +O(Rk—lsj)‘

(This sketch assumes in particular that 8; P(R) 3> R*~!; to achieve this, we develop
Lemma 3.5.) Given (xy, ..., x,), if we choose ¢ to satisfy this for x;, then the only
way it can simultaneously satisfy it forx,, ..., x,isforxy, ..., x, toall lie in O(Sj_l)
neighborhoods of x;. This is too limiting in Step 4 unless we set S, =---=§,, =1
which we now do, so S = (S1,1,...,1) and ||S|| = S;. From now on, because of
the “large” rescaling factor Sy, the first coordinate x; will play a special role.
Next consider Step 2, in which we use iterated integration by parts (coordinate
by coordinate) to remove a “weight” from the integral that contains all terms in the
phase that are order 2 or higher in ¢&; this weight takes the approximate form

W@, ..., &) = e(IP(S o &+ R) — Lo(@ — Li)]0)
_ e<t S gy CBL 1S o é)@>,

|B+y1=k

18122
in which Ly (respectively L;) represents terms in P(S o  + R) that are order O (re-
spectively order 1) in &, and C(f, y) are positive combinatorial constants. As usual,
the error term when a weight is removed by integration by parts (or summation by
parts) will be smaller if the weight is slowly-varying, and thus we must control the
derivatives of W. The error accrued in Step 2 must be at most a small proportion
of the main term (2.4). This will be achieved if for each nonzero multi-index
x € {0, 1}", for all £ € supp o, C[—1,17

P R <« 1.

2.6
20 Bt

WO <l et Y O o s P

|p+y|=k
18122, p>xK

=

From Step 3 we know that r &~ R~*=1 50 we require the sum above to satisfy
<« R¥=!. Each term in the sum is roughly of size S/R” = Slﬁ‘R""ﬁ| for some |f] > 2.
There are two scenarios: if || > fi, this term is < R*"! as long as §; < R.
If 1 = | B], which can only occur if 8 > 2, then this term is < R*~1(SP' /RFi=1),
which is <« R*"! as long as S| <« Rﬂ}’ijl, which is most restrictive when f; = 2.
Thus we impose the condition S; <« R'/2.

Next consider Step 1, in which the error introduced by iterated partial sum-
mation must be at most a small proportion of the main term (2.4). This will be
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achieved if for each nonzero multi-index x € {0, 1}", for all y with y; & R/ A,
olxl
=
t Z Cﬂ+yc(,3, P)(S o é‘)ﬁ(A o y)y—xAx

|f+y1=k
1Bl=1,y>x

w(y)} « AR

2.7 !
( ) yi < A"R—|K|.
(y —n)!

Note that in contrast to (2.6), in this case the phase in the weight w(y) includes
terms of order 1 in &, so that |f]| = 1 is allowed in the sum immediately above.
Each term in the sum immediately above is roughly of size

K —k ~ P K —k ~ P pk— K p—|x!
SEAS(A 0y) ™ &~ SI'ARRYTF & SR ARRTIML
Thus the condition (2.7) will be met, recalling t &~ R~*~D as long as
Sfle—lﬂl << Rk—l

for all || > 1. There are again several scenarios: if |f| > B, orif f; = || > 2,
this term is << R*~! by arguing as in Step 2, under our assumption S; < R'/2. The
problem is that there is now also a third case, with £, = || = 1 in which case the
requirement is asking that SIR*=! <« R*~!. These problematic terms can be seen
as the contribution to the weight (2.3) that is varying the fastest with respect to y,
namely the portion of the phase that is highest order in y (total degree kK — 1) and
linear in . (We also provide an explicit example of such terms in (5.6).) One
way to achieve the requirement S}R¥~! « R*~! is to impose S; < 1, but this is
inefficient in Step 5. The strategy we adopt is to modify the definition of the test
function f so that such terms never appear.

Precisely, in the definition (2.1) of the test function f, we now restrict the sum
over m € Z" to sum only over those coordinates m; with the following property:
for each multi-index a« = (ay, ..., a,), if a; > 1 and a; > 1 then the coefficient
¢, = 0 in the original polynomial P(y). Equivalently, we define the sum to be only
over those coordinates m; such that X; never appears in a monomial with X in the
original polynomial P(y). (Equivalently, set A; = R for each j such that X; appears
in a monomial with X;, and in all other coordinates take A; = L, for L a small
power of R to be chosen later.)

Because the exponential sum is a source of gain in Steps 4 and 5, we wish
to sum over as many coordinates as possible, so depending on P(y) we relabel
coordinates in the beginning so that X; is the variable that appears in monomials
with as few other coordinates as possible, say X5, ..., X, with r < n; this is the
motivation for defining intertwining rank. We now let m = (m,4y, ..., m,), and



GENERALIZATIONS OF THE SCHRODINGER MAXIMAL OPERATOR 71

only sum over these coordinates. The conclusion is that in place of (2.4) we arrive
at a main contribution of the form

T f ()
(2.8) ~

> e(m - (Lxpi1, ..., Lxy) + P(R/L, ..., R/L, m)Lr)|.

(Here we used homogeneity of P of degree k; to make R/L integral, see Remark 6.1.)

In Step 4, to construct a set of x for which the above sum in (2.8) is “large,” imag-
ine that each Lx; = a;/q and L*t = a, /q are rationals of prime denominator g ~ Q,
so that the sum can be regarded as ~ ((R/L)q~')"~"

coordinate m; runs over a complete set of residues modulo g. Since P(yi, ..., y,)

copies of a sum where each

is Dwork-regular, even after specializing the first » variables, the remaining poly-
nomial is well-behaved (Proposition 3.3). A major feature of our argument shows
that for a positive proportion (3> ¢"~"*!) of choices of ai, @41, . . ., a, the (n — r)-
dimensional sum mod ¢ is of the optimal size ~ ¢"~""/? (Proposition 4.1). Hence
at precisely such a point x and for such a 7,

2.9) irren~ (72) a7~ (gm)

To achieve a similar result for a positive measure of x, we need to show this

continues to hold for Lx; and L*r merely “close” to rationals with denomina-
tor g. Typically, deducing this from the case where they are precisely rationals
would follow by applying partial summation to the sum in (2.8). The error in-
curred by partial summation will be too large if the “weight” removed involves
terms of the highest order in m. Thus we must choose ¢ so that (i): Lt = a,/q
precisely. Fortunately this is possible because of the wiggle room allowed in (ii):
L*t ~ —L*x; /R*'+0O(L*/R*=1S)), from (2.5) in Step 3. Given x; with —L*x, /R¥=!
in an interval of length O(1/q) centered at a; /g we can always choose ¢ meeting
both requirements (i) and (ii) as long as Q' <« L¥/R¥=1S,, which we now assume.

In contrast, the coordinates Lx,,, .. ., Lx, appear as coefficients of the lowest-
order (linear) terms in m so that partial summation will contribute reasonable
errors when we allow Lx; to vary in an interval around a;/q. If the interval
is of length V, say, the contributed error will be proportional to (R/L)"~"V"~"
times the size of the main term, so we require (R/L)"~"V"~™" « 1. At the same
time, we want V to be large in order for the boxes so constructed to cover a
positive proportion of (x,11,...,x,) € [0, 1]"7". In this regard the principle of
simultaneous Dirichlet approximation in n — r dimensions motivates the choice
V = 1/qQY"" &~ Q=1=1/=1 (see, e.g., [Pie20, Appendix B]). Taken together,
these two requirements force the condition Q~'=1/""=" « L/R.
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Cumulatively, this construction yields boxes in the coordinates x;, x,,—,, . . . , Xy,

n—r+l1

each of measure &~ Q~!V"~’, centered at around > g rational tuples with

denominator g for each prime ¢ & Q. A naive calculation suggests the total
measure of the union of the boxes could be

~ (Q/log Q)Q" QM Q™I TV T A~ 1/ 10g .

Since the boxes can overlap significantly, a sophisticated justification is required
although the conclusion agrees with the above (Proposition 6.2).

Upon reaching Step 5, these heuristics suggest that for the test function f so
constructed, with ||f]|zs = RSSI_I/Z(R/L)("")/Z, on a set x € B,(0, 1) of measure
> 1/logQ,

T/ fCOl > (R/LQY)"".
This occurs under the constraints
S| <RY2, QYo « /R, Q7' « [¥/R1S,.
The claim of Theorem 2.1 consequently holds for each s such that

(7g)" " (log Q)" v
Sl—l/Z(R/L)(n—r)/z

for some s’ > s. Upon setting L = R*, Q = R*, S| = R’ this is equivalent to a linear
condition on 4, k, ¢ and s subject to linear constraints, and it can be optimized,
which we do in detail in §7.

2.2  Outline of the paper. In §3 we state and prove all the key proper-
ties of Dwork-regular polynomials we will use, including that upon fixing one
or more variables, the resulting polynomial is a Deligne polynomial over I,
(for all but finitely many primes g). In §4 we prove upper and lower bounds
on (complete and incomplete) exponential sums involving Deligne polynomials.
In §5 we approximate T7f, for appropriate test functions f, by an exponential sum.
In §6 we define a set of x € B, (0, 1) for which we can approximate this sum by
complete exponential sums to which we can apply the arithmetic results of §4.
In §7 we then optimize the choices of all parameters, thus proving Theorem 2.1.
Finally, in §8 we provide details on examples of Dwork-regular, indecomposable
forms of arbitrary intertwining rank and degree, and remark on the codimension
of such forms.
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3 Properties of Dwork-regular forms

In this section we first gather three algebraic properties of Dwork-regular forms
that we will apply throughout the proof. Then in §3.4, we prove a lower bound
on a partial derivative of a Dwork-regular form, in §3.5 we show that boundedness
(or unboundedness) of the maximal operator is invariant under a GL,(Q) change
of variables, in §3.6 we verify Corollary 1.2, and finally in §3.7 we remark that the
PDE’s we consider are dispersive.

It is convenient to work temporarily in a more abstract setting, and simply fix
a field L, which could for example be Q, R or a finite field F,. We will later
call upon the lemmas we prove both in the setting of infinite fields such as QQ
and R and finite fields F, for g prime. Let L be a field and H € L[X|, ..., X,]
a homogeneous polynomial of degree k > 2. Then H is nonsingular over L
if H, 6H/0X;, ..., 0H/8X, have no common zeroes in IP’%‘I (correspondingly the
projective hypersurface defined by H = 0 in IP’%_I is nonsingular). Recall that H is

Dwork-regular in the variables X1, ..., X, over L if there are no solutions in IP’%_I
to the simultaneous equations
oH .
HX,...,X,) =0, Xiﬁ(Xl,...,Xn) =0, 1<i<n
i

If H is Dwork-regular over L, then H is nonsingular over L. However, it can be
that H is nonsingular but not Dwork-regular: for example, Xf+- - -+X*_ +X,_; X!
over Q. However, if the field L is infinite, given any nonsingular form, there exists
a GL,(L) change of variables under which the form becomes Dwork-regular (see
[Dwo62, pp. 67-68] and [Kat09, Lemma 3.1]). (In fact, for a given form, there
are many such changes of variables: the proof of [Kat09, Lemma 3.1] can be
adapted to show that the set of such elements is dense in GL,(L).) We quote from
Katz in [Kat08, p. 1252], that the archetypical Dwork-regular polynomial H would
be of the form H(X) = Y%, X¥ + H(X), where H is any polynomial of degree at
most k — 1. The antithesis to a Dwork-regular polynomial, when n = 2m is even
and L has odd characteristic, is something of the form H(X) = Y 1| X;Xyu+i- By
Euler’s identity, for a form H of degree k,

n
kH =" X;(0/6X)H,

i=1
so that when discussing Dwork-regular forms it is natural to assume that charL 1 &,
if L is finite.

In this section, we first present an equivalent characterization of Dwork-

regularity that is easier to work with. (This property has previously been remarked
in the context of [Kat09, Lemma 3.1].)
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Lemma 3.1. Let L be a field and let H(Xy, ..., X,,) € L[X1,...,Xu] be a
homogeneous polynomial of degree d > 2. For every nonempty S C {1,...,m},
define Hs = H|x,=0,jgs- Then H is Dwork-regular in X, ..., X, over L if and
only if

(1) for all S with |S| = 1, Hy is not the zero polynomial, and
(2) for all S with |S| > 2, the hypersurface defined by Hs = O is nonsingular
in ]P’lL—Sl_l in the variables X;, i € S.

The first condition of Lemma 3.1 implies that a degree d form that is Dwork-
regular in Xy, ..., X,, necessarily contains a nonzero multiple of each mono-
mial X¢, ..., X%.

Second, we verify that if a form H € Z[X4, ..., X,,] is Dwork-regular over Q
in the variables X, ..., X,,, then its reduction modulo g is Dwork-regular over F,
in the variables X1, ..., X, for all but finitely many primes ¢; in particular this is
true for all primes g > K| for a finite constant K; = K;(H). We can describe this
abstractly over any field L as follows:

Lemma 3.2. Let L be a field and let HX, ..., X,) € L[X1,...,Xn] be
Dwork-regular over L in the variables X1, . .., X,,. Then there exists a finite set S
of finite places of L such that for all finite places p & S, the reduced polyno-
mial H (mod p) is Dwork-regular over the residue field Og/p.

We reserve the precise definitions of the notion of a finite place, a residue field,
and the ring Og to §3.2. In the case when L = Q, a finite place corresponds to a
prime number, and the conclusion of the lemma is that once a finite number of
“bad” primes are excluded, then for all remaining prime numbers ¢, the reduction
of H modulo g is Dwork-regular over the finite field F,.

We next recall that a polynomial P € Z[Xi,...,X,,] of degree d > 2 is a
Deligne polynomial over a finite field L of characteristic g if
(1) g1d, and

(2) the hypersurface defined by the leading form P,(Xi, ..., X;,) = 0 is nonsin-
gular in P21
(In the case that m = 1, (2) is replaced by P4(X;) £ 0. Recall that the leading form
of a polynomial is the homogeneous part of highest degree.) A crucial fact we
apply later is that after specializing one or more coordinates of a Dwork-regular
form, the remaining polynomial is Deligne:

Proposition 3.3. Let L be afinite field andlet H(X,, ..., X,,) € L[X1, ..., Xl
be a homogeneous polynomial of degree d that is Dwork-regular over L in the
variables X1, . . ., X,,, with charL J( d. Fix1 <r <m— 1. Then for any constants

Cly.--rCr €L Hlx=c,..  x= isaDeligne polynomial in X,,1, ..., X, over L.

.....
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In particular, we remark that by Lemma 3.1, the constants ¢; in Proposition 3.3
can be 0 in L. We now turn to the proof of these results.

3.1 Proof of Lemma 3.1. We suppose H is not Dwork-regular and then
show either (1) or (2) is violated. For H not Dwork-regular, there exists an
a=la:---:ay] € P! such that

H(a) =0, (X,-Z—Z)(a) =0 forl<i<m.
In particular, a; # O for some 1 < j < m and so for this j, 7 (a) = 0. Define
theset S = {j:a #0} C {1,...,m}. If |[S| =1 then Hy is elther identically
zero or a monomial in one variable, say in X;. Moreover, when evaluated at
the point a = [0 : -+- 1 g : --- : 0] € P2~!, the monomial in a; # O satisfies
Hg(a) = H(a) = 0. Thus the coefficient of the monomial is zero, and Hg = 0
so that (1) is violated. If on the other hand |S| > 2, say S = {i1, ..., i}, then
let b = [a; @ -+ 1 ajy] € IP'—S|_1. Then upon regarding Hs as a polynomial
inX;,..., X, Hs(b) = H(a) = 0. For each i € §, when we evaluate at the point b

(ora respectlvely),

aHS o

6X

This produces a singular point on the projective hypersurface Hg = 0 in IP"ZS =1
violating (2).

Finally, suppose H is Dwork-regular; we will argue that (1) and (2) must
hold, by contradiction. Indeed, suppose either Hg is identically zero for some S
with |S| = 1 or Hg = 0 is singular for some S with |S| > 2. Write

S={i1,...,i|5|}g{l,...,m}.

For the case |S| = 1, definea =[a; : --- : an] € IP”LL’_I bya;=1ifje Sand 0
otherwise. Note that H(a) = Hs(a) = 0. For i & S, the coordinate X;(a) = 0 while

fori € S, at the point a,
6HS

oX;

(@)=0
since Hg = 0. Consequently,

OH .
3.1) H(a) =0, (X,-a—xi)(a) =0 forl<i<m,

which violates Dwork-regularity of H, a contradiction. On the other hand, if |S| > 2,
leth=1[b; :--- 1 € PEI~! be such that

’ISI

Hsg(b) =0
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Define a =[a; : -+ : anl] € IP”LL’_I by a; = b; if j € § and O otherwise. Then
H(a) = Hg(b) = 0. Additionally, for i & S, the coordinate X;(a) = O while fori € S,

(6H/8X;)(a) = (0Hs /8X)(b) = 0.

Thus a satisfies (3.1) and violates Dwork-regularity of H, a contradiction.

3.2 Proofof Lemma 3.2. Lemma 3.2 follows by a standard type of argu-
ment, which applies a version of Nullstellensatz; we provide the projective version
we apply.

Lemma 3.4. Let Lbeafield Letl C L[Xy,...,X,] beahomogeneous ideal.
Define Z(I) = {x € ]P’;‘l’_l : f(x) = 0 for all homogeneous f € 1} C IP’%’_I. Then Z(I)
is the empty set if and only if (X{, ..., X49) C I for some d.

Proof. Suppose Z(I) = () in IP’ZL’_I. Define the affine set

Zy() ={(ay, ...,an) € A7 : f(a) = 0 for all homogeneous f € I}.
Then Zy,(I) = (0,...,0) and so for each i the monomial X; vanishes on
Zy(I)= (0, ...,0). Then by affine Nullstellensatz [Lan02, Theorem 1.5], Xl-d" el
for some d;. For the other direction, suppose (Xf, o ,Xffl) C I for some d.

Let x € Z(I) so that f(x) = O for all homogeneous f € I. Then in particular the
monomials X¢ vanish on x and so x; = O for all i. This is a contradiction to x
belonging to P, so Z(I) = 0. O

Now to prove Lemma 3.2, let us first recall some terminology. For the field L,
we will denote a finite place by p and its associated valuation by v,,. For example,
in the case we will apply, L = Q so if we pick a finite place (prime number) p,
then the associated valuation is v,(x) = max{a € Z : p|x} for x € Q; for exam-
ple, v,(x) > O for all primes p precisely when x is an integer. When working with
polynomials with rational coefficients, it can be convenient to multiply an identity
of polynomials by a sufficiently large integer (say N) to “clear denominators;”
alternatively, we could work in an enlarged set of “integers” that include rational
numbers with denominators only divisible by primes p|N. For example, we could
consider rational numbers with denominators only divisible by powers of 5 and 7;
we call the set of all such rationals S-integers for the set S = {5, 7}. In general let S
be a finite set of finite places of a field L. An associated ring Oy called the S-integers
is defined by Og = {x € L : vp(x) > O for all finite places p & S}. Finally, for any
finite place p € S we may consider the quotient Og/p, which is the residue field.
In the case L = Q where we apply Lemma 3.2, given a particular prime p & S,
Os/p = Os/pOy is isomorphic to Or/p = Z/pZ = F, since the map Oy — Z/pZ
given by a/b — a (mod p) is surjective, and its kernel is pOs.
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To prove the lemma, initially define S to be the set of places p such that
either v, (c) < 0 for some coefficient ¢ of H or vy(c) > 0 for all coefficients of H.
Then H € Og[X}, ..., X,,] and hence X,-g—}’({i e Og[X1, ..., X,,]. Define the ideal

oH oH

I = (H,Xl— X

, , Xm— ) C Og[Xq, ..., Xl
5X1 maXm)_ S[ 1 m]

Since by assumption H is Dwork-regular over L, Z(I) = () in IP”LL’_I where we view [
as an ideal in L[X, ..., X,,]. Then by Lemma 3.4, (X{, ..., X%) C I for some d.

In particular for each i, there exist Q;, Qi 1, ..., Qim € LIX1, . .., Xpn] such that
oH
X HQI +X1 Ql 1+ X EQi,m-
Now we enlarge the set S so that it includes places p such that v,(c) < O for some
coefficient of at least one of Q;, Q; 1, ..., Qim- Then
XY, ... X0) ST C 05Xy, ..., Xyl
Forp & S,

H
Xm a— Qi,m (mOd P)

X, 2L X, H ) (mod p); that is to say, work-

X EHQ,'+X1—Q,',1 +---+

and so (X9, ..., )(modp)C(HXloX,...
ing over the residue field L' = Og/p and viewing the ideals now in L'[ X, ..., X,,],
the inclusion (X9, ..., X%) C (H, X; &L S max H ) holds We apply Lemma 3.4
again, now with L' = Og/p, to deduce that H X L X X g’? have no com-
mon Zzeros in IP’% and hence by definition H is Dwork- regular over Og/p in the
variables X, ..., X,,.

3.3 Proof of Proposition 3.3. Letc),...,c, € Lbe given, and let
Ge L[Xr+13 oo 3Xm]
denote the polynomial H(cy, ..., ¢, Xjt1,--.,Xm). Note that G has degree

d := deg H; by the remark following Lemma 3.1, H must contain a nonzero multi-
ple of X]d for each j and in particular for r+ 1 < j < m, so deg G = d. In particular,
charL { deg G. Next, H can be written as H = G;Fy + G4—1Fy + - - - + GoF; where

G; € L[X;41, - - -, Xin] is homogeneous of degree i and F; € L[X}, ..., X,] is homo-
geneous of degree i (in particular Fy = 1, Gy = 1). The leading form of G is then
precisely G4(Xy41, - .., Xm), and G4 = Hg for S = {r+ 1, ..., m}, in the notation

of Lemma 3.1. Thus the leading form of G defines a nonsingular hypersurface
in IP”L—"_’_I (or is not the zero polynomial, if m — r = 1), by Lemma 3.1, completing
the proof.



78 R.CHU AND L. B. PIERCE

3.4 A lower bound for a partial derivative. When constructing coun-
terexamples, it will be important to find a lower bound for a partial derivative of the
leading form Py of the polynomial symbol. (Explicitly, this is used to guarantee
that for each x in a small neighborhood of the origin in R”, a choice of ¢ meets
all the requirements of (5.4) simultaneously.) As a motivating example, in the
special case where the symbol has diagonal leading form Pi(X) = X’f +--+ XK,
one immediately has (8;Py)(R, Xa, ..., X,) > RF-! for all (Xa,...,X,) € R"!,
which suffices for our application; here and throughout the paper, R is a large
parameter that will tend to infinity at the end of the argument. If P; has higher
intertwining rank, we must proceed differently; the following lemma provides an
integral point where the partial derivative is sufficiently large.

Lemma 3.5. Let P, € Q[Xy,...,X,] be a Dwork-regular form of degree
k > 2 with intertwining rank r < n; without loss of generality, say X, intertwines
with Xy, Xa, ..., X, but not with X,.1, ..., X,. Then there exists a tuple

My, ....M,) el
with M; > 1 for all i, such that for allR > 1,
|(01POM R, MR, ..., MR, X1, ..., X,)| > RN,
uniformly in (X,41, ..., X,) € R"™",

Let X' = (X5, ..., X,) and rewrite Py in terms of its coefficients ¢z as

k
PXi, .. X) =D X7 epx?
=0 \BI=j

where f is a multi-index (S5, ..., B,) with order || = B> + - - - + B, and

xP=xP.. . xP.

By the hypothesis that X; does not intertwine with X1, ..., X,, for each |§]| < k,
cp = 0 forall g with B, > O for some £ > r. Consequently, the derivative 0, Py is a
function of Xy, ..., X, and is independent of X; for j > r:
k=1
o h—j—1
(3.2) OPOX1, .., X)) = > (k—=DX{7Y " cpXh? - XP.

J=0 1B81=
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Then for any value of a parameter R > 1, after plugging in any (M, ..., M,) € Z/,

(61Pk)(M1R: B MrR:Xr+1 R Xn)
k—1
=D (k= DOLR TN T ep(MoR)™ - - (M RY

j=0 1=
k—1 ]

=R =M epMl? - MP
j=0 1=/

Thus we can conclude [(6;Py)(M\R, ..., M,R, X 41, ..., X,)| > R (uniformly
in X4, ...,X,) as long as

k—1

STt —pMTTTS " epMb? - ME F0.
J=0 1Bl=j

From (3.2), we see that this condition is equivalent to (61Py)(My,...,M,) # 0

where we view 0, Py as an element of Q[X1, ..., X,]. Hence it remains to prove

that there exists an integral point (M, ..., M,) € Z" with M; > 1 for all i such that

(61PYMy,...,M,) F#O0.

First we note that 0, Py is not the zero polynomial in X, ..., X;; this follows
from Dwork-regularity, since by (1) of Lemma 3.1, P contains a term cX} for
some nonzero ¢ € Q. If r = 1, (81 P;)(X;) has at most k — 1 roots, so the claim
holds. For r > 2, by a trivial upper bound (see, e.g., [BCLP22, Lemma 10.1] for
a standard statement), for any B > 1, there are at most < B! integral solutions
in [1, B]" to (6,Pr)(X1,...,X,) = 0. Since there are B" integral points in that
box, there exists a sufficiently large B such that there is an integral point, say
My, ..., M,) €[l, B] with (6,Py)(M, ..., M,) #0. The lemma is proved.

3.5 Imvariance under GL,(Q): nonsingular to Dwork-regular. Let
P e R[Xy,...,X,]

be given, with leading form P; € Q[X1, ..., X,]. Now let A € GL,(Q) and let Q
denote the polynomial after changing variables, i.e. Q(#y, ..., #,) = P(&L, ..., &)
with & = > a;n; or equivalently 77 = A&, (In particular, by [Kat09, Lemma 3.1],
if Py is nonsingular, there exists a choice of A sothat Q(#y, . . ., #,) is Dwork-regular
over Q in #1, ..., n,.) Then for any fixed ¢ > 0,

1
Q2n)

1
Q2m)"

T = /]R f(&e e POmge = /IR f(An)e @D+ | Aldy,
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Now define a function g such that g(#) = |A [f(A}y) where |A| denotes the determinant
of A; equivalently g(x) = f((A~")7x). Then

(T7H) = /R gne ¥ dy = (T2g)(AT).

2m)"

Now let 7 : R* — (0, 1) be a measurable stopping-time function, so that prov-
ing f(x) = supy_,_; |TFf(x)| is bounded from H* to L} is equivalent to proving
that f(x) — |T%,,f(x)| is bounded from H* to Lj,., independent of the function .
For a given stopping-time function 7, the computation above shows that

P
I T2 O L1s,00,1) = /B (

n\Y,

(T2, ) (ATx)|dx = |A"| ™! / (TS,,9)(wldu,
D ATB,(0,1)
for the stopping-time (1) = 7((AT)~'u). Thus
(3.3) I T7of ) Lis,0.1) < Csllf Il
is true for all f € H*, uniformly over all stopping-time functions, if and only if

(3.4) 1728 a0,y < CsChllgllns

is true for all g € H’, uniformly over all stopping-time functions. (Of course,
lgllas <a Ifllms <a llgllgs.) In particular, if we show for a given real s > 0 that
there is no constant C; such that

for all g € H?, then (3.4) fails for all constants C;, C/; and consequently (3.3) fails

Q
sup |T (x)IH < Cligllu
o W8N 5,01y = T8

for all constants Cy. This invariance under GL,(QQ) changes of variables shows
that it is reasonable to study maximal operators for the class of Dwork-regular
polynomial symbols in place of the class of nonsingular polynomial symbols, as
we do. (The invariance demonstrated above holds for GL,(R) as well.)

3.6 Verification of Corollary 1.2. Let, asin the hypothesis, Pr(X1, ..., X,,)
be decomposable over QQ, so that after an appropriate GL,(Q) change of variables,

Pk(Xla ---:Xl‘l): Ql(Xla ---:Xm)+Q2(Xm+la ---3Xl‘l)

holds for some 1 < m < n. Note that P; is nonsingular as a function of X1, ..., X,
if and only if Q; is nonsingular as a function of X, ..., X,, and Q; is nonsingular
as a function of X,,,;1, ..., X,,. By the disjointness of the variables in Q; and Q»,
we can apply GL,,(Q) (respectively GL,—;,(Q)) changes of variables separately
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to Q) (respectively O,) so that both become Dwork-regular over Q. This provides
a block diagonal GL,(Q) transformation that makes P; Dwork-regular and still
decomposed into a form in X, ..., X,, and a second form in X,,41,...,X,. In
particular, its intertwining rank remains bounded above by r < |n/2]. Since
the parameter d(n, k, r) in Theorem 1.1 is decreasing as a function of r, then
on, k,r) > d(n, k,n/2) for r < |n/2], and this verifies the corollary.

3.7 Dispersivity. A description of the broad principle of dispersion, in the
context of an initial value problem like (1.2), can be found for example in [Pal97,
§3.5] or [Tao06, Principle 2.1]. The following lemma verifies that for each real
symbol considered in the main theorem, (1.2) is a dispersive PDE, in the sense of
the criterion presented in [KPV91, Theorem 4.1].

Lemma 3.6. Let P(Xy,...,X,) € R[Xy,...,X,] be a polynomial of de-
gree k > 2 such that its leading form Pi(Xy, ..., X,) € Q[X1, ..., X,] is Dwork-
regular over Q in the variables Xy, ...,X,. Then VP (x1,...,x,) # 0 for
all (x1,...,x,) € R"\ {0}. Further, there exists a finite M € N such that for
each i = 1,...,n, for all (ci,...,Ci—1,Cit1,...,¢n) € RV and ¢ € R, the
equation
3.5) P(ci,...,Cie1,X,Citls .., Cpn) =C,

has at most M solutions.

Proof. Since P; is Dwork-regular over Q, then P is nonsingular over Q, so
that VPi(X1, . . ., X,) = 0 has no nontrivial solutions over Q; since P; has rational
coefficients, this implies that there are no nontrivial solutions over R either. Fix
an 1 < i < n. By the remark following Lemma 3.1, the leading form P; contains
a term that is a nonzero multiple of X{‘. Hence P(c1, ..., Ci—1,X, Cisly ..., Cn) —C'
contains a nonzero multiple of x*, so that (3.5) has at most k solutions. ]

4 Upper and lower bounds for exponential sums

Now we prove three results about exponential sums involving a Deligne polyno-
mial, which by Proposition 3.3 apply to Dwork-regular forms over Q with fixed
variables, for all sufficiently large prime moduli. First, we prove in Proposition 4.1
that complete exponential sums with a Deligne polynomial in the phase are often
“large”. Second, we prove in Proposition 4.5 that incomplete exponential sums are
“not too large” (and in particular, only a logarithmic factor larger than complete
exponential sums). Third, in Proposition 4.6 we approximate an exponential sum
with real coefficients by complete exponential sums, up to an acceptable error.
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4.1 A lower bound for many complete exponential sums.

Proposition 4.1. Let Qy(X1, ..., X)) € Z[X1, ..., X,u] be a polynomial of de-
gree k > 2 and suppose that for all primes q > K(Qy), the reduction of O, modulo g
is a Deligne polynomial over F,. Define for each prime q and (a, b) € F, x F7,

T big)i= > e(%r(an(x) +bx)).

x (mod g)™

Then there exist constants 0 < oaq,0, < 1 with ar = ax(k, m), and a constant
K> (k, m) such that for every prime q > max{k, K|(Qy), K»(k, m)}, there exist at
least o2q™" choices of (a, b) € F, x F such that

(4.1) o1q™? < |T(a, b;q)| < (k — 1)"g"™*.

In fact, we may take a; = 1/2 and any a, < (1/8)(k—1)"2". The Weil-Deligne
bound is a key ingredient in the proof, which we now recall, following [Del74,
Thm. 8.4] as stated in [IKO4, Thm. 11.43].

Lemma 4.2. Let f(Xy,...,Xn) € Z[X1, ..., Xu] be a Deligne polynomial of
degree k > 2 over I, for q prime. Then

Z e(%rf(xl, e ,xm))

'm
xe]Fq

< (k—1)"g">.

The proof of the proposition is a mild variation on [ACP23, Prop. 2.2]. We first

claim that

(4.2) > I Ta, big)* = .
a (mod q)
b (mod g)"

The left-hand side may be expanded as

Y Y (Treaw-0m) ¥ o(Tbe-n)

x,% a (mod q) b (mod )"

The innermost sum vanishes unless x; = X; (mod ¢) for all 1 < i < m; in this case

2m+l - as claimed. Next we observe that since Qy is

the left-hand side evaluates to g
Deligne over I, of degree k > 2, so is aQi(x) + b - x for a # 0 € [, so we can
apply Lemma 4.2 to bound T(a, b; q); for a = 0 the sum vanishes unless b = 0 and

we address this below. Since (4.2) shows that T(a, b; q) is of size ¢"/?

on average,
and the Weil-Deligne bound shows it cannot ever be much larger, we can deduce

that most of the time it is not much smaller either. Precisely, suppose for a given
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pair 0 < aj,a, < 1 there are < a»g™*! choices of (a, b) (mod g)™! such that
IT(a, b:q)| > a1q™*. Then

> ITabipP=¢"+ > |Tabgl+ >  [Tabgl-
a (mod q) a#0 a#0
b (mod ¢)™ IT(a,biq)| =01 g™/ IT(a,b;q)| <a1g™?
Here the first term is the contribution from a = 0. The first sum on the right-
hand side is < a,q™'((k — 1)"¢"™/?)?; the second sum on the right-hand side
m/2)2

is < ¢"o1q . Hence

> IT(a, big)) < (g +apk— 1" +aD)g™™" < (1/3+02(k—1)""+a)g™"".

a (mod q)
b (mod ¢)"

2m+1

Thisis < g , contradicting (4.2), for sufficiently small a, a;; for example, we

may take a; = 1/2 and any a, < (1/4)(k — 1)~2". For such a, a,, there must

m+1

then be > asq choices of (a, b) (mod g)"™*! for which the left-hand inequality
in (4.1) holds.

Finally, the only case in which | T(a, b; )| > (k—1)"¢"/? iswhena =0 € F, (in
which case T(a, b; g) is a linear exponential sum which vanishes unless b=0 € 7).
Thus aside from (a, b) = (0, 0), all those (a, b) satisfying the lower bound in (4.1)
also satisfy the upper bound. We can summarize this by saying that at least a,g"*!
choices satisfy both bounds, with the modified choice a, = (1/8)(k — 1)™2", as
long as we assume g is sufficiently large that (1/4)(k — 1)™?"¢"™*! > 2, which is
true for all ¢ > K>, for an appropriate choice of K, = K,(k, m). The proposition is
proved.

4.2 An upper bound for incomplete exponential sums. To show
the maximal operator associated to T'f is large, we will repeatedly approximate
integrals and sums by complete exponential sums. We first state general formulas
for partial summation and partial integration; these are proved simply by iteration
one coordinate at a time, and we omit the proofs. GivenasubsetJ C {1, ..., n}, we
define / = {1, ..., n}\ J and use the notation (X(;), X)) € R”" to indicate x;, € RVI
is indexed by j € J and x;, € R""Vl is indexed by j € {1,...,n}\ J.

Lemma 4.3. Let a(m) be a sequence of complex numbers indexed by

m=(my,...,m,) €Z". Let h(y) be a C™ function on R" such that for ev-
ery k = (k1,...,k,) € {0, 1}, there exists a positive real number B, such that
for

K1+ t+K,

Och(y) = =7 1(y),

R n
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we have |0,h(y)| < By uniformly iny € [M,M + N], where M = (M, M, ..., M)
and N = (Ny, N,, ..., N,). Then

> a(m)e(h(m))=e(h(M+N)) > a(m)+E

M<m<M+N M<m<M+N

4
|E| <, sup {HNj- sup JA(ug), Nl - sup  sup HBW},
n}

JC{1,..., ; uy) <Ny 1<t<|J| a1,...,ape{0,1}"
VRS rtrag=1, 1
in which
A(uyy, Ny = § a(mgy, m)).

M) <mg) <M)+Ng)
M) <my) <M)+ug,)

Lemma 4.4. Let a < b be real numbers. Let f(t) be an integrable func-
tion supported on [a, b]" and let h(t) be a C™ function on R" such that for
every k = (K1, ...,ky) € {0, 1}", there exists a positive real number B, such that
|8ch(t)| < By, uniformly int € [a, b]". Then

/[ b]"f (De(h(t))dt = e(h(b)) : fdt+E

a,b]"
where
¢
|E| <» sup {(b —a)V! sup |F(uyy, byl - sup sup HBai},
JC{1,..., n} ll(j)fbu) 1<t<|J] a1,..., are{0,1}" i=1
|J|Zl a1+~~~+a[=11
in which

F(ugy), b)) = / / / F oy, ta)dtydt.
[a,b]"! [a,ujl,je]

We bound an incomplete exponential sum by completing the sum and applying
the Weil bound:

Proposition 4.5. Let Qi (X1, ...,X,) € Z[Xy, ..., X,]| be a Deligne polyno-
mial of degreek > 2 overF, foraprimeq. LetJ C {1,...,n}andl ={1,...,n}\J.
Then forH=(Hy, ..., H,) with1 < H; < g,

2w
> €<7Qk(mu), m(I))) ‘ Lin 4" (log ).

1) <my)<qq),
1y <mg) <Hg,

The sum on the left-hand side may be written as

Z Z e (277[ Or(myy), a(1))) Z 1.

1y <my)<qu) 1ln<an=<qq 15 <mg)<Hg),
m()=a() (mod g)V!
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By the identity
1

1y—a (mod ) = 5 Z e(%rh -(m— a))

I<h=q
we can expand the sum as

2
2 < Y oe (g(Qk(m(J)va(I))_h(I)'a(l))) 2. e(gh(n'm(’)))

hm <qp M=), mgy<H,
an=qq

Since Qi(Xi,...,X,) is a Deligne polynomial of degree & > 2, so is
Or(X1, ..., X,) —hy - Xz so by Lemma 4.2, the complete sum over my), a
is bounded above by (k — 1)"¢"/2. For the remaining double sum over h(;y and m(;),
we recall that for each h, H > 1,

> e(2rhm/q) < min{H, ||h/q|™"}.
1<m<H
(Here ||¢|| temporarily indicates the distance from ¢ to the nearest integer.) By
considering cases 1 < h < g/2 and g/2 < h < g, note that

> min{H, [h/q]™"} < qloggq.
1<h<q

Hence the double sum over h(;y and m;, is bounded above by (glog ¢)!’!. In total,
the sum considered in the lemma is thus bounded by < (k — 1)"¢"/*(log ¢)"'!, and
the proof is complete.

4.3 Approximation of a sum with real coefficients by complete sums.
We next approximate an exponential sum with real coefficients in the linear term
by complete exponential sums with prime moduli.

Proposition 4.6. Let Oy (X1, ..., X)) € Z[Xy, - .., Xn] be a Deligne polyno-
mial of degree k > 2 over ¥, for a prime q. Let 1 < a < q. LetV > 0andy € R",
and suppose that for each 1 < i < m there exists 1 < b; < q such that

lyi —2mbi/q| < V.
Then forany M=(M, ..., M) € R" and N=(Ny, ...,N,;) € R" with O<N; <N,

‘ > e(%Qk(m)ﬂwm)‘ = ﬁ{&J )

M<m<M+N i=1 q

3 e(%r(an(m)+b-m)) +E

m (mod ¢)"

where, under the assumption VN < 1,

|E| <k,m VN - H {%J g+ ljlujr)nH{ J . m/Z(Iqu)m vy
i=1 jeJ
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Remark 4.7. In our later application we will take m = n — r and coordinates
(M1, ...,my) € Z'". Set N = max{N,,1, ..., N,}. The bound for |E] is increas-
ing as a function N; so we can replace each N; by N. Recalling the hypothesis
VN < 1, the bound for |E| can be crudely estimated by

|E] sonr L%J g (VN + L%J " (log q)"‘r) .

We need the error to be at most a small proportion (say half the size) of the main
term. To achieve this, we will choose (a, b) € F, x Fy™" so that the exponential
sum in the main term is large (using Proposition 4.1) and we will impose conditions
that force V < doN~! for a constant dy < 1 as small as we like, and N/g > g*°
for some Ay > O (see §6).

To prove the proposition, we apply partial summation with respect to m, fol-
lowing Lemma 4.3, with the function A(m) = (y — 27”19) -m. Since this is linear,
for a multi-index a € {0, 1}", the 9, partial derivative as a function of m vanishes
unless |a| = 1, say d, = J;, in which case

(v =) - m)| = 1y = 22b/ql < V.

Thus using the notation of the lemma, for any nonempty subset J C {1, ..., m},
we only need to consider the following expression in the case each |a;| = 1 (so
that £ = |J]):

I

¢
sup sup HBai = H v =vV,
1<E=V a0 €{0, 117 30 i1

ay+-+op=1y

Now apply partial summation to see that

@3 3 e(z%“Qk(m +y-m)

M<m<M+N

:e((y—%”b)-(M+N)) 3 e(%r(an(m)+b-m))+E1

M<m<M+N

where E; is dominated by

2z
sup VVITIN; - sup > 6(7(0Qk(mu), m)) + b - (myg), m(1))))‘

izl Jjel U0 =N0 M) <mg) <My +N).
M) <mg) <M +ug
with nonempty J C {1,...,m} and I = {1,...,m} \ J. The first factor is

< (VN)” < VN < 1. We may estimate the sum in the error E; by first break-
ing it into a main term of as many complete sums (complete in all m coordinates)
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as possible, that is,
N; U; 27
H{—lJ H{—JJ Y €<—(an(m(J), m)) + b - (myg), m(l)))),
iel 4q jeJ q m (mod g)" 9
plus an error term of incomplete sums, that is, of the form

ZHHHL

Icrjcy, iel
[TUT| <m

« /2
qJ > e(?ﬂ(an(mwam(ng'(m@’m(’))))

in which the starred sum is over 1 <m < q;), 1 < mgy <Hp, 1 <mj < q,
1 < mgj; < Hg,j, for some H = (Hy, ..., H,) with I < H; < gq. Since O is
a Deligne polynomial of degree k > 2, we may apply the Weil-Deligne bound in
Lemma 4.2 so that the contribution of the complete sums is at most

<<km]_H 3K H[ g <<]_H]\q’ij-q”’/2.

Again using that Q; is a Deligne polynomial, we may apply Proposition 4.5 so the
contribution of the incomplete sums is

N T - 7200 gyt
<<igslgzj,g{qJ H{qJ (logq)

[TUJ|<m

" m—=1J|
<<I§|u<1}oﬂg[ J (log q)

jeJ

This is sufficient for bounding E;. Finally we can similarly separate the main term
of the right-hand side of (4.3) into complete and incomplete sums, that is,

%)

=1 q

Z e(%r(an(m) +b- m))

m (mod g)"

/
+E,

where

=2 H{%J > e(%(an(m(J),m(l))+b-(m(J),m(l))))

[J|<m jeJ 1y <my)<q),
1 <mg<Hg,

for some H; < q. Another application of Proposition 4.5 shows that

IE/ll < sup H\‘ qJ . ”1/2(10gq)m Ml

Wi<m

Combined with the bound for £, this proves the proposition.



88 R.CHU AND L. B. PIERCE

S Reducing the maximal operator to an exponential
sum

5.1 Initial definition of the test function. We now constructa collection
of test functions to prove Theorem 2.1. The symbol P € R[X], ..., X,] has leading
form P, € Q[X, ..., X,] that is Dwork-regular in Xi, ..., X, over Q and has
intertwining rank r. By relabelling variables we may assume that X, intertwines
with X1, X5, ..., X, and does not intertwine with X,.1,...,X,. By a GL,(Q)
change of variables we may clear denominators and assume from now on that Py
has integral coefficients. Fix R > 1, which will later be a parameter that tends to
infinity. Let

S1=R°, L=FR*
where 0 < ¢ < 1, 0 < 4 < 1 are parameters we will choose optimally later.
Once and for all, fix a Schwartz function ¢ on R with the properties (i) ¢ > 0,
(i) p(0) = 2x)~! [ HE)dE = 1, (iii) supp(¢) C [—1, 1]; such a function may be
constructed in a standard way, such as in [Pie20, §2.1]. Then define for eachm > 1

and variables uy, . .., u,, that ©,,(uy, ..., uy) = p(uy) - - - P(uy,).

We will define the test function f, tailored to the fact that X; does not intertwine
with X1, ..., X;,. Fix an integral tuple M = (M, M, ..., M,) € 7 with M; > 1
as provided by Lemma 3.5. Define the test function f to be

f(x) = q)r(S])Cl,)Cz, oo ,)Cr)e((M o R) . (-xla ) xr))
X O gty Xn) Y eLm - (s X))
meZ"",
R/L<m;<2R/L

where we recall the notation M o R = (MR, ..., M,R). Let
M, =max{2, M|, M,, ..., M,}.
The Fourier transform of f is supported in
[Mi{R — S;, Mi{R+ 8] x [M>R — 1,M2R+ 1]
X - X[MR—1,M,R+1] x [R—1,2R+ 11",
which is contained in B, (0, \/nM.R + /nS)) \ B,(0, \/nR — \/nS;). Since S; = R’
with ¢ < 1 there exists some R{(o) such that for R > R(0), S1 < (1/2)R so that
this region is contained in the annulus {(1/C)R < |x| < CR} with C = 2M,/n,
say, so that C depends only on the symbol P and the dimension 7.

Finally, we note for later reference the size of the norm of f. Since f is supported
in the annulus stated above, forall R > 1,

RNfll @y <Ks Wfllas@ny <Ks RN 2@n)-
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Moreover,

n—r

. STPIR/LIT NGy < Wz < ST TR/LVT ) 2w, -

Explicitly, using the notation & = (£, ..., &) and 7= (St - -5 En)s

fem=" > gm&mn),

R/L<m;<2R/L
in which
gn(& ) = ST D(S7 o (6 — M o R)D,_, (57 — Lm),

where S7! = (Sl_l, 1,...,1). Thus g, is supported in the set B + (M o R, Lm),
where B is the box [—S, S;] x [—1, 1]"~!. In particular, forn > 2, n —r > 1, and
L > 4, the supports of g,, as m varies are distinct. Thus by Plancherel’s theorem,

2 2 2
QT e = Wle@n = D lgml 7o

meZ”—r
R/L<m;<2R/L

and the claim (5.1) holds since by Plancherel’s theorem,
”gm”il(ﬂ{n) = Sl_l ||é§||124121(11{n) = Sl_l(27r)”||¢||12"21(R,,)_

Remark 5.1. Note that if n = r or n = 1 the above sum is empty; computing
the ||f||gs norm as above and taking ¢ = 1/2 produces a counterexample to (1.7)
for all s < 1/4, which is the claim of Theorem 1.1 in this case. Thus from now on
we may assume r < nand n > 2.

5.2 Approximation of the maximal operator by an exponential sum.
Since f treats the intertwined variables xi, ..., x, differently, it is convenient to
define v = (xq,...,x,) and w = (X415 . .., Xy), and similarly use & = (&, ..., &),
n = (Es1s ..., Ey); finally, we will continue to denote S o & = (S1&1, &, ..., &)
and M o R = (M|R, ..., M,R) for (My, ..., M,) provided by Lemma 3.5. By
definition, for the test function f,

TPf(x) =

Qny /Rn D, (& Me((SoE+MoR)-v+7-w)

(5:2) x S e(lm-w)e(P(So&+MoR, q+Lmyndzdy.

n—r

me
R/L<m;<2R/L

The main result of this section is that T/f(x) is well-approximated by an ex-
ponential sum defined as follows: for any u € R"™" with each u; > R/L, and
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any w € R"7",t € R set

S(u; w, 1) := Z e(Lm-w+ Py (MoR,Lm)).

meZ"~"
R/L<m;<u;

For simplicity, when u = (2R/L, ..., 2R/L), we denote this sum by S(2R/L; w, t).
Fix 0 < ¢ < 1/2. Then since ¢ is smooth and ¢(0) = 1, there exists a small
constant dg = do(co, ¢) such that

(5.3) P(y) > 1—co/2 forall[y| < do.
The main result of this section is:

Proposition 5.2. Let 0 < ¢g < 1/2 be a small constant and oy be as in
(5.3). There exist constants 0 < c1(d, k, P), ca(k, P) < 1/2 such that for all
c1 < c1(0g, k, P), ca < ca(k, P) and 0 < c3 < 1 as small as we like, the following
holds.

Let x € (—cy, —c1/2] X [—cy, Cl]n_l, o <1/2and R > Ry(c1, ca2, k, P, o). Let
t € (0, 1) satisfy

- o
(5.4) t= M i < =2 gnd < S
(1P (M o R, R) S RkT R+-1
in which
R:=(L([2R/L1 —1),...,L(J2R/L] — 1)) e R*".
Then with w = (Xp41, ..., Xn),
ITPF0)] > (1 = c0)"ISQR/L; w, 1)| + E,
where

[E1] Lpnkrp €3 sup [S(u; w, 1)].
welR/L,2R/L]""

Since we will bound [S(u; w, )| by a function that is increasing as a function
of u;, we will obtain |E{| <4, t.p ¢c3|S(2R/L; w, t)|, so that the error term is at
most half the main term, by taking c3 appropriately small, as we may. For the
conditions in (5.4) to be compatible we need (6, P;)(M o R, R) to be nonzero and
moreover to be of size R¥"!. This is assured by Lemma 3.5.

To prove the proposition, we first use partial summation to remove all terms
in the sum over m in (5.2) that do not appear in S(2R/L; w, t); to accrue only an
acceptable error, we require the third constraint in (5.4), and intertwining rank
plays a key role. The next step is to use integration by parts to remove all terms in
the phase in (5.2) that are nonlinear in &, #, so that we may apply Fourier inversion
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to the integral of ®,,; this applies the third constraint in (5.4). Finally, after Fourier
inversion, we arrive at a main term involving the evaluation of ®,, and to bound
this from below we use the fact that ©,(0) = 1 forces 7 to lie in a specified range
around a specific point, which is encoded in the first and second constraints in (5.4).

5.3 Removing non-arithmetic terms in the exponential sum. We
will use the notation
P=P,+Pr_1+---+Py

where each P; with 0 < i < k — 1 is a homogeneous polynomial of degree i with
real coefficients. Then by Taylor expansion (multinomial expansion),

P(SoE+MoR,n+Lm)=PuMoR,Lm)+Q(So&+MoR,y+Lm)

in which we define

O(u+0) —ZP(H)+Z Z (6P)(M) , foranyu,v e R",

J=0 1<|al<j
so that
O(S o E+M o R, n+ Lm)
5.5 k=1 o
(5-5) _ZP(MOR Lm)+z > ap)(M RLm)(S &’
j=0 J=0 1<|al<j

Our goal is to extract the non-arithmetic weight e(Q(So&+M oR, n+Lm)t) from the
sum over m in (5.2) via partial summation, using the assumption on intertwining
rank. To understand the role of intertwining rank, it is helpful to see a motivating
example.

5.3.1 Example. Suppose the dimensionn = 2and P(X;, X,) = X# is simply
a monomial, where £ is a multi-index (S, f,) with S| + > = k. Then

P(S1& +M1R &+ Lmy)

Z (’j ‘)(MIRWI—J(S@Y Z ( €>(Lm2)ﬁ2_[f§-

j=0

(5.6)

We isolate the arithmetic term (M;R)”(Lm,)” (the j = ¢ = 0 term), leaving the
non-arithmetic terms

|
H(my) = ) %(MIR Lmy)/ (8181, &)
a<p

a#0,0)
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In this example, we model the sum in (5.2) by summing over m; :
> eLmyxy + (MR (Lmy) t)e(h(ms))
R/L<m, <2R/L
with
h(my) = H(my)t.
By partial summation with respect to m,, the weight e(h(m;)) can be removed with
an error term depending on the derivative (8/0my)h(my). This derivative is

B! —a—(0,1
tL E (MR, Lmy)P~*~OD(s5,¢,, &)
(B — o — 1
a1 al(f—a— (0, 1))!
a(0,0)
<< Z,L § Rk—|a|—1sTl’
a<p—(0,1)
a#(0,0)

where the upper bound holds uniformly for (&1, &) € [—1, 11?, ms € [R/L, 2R/L).
In order for the resulting error term (after an application of Lemma 4.3) to be
acceptable, we need

i Y RETISH < L/R.

a<fp—(0,1)
a#0,0)

Since we will ultimately have ¢t &~ R~*=D_ this requires R*71*IS]' <« R¢! for
each a. If the original monomial P(X;, X5) = Xlﬂleﬁ2 has f, > 1 and S, > 1, there
will be a term with |a| = a; = 1, and this term will force the condition S| < 1.
If however X, does not intertwine with X; in P(X;, X»), 1 = 0 so that a; = 0,
removing this difficulty. This concludes our example.

In general, we apply Lemma 4.3 to

(5.7) Z e(Lm - w)e(Py(M o R, Lm)t)e(h(m))

m
R/L<m;<2R/L

with A(m) = Q(So &+ M o R, 5+ Lm)t. We claim that for each multi-index
K= (Krsls ..., Kn) € {09 l}n—r with || > 1,

|7l

a — K
(5.8) sup |=—————0(So& )+ (MoR, Ly)| Knrp R(L/RM.
@mel—1,17 1Oy, 1 - Oyn
ye[R/L,2R/LY"™"

Note that the derivatives controlled by x apply only to the last n — r coordinates.
It is in proving this bound that we crucially use the definition of intertwining rank,
and the construction of the test function f to accommodate the fact that X; does
not intertwine with X,,1, ..., X,, in P;; in particular, we will use the fact that for
each £ > r, the mixed partial 6,0, P; vanishes identically.
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Assume (5.8) for the moment; then for all such x,

||
sup | ————h(y)| K RNL/R)"t =: By,
@nel=1,11 10y, \{ =+ OV
yelR/L2R/Ly"™"
in the notation of Lemma 4.3. (Here we also note that B,, = 0 if any entry in a multi-
index x exceeds the highest corresponding degree in the polynomial Q. However,
unlike our previous application of partial summation in Proposition 4.6, in this
case the total degree of Q is k — 1 in m, so we could have £ = 1 in the application

below.) Consequently, for each nonempty J C {r+1,...,n}, and £ < |J|,
¢ ¢
sup I1B. = sup R @/ry“ls) = R VE@/R)VE.
Ol yeens are{0,1}"" i=1 Olyeney are{0,1}"" i=1
a|+---+a(:11 (X]+"'+a(:1j

This is < R*"'#(L/R)V! under the assumption t < R~*~1_ which we assume from
now on.
Hence by Lemma 4.3 the sum in (5.7) is identical to

SQR/L; w, H)e(Q(SoE+MoR, n+R)t) + E;

where we define R := (L([2R/L] — 1), ..., L([2R/L] — 1)) € R"" and we may
take

|Ei| nirpe sup IS w, )] - R,
ue[R/L,2R/L)"—"

uniformly in (&, n7) € [—1, 1]". Consequently, after integrating £, trivially in (¢, #)
by applying the compact support of &, in [—1, 11", we conclude that Tf(x) is

precisely
1 .
S(2R/L; w, t)/ D& mMe((SoE+MoR)-v+7-w)
59 @t o 1
xe(Q(SoE+MoR,n+Rut)dédy + E,
where
(5.10) |Ex| Kponre  sUp  [S@w, )] - R 1.

ue[R/L,2R/L)"~"

It remains to verify (5.8). We recall the expansion (5.5), and bound the mixed
partial of each term. First note that for y = (y,41,...,y,) and any € > r, for each
degree j,

1(8/8ye)(Pi(M o R, Ly))| = L|(8:P;)(M o R, Ly)| < R™'L,
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uniformly for y € [R/L,2R/L)"™". Thus for each fixed j < k — 1, for each
K= (Krsl, .., Kp) € {09 l}n—r with || S.],
ol ' k—1
sup —————Pi{(MoR, Ly)| <p, "R < R (L/R)M,
yelR/L,2R/Ly="1 OV, =+ - OVn
which suffices for (5.8). For the other terms in the expansion (5.5), fix some
multi-index a = (a1, ..., a,) € R" with 1 < |a| < k, and recall the multi-index

K =K1, ---»%y) € {0, 1}~ with |x| > 1 taking derivatives only with respect to
coordinates of y = (¥,4+1, ..., ys). Foreach0 <j <k, for |k| <j— |a],
ol (So¢, n)”
sup —mr A (OaP)M o R, Ly)—————
@nel=11y 1OV, - OYn !

ye[R/L,2R/L)"~"
Ln kP L|K|Rj—|a|—IKISl;H < Rj(L/R)IKISz;nR—lm’

in which we recall that

5062(5151,52,---,5;«)-

If j < k— 1, this already suffices for (5.8), since S; < R shows that the right-hand
side is visibly <« R*=!1(L/R)!!. (Effectively, for j < k — 1 we are using that P;is
already of degree strictly smaller than k.)

Finally for the highest degree j = k piece, we must be more careful, and use
the fact that in the leading form P, X; does not intertwine with the last n — r
coordinates, over which we are carrying out the partial summation. Consider the
expression Rk_l(L/R)"dS‘f'R_('“'_l), recalling |a| > 1 in the cases we currently
consider. As explained in the example in §5.3.1 and the heuristics in §2.1, the
problematic case is when |a| = a; = 1. But since X; does not intertwine with

Xrit, ..o Xy, 0j01 P = 0 for each j > r + 1. Consequently, for any o with a; > 1,
for every x = (K41, . .., k) € {0, 1}~ with |x| > 1,
[l
~—o 7 (CuP)(M o R, Ly) = 0.
ayrrl e yn”

Thus for the highest degree form P, we only need to verify that
Rk—l(L/R)IKIS?IR—(IaI—l) < Rk—l(L/R)IKI

in cases where |a| > 1 and a; = 0, and this certainly holds. This completes the
proof of (5.8).
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5.4 Removing nonlinear terms in the phase, to apply Fourier in-
version. We return our focus to (5.9), and now we remove all nonlinear terms
in (&, i) by integration by parts, in order to apply Fourier inversion. First we Taylor
expand, writing

k—1

QS ol+MoR n+R)=> P(MoR R+ )
Jj=0 1<|a|<k

=(VPO)MoR R -(So&,n)+O(Socé+MoR, n+R)

(8,P)(M o R, R)

= (S0 )"
o

where we define O(S o &+ M o R,  + R) to be

k—1 k—1 ~
> P{MoR,R)+> (VP)MoR,R)-(So&, m+ > w@og, .
Jj=0 =1 2<|al<k ’

Then the main term of (5.9) can be written as
SQ2R/L;w, t)e((M o R) - v)

X

IS /l Ly DG (S0 & (. w0) + (VPO o R, Bon)

x e(Q(S o &+ M o R, n+ Ry)dédy.
We will apply integration by parts as in Lemma 4.4 to remove the nonlinear

terms in (&, ), with A(&, 5) = O(S o &+ M o R,  + R)t. We claim that for every
K=(x1,...,%) € {0, 1} with |x| > 1,
ol : 1
(5.11) su — — —h(&, | < R 't=: By,
ety 08 ag o o ‘

in the notation of Lemma 4.4. Then by integration by parts, the integral above

becomes
e(QSol+MoR,1+R))
1

* Qoy

/R D& me((So & m) - (0. )+ H(VPM o R, R)dédn + Es
where |E3| <4, R*"'t. By Fourier inversion, the integral above evaluates pre-
cisely to
D,((S1, 1, ..., Do [(x1, X2, ..., %) +t(VP)(M o R, R)]).
Consequently, in absolute value, (5.9) is
ISCR/L; w, 1)
(5.12) X |@,((S1, 1, ..., 1) o [(x1, X2, ..., X) +H(VP)(M o R, R)])|

+E,+Ey
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with E, bounded as in (5.10) and
(5.13) |E4] < [SQR/L;w, 1)| - |E3| <40 ISQR/L; w, IR 1.

Finally, we verify (5.11). We bound each term in the expansion defining Q.
The first sum is independent of (&, #) so it vanishes when we take partials o, with
|k]| > 1. Foreach 1 < j < k — 1, recall that (So &) = (5151, &, ..., &) and R < R,
so that at most

ol

su —(VP)(MoR,R)-(So&, n)
<g:n>e[—pl,1]" og - o om oy T

< R7'S; « RF2s,.

This is <« R¥! as desired, since S; = R° < R. Now fix a multi-index 2 < la] < k.
Foreach O <j <k,
ol (0uP)(M o R, R)

su _ (So& n* « R™lvlgn,
(c“,n)E[—pl,ll” oLy - - oG ony - - onn' a! 7 !

For all the lower-degree terms with j < k — 1, this is < RFISTIRTI <« RFL
Finally, consider R¥1#IS{! in the case 2 < |a| < k and j = k. (Note that unlike
in the partial summation in the previous section, we do not need to consider the
case |a| = 1 and j = k, which is singled out as the main term here.) If a; = 0,
this is < RK1 If |a| > a; > 1, this is < R*7!(S1/R). If |a| = a; > 2, then this
is < R¥(S1/R)*> = R*=1(S2/R). For this to be < R=! we impose S; = R with

(5.14) o< 1)2.

This proves (5.11) and hence (5.12).

5.5 Restrictions on 7 to complete the proof of Proposition 5.2. Re-
call from (5.3) that ¢(y) > 1 — ¢o/2 if |y| < dy. Thus

D,((S1, 1,..., D o[(x1,x2, ..., %) +t(VP)M o R, R)]) > (1 — co/2)",

which suffices for Proposition 5.2, if we choose

—X1 C250

5.15 = — + T, < = -
(5-15) GPoMoR B e M= g

where ¢, < 1 is sufficiently small that ¢,|(6;P)(M o R, R)|/R*"! < 1/2 for
each 1 < j < n, and furthermore restrict x € [—cy, c1]" where 0 < ¢; < dg/4
and ¢1|(6;P)(M o R, R)/(81P)(M o R, R)| < &y/4 for each 2 < j < n. (Recall
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from Lemma 3.5 that M is chosen so that |(6;P;)(M o R, R)| > R*~! #0 for all R,
and in the other direction it is always true that |(9;Px)(M o R, R)| < R*! for each
1 <j < n.) For then, simultaneously

1S1(x1 + (@1P)(M o R, R)1)| = |S1 - (61P)(M o R, R)z| < 60/2,
andforj=2,...,n,
|x; + (0P )M o R, R)t| < 6/4 + o/4 + d0/2.

In fact if x; € [—cy, —c1/2] then we can ensure ¢ € (0, 1) since for appropriate
c1, ¢, for all sufficiently large R > R, = Ry(cy, ¢3, 0, P, k), we have

c1/(@1P)MoR,R)+ ¢ /(S1RFY) < 1

and
¢1/(2(81Py)(M o R, R)) — c2/(SiR1) > 0.

Finally, to bound E; and E4, we impose the condition that
(5.16) t < %
for some small constant ¢3 of our choice, and then E; << E,+E;, is bounded as stated
in Proposition 5.2. For conditions (5.16) and (5.15) to be compatible, we verify
that we can choose ¢; and ¢ so that [R¥"'¢| < ¢ (R /(8,P)(MoR, R))+c»(0/S1)
is as small as we want.

6 The arithmetic contribution

We now estimate the exponential sum S(2R/L; w, t) which we extracted from T,P fx)
in Proposition 5.2. It is convenient to define the notation:
Lk

6.1 = L*z, =— _ d2rx), vy;:=Lx; d 27),
6.1) s T, Y1 (61Pk)(MOR,R)x1(m0 ), ;i ; (mod 27)

forr+1 < j < n, and set
V=155 V)

(Implicitly, we also take y; = x; (mod 2x) for 2 < j < r, although these vari-
ables do not play a role here.) Then y; +s = L*# (mod 27) and so by recalling

w = (Xp41, - - - » X») and using homogeneity of Py,
SQR/Liw,n)= Y e(lm-w+LPu(M o (R/L), m)
R/LQ%ZR/L

= Y em-y+PuMo(R/L), m)(yi +5)).

n—r

me
R/L<m;<2R/L
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Remark 6.1. Here we encounter a feature that has not arisen in previous
special cases of P; considered in [ACP23, EPV22], for which the first coordinate
only appears in P; in a diagonal term X%, so that it can be pulled out of the
exponential sum entirely. In our general setting, to evaluate the sum using number-
theoretic methods, we require each M;R/L to be an integer. We will consider a
sequence of R = R; — oo where each R; = 2/ for a sequence of integers j. Since
L =R* forsome 0 < 4 < 1, we have R/L = 20=% which is an integer if and only
if jA is an integer. We will achieve this by choosing 4 = 4;/4, to be rational, and
then restricting to j — oo along the arithmetic progression j = 0 (mod 4;).

For now, we assume R and L are fixed, and R/L is an integer. We define for any
prime g, and a € F,, b € F;™", the complete exponential sum

Tabig)= > e(z—”(b m+aPyM o (R/L), m))).
m (mod gy~ 4

Let K;(P;) be the constant provided by Lemma 3.2, so that the reduction of
Py(Xy, ..., X,)is Dwork-regularover F,in X, . . ., X, for every prime g > K;(Py).
Then for such ¢, by Proposition 3.3, Py(M o (R/L), X;+1, - -.,X,) is a Deligne
polynomial in X,.,q, ..., X, over F,. Thus we will apply Proposition 4.1 to show
that for many a, b the sum T(a, b;g) must be “large.” Consequently, we will
construct a set Q of (yy,...,y,) € [0, 2x]" with (nearly) full measure on which
[S2R/L; w, t)|, and hence |TtP f(x)|, is large. We state two propositions, first
focused on the set Q, and then focused on the operator T7f(x).

Proposition 6.2. Let R, L be fixed with R/L an integer. There exists a pa-
rameter K3(Py, k) such that the following holds for all Q > Ks. For every prime
q € [Q/2, O], let §(q) denote the set of all (a, b) € F, x ]Fg_’for which

(1/2)¢" "% < |T(a, b;q)| < (k— 1)""q" "2,

For any 0 < ¢4, cs < 1 sufficiently small of our choice, define a set Q C [0, 2x]"

by
o= | U B b9,
0/2=9<0  (a,b)eS(q)

q prime

where each box B(a,b;q) is defined to be

{b’l - 27Ta/QI < C4q_1a 0’2, cee ,)’r) € [Oa Cl]r_la}
v —27b;/ql < esq' V41 <j<n )

Then |Q| >>C4,C5,n,k (10g Q)_l‘
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Next, recall that L = R* for a parameter 0 < A < 1 we will choose later, and
from now on we let Q = R for a parameter 0 < ¥ < 1 we will choose later.

Proposition 6.3. Let R, L be fixed with R/L an integer. Suppose

1 Lk
(6.2) = K

-1 1+A
0 S|R-17 QlHl/(n=n) < (R/L)y™", R/L>Q™"°

where 0 < Ag < 1/(n —r). Assume R, Q are sufficiently large, say
R > R3(do, c1, €2, k, P o, A, k) and Q> Ka(n, k, r, Py, Ag).

Then there exists a set Q* C B, (0, 1) with |Q*| >, c,.cs.nkr (108 0)~! and such
that for every x € QF, there exists at € (0, 1) such that

Tl = (1= 2" (55) = 1Bl = [Ea

LO'2

where

R n—r
—Ao/2
|E1| + [E2| Kgonprp (c3+c5+Q 2 )(LQl/z) .

By taking R sufficiently large and choosing the absolute constants c3, ¢5 suf-
ficiently small, we will ultimately make the error terms less than half the size
of the main term. We prove the propositions and then turn in §7 to the final

choice of parameters, optimizing the counterexample and completing the proof of
Theorem 2.1.

6.1 Proof of Proposition 6.2. Since M o (R/L) € 7" is fixed and Py
is Dwork-regular, by Proposition 3.3, Py(M o (R/L), X+1, ..., X,) is a Deligne
polynomial in X,.i,...,X, over F, for all primes g > K;(P;). By Proposi-
tion 4.1, for all primes ¢ > max{k, K|, K3}, a2q""™"' < |G(¢)| < ¢! for
some a, > 0 depending only on n, k, . We have defined the set € accordingly,
so that for (yi, ..., y,) € B(a, b; g) for some (a, b) € G(g), a small s can be cho-
sen so that y; + s = 2za/q precisely, and (V,41, ..., y,) is well-approximated by
2xnbys1/q, - .., 2wb,/q). We will use this Diophantine behavior in Proposition 6.3
to show that for (y1,...,y,) € B(a, b;q), SCR/L; w, t) is well-approximated by
LR/Lq]"~" copies of T(a, b; q) and is hence > |R/Lq|"~"¢"~"/2. For now we com-
pute a lower bound on the measure of Q. This is not immediate, sinceifn —r > 1,
many of the boxes B(a, b; g) can overlap as g varies; our construction of the set G(gq)
is also completely inexplicit about which a, b are chosen. However, we can apply
[ACP23, Lemma 4.1], which shows that if a set of boxes is “well-distributed,”
then the measure of their union is at least a positive proportion of the sum of their
measures.
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Precisely, choose K| sufficiently large that (by the prime number theorem)
w(x) > (1/4)x/logx for all x > K/2. Let J denote the index set of (a, b; g) over
which the unions are taken in the definition of Q. Then by [ACP23, Lemma 4.1(ii)],

IQI=‘ U U B(a,b;q)‘» > > B bg)l

0/2<9<0 (a,b)eS(q) 0/2<49<0 (a,b)eS(q)
q prime g prime
> (Q/log 0)(ax 0" "HO 1 Q7Y s (log Q)

(with implied constants depending on cy, ¢4, cs, 1, k, r) as long as all the boxes
B(a, b; g) have comparable size and

6.3)  #{(a,biq),(d,b;q) €I :Bla,b;q)NB(d, b'5q) # 0} < ]I,
with an acceptable implied constant. It is clearly true that
1 < |Ba,b;)l/IB(@, ;)] < 1

for all pairs of indices (a, b; g) and (¢, b’; ¢') € J. The bound (6.3) is a statement
that the boxes are well-distributed since a trivial upper bound for the cardinality
would be |J|?; on the other hand, if all the boxes were pairwise disjoint, the
cardinality would be precisely |J]|.

It remains to verify (6.3). Upon requiring Q > 2 max{k, Ky, K;, K>} and
recalling the construction of the sets G(q),

(Q/1og Q)0 ™! « |9] < (Q/log Q)" .

The contribution to (6.3) when (a, b; q) = (d’, b’;q’) as tuples is clearly < J, so
we consider instead the case when the tuples are distinct, and we suppose that
B(a,b;q) N B(d', b';q") # 0, so that in particular,

/ / C /
la/q —d'/q| < 5-(1/q+1/4),

5

1bi/a = b/d| < 5=(1/g"™ "D+ 1)), rel <<,

If g = ¢’ then by taking c4, c5 < 1, the above relations impose |a — a/| < 1 and
|bj — b]’-l < 1 for all j, so that (a, b;q) = (¢’, b’;q"), which is a case we already
considered. So we now assume g ¥ ¢ are distinct primes in [Q/2, O]. Then the
above relations show that

C4
lag' — d'q| < ;Q,

C5C
T

(6.4)

lbig —bigl < =——Q'""" r+l<j<n
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where C is a constant depending on 7, r. Recall that given an integer m, and
distinct primes g, ¢/, there is a unique choice of a pair a¢,a’ with 1 < a < ¢
and 1 < d’ < ¢ with aq’ — @’q = m. Indeed, if there were another representation
ap, ay then aqg’' — d'q = apq’ — ayqg would imply that (a — ag)q’ = (@' — ap)q,
so that ¢'|(a’ — a;) and g|(a — ap), implying a = ap and @’ = a;, as claimed.
Thus once a tuple (my, m,.1, ..., m,) of integers is chosen with |m;| < (c4/7)Q
and |m;| < (¢sC/m)Q' =Y "= foreachj=r+1,...,n, there is at most one choice
of a pair (a, b) € F, x Fy™"and (¢, ') € Fy x 7" satisfying the n — r+ 1 relations
in (6.4) above. Taking into account all possible values of such (my, m,.1, ..., m,),
this shows that given g # ¢/, at most

<<C4,C5,n,r Q N (Ql—l/(n—r))n—r < Qn—r

pairs of index tuples (a, b; q) and (d/, b'; ¢’) can have B(a, b;q) N B(d', b';q") # 0.
Taking a union over all pairs of primes g # ¢’ € [Q/2, O] bounds the left-hand side
of (6.3) by <« (Q/log 0)*’Q"" « |J|. This proves (6.3) and completes the proof
of Proposition 6.2.

6.2 Proof of Proposition 6.3. The existence and measure of the
set Q* C B,(0, 1) follows directly from the construction of the set Q in Proposi-
tion 6.2. Indeed, Q* is defined to be the set of those x € B,,(0, 1) such that the change
of variables defining the y-coordinates in (6.1) map x to a point (yy, ¥2, . . ., y») € Q.
To bound the measure of Q* from below, one only needs to compute the measure
of the pre-image of Q under the change of variables (6.1). Under the assumption
that A > (k— 1)/k (which will hold for our final choice of 1), this simple rescaling
argument follows precisely the argument given in [ACP23, §4.5], and we omit it.

For every x € Q* there is thus a corresponding y = (y1, ..., y,) € Q such that
y € B(a, b; g) for some tuple a, b, g for which

(1/2)¢" "% < |T(a, b; )| <k ¢" /2.

By the construction of the box B(a, b; q), |y1 — 2ma/q| < csq™".

-1

Thus we may
choose a value of s with |s| < c4q
this choice for s (which corresponds precisely via (6.1) to a choice of the time

, such that y; + s = 2zwa/q exactly. We make

parameter ¢). Again by the construction of the box B(a, b; q),

ly; — 2zb;/q| < csq™ '~/

for each r +1 < j < n, so an application of Proposition 4.6 with N; = R/L for
all7+1 <j<nandV =csq~ =" yields

SQR/L: w, t) = LL%J "T(a, b q) + By
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with E; = E as in the proposition. For every ¢ € [Q/2,Q], in the nota-
tion of Proposition 4.6 we have V « c¢sN~! by the second constraint in (6.2),
and N > g'*20 by the third constraint in (6.2). Hence we may apply the simplified
upper bound for the error term given in Remark 4.7, which in the present setting

yields
R |n—r —r R -1 n—r
B2l < || " s+ | 7| dogay ™
(6.5) i 4
—Ay)2 R n—r
L (cs+Q )LLQI/ZJ

Here we have applied the third condition in (6.2) to see that for all Q sufficiently
large,

R \ -1
(7g) Gos0r™ <O ™ dog Q)™ < @™

Finally, for all R sufficiently large (with respect to 4, x), LL%J > (1/2)R/Lg, so that
the main term of |S(2R/L; w, t)| satisfies

{[%Jn_rlT(a» b;q)| > p—(n=n-1 (l%)n_rq(n—r)/Z > 9—(n—r-—1 (L;/z)n—r.

The last step of proving Proposition 6.3 is to control the error term E; from
Proposition 5.2. By that proposition,

|E1 | < sup C3|S(l/l; w, t)l:
R/L<u;j<2R/L
and thus it will suffice to prove that uniformly in R/L < u; < 2R/L, the sum
obeys the upper bound |S(«; w, t)] < (R/LQ'?)"~". For this we can again apply
Proposition 4.6 with N; = u; and V = ¢sq~' =1/ =" 50 that

n

Swsw, 01 = [T [ 2] 1T bl + s

Jj=r+l

with Es = E as in the proposition. We apply the bound |T(a, b; q)| < ¢"~"/?,
valid for each pair (a, b) € G(g). Upon noting that the expressions for both the
main term and E given in Proposition 4.6 are increasing as each range N; increases,
we bound both from above by taking u; = 2R/L in each case. Hence we may in
fact apply the upper bound (6.5) also to E5. In conclusion,

R n—r
Bil < es| | " 4 eales + 070

R n—r R n—r
Lg LQ1/2) <<c3(LQ1/2) '
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7 Choosing parameters and conclusion of the proof

From Proposition 6.3, by taking R sufficiently large (relative to ¢, dy, c1, ¢, n, k, r,
P, 0, A, x) and choosing c3, cs sufficiently small (relative to ¢, ¢, 1, k, r, P) we may
conclude that under the hypotheses of the proposition,

R )n—r

1 o
sup |T/f)] = 5(1 = 27 (15

O<r<1

It then follows from the measure of Q* and the computation (5.1) of ||f]|;» that

Il supy ;1 1TEF O 18, 0.19) —— o i
<t< n(U, R L (n—r)/2 1 1.
Iz > (LQl/z) $\2(R/L) (log 0)
Set
5(}’[, k, r): n r

4(k—Dn—GF—-1)+1)

To finish the proof of Theorem 2.1, it suffices to show that we can define the
parameters S; = R°, L = R* and Q = R* such that R/L is an integer, (5.14) and
(6.2) are satisfied, and for every s < i +d(n, k,r),

R N\n—r (. _ ,
(7.1) (7o) 8P/ 0g 0! 2 AR
for some s > s (and some nonzero constant A;). Note that verifying (7.1) is
equivalent to choosing o, 4, x such that

(7.2) s<%+”;r—(x+z)”;r,
while (5.14) imposes ¢ < 1/2 and (6.2) imposes
—(r—1
(7.3) K+kA>k—1+o0, wx+izl, A <1—x(l+Ayp).

By taking a linear combination of the first two relations in the line above (namely
1/(k — 1) times the first relation plus n — r times the second relation), we obtain

n—(r—1)+0o/k—1)
7.4 A T T ) k= 1)

To maximize the right-hand side of (7.2), we choose «, A so that equality holds in
this relation, and substitute the resulting value for ¥ + 1 into (7.2). For all k > 2
the coefficient of ¢ on the right-hand side of (7.2) is then positive, so in order to
enlarge the region in (7.2) as much as possible, we take ¢ = 1/2. Now solving for x
and A that obey the first two relations in (7.3) and satisfy equality in (7.4) reveals

n—r n—@r—1)

KZZ((k—l)(n—(r—l))+1)’ 1_1_2((k—1)(n—(r—1))+1)'
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Itis then true that 0 < k, 4 < 1. Moreover, A = 1 — k(1 + Ag) with Ag = 1/(n—r),
so that the third relation in (7.3) holds. Additionally, 4 > (k—1)/k, as was required
in §6.2. Finally, A = 1,/4, is a rational number and hence we take a sequence
of integers j — oo with j = 0 (mod 2((k — 1)(n — (r — 1)) + 1)). Then for each
R=R;=2 and L = L; = R} as j — oo in this sequence, we have R;/L; = 2/~ is
an integer, as required in Remark 6.1. Finally, we conclude that with these choices,
(7.1) holds for all s < 1/4 + d(n, k, r), which ends the proof of Theorem 2.1.

8 Forms and intertwining rank: examples and remarks

8.1 Examples of Dwork-regular forms of any intertwining rank.
For each k > 3 and 2 < r < n, we now prove the following forms of degree k are
Dwork-regular over Q in X1, ..., X,, with intertwining rank r, namely

PeXy, ... X)) =X{+-+Xh+ Y XX+ Y XX, k>3 odd;

2<j<r 2<i<j<n
PeXp, .., X)) =X{+ -+ X5+ ) XiX\77+ > XPX(T2, k> 4even.
2<j<r 2<i<j<n

These visibly have intertwining rank r. In the next sections we additionally prove
these forms are indecomposable, and we compute the codimension of all Dwork-
regular forms of intertwining rank » < n, thus quantifying the set of forms for
which Theorem 1.1 proves a new result.

First we prove that each example P; defined above is Dwork-regular. We
provide a full proof in the case k > 3 is odd; this relies on the fact that k — 1 is
then even. In the case that k > 4 is even, the proof is analogous, and relies on the
fact that k — 2 is even. By Lemma 3.1, it suffices to check that for all nonempty

S C{1,...,n}, Ps = P|x0,i¢gs isnonzeroif |S| = 1 and Py is nonsingularif [S| > 2.
Itis clear that Py is nonzero for |S| = 1, so henceforth we assume |S| > 2. Suppose
S={l,..., ¢} with€; <--.- < €,. If 1 €8 then Pg is of the form
(8.1) Xpo+ X0+ > XXl
2<l;<t<n,
;6,8

IfleSand S\ {1} C {r+1,...,n}then Pgis of the form

VED ETRES (Y X X(
2<ti<tj<n,
ti,6;ES
This is the sum of X’f and a polynomial Pg of the form (8.1), and so it is nonsingular
if and only if Pg is nonsingular. (Note that when |S| = 2 this is diagonal and hence
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nonsingular.) Lastlyif 1 € Sand S\ {1} € {r+1, ..., n} then Py is of the form

k k k § k—1 § k—1
(8.2) Xl +X€2 + .- +X€m + XlX[] + X&XKJ .
2<¢<r, 2<ti<tj<n,
t;eS ti,t;eS

In particular, if |S| = 2 then Py is of the form
(8.3) Xt+ X5+ X X5

Consequently, in all cases (after relabelling variables) it suffices to check that for
eachm >m' >2and a € {0, 1},

OYy,....Y) =Y+ +Yi+ > nyflea Y vyH!
2<j<m’ 2<i<j<m
is nonsingular. (The case m’ = m,a = 1 corresponds to (8.1) with ¥; = X,
the case m’ < m,a = 1 corresponds to (8.2), and the case m' = m = 2,0 = 0
corresponds to (8.3).)
Suppose there exists a = [a; : - - - : a,,] € P"! that is a simultaneous solution
to the system

o
D _ iyt S v,
6Y1 1<j<m’
8
a_g Sk = DY v ak— D Y Y2 4a Y v =0,
¢ 2<i<t t<j<m
2< € <m,
8
a_$=kY§‘l+a(k—1>ZYiY§‘2+a > yt=0, m+l<Ef<m.
¢ 2<i<t t<j<m

Since k is odd, kK — 1 is even, and so the vanishing of 6Q/dY; forces a;, = O for
1 < ¢ < w'. If a = 0, then the vanishing of the partials 6Q/0Y,y+1, . .., 0Q/0Y
forces a; = 0 for m' + 1 < ¢ < m. Otherwise if a = 1, then the vanishing
of 6Q/0Y,, forces ar =0 form’ + 1 < € < m (by recallinga, =0 for 1 < £ < m').
So [a; : --- : a,] cannot represent a point in P"~!. Thus Q is nonsingular, as

needed.

8.2 A criterion to check if a form is indecomposable. We will next
prove that the examples given above are indecomposable, and in particular, there
is no GL,(Q) change of variables that bring them to the shape X’f + 0 X2, ..., X))
(e.g., the shape required in previous work [ACP23, EPV22]). We refer to the
results of Harrison [Har75] and Harrison—Pareigis [HP88], who studied the theory
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of higher-degree forms using the analogous theory for symmetric spaces. (Being
decomposable is also referred to as being of Sebastiani—Thom type in algebraic
geometry literature, for example in the literature on Carlson and Griffiths’ result
[CG80] that the generic polynomial can be reconstructed (up to a constant mul-
tiplicative factor) from its Jacobian ideal; see the explicit relation to ST-type in
[Wanl5].)

Let L be a field, in our case with characteristic zero. A symmetric space of
degree k over L is a pair (V, 8) where V is a vector space over L of dimension n
and 6 : V¥ — L is a symmetric multilinear map. This is equivalent to Sym*(V*),
the kth symmetric power of V*, which is naturally identified with the space of
homogeneous polynomials of n variables and degree k (see standard texts such
as [DF04],[Har92]). To describe explicitly the identification between forms and
symmetric spaces, write a homogeneous polynomial F € L[Xy, ..., X,] in the
following symmetric form,

FXi,....X)= > CiiXi X,

1<iy,...,ix <n
where c¢;,...;, = Co(i))--o() fOr all 0 € Si and Sy is the symmetric groupon {1, ..., k}.
Let V be an n-dimensional vector space over the field L (we may view V as L"),
and let vy, ..., v, be a basis of V. Define 8(v;,, ..., ;) = c;..;,- Then for all
X1, ...,X, € L, we have the relation
n n
F(xi,...,xy) = 0<Zv,~x,~, cee Zv,x,-).
i=1 i=1
By definition, a symmetric space (V, 6) is nondegenerate if 9(v, vz, ..., v;) =0
for all vy, ..., v € V implies v = 0. Further, a symmetric space is decomposable

if there exist nonzero symmetric spaces (U, ¢) and (W, y) such that
(V,0) = (U, p) & W, ).

Harrison showed that the decomposability of a symmetric space (V, §) is charac-
terized by its center Z(V, 8) which is defined as

Z(V,0) ={f € End.(V) : O(f(v1), 02, ..., 0x) = O(v1, f(02), 03, . .., L)}
Note that this also implies
O, ....f(),....,05 ..., 00) =01, ...,04...,f(©),...,00)

for any i, j since 6 is symmetric. Precisely, Harrison proves in [Har75, Proposi-
tion 4.1]: let (V, ) be a nondegenerate symmetric space of degree k > 3 over a
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field L of characteristic zero. Then (V, 0) is indecomposable if and only if Z(V, 6)
has no nontrivial idempotents. (An idempotent in a ring is an element a such
that a> = a. The trivial idempotent elements are the 0 and 1, respectively the
additive identity and the multiplicative identity in the ring.)

To translate this into the language of homogeneous polynomials, we define the
center of a form F, following [HP88], as

Z(F) = {A € My(L)|A"Hy = HrA)

where Hr denotes the Hessian matrix (6*F /0X;0Xj)1<i j<n- Then the center, and the
decomposability, of a form coincide with those of its associated symmetric space.
Precisely, let F € L[X], ..., X,] be a form of degree k > 3 and let (V, ) be the
symmetric space associated to F. Then it can be shown that Z(F) = Z(V, §), and F
is indecomposable as a form if and only if (V, #) is indecomposable as a symmetric
space. Thus to show a form is indecomposable, it is equivalent to show that its
center has no nontrivial idempotents. This is the criterion we will exploit.

It is convenient to note that over a field L (with charL { k), a form is called
central if Z(F) =~ L. Harrison showed that if a form is central (over L), then it is
absolutely indecomposable (that is, indecomposable over any field extension of L).
In our case, to show F'is indecomposable over Q it suffices to show that Z(F) ~ Q,
so the form has the even stronger property of being central. We remarked earlier
that indecomposable forms are generic. This is implied for (n, k) # (2, 3) over C
by [HLYZ22, Thm. 3.2] (which shows the set of central forms is open and dense
in the moduli space over C; this proof can be adapted to hold over QQ). It is also
shown directly for n > 3,k > 3 over C by [Wanl5, Ex. 4.3, 4.4, Cor. 6.1]. The
case (n, k) = (2, 3) is more complicated, and we defer its study to a different work.

8.3 The examples are indecomposable. Fork>3,n >2and2 <r<n,
the example form Py defined above is indecomposable; we will prove this next by
showing Z(P;) has no nontrivial idempotents. Precisely, when (n, k) # (2, 3), we
show that Z(P;) = Q; for (n, k) = (2, 3), the example P; is also indecomposable,
but with a different center. (Note that if » = 1, the form is decomposable since X
only appears in a diagonal term. Thus we need only consider 2 < r < n.)

We present the full proof for all odd &k > 5, n > 2 and 2 < r < n; the proof
for k = 3 and for all even k > 4 is fundamentally analogous. Fix P = Pj to be the
example form defined above. Let Hp denote the Hessian of P. Then Hp/(k — 1) is
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the n x n matrix

kXk—2 X542 . Xk=2 0 . 0
X572 kX540, - Xf2 X2 e X5z
X2 xS e, X - xR
0 o X RO e X
0 X5z e XK=z X5z s kXET2 40,

where Q; = (k —2) Y, ;. XiX; 72 for ¢ < rand Q; = (k —2) Y ,_; . XX} ~?
for £ > r. Note that each Q; £ 0. For k > 5, each Q; consists of monomials that
differ from each other and from the entries of Hp/(k — 1) that are off the diagonal,
and so the vanishing of any linear combination ¢;, Q;, + --- + ¢;, Q;, = 0 would
imply ¢;; =0 forall 1 <j <m.

Let A = (a;;) € M,(Q) and write

Hp/(k — 1) = (hy).

Let B, denote (ATHp — HpA)/(k — 1). Then A € Z(P) if and only if By = 0. Note
that a priori we have {cl, : ¢ € Q} C Z(P). The assumption that all entries of B,
are 0 implies constraints on the entries of A that show the reverse inclusion

Z(P) S {cly : c € Q},

from which we deduce the equality Z(P) = {cl, : c € Q} = Q.

Write By = (b;) so that by = Z?zl(aﬁhg]’ — hjeaej). Note that since Hp is
symmetric, b; = 0 and Bg = —B,. Hence it suffices to consider the (n> — n)/2
entries above the diagonal, i.e., b; with i < j. Each entry b;; is a polynomial, so
it is = 0 if and only if the coefficient of each term (after regrouping) is zero. We
split the (n> — n)/2 entries of b;; with i < j into the following five cases of (i, j),
based on the shapes of the rows and columns:

D (A,)with2<j<r,

2) G,)with2<i<j<r,

3) (1,j)) withr+1 <j<n,

@ (G, ))withr+1 <j<mnand2 <i<r,and
O) G,pwithr+1<i<j<n.

It suffices to learn from the assumption that b;; = O in the cases (1), (3), (4).
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For case (1) with (1, j) with 2 < j < r, we compute

Jj—1 J—1
k—2 k—2 k—2
blj = —(llijI - Zangg + (Z ap + ajlk - aj])}(j
=2 =1

r n
k—2 k—2
+ Z((I[] — a[j)Xf + Z ame +aj1Qj.

{=j+1 {=r+1

The assumption bj; = 0 for all 2 < j < r can be seen to imply that

(8.4) a;; = apy, 2<i<m
(8.5) ai; =0, 2<i<n,
a; =0, I1<i#j<r

These give the desired conditions on the top left » x r block and the first column
of A. If r = n, the proof is complete; otherwise for r < n we continue, as cases (3),
(4) are non-vacuous.

For case (3), (1,j) with r + 1 <j < n, we compute

blj = —alijIf_ Zag]Xk 2 (Z ar +ajlk)Xk 2 + Z (1[1X€ +(111QJ

=2 t=j+1

Thus the assumption b; = 0 gives in particular the new condition

a;=0, 1<i<r r+l1<j<n.

This is the desired result for the top right » x (n — r) block of A.
For case (4), (i,j) withr+1 <j <mnand 2 < i < r, we compute

i—1
bjj (Zagj+ay )Xk 2 - Z a[JXk 4 (Za&"'ajl aj])Xk ?

=1 =i+l

n
k=2
+ Z (aei — ag)Xy " — a;Qi + a;iQ;.

{=j+1

The assumption b;; = Oforallr+1 < j <nand 2 < i < r implies that

aji = an, 2<i<n,
a; =0, r+l<i<n, 2<j<r
a; =0, 2<i<n, r+l<j<n, i#]j.

The second condition combined with (8.5) confirms that the entries in the lower-
left (n — r) x r block of A are zeroes, while the third condition finalizes that the
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off-diagonal entries of the lower-right (n — r) x (n — r) block of A are zeroes.
Finally, combined with (8.4) the first condition shows that all diagonal entries in
the lower-right block are also equal to a;;. Thus A = a1, and this completes the
proof that Z(P) C {cl, : c € Q}.

The above computations focused on the case of k > 5 odd. If k£ > 4 is even,
the argument follows exactly the same structure; the assumption that b; = 0 for
indices in case (1) proves the top left r x r block has the desired structure, and (if
r < n)indices from cases (3) and (4) complete the information about the remaining
matrix. If k = 3, the proofis more complicated, because the polynomials Q, defined
above now must be grouped with various other terms (the monomials appearing
are no longer all distinct). Nevertheless, if n > 3, the assumption b; = 0 in the
cases (1)—(4) shows that Z(P3) =~ Q. If (n,k) = (2, 3), we need only consider
rank r = 2, and only the index case (1) is non-vacuous. From b; = 0 in case (1)
we conclude 3a;, — a>; = 0 and a1 — ax; + 3az; = 0 so that

Z(P3):{<a;ﬂ9ﬁ f) :a,ﬁ’e@}.

Any idempotent A € Z(P3) must satisfy A2 = A, by definition of being an idempo-
tent. If § = 0, this forces a = 0 or 1, corresponding to the A being either of the trivial
idempotents (the zero matrix or the identity matrix). If § 0, the identity A> = A
produces three independent equations in a, 5, and in particular, inspection of these
equations shows that o must satisfy a quadratic equation with no rational roots.
Thus Z(P3) contains no nontrivial idempotents over Q. In conclusion, P; is not
central over Q but it is indecomposable over Q. (It is incidentally decomposable
over Q, since its center contains nontrivial idempotents over Q.)

8.4 Codimension of the class of forms. Let M denote the moduli space
of forms P € Q[Xi, ..., X,] of degree k > 2. Then dimM = ("::’:_11) To see this
by a “stars and bars” argument, note that dim M is the number of monomials of
degree k in n variables. Each such monomial can be represented as a configuration
of k stars and n — 1 bars (e.g., X; X3 when k = 3 and n = 4 would be represented
by the configuration | * %||.) The number of such configurations is equal to the
number of ways to choose the location of the n — 1 bars (among k +n — 1 possible
places), and this is the binomial coefficient (" ")

Let 2 C M denote the set of Dwork-regular forms, and let &, denote the set of
forms of intertwining rank < r,for 1 < r <n,sothat | C &, C --- C &, = M.
(We remark that the set of forms that have intertwining rank precisely r, that is,

the set #, = 2, \ #,_1, has dimension equal to that of Z7,, since it can be shown
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that dim &,_; < dim &,.) For each 1 < r < n, Theorem 1.1 proves a nontrivial
result for all real symbols P with leading form P, € 2 N &,. Here we compare the
codimension of 2 N &, in M (the largest class to which our theorem applies)
to the codimension of 2 N &) in M (equivalent to the largest class to which the
previous works [ACP23, EPV22] applied); we focus on a brief summary, since
a more complete study of such forms (and their GL,,(Q)-orbits) will be given in
other work.

Fix 1 < r < n. First, Z is open in M, and it can be shown that &, is a
finite union of (irreducible) affine varieties in M, say P,; fori =1, ..., N, so that
P = Ufil P,;. Then 2 N 2, is a quasi-affine variety, and consequently by [Har77,
Prop 1.10], dim2 N &, = dimZ N Z,. In general, if U C A™ is an open set
and X = JY, X; € A™ is a union of irreducible affine varieties X;, then as long
as U N X; # 0 for every i, it follows that U N X = X. For each i, it can be shown
that 2 N P,.; is nonempty, by precisely the examples stated above (up to re-ordering
coordinates). Thus we conclude that N &, = &, so that it suffices to compute
dim £, in M.

We focus on the cases of &; and £2,_;; it is easier to count the codimension.
By symmetry considerations, the dimension of &,_, is the dimension of the class
of forms for which X; does not intertwine with X,,, or equivalently all those forms
that do not contain monomials with the factor X;X,. Equivalently, all coefficients

of terms of the form XX, Or—»(X1, ..., X,) with Qi_, of degree kK — 2, must be
n+(k—2)—1
n—1

codim(2,_,) = (” th— 3) .

zero. This constrains the coefficients of ( ) monomials, so that

n—1

On the other hand, by symmetry considerations, the dimension of & is the

dimension of the class of forms cX’f + Or(Xa, ..., X,), where Oy has degree k;
the dimension of such polynomials is (";:/i_zz) + 1. Equivalently,
+k—1 +k—2 +k—3
codim(#) = " —(" —1=codim(Z,_,)+ " —1.
n—1 n—2 n—2

Thus &, is a larger class of forms, with dim(#,_;) — dim(#) = (":’1_23) -1
behaving asymptotically like ~ ¢,k"~2 if n is fixed and k — oo, or like ~ ¢ k=1

if k is fixed and n — oo.
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