

1 **Full Title:** Genomic structural variation: a complex but important driver of human evolution

2

3 **Running Title:** Structural variation and human evolution

4

5 **Authors:** Daniela C. Soto^{1,2*}, José M. Uribe-Salazar^{1,2*}, Colin J. Shew^{1,2*}, Aarthi Sekar^{1,2}, Sean

6 McGinty^{1,2}, Megan Y. Dennis^{1,2†}.

7

8 ¹Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine,

9 University of California, Davis, CA, USA

10 ²Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA

11 *These authors contributed equally to this work.

12

13 [†]Corresponding author:

14 Megan Y. Dennis, Ph.D.

15 University of California, Davis, School of Medicine

16 One Shields Avenue

17 Genome Center, 4303 GBSF

18 Davis, CA 95616

19 Email: mydennis@ucdavis.edu

20

21

22 **Keywords:** genomes, structural variation, gene duplications, human evolution, brain

1 **ABSTRACT**

2 Structural variation—including duplications, deletions, and inversions of DNA—can have significant
3 genomic and functional impacts but are technically difficult to identify and assay compared with single-
4 nucleotide variants. With the aid of new genomic technologies, it has become clear that structural variants
5 account for significant differences across and within species. This phenomenon is particularly well-
6 documented for humans and other primates due to the wealth of sequence data available. In great apes,
7 structural variants affect a larger number of nucleotides than SNVs, with many identified SVs exhibiting
8 population and species specificity. In this review, we highlight the importance of SVs in human evolution
9 by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and
10 diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in
11 natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how
12 to incorporate SVs in research, including strengths and limitations of various genomic approaches.
13 Finally, we propose future considerations in integrating existing data and biospecimens with the ever-
14 expanding SV compendium propelled by biotechnology advancements.

1 INTRODUCTION

2 *1.1. The genetic basis of human evolutionary traits*

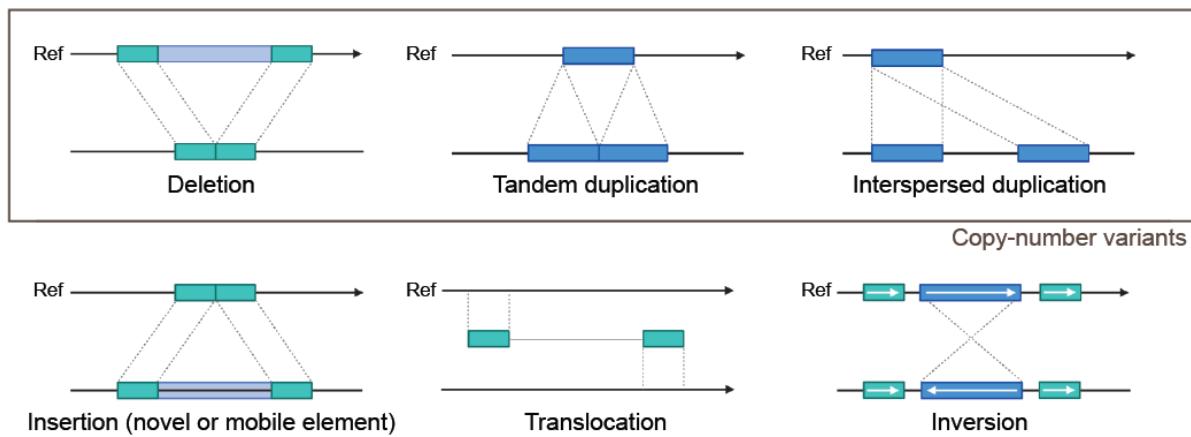
3 Elucidating the genetic changes underlying the evolution of human traits remains an unfinished puzzle.
4 Genetic analyses have historically relied on single-nucleotide variants (SNVs; see **Table 1** for a complete
5 list of acronyms) for the identification of species differences and selection signatures. Although complex
6 genomic variation has long been recognized as a force underlying phenotypic diversity—e.g.,
7 transposable elements in maize (McClintock, 1931), and chromosomal inversions (Sturtevant, 1913) and
8 duplications (Bridges, 1936) in *Drosophila*—as well as a key driver of primate evolution (Bailey &
9 Eichler, 2006), methodological difficulties have limited the understanding of their functional and
10 evolutionary impact. Scientists are now poised to explore this question at unprecedented resolution with
11 the large-scale adoption of high-throughput sequencing technologies (Goodwin, McPherson, &
12 McCombie, 2016). Together, the widespread availability of high-quality reference genomes and
13 population-level whole-genome sequencing datasets have reignited interest in studying the role of
14 complex genomic variation in human/primate traits.
15

16 **Table 1.** Acronyms used in this review

Abbreviation	Definition
1KGP	1000 Genomes Project
AFR	African ancestry
AMR	American ancestry
BNG	Bionanogenomics
bp	basepair
CNV	copy-number variant
DAVID	Database for Annotation, Visualization and Integrated Discovery
EAS	East asian ancestry
EUR	European ancestry
eQTL	expression quantitative trait locus
FST	fixation index
gnomAD	Genome Aggregation Database
GoNL	Genome of the Netherlands
GTEX	Genotype-Tissue Expression
hESC	human embryonic stem cells
HGSVC	Human Genome Structural Variation Consortium
Hi-C or HIC	high-throughout chromatin conformation capture
HiFi	high fidelity
HPRC	Human Pangenome Reference Consortium
HSD	human-specific segmental duplication
HSE	human-specific expansion
i2QTL	Integrated iPSC QTL
IGC	interlocus gene conversion
IL	Illumina
iPSC	induced Pluripotent Stem Cell
kbp	kilobasepairs
kyo	thousand years ago
LD	linkage disequilibrium
LRS	long-read sequencing
Mbp	megabasepairs
mCNV	multiple (multiallelic) copy-number variant

MESA	Multi-Ethnic Study of Atherosclerosis
mya	million years ago
NAHR	non-allelic homologous recombination
NHEJ	non-homologous end-joining
ONT	Oxford Nanopore Technologies
PacBio or PB	Pacific Biosciences
PSVs	paralog-specific variants
SAS	South Asian ancestry
SD	segmental duplication
SINE	short interspersed nuclear element
SNV	single-nucleotide variant
SRS	short-read sequencing
SV	structural variant
SVA	SINE-R-VNTR-Alu
T2T	Telomere-to-Telomere
TAD	topologically-associated domain

1


2

3 1.2. Genomic structural variation

4 Broadly speaking, structural variants (SVs) are defined as complex genomic differences larger than 50 bp
 5 (Reviewed by Alkan, Coe, & Eichler (2011)) (**Figure 1**). These include copy number variants (CNVs)
 6 that can change the dosage of a gene or genomic region, such as deletions and duplications. Larger (>1
 7 kbp) duplications with high sequence identity (>90%) are termed segmental duplications (SDs) or low-
 8 copy repeats (Bailey et al., 2002; Bailey, Yavor, Massa, Trask, & Eichler, 2001). Other types of SVs
 9 include insertions, which can comprise novel sequence and mobile elements such as retrotransposons (for
 10 a comprehensive review see Kazazian & Moran (2017)), translocations, and inversions.

11

12

13

14 **Figure 1. Examples of genomic structural variation.** SVs exist as deletions and duplications (with the largest,
 15 most similar duplications termed segmental duplications, or SDs) that change the copy of a genomic segment (i.e.,
 16 CNVs). Other types of SVs include insertions, translocations, inversions, as well as more complex events not
 17 pictured. Figure is adapted from (Alkan, Coe, et al., 2011) via “Genome Structural Variations” by BioRender.com
 18 (2022). Retrieved from <https://app.biorender.com/biorender-templates>.

1 **1.3. Goals and outline of this review**

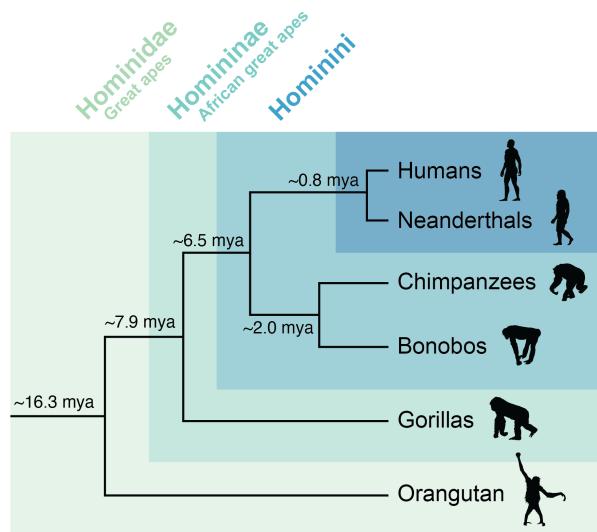
2 In general, both the larger size and low-complexity content that often accompany SVs inhibit their
3 reliable discovery using genomic approaches, making this class of genetic variant historically
4 understudied. However, rapid advancements in both sequencing technologies and computational tools are
5 dramatically improving the study of SVs. The goal of this review is to introduce readers to genomic SVs,
6 describe their known importance in human genome structure and evolution, outline ongoing
7 developments in SV discovery and characterization, and provide resources to incorporate SVs in their
8 own research. This will be achieved via the following topics:

- 9 ○ The impact of structural variation in shaping human and related primate genomes
- 10 ○ How SVs are used in genetic studies today with examples of variants contributing to
11 human traits and evolution as well as gene function and regulation
- 12 ○ Detail the roles that human-specific duplicated genes have played in brain development
13 and evolution
- 14 ○ Provide tips and describe the limitations and artifacts that arise from the study of SVs
- 15 ○ Lay out ongoing genomic advancements that promise to transform our knowledge of the
16 existing SV landscape, and propose how readers can prepare to use upcoming
17 datasets/tools in their own research

18

19 **2. HOW STRUCTURAL VARIATION HAS SHAPED HUMAN GENOMES**

20


21 **2.1. Hominid SDs and the “core” duplicons**

22 Comparative genomic analyses—propelled recently by the availability of high-quality primate genomes
23 (Chimpanzee Sequencing and Analysis Consortium, 2005; Gordon et al., 2016; Kronenberg et al., 2018;
24 Lander et al., 2001; Locke et al., 2011; Mao et al., 2021; Nurk et al., 2022; Prüfer et al., 2012; Scally et
25 al., 2012; Warren et al., 2020)—can provide insight into genetic instances explaining distinct phenotypic
26 characteristics (Rogers & Gibbs, 2014). Genomic surveys have revealed thousands of genetic variants
27 between species potentially leading to phenotypic innovations across primates (Kronenberg et al., 2018;
28 Prado-Martinez et al., 2013; Yousaf, Liu, Ye, & Chen, 2021). One striking result of this comparative
29 approach is the observed increased rate of accumulation of SDs in great apes compared to other primates
30 (Marques-Bonet, Girirajan, & Eichler, 2009; Marques-Bonet, Kidd, et al., 2009a; Sudmant et al., 2013)
31 given the known potential of duplications to serve as a source for phenotypic innovation (Ohno, 1970). In
32 particular, the branch leading to African great apes (**Figure 2**) has experienced a three-fold increase in
33 duplication activity 8–12 million years ago (mya) together with a clocklike rate of deletions and a
34 decreased rate of SNVs, chromosomal rearrangements, and retrotransposition activity (Marques-Bonet,
35 Kidd, et al., 2009b; Sudmant et al., 2013). As a result, SDs account for 7% (218 Mbp) of the human
36 genome, according to the sequence of the first complete telomere-to-telomere (T2T-CHM13) reference
37 genome (Vollger et al., 2021).

38 Hominid SDs are non-randomly distributed across the genome and organized in large blocks (>250 kbp)
39 that display a complex structure of duplications-within-duplications arranged around sequence elements
40 known as ‘core’ or ‘seed’ duplicons (Dennis & Eichler, 2016; Jiang et al., 2007; Marques-Bonet &
41 Eichler, 2009). This differs from most other sequenced mammals—like mice, dogs, and cows—where
42 SDs are primarily organized in tandem (Liu et al., 2009; Nicholas et al., 2009; She, Cheng, Zöllner,
43 Church, & Eichler, 2008). These regions represent the focal point from which duplications accrue, with

1 younger events located farther away from the core. In the human genome, hierarchical clustering of 437
2 duplicated blocks identified 24 core duplons of ~15 kbp in size, of which fourteen were confined to one
3 chromosome and ten were mixed across non-homologous chromosomes, mostly within subtelomeric and
4 pericentromeric regions (Jiang et al., 2007). Evidence suggests that core duplons have been reused
5 independently and recurrently in different primate lineages (Cantsilieris et al., 2020; Johnson et al., 2006)
6 and also exist at the breakpoints of large scale chromosomal translocation and inversions representing
7 cytogenetic differences across hominids (Gagneux & Varki, 2001; Marques-Bonet, Girirajan, et al.,
8 2009).

9

10

11 **Figure 2. Cladogram of Hominidae family.** Divergence time estimates were obtained from Sudmant et al. (2013).
12

13 The core duplons themselves are enriched for transcribed genes. Human core duplon gene families
14 exhibit signatures of positive selection (*NBPF*, *RGPD*, *PMS2P*, *SPATA31*, *TRIM51*, *GOLGA8*, *NPIP* [i.e.,
15 Morpheus], *TBC1D3*) (Johnson et al., 2001; Lorente-Galdos et al., 2013) and are among the most copy-
16 number polymorphic gene families in the human genome (e.g., *SPATA31*, *NPIP*, and *LRRC37A*) (Redon
17 et al., 2006; Sharp et al., 2005). Since their original discovery, only three of these gene families have been
18 functionally characterized (*TBC1D3* [detailed in **Section 4.3**], *NBPF*, and *SPATA31*), leaving the function
19 of most core duplon genes unknown (Bekpen & Tautz, 2019).

20

21 **2.2. Molecular mechanisms contributing to structural variation**

22 Different molecular mechanisms have been proposed to explain the origin of primate SDs. The
23 enrichment of *Alu* short interspersed nuclear elements (SINE)—the most abundant interspersed repeats in
24 the human genome—at the boundaries of interstitial (euchromatic) and pericentromeric SDs suggests *Alu*-
25 mediated origins (Bailey & Eichler, 2006; Bailey, Liu, & Eichler, 2003). As such, it has been proposed
26 that the primate-specific ‘burst’ of *Alu* retrotransposition activity that occurred 35–40 mya sensitized the
27 ancestral primate genome to *Alu*-mediated recombination events, that later propelled duplication events
28 via non-allelic homologous recombination (NAHR) and homology-directed repair. However, association
29 with *Alu* elements significantly decreases for younger SDs and CNVs, suggesting newly-emerging
30 molecular mechanisms underlying structural variation formation, with newer events driven by other

1 repeat classes or different molecular mechanisms such as non-homologous end-joining (NHEJ)
2 (Balachandran et al., 2022; Kim et al., 2008). In the case of the LCR16a core duplcon, which contains the
3 rapidly-evolving primate-specific gene family Morpheus (*NPIP*), their interchromosomal and
4 intrachromosomal expansions have been linked to the hominid-specific retrotransposon SINE-R-VNTR-
5 *Alu* (SVA) (Damert, 2022).

6
7 As large stretches of homologous sequences provide a substrate for recombination, SDs sensitize the
8 genome to NAHR, resulting in genomic rearrangements such as unequal crossing-over and interlocus
9 gene conversion (IGC), where a donor sequence overwrites an acceptor sequence (Chen, Cooper,
10 Chuzhanova, Férec, & Patrinos, 2007). Analysis of the 1000 Genomes Project (1KGP) dataset estimates
11 that at least 2.7% of SNVs within SDs can be explained by IGC (Dumont, 2015; Genomes Project,
12 Consortium et al., 2010), while a recent survey of variants identified from comparisons of whole human
13 genome assemblies suggest IGC accounts for >7 Mbp of SD sequence per human haplotype (Vollger,
14 DeWitt, et al., 2022). Duplicated non-functional pseudogenes can lead to disease by exchanging
15 deleterious variants with functional paralogs via IGC. This is the case of *SMN2*, a nonfunctional HSD
16 paralog of *SMN1*, which encodes the survival motor neuron protein involved in the maintenance of motor
17 neurons (Rochette, Gilbert, & Simard, 2001). Unidirectional variant exchange via IGC causes *SMN2* to
18 “overwrite” functional *SMN1* leading to the most common form of spinal muscular atrophy (Larson et al.,
19 2015). Conversely, IGC events can also “rescue” non-functional duplicate gene paralogs from
20 pseudogenization, as observed for *NOTCH2NL*, a gene implicated in human brain evolution (discussed in
21 more detail in **Section 4.3**) (Fiddes et al., 2018; Suzuki et al., 2018). SDs preferentially exist at regions of
22 genome instability, or ‘hotspots’, prone to recurrent genomic rearrangements (Stankiewicz & Lupski,
23 2002, 2010). Core duplcons seem to be preferential sites for rearrangement hotspots (Dennis & Eichler,
24 2016). A subgroup of CNVs, termed microdeletions and microduplications, have been implicated in
25 certain conditions—such as autism, schizophrenia, and epilepsy—at certain genomic hotspots (Carvalho
26 & Lupski, 2016; Coe et al., 2014; Inoue & Lupski, 2002; Mefford & Eichler, 2009; Perry et al., 2006;
27 Sharp et al., 2005; Stankiewicz & Lupski, 2002, 2010; Watson, Marques-Bonet, Sharp, & Mefford, 2014;
28 Zhang, Carvalho, & Lupski, 2009), including chromosomes 7q11.23 deletion (Williams-Beuren
29 syndrome) and duplication (autism), 15q11–q13 deletion (Prader-Willi and Angelman syndromes), and
30 1q21.1 microdeletion (intellectual disability, schizophrenia) and duplication (autism). Overall, these
31 examples suggest that gene duplication—a well-established driver of gene innovation—has conferred
32 advantages to human evolution, while also increasing genome instability and disease risk.

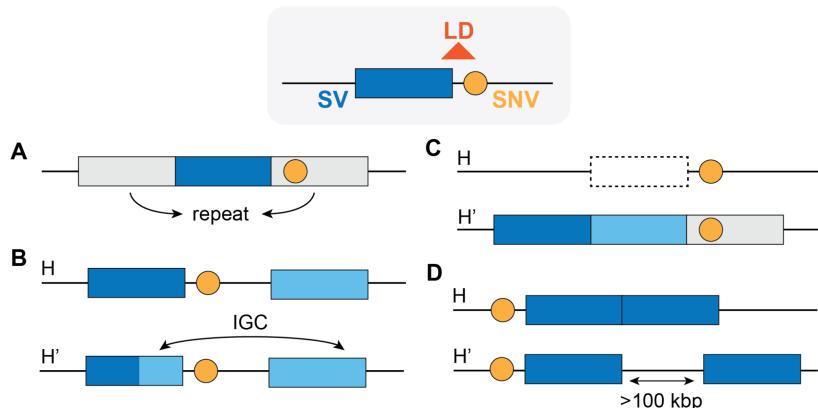
33
34 **3. CONTRIBUTIONS OF STRUCTURAL VARIATION TO HUMAN EVOLUTION,
35 ADAPTATION, AND TRAITS**

36 ***3.1. Variation landscape across modern humans***

37 The availability of high-coverage population-level short-read sequencing (SRS) data provided by large-
38 scale consortia projects have shown that SVs are an important source of genomic diversity across great
39 apes (Prado-Martinez et al., 2013; Sudmant et al., 2013) and within human populations (see **Section 5.2**
40 for a comprehensive list of available human datasets and studies). Based on our current knowledge of
41 SVs, which we recognize as incomplete due to difficulties in their discovery with SRS (detailed in
42 **Section 5.3**) (De Coster, Weissensteiner, & Sedlazeck, 2021), lower-bound estimates suggest that around
43 9% of the human genome is affected by insertions, deletions, and inversions alone (~279 Mbp) (Ebert et

1 al., 2021), while at least 7% of the human genome (Sudmant, Mallick, et al., 2015) and ~16% of hominid
2 genomes (Sudmant et al., 2013) are variable because of CNVs. Individually, each diploid genome harbors
3 at least 18.4 Mbp (0.6%) of SVs, accounting for more than five times as many affected base pairs as
4 SNVs (~0.1%) (Sudmant, Rausch, et al., 2015). Focusing specifically on inversions, a more recent study
5 estimates that an individual's genome can harbor, on average, ~12 Mbp (~0.4%) of inverted sequence per
6 haploid genome, affecting twice as many nucleotides as deletions and insertions and fourfold as many
7 nucleotides as SNVs (1KGP Consortium et al., 2015; Ebert et al., 2021; Porubsky, Höps, et al., 2022).
8 Further, NAHR between flanking SDs increases the likelihood of recurrent inversions, a process
9 described as “inversion toggling” (Zody et al., 2008), with a majority of inversions displaying evidence of
10 recurrence (Porubsky, Höps, et al., 2022). The existence of 27 inversions shared among different apes
11 suggests inversion toggling also exists across species and/or as a result of incomplete lineage sorting
12 (Porubsky et al., 2020).

13
14 Per generation, at least 4.1 kbp are associated with *de novo* SV events, a 90-fold increase with respect to
15 *de novo* SNVs (Kloosterman et al., 2015). Further, preliminary comparisons of genome assemblies from
16 the Human Pangenome Reference Consortium (HPRC) suggests that SNV mutation rates are elevated by
17 ~60% across SDs compared to non-duplicated genomic regions, likely driven by IGC (Vollger, DeWitt, et
18 al., 2022; Wang et al., 2022). Albeit different in genome distribution and affected sequence,
19 polymorphism of SVs and SNVs share population genetic properties and global distribution patterns.
20 Frequency-wise, most variants are rare and those with higher allele frequencies are shared among the five
21 human continental superpopulations. All SV classes can broadly recapitulate SNV-derived ancestries
22 (Sudmant, Rausch, et al., 2015), including CNVs (Jakobsson et al., 2008). In concordance with SNVs,
23 individuals of African ancestry exhibit more heterozygous SVs than other populations (Sudmant, Rausch,
24 et al., 2015).


25
26 SVs can also exist in linkage disequilibrium (LD) with neighboring SNVs. Alleles in LD are observed
27 together at higher than expected frequencies, which can be exploited to understand evolutionary history
28 and fine-mapping of gene associations with diseases and traits. We note that the use of LD in human
29 evolutionary and clinical genomics has been extensively reviewed by others (Slatkin, 2008). When SVs
30 and SNVs consistently exist on the same haplotype (or a collection of alleles on the same chromosome),
31 we say that the SVs are in LD with (or “tagged” by) SNVs; therefore, if a tagging SNV exhibits
32 association with a trait, the SV in LD can also be considered a possible causal variant without having to
33 be directly genotyped for the trait. Likewise, tagging SNVs displaying signatures of selection provide
34 information about the evolutionary relevance of associated SVs. Numerous SNV genotyping- (Hinds,
35 Kloek, Jen, Chen, & Frazer, 2006; Locke et al., 2006; McCarroll et al., 2006) and sequencing-based
36 (Beyter et al., 2021; Conrad et al., 2010; Hehir-Kwa et al., 2016; Saitou, Masuda, & Gokcumen, 2021;
37 Yan et al., 2021) studies have identified SVs in LD with surrounding SNVs. SVs within duplication-rich
38 regions, however, show a weaker correlation with surrounding SNVs than those situated in less complex
39 regions (Locke et al., 2006; Sudmant, Mallick, et al., 2015), likely due to methodological difficulties in
40 SNV detection within large duplications as well as SV recurrence (e.g., the same inversion occurring
41 separately in two individuals carrying different SNV haplotypes) and IGC (Saitou & Gokcumen, 2019a)
42 (**Figure 3**). As a result, NAHR-derived inversions also commonly lack LD with surrounding SNVs
43 (Giner-Delgado et al., 2019).

44

1 Multicopy CNVs (mCNVs), also known as multiallelic CNVs, are particularly challenging for LD-based
2 analyses, as the duplicated paralog might not exist at the same locus of origin. Microarray-based
3 approaches have estimated that 40% of common mCNVs are in LD with nearby SNVs (Campbell et al.,
4 2011), while recent studies employing whole-genome sequencing (see **Section 5.1** for more details)
5 estimate that 73% of CNVs (>1% allele frequency) are in medium to strong LD ($r^2 > 0.6$) with nearby
6 SNVs (Sudmant, Mallick, et al., 2015). Considering the importance of the underlying LD architecture for
7 genome-wide association studies and population genetics analyses, the lack of linkage information has
8 hindered genotype–phenotype studies and selection scans of SV-associated regions (Saitou & Gokcumen,
9 2019a).

10
11 Despite methodological difficulties, the function and disease implication of some SVs have been inferred
12 based on strong LD with surrounding associated SNVs or performing association tests with phenotype
13 cohorts (Aguirre, Rivas, & Priest, 2019; Beyter et al., 2021). Linkage information, in particular, shows
14 that SVs are 1.5 times more likely to be in strong LD with genome-wide association study hits than SNVs
15 (Sudmant, Rausch, et al., 2015).

16

17

18 **Figure 3. Difficulties appraising haplotypes between SVs and neighboring SNVs.** (A) Neighboring SNVs
19 (orange circles) are difficult to detect when an SV (colored rectangle) is embedded in repeat-rich regions. (B, C)
20 Haplotypes can be disrupted by (B) IGC and (C) recurrent deletions (H) and duplication (H'). (D) mCNVs can be in
21 the same locus (H) or many kilobases apart (H').

22

23 **3.2. Natural selection and human structural variation**

24 Over evolutionary timescales, SVs can be subjects of strong selective pressures. As such, a majority of
25 SV hotspots develop in gene-poor regions, evolving under relaxed negative selection or neutrality (Lin &
26 Gokcumen, 2019). For example, it has been proposed that relaxation of negative selection allowed for
27 extensive copy-number variation of olfactory receptor genes in the primate lineage, with a relatively
28 lower proportion of protein-encoding genes in humans and other primates versus dogs or rodents (Young
29 et al., 2008). Conversely, functionally relevant sites—including coding regions and regulatory elements
30 (e.g., enhancers and promoters)—are both depleted in SVs and enriched in rare SVs (Beyter et al., 2021),
31 a signature consistent with purifying selection. As one might expect, selection against protein-truncating
32 SVs has been shown to be stronger than in noncoding elements (Collins et al., 2020). Per genome, SVs
33 are predicted to account for 17.2% of strongly deleterious variants, with rare SVs being 841 times more
34 likely to be deleterious than rare SNVs (Abel et al., 2020). Among CNVs, deletions show stronger

1 signatures of purifying selection than duplications, as they can severely impact gene functions by fully or
2 partially ablating transcripts, regulatory elements, and chromatin organized units of the genomes (i.e.,
3 topologically-associated domains or TADs). Consequently, deletions are significantly depleted within
4 functional elements in humans (Locke et al., 2006; Mills et al., 2011) and certain great apes (Fudenberg &
5 Pollard, 2019; Soto et al., 2020).

6
7 Nevertheless, several examples of adaptive SVs exhibiting signatures of positive or balancing selection
8 have been described in the literature, mostly implicated in local adaptation to dietary changes,
9 environmental changes (e.g., pigmentation, thermoregulation, xenobiotic), and resistance to infectious
10 diseases (Table 2). Here, we highlight some interesting examples, while also pointing the reader to recent
11 reviews on this topic (Dennis & Eichler, 2016; Hollox, Zuccherato, & Tucci, 2022; Saitou & Gokcumen,
12 2019a). Positive selection of mCNVs has been associated with gene dosage effect (Handsaker et al.,
13 2015). This is the case of the β -defensin genes, where copy-number gains lead to greater protein
14 expression on the mucosal surface and higher antimicrobial activity (Hollox, Armour, & Barber, 2003).
15 Other immune-related loci rich in common CNVs, such as the major histocompatibility complex, are
16 thought to maintain their genetic diversity through the action of balancing and diversifying selection (Lin
17 & Gokcumen, 2019).

18
19 Some deletions have been maintained within populations by the action of balancing selection for
20 thousands of years (Aqil, Speidel, Pavlidis, & Gokcumen, 2022), even before the divergence of modern
21 humans and Neanderthals, estimated to have occurred ~800 kya (Gómez-Robles, 2019). A well-known
22 example of this phenomenon is a common 32-kbp deletion impacting genes *LCE3B* and *LCE3C*
23 associated with psoriasis. This deletion emerged in a common ancestor with Neanderthals and was
24 maintained through balancing selection, likely due to increased effectiveness of the acquired immune
25 system, albeit higher susceptibility to autoimmune disorders (Pajic, Lin, Xu, & Gokcumen, 2016).
26 Interestingly, CNVs impacting *GSTM1* and *UGT2B17* are polymorphic in humans and chimpanzees,
27 suggesting inter-species balancing selection. However, further analyses revealed that deletions of *GSTM1*
28 arose separately in both lineages (Saitou, Satta, & Gokcumen, 2018; Saitou, Satta, Gokcumen, & Ishida,
29 2018), while the evolutionary history of *UGT2B17* remains unknown.
30

31 **Table 2.** Examples of large-scale SVs and whole-gene CNVs exhibiting signatures of natural selection in human
32 populations.

Gene/locus	Region	Variant	Selection type	Category	Putative trait	References
<i>GSTM1</i>	1p13.3	Deletion	Positive (East Asian)	Metabolism	Xenobiotic metabolism	(M. Saitou, Satta, & Gokcumen, 2018)
Amylase (<i>AMY1</i> / 1p21.1 <i>AMY2</i>)		mCNV	Positive	Diet	Adaptation to high-starch diet	(Pajic et al., 2019)
<i>LCEB</i> , <i>LCEC</i>	1q21.3	Deletion	Balancing	Immune response / Pigmentation	Psoriasis / Natural vaccination	(Pajic et al., 2016)
<i>UGT2B17</i>	4q13.2	Deletion	Balancing (European); Metabolism Positive (East Asian)		Xenobiotic metabolism	(Xue et al., 2008)
Glycophorin (<i>GYPA</i> / <i>GYPB</i> / <i>GYPE</i>)	4q31.2	Complex duplication (<i>GYPB-GYPA</i> gene fusion)	Positive (East African)	Immune response	Resistance to malaria infection	(Leffler et al., 2017)
<i>TCAF1</i> / <i>TCAF2</i>	7q35	Non-duplicated haplogroup	Positive (Archaeics)	Diet / Thermoregulation	Unknown	(Hsieh et al., 2021)
<i>ORM1</i>	9q32	“Runaway”	Positive (European)	Immune response	Unknown	(Handsaker et al.,

duplication						2015)
<i>HERC2</i>	15q13.1	Duplication	Negative (European)	Pigmentation	Unknown	(Saitou & Gokcumen, 2019b)
<i>BOLA2</i>	16p11.2	mCNV	Positive	Diet	Protection against iron deficiency	(Giannuzzi et al., 2019)
α -Globin (<i>HBA1/HBA2</i>)	16p13.3	Deletion	Balancing (East African)	Immune response	Resistance to malaria infection	(Williams et al., 2005)
<i>HPR</i>	16q22.2	"Runaway" duplication	Positive (African)	Immune response	Resistance to trypanosomiasis infection	(Handsaker et al., 2015; Hardwick et al., 2014)
<i>KANSL1</i>	17q21.31	Inversion, duplication	Positive (European)	Fecundity	Increased fertility	(Stefansson et al., 2005)
<i>SIGLEC14 / SIGLEC5</i>	19q13.41	Deletion (gene fusion)	Positive	Immune response	Reduced risk of chronic obstructive pulmonary disease	(Angata et al., 2013; Yamanaka, Kato, Angata, & Narimatsu, 2009)
<i>GSTT1 / GSTT1PI</i>	22q11.23	Deletion (gene fusion)	Balancing (African)	Diet	Xenobiotic metabolism	(Lin, Pavlidis, Karakoc, Ajay, & Gokcumen, 2015)
<i>APOBEC3B</i>	22q13.1	Deletion	Positive	Immune response	Unknown	(Kidd, Newman, Tuzun, Kaul, & Eichler, 2007)

1
 2 Inversions have also played significant roles in the evolution of great apes, representing a common large-
 3 scale rearrangement differentiating species (Catacchio et al., 2018; Locke et al., 2003; Nickerson &
 4 Nelson, 1998; Yunis, Sawyer, & Dunham, 1980; Yunis & Prakash, 1982), including nine pericentric
 5 inversions that distinguish humans and chimpanzees (Gross et al., 2006). Generally, inversions are strong
 6 candidates for speciation and selection because suppressed recombination allows for the accumulation of
 7 mutations between the derived and ancestral state (Fuller, Koury, Phadnis, & Schaeffer, 2019; Kirkpatrick
 8 & Barton, 2006; Noor, Grams, Bertucci, & Reiland, 2001). Further, they have the capacity to disrupt
 9 three-dimensional genome architecture, alter gene expression, and, in humans, exhibit a close relationship
 10 with disease-associated genomic hotspots (Koolen et al., 2006; Lakich, Kazazian, Antonarakis, &
 11 Gitschier, 1993; Lupiáñez et al., 2015; Osborne et al., 2001; Puig, Casillas, Villatoro, & Cáceres, 2015;
 12 Sturtevant, 1917). The chromosome 17q21.31 900-kbp inversion polymorphism represents an example of
 13 an SV exhibiting positive selection. The locus harbors two main distinct haplogroups, H1 (direct) and H2
 14 (inverted), with little evidence of recombination for the last ~3 million years (Stefansson et al., 2005). The
 15 H2 haplogroup is rare in Africans and Asians while prevalent among Europeans (~20%) indicative of
 16 positive selection possibly due to its association with increased fertility in females (Stefansson et al.,
 17 2005). Both H1 and H2 haplogroups have evolved independently and experienced complex
 18 rearrangements, with recurrent partial duplications of *KANSL1* (Boettger, Handsaker, Zody, & McCarroll,
 19 2012; Steinberg et al., 2012), a gene for which haploinsufficiency causes the chromosome 17q21.31
 20 microdeletion syndrome (also known as Koolen-De Vries syndrome) (Moreno-Igoa et al., 2015).

21
 22 SVs involved in local adaptation—the genetic changes experienced by a population to adapt to local
 23 environmental conditions (Rees, Castellano, & Andrés, 2020)—are prime targets of positive selection.
 24 The identification of many adaptive SVs has relied on genome-wide scans of population stratification
 25 (Conrad et al., 2010; Redon et al., 2006; Saitou et al., 2021; Sudmant et al., 2010; Yan et al., 2021), as
 26 allele frequency differences between populations are robust to haplotype-disruptive recurrence and IGC.
 27 Population-stratified SNVs are frequently identified using the fixation index (F_{ST}). For mCNVs, the

1 statistic V_{ST} (Redon et al., 2006) has been adapted from F_{ST} to account for multiple copy numbers. One of
2 the most well-studied adaptive CNVs in humans impact the amylase genes, involved in starch digestion in
3 mammals. The copy number of the salivary amylase gene, *AMY1*, has been found to be positively
4 correlated with dietary starch consumption in humans (Perry et al., 2007) and several starch-consuming
5 mammals such as dogs (Pajic et al., 2019), evidencing positive selection. Although *AMY1* copy number
6 has a dosage effect on salivary amylase production, it accounts for a small portion of the variability
7 observed among individuals (Carpenter, Mitchell, & Armour, 2017). Interestingly, population-scale V_{ST}
8 analyses have led to the discovery of adaptive SVs in out-of-Africa populations that have introgressed
9 from archaic genomes (Hsieh et al., 2019; Yan et al., 2021). Among Melanesians, for example, 19
10 positively-selected CNVs at chromosomes 16p11.2 and 8p21.3 likely introgressed from Denisovans and
11 Neanderthals, respectively (Hsieh et al., 2019).

12
13 Some adaptive CNVs display a unique expansion pattern, where unusually high copy numbers are seen in
14 one population, remaining low in the rest, a pattern termed ‘runaway duplications’ (Almarri et al., 2020;
15 Handsaker et al., 2015). This is the case of *HPR*, encoding the haptoglobin-related protein which confers
16 defense against trypanosome infection, that shows a copy-number increase in African populations
17 consistent with the geographic distribution of the infection (Almarri et al., 2020; Handsaker et al., 2015;
18 Hardwick et al., 2014). Other identified runaway duplications include the expansion of *ORM1* in
19 Europeans (Handsaker et al., 2015), a private expansion downstream of *TNFRSF1B* in the Biaka group,
20 an expansion upstream of the olfactory receptor *OR7D2* in individuals with East Asian ancestry, and
21 expansions in medically-relevant genes *HCAR2* in the Kalash group and *SULT1A1* in Oceanians (Almarri
22 et al., 2020).
23

24 **3.3. Gene regulation**

25 SVs impact not only genes but also their regulatory elements. The vast majority (>98%) of the human
26 genome is noncoding, with changes to regulatory regions thought to be better tolerated than changes to
27 protein-coding sequences. Enhancers possess cell-type specificity, so regulatory mutations tend to be
28 modular, impacting the quantity, location, or developmental time of gene expression while leaving the
29 genes themselves intact (Arnone & Davidson, 1997). Accordingly, gene regulation is a major contributor
30 to variation within and between species (Fay & Wittkopp, 2008; Fraser, 2013; Wray et al., 2003). This
31 was suspected even before the genomic era (Ohno, 1972), as comparison of human and chimpanzee
32 sequences suggested that coding differences were insufficient to explain the phenotypic divergence
33 between the species, and that most changes were likely regulatory (King & Wilson, 1975). Given that
34 SVs constitute a major component of intra- and interspecific variation, they may underlie much of this
35 regulatory divergence, and indeed contribute to regulatory differences within humans and between
36 primate species (Iskow et al., 2012; McLean et al., 2011; Stranger et al., 2007). At the same time, proper
37 development relies on finely tuned spatiotemporal expression patterns, and many disease etiologies result
38 from aberrant *cis*-regulatory activity of promoters and enhancers. Strikingly, many are also caused by
39 structural rearrangements (Kleinjan & Coutinho, 2009).
40

41 Compared to SNVs, SVs are more likely to contribute to regulatory changes, since their large size allows
42 them to alter the copy number and genomic context of genes and regulatory elements. CNVs of coding
43 regions can directly impact gene dosage, while SVs of noncoding regions can cause indirect expression
44 changes by deleting, duplicating, or rearranging regulatory elements rather than genes. Genome-wide, it is

1 estimated that 3–7% of expression quantitative trait loci (eQTLs)—or variants associated with gene
2 expression variation—are driven by SVs, with rare variants also associated with outlier expression levels
3 (Chiang, 2019). Similarly, SVs are ~50 times more likely than SNVs to be the lead cause of eQTL
4 signals, with large SVs having greater effect sizes. Further, estimates based on expression data
5 representing diverse tissue types collected post mortem from 613 individuals from the Genotype-Tissue
6 Expression (GTEx) project predict that common SVs are causal of 2.66% of eQTLs, which represents a
7 10.5-fold enrichment compared to SNVs, considering their relative abundance in the genome (Scott,
8 Chiang, & Hall, 2021). Beyond simply altering mRNA levels, individual regulatory SVs can have marked
9 phenotypic effects. For example, deletion or duplication of enhancers upstream of *SOX9* causes XX and
10 XY sex reversal, and a human-specific loss of a conserved *GDF6* enhancer results in shortened hindlimb
11 digits in mouse models (Croft et al., 2018; Indjeian et al., 2016).

12
13 The molecular mechanisms of SV-mediated non-coding changes have been well-studied in the context of
14 promoter-enhancer “rewiring”, in which a variant alters endogenous regulatory contacts, leading to
15 aberrant gene expression as enhancers interact with non-target genes. Functional dissection of the
16 *WNT6/IHH/EPHA4/PAX2* locus in humans and mice demonstrated that rearrangements relative to
17 insulating elements allowed *Epha4* enhancers to interact with other promoters in the locus, driving
18 ectopic expression in the limb buds and causing digit malformation phenotypes (Lupiáñez et al., 2015).
19 This mechanism has been implicated in other disease contexts, including “enhancer hijacking” in cancer
20 (Franke et al., 2022; Northcott et al., 2014; Yang et al., 2020). It is likely that similar mechanisms are at
21 work in typical human variation; for instance, different haplotypes of the aforementioned chromosome
22 17q21.31 inversion exhibiting signatures of positive selection in Europeans are associated with up- and
23 down-regulation of multiple genes (de Jong et al., 2012; Stefansson et al., 2005).

24
25 More broadly speaking, comparison of great ape genome assemblies has identified hundreds of species-
26 specific SVs putatively altering gene expression, though most of these have not been functionally
27 investigated (Kronenberg et al., 2018). In particular, breakpoints of large inversions (>100 kbp) tend to
28 colocalize at human TAD boundaries, with those disrupting boundaries associated with differential
29 expression of genes across primates (Porubsky et al., 2020). Similar studies comparing inversions
30 differentiating human with chimpanzee and rhesus also show significant depletions of inversion
31 breakpoints at TAD boundaries, which could suggest selection against such events (Maggiolini et al.,
32 2020; Soto et al., 2020). Examining diversity within species, an analysis of 42 common human
33 polymorphic inversions identified 11 to be in strong LD with previously reported eQTLs from GTEx,
34 impacting 62 genes (Giner-Delgado et al., 2019). One inversion in particular (HsInv0201) at chromosome
35 5q32 exhibited signatures of balancing selection and was associated with decreased expression of
36 *SPINK6*, a gene known to play a role in immune response to *Salmonella* (Alasoo et al., 2018; Nédélec et
37 al., 2016). In all, SVs are inextricably linked with the gene regulatory landscape.

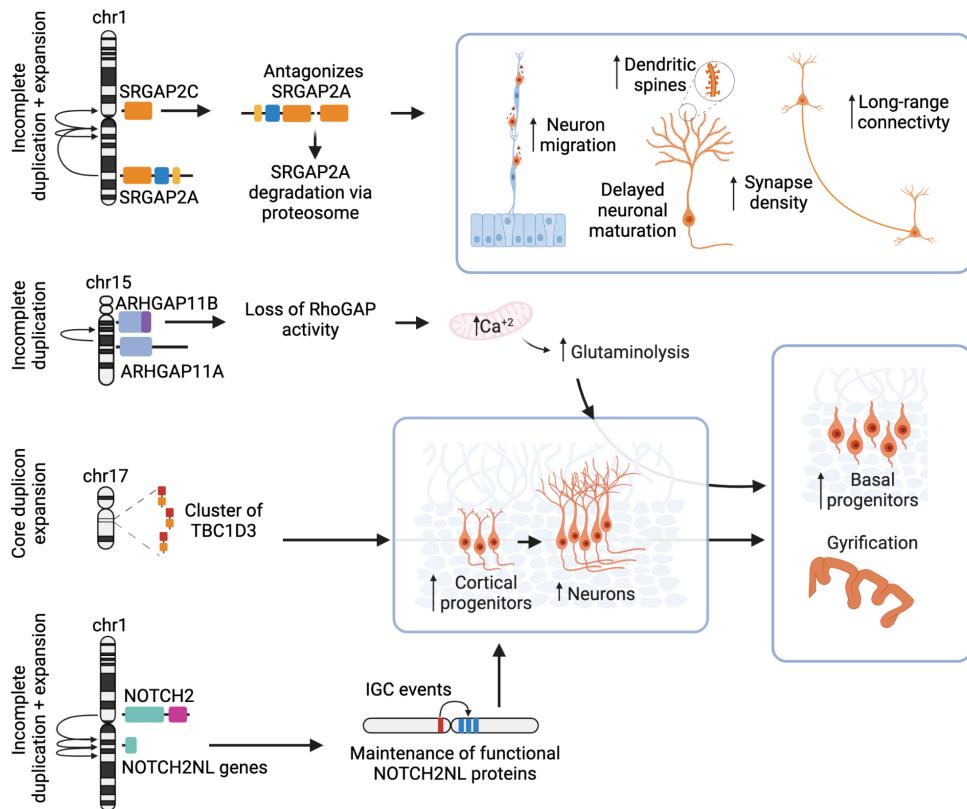
38 39 **4. FUNCTIONAL DUPLICATED GENES DRIVING HUMAN BRAIN EVOLUTION**

40 **4.1. Human brain evolution**

41 Small canine teeth, reduced hair cover, elongated thumbs, language, bipedalism, and advanced tool usage
42 represent example anatomical, social, physiological, and behavioral traits that distinguish humans from
43 their closest primate relatives (Carroll, 2003; Pääbo, 2014; Varki & Altheide, 2005). Some of the most

1 intriguing yet unanswered questions about distinct human characteristics involve the evolution of the
2 human brain, given the enhanced cognitive capacity present in modern humans compared to other species
3 (Defelipe, 2011; Pääbo, 2014). Since the divergence between humans and chimpanzees, estimated ~6
4 mya (Besenbacher, Hvilsom, Marques-Bonet, Mailund, & Schierup, 2019), a hallmark of the
5 encephalization process in humans has been a rapid and continuous expansion [with the exception of a
6 recent reduction in size observed in the last 3,000 years (DeSilva, Traniello, Claxton, & Fannin, 2021)].
7 As a result, modern human brains are almost three times the volume of modern chimpanzees (Defelipe,
8 2011; DeSilva et al., 2021; Molnár et al., 2019a). In particular, the neocortex represents a key driver of
9 human brain evolution given its distinct anatomical and cellular characteristics (Geschwind & Rakic,
10 2013; Mora-Bermúdez et al., 2016; Rakic, 2009), including increases in neuronal density and connectivity
11 (particularly in cortico-basal circuits), lengthening of prometaphase-metaphase stages in proliferating
12 neuronal progenitors, and prolonged corticogenesis (Boyd et al., 2015; Enard et al., 2009; Herculano-
13 Houzel, 2016; Liu, Hansen, & Kriegstein, 2011; Mora-Bermúdez et al., 2016). Collectively, these features
14 are believed to play a key role in the development of higher cognitive abilities, such as language and
15 perception (Molnár & Pollen, 2014). Importantly, these same characteristics are likely to also have
16 contributed to a surge in neurodevelopmental conditions in modern humans, such as epilepsy (Tóth et al.,
17 2018) and autism (Stoner et al., 2014).
18

19 **4.2. Human-specific duplicated genes**


20 Variants found exclusively in *all* humans are candidates for evolutionary-relevant changes underlying
21 unique species traits (O’Blenniss, Searles, Varki, Gagneux, & Sikela, 2012). Striking examples include
22 frameshift mutations in *MYH* that led to its inactivity and a reduction in masticatory muscles (Stedman et
23 al., 2004), regulatory changes in *HACNS1* that produced a human-specific enhancer gain of function in
24 limb development (Prabhakar et al., 2008), and the loss of penile spines due to a 60-kbp deletion near the
25 androgen receptor (*AR*) gene (McLean et al., 2011). In the case of SVs, gene loss caused by fixation of
26 lineage-specific deletions has been proposed as a common and rapid local adaptation mechanism, often
27 associated with immune response and pathogen resistance (Olson, 1999). The Great Ape Genome Project
28 identified 13.54 Mbp of human fixed deletions, containing 86 putative gene losses, 40 of which were
29 human-specific, including known lost genes *SIGLEC13* and *CLECM4* (Sudmant et al., 2013). Conversely,
30 human-specific SDs (HSDs)—large duplication events originating after the split from a common human-
31 chimpanzees ancestor—and human-specific expansions (HSEs)—great ape gene duplications that reached
32 higher copy numbers uniquely in humans—are also prime targets for the evolution of uniquely human
33 traits (Dennis & Eichler, 2016).
34

35 Duplicated genes impact evolutionary history across the entire tree of life (Lallemand, Leduc, Landès,
36 Rizzon, & Lerat, 2020; Taylor & Raes, 2004; Jianzhi Zhang, 2003), including notable examples of animal
37 embryonic body patterning with the *Hox* genes (Wagner, Amemiya, & Ruddle, 2003), digestive abilities
38 in leaf-eating monkeys with the ribonuclease genes (Zhang, Rosenberg, & Nei, 1998), resistance to
39 plagues in soybean with the *Rhg1* gene (Cook et al., 2012), and modifications to the visual system
40 through the recruitment of crystallin genes (Piatigorsky, 2003). In this matter, humans are no exception to
41 this trend. Through comparisons of genome assemblies and whole-genome sequences of hundreds of
42 great apes, extensive progress has been made in identifying duplicated genes impacted uniquely in
43 humans (Dennis et al., 2017; Fortna et al., 2004; Sudmant et al., 2013, 2010; Sudmant, Mallick, et al.,
44 2015; Vollger, Guitart, et al., 2022). A recent study surveyed sequence data from modern humans

1 (N=236) versus non-human primates (N=86) identifying 218 autosomal regions uniquely duplicated in
 2 humans but not other great apes (Dennis et al., 2017). Due to difficulties in assembling duplicated
 3 regions, the identified loci were enriched at gaps in the existing human reference genome. Targeted
 4 efforts to fix the sequence assembly of the largest HSD loci resulted in the identification of 33 gene
 5 families representing 80 gene paralogs, many of which clustered at the aforementioned NAHR hotspots
 6 implicated in neurodevelopmental conditions. Further, previous work by Sudmant et al., (2010) has
 7 shown enrichment of human-specific duplicated genes implicated in the neural functions, suggesting a
 8 functional connection may exist between human duplicated genes and brain evolution.
 9

10 **4.3. Examples of functional human duplicated genes important in neurodevelopment**

11 A number of HSD and HSE genes have been associated with neurodevelopment. For example, *GPRIN2*
 12 (Chen, Gilman, and Kozasa 1999) has been implicated in neurite outgrowth and branching. Further,
 13 human-specific *HYDIN2*—emerging from an incomplete duplication of ancestral *HYDIN*—likely adopted
 14 a new promoter increasing its expression in neural tissue (Dougherty et al. 2017) with CNVs affecting
 15 this gene associated with micro- and macrocephaly (Brunetti-Pierri et al. 2008). Collectively, *in vivo*
 16 knockout of ancestral orthologs and gain-of-function studies that introduce human paralogs of genes in
 17 mice and cortical organoids have been instrumental in delineating functions in neurodevelopment. Below,
 18 we highlight four additional HSD and HSE genes with compelling connections with human brain
 19 development (Figure 4).

20
 21
 22 **Figure 4. Summary of human duplicated genes implicated in neurodevelopmental functions.** Truncated
 23 duplicate *SRGAP2C* antagonizes ancestral *SRGAP2A* through dimerization of their F-BAR domains, causing its
 24 degradation and resulting in increases in the rate of neuronal migration, density of dendritic spines, long-range

1 neuronal connections, and synapse density, as well as delayed neuronal maturation. Truncated ARHGAP11B carries
2 55 distinct terminal amino acids that result in a loss of its ancestral RhoGAP activity, increasing calcium levels in
3 the mitochondria that result in increased glutaminolysis and a higher abundance of basal progenitors that lead to
4 presence of gyration. HSE of *TBC1D3* located in a core dupilon has been expanded multiple times. Studies have
5 revealed an increase in cortical progenitors and subsequently neurons in the presence of this gene, ultimately
6 resulting in mice with gyrencephalic brains. Incomplete duplication of the N-terminal portion of *NOTCH2* and
7 subsequent expansion gave rise to several *NOTCH2NL* paralogs that remained functional likely due to IGC events
8 and that have been found to directly increase the abundance of cortical progenitors and neurons. Figure created with
9 BioRender.com.

10 **SRGAP2C**

11 In the search for functional human-specific duplicated genes impacting neurological traits, the *SRGAP2*
12 (SLIT-ROBO Rho-GTPase-activating protein 2) gene family has received considerable attention.
13 *SRGAP2* duplicated three independent times in the last ~3 million years along the human lineage resulting
14 in the full-length ancestral *SRGAP2* and truncated human-specific paralogs: *SRGAP2B*, *SRGAP2C*, and
15 *SRGAP2D* (Dennis et al., 2012). *SRGAP2*, which encodes a homo-dimerizing protein comprising F-BAR,
16 RhoGAP, and SH3 functional domains, is an important regulator of neuronal migration and outgrowth.
17 *Srgap2*-knockdown mice generated using *in utero* electroporation of a short-hairpin RNA resulted in
18 increased rate of neuronal migration and neurite outgrowth (Guerrier et al., 2009). These processes are
19 largely driven by the homodimerization of *Srgap2* F-BAR domains, which are widely known to
20 participate in cytoskeleton remodeling (Liu, Xiong, Zhao, Yang, & Wang, 2015; Sporny et al., 2017). *In*
21 *utero* electroporation of truncated *SRGAP2C*, encoding a truncated F-BAR domain while lacking
22 RhoGAP and SH3, in mice phenocopied the *Srgap2*-knockdown with animals exhibiting neoteny during
23 spine maturation and an increased density of dendritic spines (Charrier et al., 2012). Co-expression in
24 COS7 cells revealed that *SRGAP2C* also interacts with *SRGAP2A* via their F-BAR domain resulting in
25 degradation of the heterodimer produce in a proteasome-dependent manner (Schmidt, Kupferman, &
26 Stackmann, 2019), explaining the mirroring effect between *Srgap2*-knockdown and *SRGAP2C*-injected
27 mice. Moreover, *SRGAP2A* promotes maturation of excitatory and inhibitory synapses through
28 interaction with key molecular players such as Homer, Gephyrin, and Rac1; functions that are inhibited in
29 the presence of *SRGAP2C*, leading to delayed neuronal maturation and a higher density of synapses (both
30 excitatory and inhibitory) (Fossati et al., 2016; Schmidt et al., 2019). Further, expression of *SRGAP2C* in
31 mouse cortical pyramidal neurons resulted in increased long-range synaptic connectivity (Schmidt et al.,
32 2021). *SRGAP2C* “humanized” mice also showed a higher and more selective response via whiskers
33 stimulation, and evidenced a significantly increased cortical processing ability in a whisker-based texture-
34 discrimination task. These results combined suggest a potential impact of *SRGAP2C* to functional
35 features of human cortical connectivity that might have played a role in the emergence of unique
36 cognitive capacities.

37

38 **ARHGAP11B**

39 Extensive studies have also focused on detailing the relevance of *ARHGAP11B* (Rho-type GTPase-
40 activating protein 11), a gene implicated in human brain expansion. The duplicated paralog arose as a
41 partial duplication of *ARHGAP11A* ~5.3 mya (Antonacci et al., 2014). Evaluations of multiple
42 transcriptomic datasets of human fetal cell types revealed a high *ARHGAP11B* expression (more than 10-
43 fold greater) in progenitor cells (basal glial) compared to differentiated neuronal cells (Florio et al., 2015,
44 2018) resulting in increased cortical gyration in mouse (Florio et al., 2015), ferret, and marmoset
45 models (Heide et al., 2020; Kalebic et al., 2018). A single substitution impacting an *ARHGAP11B* splice-

1 donor site results in a truncated protein encoding a human-specific carboxy terminus with lost RhoGAP
2 activity (Florio, Namba, Pääbo, Hiller, & Huttner, 2016) but new glutaminolysis mitochondrial functions
3 by increasing Ca^{+2} concentrations (Namba et al., 2020). Mice expressing *ARHGAP11B* exhibit enhanced
4 memory flexibility and reduced anxiety levels (Xing et al., 2021). Recent work using human- and
5 chimpanzee-derived cortical organoids revealed the role of *ARHGAP11B* in basal progenitor
6 amplification (Fischer et al., 2022). These combined findings provide an exciting case of a human-
7 specific gene gaining a novel function that impacts the development of features highly relevant in the
8 evolution of the human brain.

9

10 **TBC1D3**

11 Amplifications of the core dupilon containing *TBC1D3* (TBC1 Domain Family Member 3) produced
12 multiple paralogs in humans (*TBC1D3A-K*) whilst persisting as a reduced copy gene in chimpanzees
13 (Perry et al., 2008). More recent comparisons across primate genomes revealed independent and recurrent
14 expansions of *TBC1D3* also in gorilla, orangutan, and macaque at different evolutionary times, but an
15 evidently larger expansion in the human lineage ~2.3 mya (using the macaque sequence as outgroup)
16 particularly in two genomic regions on chromosome 17 that are highly copy number polymorphic across
17 humans, ranging between 2 and 14 copies (Vollger, Guitart, et al., 2022). Initial functional *TBC1D3*
18 studies reported a role in cell proliferation by modulating the signaling of growth factors (Hodzic et al.,
19 2006; Wainszelbaum et al., 2008). More recently, expression of *TBC1D3* paralogs in mice resulted in the
20 expansion of self-renewing basal progenitors due to increased proliferation of outer radial glial cells,
21 promoting folding of the neocortex (Ju et al., 2016), a hallmark feature of the human brain evolution
22 (Geschwind & Rakic, 2013; Molnár et al., 2019b).

23

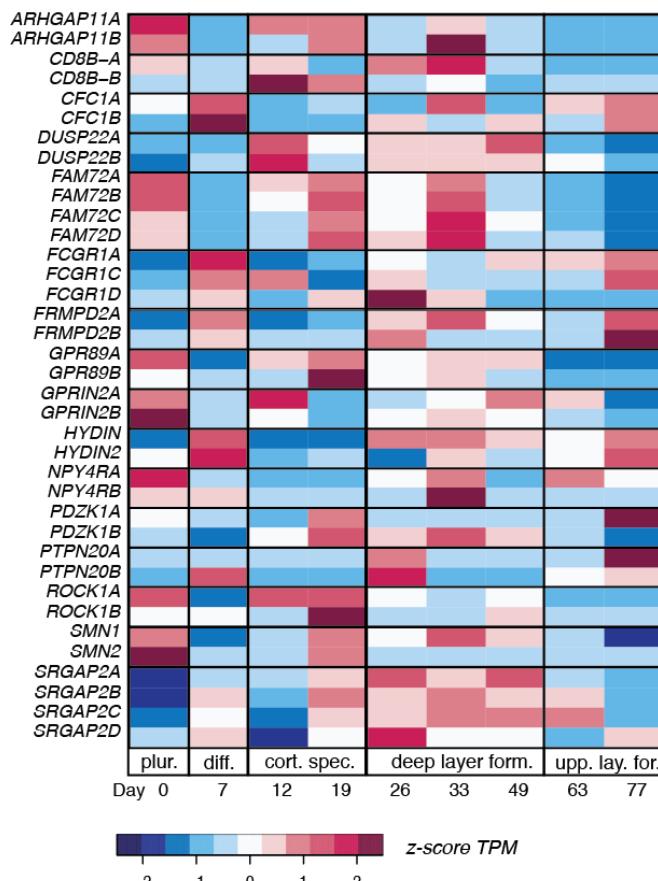
24 **NOTCH2NL**

25 Partial duplication, including the first four exons of the well-characterized *NOTCH2* (Neurogenic locus
26 notch homolog protein 2) signaling gene (Imayoshi, Sakamoto, Yamaguchi, Mori, & Kageyama, 2010;
27 Irvin, Zurcher, Nguyen, Weinmaster, & Kornblum, 2001), and subsequent SD expansion resulted in three
28 truncated paralogs (*NOTCH2NLA*, *NOTCH2NLB*, and *NOTCH2NLC*) on chromosome 1q21.1 and one
29 paralog (*NOTCH2NLR*) on chromosome 1p11.2 (Fiddes et al., 2018). While gorillas and chimpanzees
30 carry pseudogenized *NOTCH2NL* genes, human paralogs share >99.1% sequence similarity and encode
31 functional proteins likely due to human-specific IGC events between *NOTCH2* and the *NOTCH2NL*
32 genes that acted to resurrect these previously non-functional genes. Recent studies overexpressing human-
33 specific *NOTCH2NLB* in human embryonic stem cells and mouse cortical spheroids revealed clonal
34 expansion of progenitors resulting in a higher neuronal count compared to controls (Fiddes et al., 2018;
35 Suzuki et al., 2018). *In utero* electroporation of human-specific *NOTCH2NL* also increased the population
36 of cycling basal progenitor cells in the embryonic mouse neocortical subventricular zone (Florio et al.,
37 2018; Suzuki et al., 2018). These findings point to *NOTCH2NLB* as a potential key regulator in human
38 brain expansion.

39

40 ***4.4. The search for additional duplicated genes important in human brain evolution***

41 Though the described examples showcase certain human duplicated genes and their roles in
42 neurodevelopment, the functions of >100 discovered HSD genes remain to be characterized. Ongoing
43 work optimizing protocols for cortical organoids promise to increase the scale and reproducibility


1 necessary to globally test gene functions in neurodevelopment (Bray, 2019). In particular, great promise
2 exists in understanding species differences directly by manipulating and directly comparing the
3 development of chimpanzee and human induced Pluripotent Stem Cell (iPSC)-derived organoids (Pollen
4 et al., 2019; Romero et al., 2015; Song et al., 2021). Ideally, expansion of iPSC resources for additional
5 non-human primates would allow for more comprehensive comparisons (Fernandes, Klein, & Marchetto,
6 2021). Alternative to direct gene manipulations, functions of duplicated genes can also be delineated
7 based on shared co-expression and protein interactions. To identify functional enrichments across a more
8 comprehensive set of duplicated genes, we employ here an approach based on gene ontology. Using the
9 Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang, Sherman, &
10 Lempicki, 2009; Sherman et al., 2022) and the complete list of HSD genes identified by Dennis et al.
11 (2017), we find significant enrichment for functions in nervous system development, actin cytoskeleton
12 organization, and dendrite morphogenesis. Conversely, chimpanzee-specific duplicated genes identified
13 by Sudmant et al (2013a) are enriched for functions in RNA secondary structure, positive regulation of
14 interleukin production, and neurotransmitter secretion in muscles. The role of HSD genes in cytoskeleton
15 organization is particularly interesting as actin plays a key role during brain development (Luo, 2002).
16 Neuronal proliferation, migration, signaling, and differentiation all require considerable changes to cell
17 morphology through coordinated actin cytoskeletal and membrane remodeling (Ayala, Shu, & Tsai, 2007;
18 McKayed & Simpson, 2013). Indeed, duplicated genes *SRGAP2* and *ARHGAP11A* both function in the
19 Rho/Rac/Cdc42 pathways, key to actin cytoskeleton dynamics (Florio et al., 2015; Guerrier et al., 2009;
20 Tapon & Hall, 1997). We propose other discovered HSD genes may play a role in neural functions via
21 membrane dynamics that could be systematically tested using cell assays.

22
23 Though we expect to identify additional HSD paralogs that have retained their ancestral paralog function,
24 undergone subfunctionalization, or acquired a new function (known as neofunctionalization), most
25 duplicated genes, after a brief period of functional redundancy and relaxed selection, will accrue
26 deleterious mutations and go the road of pseudogenization (Lynch & Conery, 2000). One way to assess
27 this is through cell/tissue expression conservation between homologous genes. A comparison of cross-
28 tissue expression data from 75 HSD gene paralogs between humans and chimpanzees suggests that
29 human-specific paralogs broadly exhibit patterns consistent with both relaxed selection and
30 neofunctionalization (Shew et al., 2021). Ancestral paralogs largely retain conserved expression patterns
31 while duplicate paralogs either reduce expression in existing tissue and/or gain expression in novel
32 tissues. This is consistent with long-read isoform sequencing of HSD genes in adult brain that found
33 almost half of duplicate paralogs examined contained novel features, including exapted or truncated
34 exons, new transcription start or end sites, or altered splicing (Dougherty et al., 2018).

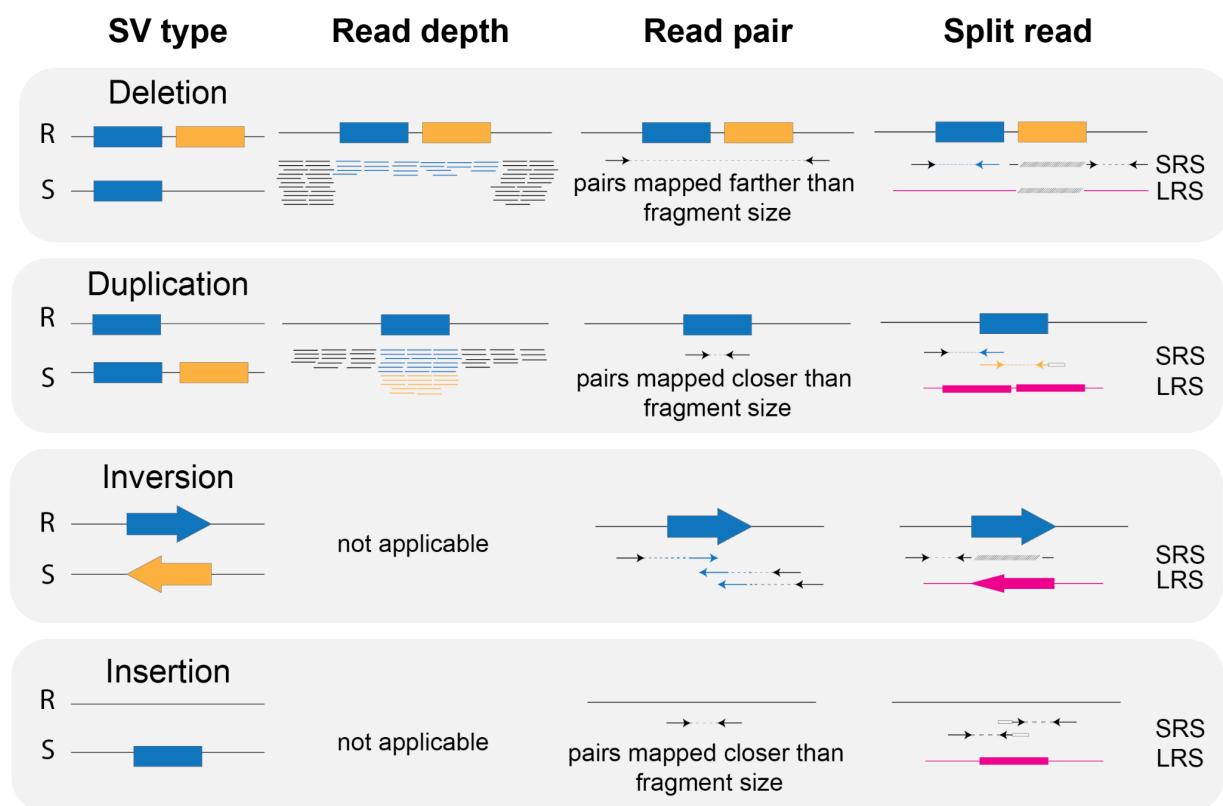
35
36 Some of the studies highlighted above successfully identified functional duplicated genes important in
37 brain development by their preferential expression in human fetal brain neural subtypes (Florio et al.,
38 2015, 2018; Suzuki et al., 2018). For example, Florio et al. (2015 and 2018) narrowed in on both
39 *ARHGAP11B* and *NOTCH2NL* paralogs, but also 13 additional human-specific genes with preferential
40 expression in cortical progenitors, including the *FAM72* gene family that exists directly adjacent to the
41 *SRGAP2* paralogs. Further, Suzuki et al. (2018) performed RNA-seq of human fetal cortical tissue
42 extracted at different stages of development (7 to 21 gestational weeks) to identify 35 human- and
43 hominid-specific genes displaying robust fetal brain expression profiles, including *NOTCH2NL* paralogs
44 and several core dupilon-associated genes (e.g., *GOLGA6/8*, *LRRC37A/B*, *NBPF*, *NPIP*, and *PMS2*).

1 Employing a similar approach, for this review, we also assessed the propensity of a subset of HSD genes
 2 to function during critical stages of corticogenesis by re-quantifying expression across differentiated
 3 human embryonic stem cells (hESC)-derived cortical neurons from 0–77 days, as previous published
 4 analysis of these data did not include most duplicated genes (van de Leemput et al., 2014). To account for
 5 this, we used an approach demonstrated to accurately quantify gene paralog expression (Patro, Duggal,
 6 Love, Irizarry, & Kingsford, 2017; Shew et al., 2021) and detected expression of all tested HSD paralogs
 7 within one of the five stages of cortical neuron progression during development (**Figure 5**). We note high
 8 expression for *ARHGAP11B* during deep layer formation, coinciding with previous studies reporting its
 9 high expression in basal radial glial cells (Florio et al., 2015). *NPY4RB* also demonstrates a similarly high
 10 expression during deep layer formation and may be tested for impact on proliferation.

11 With the increasing availability of transcriptomic datasets representing human fetal brain development,
 12 particularly as more studies employ longer sequence reads enabling more accurate assessment of highly-
 13 similar duplicate paralogs, we anticipate being able to identify more exciting functional candidates for
 14 future study.

15
 16 **Figure 5. Transcriptional profiles of a subset HSD genes across corticogenesis using data from differentiated**
 17 **hESCs.** RNA-seq quantification across a time-course of 77 days to mimic developmental stages including:
 18 pluripotency (plur.), differentiation (diff.), cortical specification (cort. spec.), deep layer formation (form.) and upper
 19 layer formation (upp. lay. form.). Expression levels displayed as z-scores of HSD genes in relation to the complete
 20 transcriptome indicated as colors (red = high; blue = low expression).
 21

1 **5. INCORPORATING STRUCTURAL VARIATION IN YOUR OWN RESEARCH**


2 **5.1. Approaches to identify structural variation**

3 SVs can be identified using a number of genomic techniques. Classical approaches, reviewed extensively
4 by Alkan, et al. (2011) and others (Gresham, Dunham, & Botstein, 2008; Sharp, Cheng, & Eichler, 2006;
5 Yang, 2020), use fluorescent probes targeting specific genomic loci coupled with DNA hybridization
6 (e.g., fluorescent *in situ* hybridizations and SNP microarrays). More recently, with the advent of DNA
7 sequencing and the exponential increase of available datasets (**Section 5.2 below**), current studies
8 typically employ whole-genome sequencing (see “Beginner’s guide to next generation sequencing” for a
9 recent, easy-to-follow review by Aigrain (2021)). The most commonly-used approach—Illumina or
10 SRS—requires DNA fragments less than 1 kbp in size to generate up to billions of highly-accurate
11 sequence reads as large as 300 bp, often representing “paired ends” of input DNA fragments. A majority
12 of genomes are available as SRS based on its affordability (currently ~\$700 for a genome at 30 \times
13 coverage) and high accuracy. Less commonly used but increasingly adopted is long-read sequencing
14 (LRS), via PacBio or Oxford Nanopore Technologies (ONT), with theoretically no DNA length limitation
15 (e.g., over 1 Mbp for ONT) but at reduced fidelity (~90% accuracy) and increased costs. Recent
16 improvements in both technologies, such as PacBio high-fidelity (HiFi) sequencing resulting in >99%
17 accuracy for fragments ~20 kbp in length, has resulted in significantly improved accuracy of data
18 (Vollger, Logsdon, et al., 2019; Wenger et al., 2019), while improvements in throughput are reducing
19 costs (discussed in more detail in **Section 5.4**).

20
21 Typically, SRS is optimal for SNV detection, while LRS can span complex breakpoints enabling
22 improved detections of SVs. Two recent reviews have nicely summarized existing bioinformatic
23 approaches to identify SVs (Ho, Urban, & Mills, 2019; Mahmoud et al., 2019). Standard approaches rely
24 on identifying optimal matches of sequence reads with a human reference genome (“mapping”) followed
25 by discovery of differences in a sample versus the reference (**Figure 6**). SRS-based methods search for
26 deviations from expectations of read depth as well as distance between read pairs to identify CNVs and
27 SVs. In a simple scenario, a 10-kbp deletion residing on a single allele would result in half as many
28 sequence reads spanning the reference region compared to the average sequence-read coverage of the rest
29 of the genome (i.e., 15 \times across the deletion for a 30 \times coverage genome). That same deletion could also
30 produce unexpected distances between read pairs with a majority of reads mapping ~500 bp apart (based
31 on the fragment length of the sequence library), while paired reads spanning the deletion will map ~10
32 kbp apart (the length of the deletion). Further, both LRS- and SRS-based approaches can identify SVs
33 when a single read maps to multiple locations in the reference (or “split read”). Considering our same
34 deletion example, the entire 10 kbp will be missing from half of the reads and will result in no mapping to
35 the deletion reference locus for these reads.

36
37 Likewise, technologies also exist capable of maintaining long-range haplotype information, such as
38 Strand-seq (Falconer et al., 2012), Hi-C (Belton et al., 2012), and optical mapping (Das et al., 2010), that
39 have been used to detect SVs that are less dependent on nucleotide sequence quality and mappability of
40 the target region. Strand-seq, which preserves directionality of reads by sequencing only replicating DNA
41 strands within single cells, can identify balanced genomic rearrangements—inversion and translocation—
42 as changes in orientation of mapped reads (Sanders, Falconer, Hills, Spierings, & Lansdorp, 2017;
43 Sanders et al., 2016). Hi-C, or high-throughput chromatin conformation capture, detects both balanced

1 and unbalanced large-scale genomic rearrangements as changes in the three-dimensional genome
 2 organization visualized in contact frequency heat maps (Harewood et al., 2017). Optical mapping
 3 fluorescently labels recognition sequences across single DNA molecules and identifies balanced and
 4 unbalanced SVs as changes in label spacing between the sample and a reference genome (Cao et al.,
 5 2014; Lam et al., 2012) (reviewed in Jeffet, Margalit, Michaeli, & Ebenstein (2021)).
 6

7
 8 **Figure 6. Short- and long-read SV discovery signals.** R: Reference. S: Sample. SRS: short-read sequencing. LRS:
 9 long-read sequencing. Dashed line connects two pairs from the same short-read sequencing DNA fragment. Pink
 10 shapes represent long reads.

11
 12 **5.2. Available human population datasets**

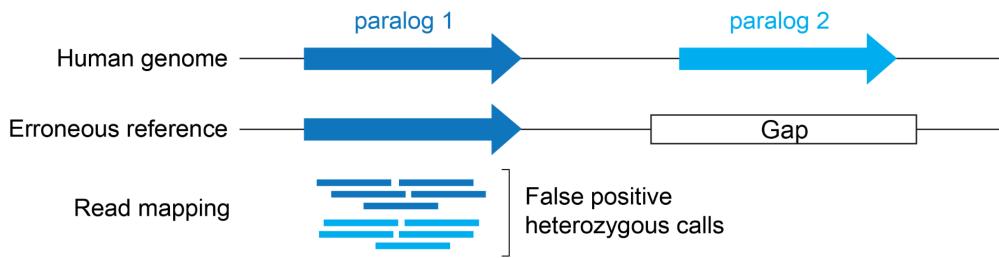
13 A number of publicly-available sequencing datasets exist representing modern human populations (**Table**
 14 **3**), enabling more comprehensive detection of SVs. Major human sequencing projects include the 1KGP
 15 (Byrska-Bishop et al., 2022; Sudmant, Rausch, et al., 2015), the Human Genome Diversity Project
 16 (HGDP) (Almarri et al., 2020; Bergström et al., 2020), the Genome Aggregation Database (gnomAD)
 17 (Collins et al., 2020), and the UK BioBank (Halldorsson et al., 2022), as well as a growing body of
 18 individuals from diverse backgrounds sequenced with long reads as part of the HPRC (Liao et al., 2022)
 19 and other projects (Aganezov et al., 2022; Audano et al., 2019; Ebert et al., 2021).

20
 21 **Table 3.** Population cohorts of human structural variation obtained from whole-genome sequencing data.

Reference	Dataset	SV Discovery			SV Genotyping		
		Cohort	Population(s)	Platform	Cohort	Population(s)	Platform
(Sudmant, Mallick, et al., 2015)	-	236	125 populations	IL	-	-	-

(Sudmant, Rausch, et al., 2015)	1KGP (low-cov)	2,504	AFR, EUR, EAS, SAS, AMR	IL	-	-	-
(Hehir-Kwa et al., 2016)	GoNL	250	Dutch	IL	-	-	-
(Chiang et al., 2017)	GTEx	147	American Indian, Asian	IL	-	-	-
(Chaisson et al., 2019)	HGSVC	9	AFR, EAS, AMR	IL, PB, ONT, BNG	-	-	-
(Audano et al., 2019)	-	15	AFR, EUR, EAS, SAS, AMR	PB	440	AFR, EUR, EAS, SAS, AMR	IL
(Jakubosky et al., 2020)	i2QTL	719	AFR, EUR, EAS, SAS, AMR	IL	-	-	-
(Almarri et al., 2020)	HGDP	911	54 populations	IL	-	-	-
(Collins et al., 2020)	gnomAD	14,891	AFR, EUR, EAS, AMR	IL	-	-	-
(Abel et al., 2020)	CCDG	17,795	AFR, EUR, AMR	IL	-	-	-
(Quan et al., 2021)	-	25	EAS	ONT	-	-	-
(Ebert et al., 2021)	HGSVC	32	AFR, EUR, EAS, SAS, AMR	PB	3,202	AFR, EUR, EAS, SAS, AMR	IL
(Beyter et al., 2021)	-	3,622	Icelandics	ONT	-	-	-
(Yan et al., 2021)	-	-	-	-	2,504	AFR, EUR, EAS, SAS, AMR	IL
(Sirén et al., 2021)	-	-	-	-	5,202	AFR, EUR, EAS, SAS, AMR, MESA	IL
(Ebeler et al., 2022)	HGSVC	14	AFR, EUR, EAS, AMR	PB	300	AFR, EUR, EAS, SAS, AMR	IL
(Aganezov et al., 2022)	-	17	AFR, EUR, EAS, SAS, AMR	PB, ONT	-	-	-
(Byrska-Bishop et al., 2022)	1KGP (high-cov)	3,202	AFR, EUR, EAS, SAS, AMR	IL	-	-	-
(Halldorsson et al., 2022)	UK BioBank	150,119	British Irish, AFR, SAS	IL	-	-	-
(Jarvis et al., 2022; Liao et al., 2022)	HPRC	29	AFR, EAS, AMR	PB, ONT, BNG, HIC	-	-	-
	HPRC+	18					

1 1KGP: 1000 Genome Project. HGDP: Human Genome Diversity Project. HGSVC: Human Genome Structural Variation
2 Consortium. gnomAD: Genome Aggregation Database. i2QTL: Integrated iPSC QTL. GoNL: Genome of the Netherlands
3 Project. GTEx: Genotype-Tissue Expression Project. MESA: Multi-Ethnic Study of Atherosclerosis. HPRC: Human Pangenome
4 Reference Consortium. AFR: African. EUR: European. EAS: East Asian. SAS: South Asian. AMR: American. IL: Illumina short
5 reads. PB: PacBio long-reads. ONT: Oxford Nanopore Technologies long reads. BNG: Bionano Genomics. HIC: Hi-C chromatin
6 conformation capture.


5.3. Challenges and opportunities across structurally complex genomic loci

Though we provide examples of the importance of structural variation in human evolution, traits, and diseases, the identification and analysis of these complex variants remain difficult. If you decide to ignore these loci, be aware of the technical artifacts that can arise due to SVs even in seemingly “simple” genomic regions. Please exercise caution and be aware of the limitations across complex regions in the various genomic technologies employed, which we will cover in this section.

1 *Short-read sequencing technologies tend to underperform in complex genomic regions*

2 The study of structural variation has faced several methodological challenges caused by the complex
3 architecture of primate SDs. SVs, including duplicated regions, are historically difficult to assay using
4 SRS technologies, the most widely available sequencing technology with thousands of whole-genome
5 DNA samples sequenced in the public domain (Table 3). Short-read lengths (~50-300 bp) pose
6 challenges for (i) the assembly of large repeats and SDs, (ii) reads mapping to repeat-rich regions, (iii)
7 resolving SVs, and (iv) phasing haplotypes (Alkan, Sajadian, & Eichler, 2011; Chaisson, Wilson, &
8 Eichler, 2015). Since the emergence of SRS technologies, generating *de novo* assemblies results in gaps
9 preferentially at nearly identical SDs, satellite DNA, and other repeat-rich regions (Chaisson, Wilson, et
10 al., 2015; Treangen & Salzberg, 2011), in addition to AT- and GC-rich regions that suffer from low
11 sequence coverage in DNA-amplification-dependent Illumina sequencing (Goodwin et al., 2016). In SRS
12 assemblies, SDs tend to be either collapsed (missing copies) or misassembled (Eichler, 2001). This is an
13 important limitation as errors in the representation of SDs in reference genomes give rise to false positive
14 heterozygous calls that confound downstream genetic analyses and lead to departure from Hardy-
15 Weinberg equilibrium (Aganezov et al., 2022) (Figure 7).

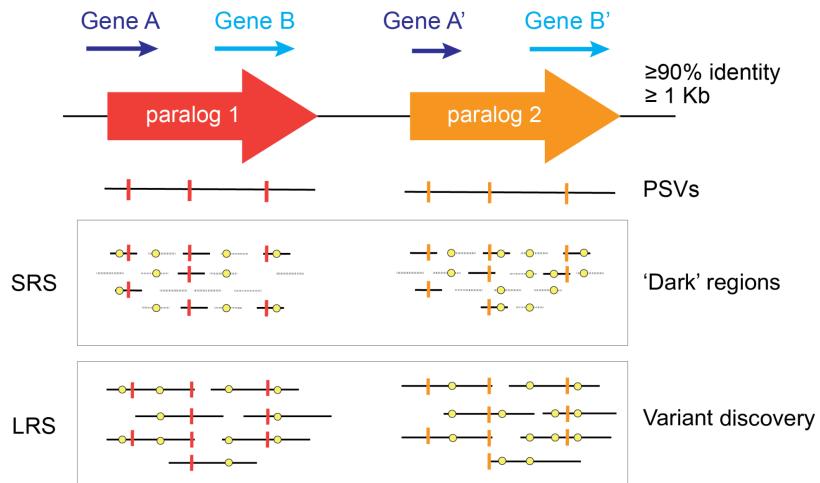
16

17

18 **Figure 7. Genomic artifacts arising from errors in the human reference genome assembly.** False positive
19 heterozygous SNV calls originating from missing copies in the reference due to identification of paralog-sequence
20 variants due to reads mapping from multiple paralogs.

21

22 However, when SDs are represented correctly, they are consistently tricky to assay using SRS
23 technologies, as duplications are so similar that reads are unable to match to either paralog leading to
24 ambiguous read mappings and inhibiting identification of true SNVs. These regions have been termed
25 unmappable, inaccessible, “dark” or “camouflaged” (Ebbert et al., 2019) (Figure 8). HSD genes are
26 particularly challenging as ancestral genes and their human-specific duplicate counterparts share on
27 average ~99% sequence identity, with most also exhibiting varied copies in modern humans (Dennis et
28 al., 2017; Vollger, DeWitt, et al., 2022). As a result, variation across HSDs are ignored in most genetic
29 analyses (Hartasánchez, Brasó-Vives, Heredia-Genestar, Pybus, & Navarro, 2018; Havrilla, Pedersen,
30 Layer, & Quinlan, 2019). To avoid false calls in duplicated regions when using SRS data, variants can be
31 filtered according to accessibility masks, which delineate regions where variants can be confidently
32 identified using base quality, mapping quality, and read-depth cutoffs. SRS accessibility-masks are
33 available for several human reference genome versions, including GRCh38 (Zheng-Bradley et al., 2017)
34 and T2T-CHM13 (Aganezov et al., 2022).


35

36 SRS technologies also show biases in their ability to detect different SV types. Deletions are often easier
37 to discover, although not if they are embedded in SDs. Duplications and mCNVs can be detected using

1 read-depth signatures (Alkan, Coe, et al., 2011), but often lack resolution of breakpoints, location of the
2 insertion site of the duplicated sequence, and paralog specificity (Figure 6). Also, non-reference unique
3 insertions larger than the average short-read length often go undetected (Almarri et al., 2020). Inversions
4 are particularly challenging to identify with SRS because most are copy-number neutral, which is not
5 suitable for read-depth approaches, and are enriched around repetitive DNA or flanked by highly-identical
6 SDs (Porubsky, Harvey, et al., 2022; Porubsky, Höps, et al., 2022; Porubsky et al., 2020; Puig et al.,
7 2020), hindering mappability and detection with discordant read-pairs (Chaisson et al., 2019; Lucas Lledó
8 & Cáceres, 2013).

9
10 To leverage the hundreds of thousands of available SRS genomes while attempting to overcome
11 limitations in the data, ‘ensemble’ algorithms employing a combination of tools (Ho et al., 2019) have
12 been successfully used to discover SVs (Abel et al., 2020; Almarri et al., 2020; Byrska-Bishop et al.,
13 2022; Collins et al., 2020).

14

15

16 **Figure 8. Differences in mappability between short and long reads in duplicated genes.** Paralog-specific
17 variants (PSVs) (vertical lines) can distinguish paralogs enabling detection of polymorphic variation (yellow dots).
18 Reads that do not carry PSVs (dashed lines) are unmappable in duplicated regions. SRS: short-read sequencing.
19 LRS: long-read sequencing.

20

21 Long-read and -range sequencing overcomes the limitations of short reads

22 In recent years, LRS technologies have overcome many of the limitations of SRS (Goodwin et al., 2016;
23 Kovaka, Ou, Jenike, & Schatz, 2023; Mantere, Kersten, & Hoischen, 2019; Sedlazeck, Lee, Darby, &
24 Schatz, 2018). PacBio and ONT can produce reads tens to hundreds of kilobases long. The first wave of
25 LRS datasets enabled high-quality *de novo* assemblies of humans (Jain et al., 2018; Seo et al., 2016;
26 Shafin et al., 2020; Shi et al., 2016; Wenger et al., 2019) and other non-human primates (Gordon et al.,
27 2016; Kronenberg et al., 2018; Mao et al., 2021; Warren et al., 2020). Local assembly of the haploid
28 human cell line CHM1 (Taillon-Miller et al., 1997) using bacterial artificial chromosome clones (CH17)
29 allowed local reconstruction of misassembled regions of the human genome (Antonacci et al., 2014;
30 Chaisson, Huddleston, et al., 2015; Dennis et al., 2017; Huddleston et al., 2014; O’Blenness et al., 2014;
31 Steinberg et al., 2012; Vollger, Dishuck, et al., 2019; Vollger, Logsdon, et al., 2019).

1
2 A major achievement of LRS has been the completion of the first human genome sequence (T2T-
3 CHM13), which was achieved by combining PacBio HiFi reads and ultra-long (≥ 100 kbp) ONT reads
4 (Nurk et al., 2022). The new assembly filled in the missing 8% of the genome corresponding to repeat-
5 rich regions including centromeres, telomeres, and the petite arms of the autosomal acrocentric
6 chromosomes (13, 14, 15, 21, and 22). Additionally, T2T-CHM13 fixed euchromatic gaps and
7 misassemblies, incorporating 51 Mbp of SDs (Vollger et al., 2021) and resolving ~ 8 Mbp of collapsed
8 SDs compared to the previous reference genome (GRCh38), including previously missing HSD genes
9 *GPRIN2B* and *DUSP22B* (Aganezov et al., 2022; Vollger, Dishuck, et al., 2019; Vollger, Guitart, et al.,
10 2022). This complete reference genome significantly improved our ability to discover and interpret
11 human genomic variation, including SNVs (Aganezov et al., 2022) and SVs (Aganezov et al., 2022;
12 Porubsky, Harvey, et al., 2022). In particular, SV identification in 17 individuals sequenced with LRS
13 showed a reduction in homozygous SVs observed in all the human samples assayed, indicating that T2T-
14 CHM13 better represents the major structural allele. Additionally, T2T-CHM13 showed a more balanced
15 ratio between deletions and insertions, fixing a bias towards insertions seen in previous incomplete
16 assemblies (Aganezov et al., 2022). Similarly, T2T-CHM13 proved to increase inversion detection in 41
17 individuals sequenced with Strand-seq, enabling the discovery of 63 inversion polymorphisms, mostly
18 overlapping novel or structurally-different loci between T2T-CHM13 and the previous version of the
19 human reference assembly GRCh38, as well as correcting 26 misorientations (Porubsky, Harvey, et al.,
20 2022).

21
22 LRS technologies have dramatically increased per-sample SV discovery (Figure 6). Employing a
23 combination of long-read and -range sequencing technologies—including PacBio, ONT, Illumina, 10X
24 Genomics linked reads, Bionano Genomics optical mapping, Strand-seq, and Hi-C—enabled
25 identification of 27,622 SVs per human genome, representing a seven-fold increase in SV discovery with
26 respect to SRS ensemble methods (Chaisson et al., 2019); a similar finding was obtained by ONT reads
27 alone (22,636 SVs per human genome) (Beyter et al., 2021). For inversions, particularly larger ones (≥ 50
28 kbp) that are often flanked by highly-identical SDs, Strand-seq has shown to be the most sensitive
29 platform because inversion detection does not rely on accurate mapping across repeat-rich regions
30 (Chaisson et al., 2019), but it requires viable, dividing cells (Hanlon, Lansdorp, & Guryev, 2022).

31
32 Recently, population-scale LRS cohorts, ranging from dozens (PacBio) to thousands of individuals
33 (ONT), are becoming available (reviewed in De Coster et al. (2021)). Direct mapping of these LRS
34 datasets have identified $>100,000$ SVs in modern humans (Audano et al., 2019; Beyter et al., 2021; Ebert
35 et al., 2021; Nurk et al., 2022). Importantly, initial discovery of these SVs via LRS has enabled
36 subsequent genotyping across thousands of additional humans using existing SRS datasets to assess their
37 functional and evolutionary impact (Yan et al., 2021).

38
39 An alternative approach to gather the full extent of genomic variation in human and non-human primate
40 genomes is using LRS to generate fully-phased genome assemblies and SV detection via assembly-to-
41 reference comparisons. Theoretically, fully-phased complete genomes have the ability to detect SVs of
42 any kind and size (Alkan, Coe, et al., 2011; Mahmoud et al., 2019). The production of complete phased
43 genomes is an area of active research. The current HPRC gold standard relies on PacBio HiFi reads with
44 parental data to enable haplotype phasing (Jarvis et al., 2022); however, PacBio HiFi coupled with

1 Strand-seq long-range information can achieve comparable results (Porubsky, Vollger, et al., 2022). Tools
2 under development integrate both PacBio HiFi reads with ONT “ultralong” reads (>100 kbp) during the
3 assembly process to resolve complex repeats without the need for manual curation (Cheng, Concepcion,
4 Feng, Zhang, & Li, 2021; Rautiainen et al., 2022). These and other improvements will allow the HPRC to
5 fulfill its promise of delivering 350 diploid high-quality fully phased human genomes in the next decade
6 comprising the first human pangenome reference (Wang et al., 2022). Further, similar efforts in non-
7 human primates will allow us to more comprehensively detect putative SV drivers of species’ differences.
8

9 Currently, nearly a hundred fully-phased LRS human genomes are available in the public domain,
10 including 88 haplotypes generated by the Human Genome Structural Variation Consortium (HGSVC)
11 (Ebert et al., 2021; Ebler et al., 2022) and 94 haplotypes generated by the HPRC (Jarvis et al., 2022; Liao
12 et al., 2022). These genomes have detected thousands of SVs per haplotype, including 107,590
13 insertions/deletions (Wang et al., 2022) and 316 inversions identified in 64 haplotypes of unrelated
14 individuals obtained by the HGSVC (Ebert et al., 2021), and >60,000 SVs (~17,000 per haplotype)
15 obtained in HPRC genomes using a pangenome reference approach (Liao et al., 2022). Interestingly, less
16 than 30% of the SVs discovered in phased genome assemblies have also been identified in SRS,
17 highlighting the limitations of SRS in SV identification (Ebert et al., 2021).

18 Long reads have also shown improved mappability in “dark” regions of the human genome (Ebbert et al.,
19 2019) (**Figure 8**). However, the original lower fidelity of LRS (~10-15%) hindered its implementation in
20 SNV detection. Variant discovery using ONT reads in a human European individual (NA12878) yielded
21 an overall accuracy of 91.40% (Jain et al., 2018). However, PacBio HiFi reads, averaging a base accuracy
22 of 99.8% and variant-calling precision and recall over 99.4% (Wenger et al., 2019), now enables routine
23 discovery of SNVs and small insertions/deletions (<50 bp) in duplicated regions.
24

25 **5.4 Future directions for SV research**

26 Despite the clear advantages in using LRS technologies to identify and characterize SVs across humans
27 using both direct read mapping and phased assemblies, historical limitations in lower throughput and
28 base-calling accuracy as well as higher costs versus SRS have limited the production of highly-accurate
29 LRS datasets. Fortunately, biotechnological innovations expected in the coming year promise
30 improvements in accuracy (“At NCM, Announcements Include Single-Read Accuracy of 99.1% on New
31 Chemistry and Sequencing a Record 10 Tb in a Single PromethION Run,” 2020), as well as throughput
32 and cost (“PacBio Announces Revio, a Revolutionary New Long Read Sequencing System Designed to
33 Provide 15 Times More HiFi Data and Human Genomes at Scale for Under \$1,000,” 2022); this suggests
34 a near future where hundreds of thousands of LRS human genomes will be available for expanded
35 population and disease studies. Increased ancestry representation and diversity of the samples sequenced
36 will also aid in expanding the repertoire of SVs identified (Popejoy & Fullerton, 2016).
37

38 We note that, even with these impending technology improvements, LRS may not be feasible for certain
39 anthropological questions. First, hundreds of thousands of human genomes and hundreds of primate
40 genomes have already been sequenced with SRS (with many more to come) with short-read platforms
41 likely to remain the most affordable whole-genome sequencing approach (Kovaka et al., 2023). Some of
42 these genomes belong to communities that have given restricted consent for the use of their biospecimens
43 and data. Other samples might come from endangered primate species where biospecimens are difficult to
44

1 obtain. Additionally, anthropological specimens, such as from extinct hominids, are not suitable for LRS
2 library preparations, which require large amounts of high-molecular weight and intact (non-degraded)
3 DNA. As such, methods aimed at integrating SV discovery and genotyping using both SRS and LRS will
4 remain relevant in the study of human and nonhuman primate evolution and demographic history.

5
6 Ongoing efforts using short reads for the study of SVs are focused on improvements of the computational
7 algorithms to maximize SV discovery (Abel et al., 2020; Byrska-Bishop et al., 2022; Collins et al., 2020).
8 LRS-based SV catalogs can aid this process by acting as truth-sets to fine tune algorithms. Alternatively,
9 SVs initially discovered with LRS can be later genotyped in SRS cohorts, a strategy that has already
10 efficiently discovered common SVs across human populations (Ebert et al., 2021; Ebler et al., 2022; Yan
11 et al., 2021). Together, the incoming influx of human and non-human primate genomes sequenced with
12 LRS in combination with large-scale SRS datasets are ushering in a new genomics era, promising to
13 unveil the functional and evolutionary impact of complex variation in human traits and diseases.
14

15 **ACKNOWLEDGEMENTS**

16 This work was supported, in part, by the U.S. National Institutes of Health (NIH) grants from the Office
17 of the Director and National Institute of Mental Health (DP2MH119424 to M.Y.D.) and National Human
18 Genome Research Institute (F31HG011205 to C.J.S.), as well as the U.S. National Science Foundation
19 CAREER Award (2145885 to M.Y.D.).
20

21 **DATA SHARING**

22 Data sharing is not applicable to this article as no new data were created or analyzed in this study.
23

24 **REFERENCES**

25 1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R.
26 M., ... McVean, G. A. (2010). A map of human genome variation from population-scale sequencing.
27 *Nature*, 467(7319), 1061–1073.

28 1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H.
29 M., ... Abecasis, G. R. (2015). A global reference for human genetic variation. *Nature*, 526(7571),
30 68–74.

31 Abel, H. J., Larson, D. E., Regier, A. A., Chiang, C., Das, I., Kanchi, K. L., ... Hall, I. M. (2020).
32 Mapping and characterization of structural variation in 17,795 human genomes. *Nature*, 583(7814),
33 83–89.

34 Aganezov, S., Yan, S. M., Soto, D. C., Kirsche, M., Zarate, S., Avdeyev, P., ... Schatz, M. C. (2022). A
35 complete reference genome improves analysis of human genetic variation. *Science*, 376(6588),
36 eabl3533.

37 Aguirre, M., Rivas, M. A., & Priest, J. (2019). Phenome-wide Burden of Copy-Number Variation in the
38 UK Biobank. *American Journal of Human Genetics*, 105(2), 373–383.

39 Aigrain, L. (2021). Beginner's guide to next-generation sequencing. *The Biochemist*, 43(6), 58–64.

40 Alasoo, K., Rodrigues, J., Mukhopadhyay, S., Knights, A. J., Mann, A. L., Kundu, K., ... Gaffney.

1 (2018). Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming
2 in immune response. *Nature Genetics*, 50(3), 424–431.

3 Alkan, C., Coe, B. P., & Eichler, E. E. (2011). Genome structural variation discovery and genotyping.
4 *Nature Reviews. Genetics*, 12(5), 363–376.

5 Alkan, C., Sajjadian, S., & Eichler, E. E. (2011). Limitations of next-generation genome sequence
6 assembly. *Nature Methods*, 8(1), 61–65.

7 Almarri, M. A., Bergström, A., Prado-Martinez, J., Yang, F., Fu, B., Dunham, A. S., ... Xue, Y. (2020).
8 Population Structure, Stratification, and Introgression of Human Structural Variation. *Cell*, 182(1),
9 189–199.e15.

10 Angata, T., Ishii, T., Motegi, T., Oka, R., Taylor, R. E., Soto, P. C., ... Taniguchi, N. (2013). Loss of
11 Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. *Cellular and*
12 *Molecular Life Sciences: CMSL*, 70(17), 3199–3210.

13 Antonacci, F., Dennis, M. Y., Huddleston, J., Sudmant, P. H., Steinberg, K. M., Rosenfeld, J. A., ...
14 Eichler, E. E. (2014). Palindromic GOLGA8 core duplicons promote chromosome 15q13.3
15 microdeletion and evolutionary instability. *Nature Genetics*, 46(12), 1293–1302.

16 Aqil, A., Speidel, L., Pavlidis, P., & Gokcumen, O. (2022). Balancing selection on genomic deletion
17 polymorphisms in humans (p. 2022.04.28.489864). <https://doi.org/10.1101/2022.04.28.489864>

18 Arnone, M. I., & Davidson, E. H. (1997). The hardwiring of development: organization and function of
19 genomic regulatory systems. *Development*, 124(10), 1851–1864.

20 At NCM, announcements include single-read accuracy of 99.1% on new chemistry and sequencing a
21 record 10 Tb in a single PromethION run. (2020, December 3). Retrieved January 16, 2023, from
22 Oxford Nanopore Technologies website: <https://nanoporetech.com/about-us/news/ncm-announcements-include-single-read-accuracy-991-new-chemistry-and-sequencing>

24 Audano, P. A., Sulovari, A., Graves-Lindsay, T. A., Cantsilieris, S., Sorensen, M., Welch, A. E., ...
25 Eichler, E. E. (2019). Characterizing the Major Structural Variant Alleles of the Human Genome.
26 *Cell*, 0(0). <https://doi.org/10.1016/j.cell.2018.12.019>

27 Ayala, R., Shu, T., & Tsai, L.-H. (2007). Trekking across the brain: the journey of neuronal migration.
28 *Cell*, 128(1), 29–43.

29 Bailey, J. A., & Eichler, E. E. (2006). Primate segmental duplications: crucibles of evolution, diversity
30 and disease. *Nature Reviews. Genetics*, 7, 552.

31 Bailey, J. A., Gu, Z., Clark, R. A., Reinert, K., Samonte, R. V., Schwartz, S., ... Eichler, E. E. (2002).
32 Recent segmental duplications in the human genome. *Science*, 297(5583), 1003–1007.

33 Bailey, J. A., Liu, G., & Eichler, E. E. (2003). An Alu transposition model for the origin and expansion of
34 human segmental duplications. *American Journal of Human Genetics*, 73(4), 823–834.

35 Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J., & Eichler, E. E. (2001). Segmental duplications:
36 organization and impact within the current human genome project assembly. *Genome Research*,
37 11(6), 1005–1017.

38 Balachandran, P., Walawalkar, I. A., Flores, J. I., Dayton, J. N., Audano, P. A., & Beck, C. R. (2022).
39 Transposable element-mediated rearrangements are prevalent in human genomes. *Nature*

1 *Communications*, 13(1), 7115.

2 Bekpen, C., & Tautz, D. (2019). Human core duplcon gene families: game changers or game players?
3 *Briefings in Functional Genomics*, 18(6), 402–411.

4 Belton, J.-M., McCord, R. P., Gibcus, J. H., Naumova, N., Zhan, Y., & Dekker, J. (2012). Hi-C: A
5 comprehensive technique to capture the conformation of genomes. *Methods* , 58(3), 268–276.

6 Bergström, A., McCarthy, S. A., Hui, R., Almarri, M. A., Ayub, Q., Danecek, P., ... Tyler-Smith, C.
7 (2020). Insights into human genetic variation and population history from 929 diverse genomes.
8 *Science*, 367(6484). <https://doi.org/10.1126/science.aay5012>

9 Besenbacher, S., Hvilstom, C., Marques-Bonet, T., Mailund, T., & Schierup, M. H. (2019). Direct
10 estimation of mutations in great apes reconciles phylogenetic dating. *Nature Ecology & Evolution*,
11 3(2), 286–292.

12 Beyter, D., Ingimundardottir, H., Oddsson, A., Eggertsson, H. P., Bjornsson, E., Jonsson, H., ...
13 Stefansson, K. (2021). Long-read sequencing of 3,622 Icelanders provides insight into the role of
14 structural variants in human diseases and other traits. *Nature Genetics*, 53(6), 779–786.

15 Boettger, L. M., Handsaker, R. E., Zody, M. C., & McCarroll, S. A. (2012). Structural haplotypes and
16 recent evolution of the human 17q21.31 region. *Nature Genetics*, 44(8), 881–885.

17 Boyd, J. L., Skove, S. L., Rouanet, J. P., Pilaz, L.-J., Bepler, T., Gordân, R., ... Silver, D. L. (2015).
18 Human-Chimpanzee Differences in a FZD8 Enhancer Alter Cell-Cycle Dynamics in the Developing
19 Neocortex. *Current Biology: CB*, 25(6), 772–779.

20 Bray, N. (2019). Inroads into cortical organoids. *Nature Reviews. Neuroscience*, 20(12), 717–717.

21 Bridges, C. B. (1936). The bar “gene” a duplication. *Science*, 83(2148), 210–211.

22 Byrska-Bishop, M., Evani, U. S., Zhao, X., Basile, A. O., Abel, H. J., Regier, A. A., ... Zody, M. C.
23 (2022). High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort
24 including 602 trios. *Cell*, 185(18), 3426–3440.e19.

25 Campbell, C. D., Sampas, N., Tselenko, A., Sudmant, P. H., Kidd, J. M., Malig, M., ... Eichler, E. E.
26 (2011). Population-genetic properties of differentiated human copy-number polymorphisms.
27 *American Journal of Human Genetics*, 88(3), 317–332.

28 Cantsilieris, S., Sunkin, S. M., Johnson, M. E., Anacletio, F., Huddleston, J., Baker, C., ... Eichler, E. E.
29 (2020). An evolutionary driver of interspersed segmental duplications in primates. *Genome Biology*,
30 21(1), 202.

31 Cao, H., Hastie, A. R., Cao, D., Lam, E. T., Sun, Y., Huang, H., ... Xu, X. (2014). Rapid detection of
32 structural variation in a human genome using nanochannel-based genome mapping technology.
33 *GigaScience*, Vol. 3. <https://doi.org/10.1186/2047-217x-3-34>

34 Carpenter, D., Mitchell, L. M., & Armour, J. A. L. (2017). Copy number variation of human AMY1 is a
35 minor contributor to variation in salivary amylase expression and activity. *Human Genomics*, 11(1),
36 2.

37 Carroll, S. B. (2003). Genetics and the making of *Homo sapiens*. *Nature*, 422(6934), 849–857.

38 Carvalho, C. M. B., & Lupski, J. R. (2016). Mechanisms underlying structural variant formation in

1 genomic disorders. *Nature Reviews. Genetics*, 17(4), 224–238.

2 Catacchio, C. R., Maggiolini, F. A. M., D'Addabbo, P., Bitonto, M., Capozzi, O., Lepore Signorile, M.,
3 ... Antonacci, F. (2018). Inversion variants in human and primate genomes. *Genome Research*,
4 28(6), 910–920.

5 Chaisson, M. J. P., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig, M., Hormozdiari, F., ...
6 Eichler, E. E. (2015). Resolving the complexity of the human genome using single-molecule
7 sequencing. *Nature*, 517(7536), 608–611.

8 Chaisson, M. J. P., Sanders, A. D., Zhao, X., Malhotra, A., Porubsky, D., Rausch, T., ... Lee, C. (2019).
9 Multi-platform discovery of haplotype-resolved structural variation in human genomes. *Nature
10 Communications*, 10(1), 1784.

11 Chaisson, M. J. P., Wilson, R. K., & Eichler, E. E. (2015). Genetic variation and the de novo assembly of
12 human genomes. *Nature Reviews. Genetics*, 16(11), 627–640.

13 Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J.-E., Lambert, N., de Marchena, J., ... Polleux, F.
14 (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine
15 maturation. *Cell*, 149(4), 923–935.

16 Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype-resolved de novo
17 assembly using phased assembly graphs with hifiasm. *Nature Methods*, 18(2), 170–175.

18 Chen, J. M., Cooper, D. N., Chuzhanova, N., Férec, C., & Patrinos, G. P. (2007). Gene conversion:
19 mechanisms, evolution and human disease. *Nature Reviews. Genetics*, 8(10), 762–775.

20 Chiang, C. (2019). *The Impact of Structural Variation on Human Gene Expression*.

21 Chiang, C., Scott, A. J., Davis, J. R., Tsang, E. K., Li, X., Kim, Y., ... Hall, I. M. (2017). The impact of
22 structural variation on human gene expression. *Nature Genetics*, 49(5), 692–699.

23 Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome
24 and comparison with the human genome. *Nature*, 437(7055), 69–87.

25 Coe, B. P., Witherspoon, K., Rosenfeld, J. A., van Bon, B. W., Vulto-van Silfhout, A. T., Bosco, P., ...
26 Eichler, E. E. (2014). Refining analyses of copy number variation identifies specific genes associated
27 with developmental delay. *Nature Genetics*, 46(10), 1063–1071.

28 Collins, R. L., Brand, H., Karczewski, K. J., Zhao, X., Alföldi, J., Francioli, L. C., ... Talkowski, M. E.
29 (2020). A structural variation reference for medical and population genetics. *Nature*, 581(7809),
30 444–451.

31 Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., ... Hurles, M. E. (2010). Origins
32 and functional impact of copy number variation in the human genome. *Nature*, 464(7289), 704–712.

33 Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., ... Bent, A. F. (2012). Copy
34 number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. *Science*,
35 338(6111), 1206–1209.

36 Croft, B., Ohnesorg, T., Hewitt, J., Bowles, J., Quinn, A., Tan, J., ... Sinclair, A. (2018). Human sex
37 reversal is caused by duplication or deletion of core enhancers upstream of SOX9. *Nature
38 Communications*, 9(1), 5319.

1 Damert, A. (2022). SVA Retrotransposons and a Low Copy Repeat in Humans and Great Apes: A Mobile
2 Connection. *Molecular Biology and Evolution*, 39(5). <https://doi.org/10.1093/molbev/msac103>

3 Das, S. K., Austin, M. D., Akana, M. C., Deshpande, P., Cao, H., & Xiao, M. (2010). Single molecule
4 linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. *Nucleic
5 Acids Research*, 38(18), e177.

6 De Coster, W., Weissensteiner, M. H., & Sedlazeck, F. J. (2021). Towards population-scale long-read
7 sequencing. *Nature Reviews. Genetics*, 1–16.

8 Defelipe, J. (2011). The evolution of the brain, the human nature of cortical circuits, and intellectual
9 creativity. *Frontiers in Neuroanatomy*, 5, 29.

10 de Jong, S., Chepelev, I., Janson, E., Strengman, E., van den Berg, L. H., Veldink, J. H., & Ophoff, R. A.
11 (2012). Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-
12 specific manner. *BMC Genomics*, 13, 458.

13 Dennis, M. Y., & Eichler, E. E. (2016). Human adaptation and evolution by segmental duplication.
14 *Current Opinion in Genetics & Development*, 41, 44–52.

15 Dennis, M. Y., Harshman, L., Nelson, B. J., Penn, O., Cantsilieris, S., Huddleston, J., ... Eichler, E. E.
16 (2017). The evolution and population diversity of human-specific segmental duplications. *Nature
17 Ecology & Evolution*, 1(3), 69.

18 Dennis, M. Y., Nuttle, X., Sudmant, P. H., Antonacci, F., Graves, T. A., Nefedov, M., ... Eichler, E. E.
19 (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication.
20 *Cell*, 149(4), 912–922.

21 DeSilva, J. M., Traniello, J. F. A., Claxton, A. G., & Fannin, L. D. (2021). When and Why Did Human
22 Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants.
23 *Frontiers in Ecology and Evolution*, 0. <https://doi.org/10.3389/fevo.2021.742639>

24 Dougherty, M. L., Underwood, J. G., Nelson, B. J., Tseng, E., Munson, K. M., Penn, O., ... Eichler, E. E.
25 (2018). Transcriptional fates of human-specific segmental duplications in brain. *Genome Research*,
26 28(10), 1566–1576.

27 Dumont, B. L. (2015). Interlocus gene conversion explains at least 2.7% of single nucleotide variants in
28 human segmental duplications. *BMC Genomics*, 16, 456.

29 Ebbert, M. T. W., Jensen, T. D., Jansen-West, K., Sens, J. P., Reddy, J. S., Ridge, P. G., ... Fryer, J. D.
30 (2019). Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in
31 plain sight. *Genome Biology*, 20(1), 97.

32 Ebert, P., Audano, P. A., Zhu, Q., Rodriguez-Martin, B., Porubsky, D., Bonder, M. J., ... Eichler, E. E.
33 (2021). Haplotype-resolved diverse human genomes and integrated analysis of structural variation.
34 *Science*, 372(6537). <https://doi.org/10.1126/science.abf7117>

35 Ebler, J., Ebert, P., Clarke, W. E., Rausch, T., Audano, P. A., Houwaart, T., ... Marschall, T. (2022).
36 Pangenome-based genome inference allows efficient and accurate genotyping across a wide
37 spectrum of variant classes. *Nature Genetics*, 54(4), 518–525.

38 Eichler, E. E. (2001). Segmental duplications: what's missing, misassigned, and misassembled--and
39 should we care? *Genome Research*, 11(5), 653–656.

1 Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S. M., Blass, T., Somel, M., ... Pääbo, S. (2009). A
2 humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. *Cell*, 137(5), 961–971.

3 Falconer, E., Hills, M., Naumann, U., Poon, S. S. S., Chavez, E. A., Sanders, A. D., ... Lansdorp, P. M.
4 (2012). DNA template strand sequencing of single-cells maps genomic rearrangements at high
5 resolution. *Nature Methods*, 9(11), 1107–1112.

6 Fay, J. C., & Wittkopp, P. J. (2008). Evaluating the role of natural selection in the evolution of gene
7 regulation. *Heredity*, 100(2), 191–199.

8 Fernandes, S., Klein, D., & Marchetto, M. C. (2021). Unraveling Human Brain Development and
9 Evolution Using Organoid Models. *Frontiers in Cell and Developmental Biology*, 9.
10 <https://doi.org/10.3389/fcell.2021.737429>

11 Fiddes, I. T., Lodewijk, G. A., Mooring, M., Bosworth, C. M., Ewing, A. D., Mantalas, G. L., ...
12 Haussler, D. (2018). Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical
13 Neurogenesis. *Cell*, 173(6), 1356–1369.e22.

14 Fischer, J., Fernández Ortuño, E., Marsoner, F., Artioli, A., Peters, J., Namba, T., ... Heide, M. (2022).
15 Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral
16 organoids. *EMBO Reports*, 23(11), e54728.

17 Florio, M., Albert, M., Taverna, E., Namba, T., Brandl, H., Lewitus, E., ... Huttner, W. B. (2015).
18 Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex
19 expansion. *Science*, 347(6229), 1465–1470.

20 Florio, M., Heide, M., Pinson, A., Brandl, H., Albert, M., Winkler, S., ... Hiller, M. (2018). Evolution
21 and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal
22 neocortex. *eLife*, 7. <https://doi.org/10.7554/eLife.32332>

23 Florio, M., Namba, T., Pääbo, S., Hiller, M., & Huttner, W. B. (2016). A single splice site mutation in
24 human-specific ARHGAP11B causes basal progenitor amplification. *Science Advances*, 2(12),
25 e1601941.

26 Fortna, A., Kim, Y., MacLaren, E., Marshall, K., Hahn, G., Meltesen, L., ... Sikela, J. M. (2004).
27 Lineage-specific gene duplication and loss in human and great ape evolution. *PLoS Biology*, 2(7),
28 E207.

29 Fossati, M., Pizzarelli, R., Schmidt, E. R., Kupferman, J. V., Stroebel, D., Polleux, F., & Charrier, C.
30 (2016). SRGAP2 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and
31 Inhibitory Synapses. *Neuron*, 91(2), 356–369.

32 Franke, M., Daly, A. F., Palmeira, L., Tirosh, A., Stigliano, A., Trifan, E., ... Trivellin, G. (2022).
33 Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-
34 linked acrogigantism. *American Journal of Human Genetics*, 109(4), 553–570.

35 Fraser, H. B. (2013). Gene expression drives local adaptation in humans. *Genome Research*, 23(7), 1089–
36 1096.

37 Fudenberg, G., & Pollard, K. S. (2019). Chromatin features constrain structural variation across
38 evolutionary timescales. *Proceedings of the National Academy of Sciences of the United States of
39 America*, 116(6), 2175–2180.

40 Fuller, Z. L., Koury, S. A., Phadnis, N., & Schaeffer, S. W. (2019). How chromosomal rearrangements

1 shape adaptation and speciation: Case studies in *Drosophila pseudoobscura* and its sibling species
2 *Drosophila persimilis*. *Molecular Ecology*, 28(6), 1283–1301.

3 Gagneux, P., & Varki, A. (2001). Genetic differences between humans and great apes. *Molecular*
4 *Phylogenetics and Evolution*, 18(1), 2–13.

5 Geschwind, D. H., & Rakic, P. (2013). Cortical evolution: judge the brain by its cover. *Neuron*, 80(3),
6 633–647.

7 Giannuzzi, G., Schmidt, P. J., Porcu, E., Willemin, G., Munson, K. M., Nuttle, X., ... Reymond, A.
8 (2019). The Human-Specific BOLA2 Duplication Modifies Iron Homeostasis and Anemia
9 Predisposition in Chromosome 16p11.2 Autism Individuals. *American Journal of Human Genetics*,
10 105(5), 947–958.

11 Giner-Delgado, C., Villatoro, S., Lerga-Jaso, J., Gayà-Vidal, M., Oliva, M., Castellano, D., ... Cáceres,
12 M. (2019). Evolutionary and functional impact of common polymorphic inversions in the human
13 genome. *Nature Communications*, 10(1), 4222.

14 Gómez-Robles, A. (2019). Dental evolutionary rates and its implications for the Neanderthal–modern
15 human divergence. *Science Advances*, 5(5), eaaw1268.

16 Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation
17 sequencing technologies. *Nature Reviews. Genetics*, 17(6), 333–351.

18 Gordon, D., Huddleston, J., Chaisson, M. J. P., Hill, C. M., Kronenberg, Z. N., Munson, K. M., ...
19 Eichler, E. E. (2016). Long-read sequence assembly of the gorilla genome. *Science*, 352(6281),
20 aae0344.

21 Gresham, D., Dunham, M. J., & Botstein, D. (2008). Comparing whole genomes using DNA microarrays.
22 *Nature Reviews. Genetics*, 9(4), 291–302.

23 Gross, M., Starke, H., Trifonov, V., Claussen, U., Liehr, T., & Weise, A. (2006). A molecular cytogenetic
24 study of chromosome evolution in chimpanzee. *Cytogenetic and Genome Research*, 112(1-2), 67–
25 75.

26 Guerrier, S., Coutinho-Budd, J., Sassa, T., Gresset, A., Jordan, N. V., Chen, K., ... Polleux, F. (2009).
27 The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and
28 morphogenesis. *Cell*, 138(5), 990–1004.

29 Halldorsson, B. V., Eggertsson, H. P., Moore, K. H. S., Hauswedell, H., Eiriksson, O., Ulfarsson, M. O.,
30 ... Stefansson, K. (2022). The sequences of 150,119 genomes in the UK Biobank. *Nature*, 1–9.

31 Handsaker, R. E., Van Doren, V., Berman, J. R., Genovese, G., Kashin, S., Boettger, L. M., & McCarroll,
32 S. A. (2015). Large multiallelic copy number variations in humans. *Nature Genetics*, 47(3), 296–
33 303.

34 Hanlon, V. C. T., Lansdorp, P. M., & Guryev, V. (2022). A survey of current methods to detect and
35 genotype inversions. *Human Mutation*, 43(11), 1576–1589.

36 Hardwick, R. J., Ménard, A., Sironi, M., Milet, J., Garcia, A., Sese, C., ... Hollox, E. J. (2014).
37 Haptoglobin (HP) and Haptoglobin-related protein (HPR) copy number variation, natural selection,
38 and trypanosomiasis. *Human Genetics*, 133(1), 69–83.

39 Harewood, L., Kishore, K., Eldridge, M. D., Wingett, S., Pearson, D., Schoenfelder, S., ... Fraser, P.

1 (2017). Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and
2 copy number variation in human tumours. *Genome Biology*, 18(1), 125.

3 Hartasánchez, D. A., Brasó-Vives, M., Heredia-Genestar, J. M., Pybus, M., & Navarro, A. (2018). Effect
4 of Collapsed Duplications on Diversity Estimates: What to Expect. *Genome Biology and Evolution*,
5 10(11), 2899–2905.

6 Havrilla, J. M., Pedersen, B. S., Layer, R. M., & Quinlan, A. R. (2019). A map of constrained coding
7 regions in the human genome. *Nature Genetics*, 51(1), 88–95.

8 Hehir-Kwa, J. Y., Marschall, T., Kloosterman, W. P., Francioli, L. C., Baaijens, J. A., Dijkstra, L. J., ...
9 Guryev, V. (2016). A high-quality human reference panel reveals the complexity and distribution of
10 genomic structural variants. *Nature Communications*, 7, 12989.

11 Heide, M., Haffner, C., Murayama, A., Kurotaki, Y., Shinohara, H., Okano, H., ... Huttner, W. B. (2020).
12 Human-specific increases size and folding of primate neocortex in the fetal marmoset. *Science*,
13 369(6503), 546–550.

14 Herculano-Houzel, S. (2016). *The Human Advantage: A New Understanding of How Our Brain Became
15 Remarkable*. MIT Press.

16 Hinds, D. A., Kloek, A. P., Jen, M., Chen, X., & Frazer, K. A. (2006). Common deletions and SNPs are
17 in linkage disequilibrium in the human genome. *Nature Genetics*, 38(1), 82–85.

18 Hodzic, D., Kong, C., Wainszelbaum, M. J., Charron, A. J., Su, X., & Stahl, P. D. (2006). TBC1D3, a
19 hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12.
20 *Genomics*, 88(6), 731–736.

21 Hollox, E. J., Armour, J. A. L., & Barber, J. C. K. (2003). Extensive normal copy number variation of a
22 beta-defensin antimicrobial-gene cluster. *American Journal of Human Genetics*, 73(3), 591–600.

23 Hollox, E. J., Zuccherato, L. W., & Tucci, S. (2022). Genome structural variation in human evolution.
24 *Trends in Genetics*, Vol. 38, pp. 45–58. <https://doi.org/10.1016/j.tig.2021.06.015>

25 Ho, S. S., Urban, A. E., & Mills, R. E. (2019). Structural variation in the sequencing era. *Nature Reviews.
26 Genetics*. <https://doi.org/10.1038/s41576-019-0180-9>

27 Hsieh, P., Dang, V., Vollger, M. R., Mao, Y., Huang, T.-H., Dishuck, P. C., ... Eichler, E. E. (2021).
28 Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in
29 Neanderthals and humans. *Nature Communications*, 12(1), 1–14.

30 Hsieh, P., Vollger, M. R., Dang, V., Porubsky, D., Baker, C., Cantsilieris, S., ... Eichler, E. E. (2019).
31 Adaptive archaic introgression of copy number variants and the discovery of previously unknown
32 human genes. *Science*, 366(6463). <https://doi.org/10.1126/science.aax2083>

33 Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large
34 gene lists using DAVID bioinformatics resources. *Nature Protocols*, 4(1), 44–57.

35 Huddleston, J., Ranade, S., Malig, M., Antonacci, F., Chaisson, M., Hon, L., ... Eichler, E. E. (2014).
36 Reconstructing complex regions of genomes using long-read sequencing technology. *Genome
37 Research*, 24(4), 688–696.

38 Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., & Kageyama, R. (2010). Essential roles of Notch
39 signaling in maintenance of neural stem cells in developing and adult brains. *The Journal of*

1 *Neuroscience: The Official Journal of the Society for Neuroscience*, 30(9), 3489–3498.

2 Indjeian, V. B., Kingman, G. A., Jones, F. C., Guenther, C. A., Grimwood, J., Schmutz, J., ... Kingsley, D. M. (2016). Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins. *Cell*, 164(1-2), 45–56.

5 Inoue, K., & Lupski, J. R. (2002). Molecular mechanisms for genomic disorders. *Annual Review of Genomics and Human Genetics*, 3, 199–242.

7 Irvin, D. K., Zurcher, S. D., Nguyen, T., Weinmaster, G., & Kornblum, H. I. (2001). Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. *The Journal of Comparative Neurology*, 436(2), 167–181.

10 Iskow, R. C., Gokcumen, O., Abzyov, A., Malukiewicz, J., Zhu, Q., Sukumar, A. T., ... Lee, C. (2012). Regulatory element copy number differences shape primate expression profiles. *Proceedings of the National Academy of Sciences of the United States of America*, 109(31), 12656–12661.

13 Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., ... Loose, M. (2018). Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nature Biotechnology*, 36(4), 338–345.

16 Jakobsson, M., Scholz, S. W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H.-C., ... Singleton, A. B. (2008). Genotype, haplotype and copy-number variation in worldwide human populations. *Nature*, 451(7181), 998–1003.

19 Jakubosky, D., Smith, E. N., D'Antonio, M., Jan Bonder, M., Young Greenwald, W. W., D'Antonio-Chronowska, A., ... i2QTL Consortium. (2020). Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats. *Nature Communications*, 11(1), 2928.

22 Jarvis, E. D., Formenti, G., Rhie, A., Guerracino, A., Yang, C., Wood, J., ... Human Pangenome Reference Consortium. (2022). Automated assembly of high-quality diploid human reference genomes (p. 2022.03.06.483034). <https://doi.org/10.1101/2022.03.06.483034>

25 Jeffet, J., Margalit, S., Michaeli, Y., & Ebenstein, Y. (2021). Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. *Essays in Biochemistry*, 65(1), 51–66.

27 Jiang, Z., Tang, H., Ventura, M., Cardone, M. F., Marques-Bonet, T., She, X., ... Eichler, E. E. (2007). Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. *Nature Genetics*, 39(11), 1361–1368.

30 Johnson, M. E., National Institute of Health Intramural Sequencing Center Comparative Sequencing Program, Cheng, Z., Morrison, V. A., Scherer, S., Ventura, M., ... Eichler, E. E. (2006). Recurrent duplication-driven transposition of DNA during hominoid evolution. *Proceedings of the National Academy of Sciences of the United States of America*, 103(47), 17626–17631.

34 Johnson, M. E., Viggiano, L., Bailey, J. A., Abdul-Rauf, M., Goodwin, G., Rocchi, M., & Eichler, E. E. (2001). Positive selection of a gene family during the emergence of humans and African apes. *Nature*, 413(6855), 514–519.

37 Ju, X.-C., Hou, Q.-Q., Sheng, A.-L., Wu, K.-Y., Zhou, Y., Jin, Y., ... Luo, Z.-G. (2016). The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. *eLife*, 5. <https://doi.org/10.7554/eLife.18197>

40 Kalebic, N., Gilardi, C., Albert, M., Namba, T., Long, K. R., Kostic, M., ... Huttner, W. B. (2018).

1 Human-specific induces hallmarks of neocortical expansion in developing ferret neocortex. *eLife*, 7.
2 <https://doi.org/10.7554/eLife.41241>

3 Kazazian, H. H., & Moran, J. V. (2017). Mobile DNA in Health and Disease. *The New England Journal
4 of Medicine*, 377(4). <https://doi.org/10.1056/NEJMra1510092>

5 Kidd, J. M., Newman, T. L., Tuzun, E., Kaul, R., & Eichler, E. E. (2007). Population stratification of a
6 common APOBEC gene deletion polymorphism. *PLoS Genetics*, 3(4), e63.

7 Kim, P. M., Lam, H. Y. K., Urban, A. E., Korbel, J. O., Affourtit, J., Grubert, F., ... Gerstein, M. B.
8 (2008). Analysis of copy number variants and segmental duplications in the human genome:
9 Evidence for a change in the process of formation in recent evolutionary history. *Genome Research*,
10 18(12), 1865–1874.

11 King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. *Science*,
12 188(4184), 107–116.

13 Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation. *Genetics*,
14 173(1), 419–434.

15 Kleinjan, D.-J., & Coutinho, P. (2009). Cis-ruption mechanisms: disruption of cis-regulatory control as a
16 cause of human genetic disease. *Briefings in Functional Genomics & Proteomics*, 8(4), 317–332.

17 Kloosterman, W. P., Francioli, L. C., Hormozdiari, F., Marschall, T., Hehir-Kwa, J. Y., Abdellaoui, A.,
18 ... Guryev, V. (2015). Characteristics of de novo structural changes in the human genome. *Genome
19 Research*, 25(6), 792–801.

20 Koolen, D. A., Vissers, L. E. L., Pfundt, R., de Leeuw, N., Knight, S. J. L., Regan, R., ... de Vries, B. B.
21 A. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common
22 inversion polymorphism. *Nature Genetics*, Vol. 38, pp. 999–1001. <https://doi.org/10.1038/ng1853>

23 Kovaka, S., Ou, S., Jenike, K. M., & Schatz, M. C. (2023). Approaching complete genomes,
24 transcriptomes and epi-omes with accurate long-read sequencing. *Nature Methods*, 20(1), 12–16.

25 Kronenberg, Z. N., Fiddes, I. T., Gordon, D., Murali, S., Cantsilieris, S., Meyerson, O. S., ... Eichler, E.
26 E. (2018). High-resolution comparative analysis of great ape genomes. *Science*, 360(6393).
27 <https://doi.org/10.1126/science.aar6343>

28 Lakich, D., Kazazian, H. H., Jr, Antonarakis, S. E., & Gitschier, J. (1993). Inversions disrupting the factor
29 VIII gene are a common cause of severe haemophilia A. *Nature Genetics*, 5(3), 236–241.

30 Lallemand, T., Leduc, M., Landès, C., Rizzon, C., & Lerat, E. (2020). An Overview of Duplicated Gene
31 Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice.
32 *Genes*, 11(9). <https://doi.org/10.3390/genes11091046>

33 Lam, E. T., Hastie, A., Lin, C., Ehrlich, D., Das, S. K., Austin, M. D., ... Kwok, P.-Y. (2012). Genome
34 mapping on nanochannel arrays for structural variation analysis and sequence assembly. *Nature
35 Biotechnology*, 30(8), 771–776.

36 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., ... International Human
37 Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome.
38 *Nature*, 409(6822), 860–921.

39 Larson, J. L., Silver, A. J., Chan, D., Borroto, C., Spurrier, B., & Silver, L. M. (2015). Validation of a

1 high resolution NGS method for detecting spinal muscular atrophy carriers among phase 3
2 participants in the 1000 Genomes Project. *BMC Medical Genetics*, 16, 100.

3 Leffler, E. M., Band, G., Busby, G. B. J., Kivinen, K., Le, Q. S., Clarke, G. M., ... Malaria Genomic
4 Epidemiology Network. (2017). Resistance to malaria through structural variation of red blood cell
5 invasion receptors. *Science*, 356(6343). <https://doi.org/10.1126/science.aam6393>

6 Liao, W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., ... Paten, B. (2022). A Draft
7 Human Pangenome Reference (p. 2022.07.09.499321). <https://doi.org/10.1101/2022.07.09.499321>

8 Lin, Y.-L., & Gokcumen, O. (2019). Fine-Scale Characterization of Genomic Structural Variation in the
9 Human Genome Reveals Adaptive and Biomedically Relevant Hotspots. *Genome Biology and*
10 *Evolution*, 11(4), 1136–1151.

11 Lin, Y.-L., Pavlidis, P., Karakoc, E., Ajay, J., & Gokcumen, O. (2015). The evolution and functional
12 impact of human deletion variants shared with archaic hominin genomes. *Molecular Biology and*
13 *Evolution*, 32(4), 1008–1019.

14 Liu, G. E., Ventura, M., Cellamare, A., Chen, L., Cheng, Z., Zhu, B., ... Eichler, E. E. (2009). Analysis of
15 recent segmental duplications in the bovine genome. *BMC Genomics*, 10, 571.

16 Liu, J. H., Hansen, D. V., & Kriegstein, A. R. (2011). Development and Evolution of the Human
17 Neocortex. *Cell*, 146(1), 18–36.

18 Liu, S., Xiong, X., Zhao, X., Yang, X., & Wang, H. (2015). F-BAR family proteins, emerging regulators
19 for cell membrane dynamic changes-from structure to human diseases. *Journal of Hematology &*
20 *Oncology*, 8, 47.

21 Locke, D. P., Archidiacono, N., Misceo, D., Cardone, M. F., Deschamps, S., Roe, B., ... Eichler, E. E.
22 (2003). Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication
23 cluster. *Genome Biology*, 4(8), R50.

24 Locke, D. P., Hillier, L. W., Warren, W. C., Worley, K. C., Nazareth, L. V., Muzny, D. M., ... Wilson, R.
25 K. (2011). Comparative and demographic analysis of orang-utan genomes. *Nature*, 469(7331), 529–
26 533.

27 Locke, D. P., Sharp, A. J., McCarroll, S. A., McGrath, S. D., Newman, T. L., Cheng, Z., ... Eichler, E. E.
28 (2006). Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated
29 regions of the human genome. *American Journal of Human Genetics*, 79(2), 275–290.

30 Lorente-Galdos, B., Bleyhl, J., Santpere, G., Vives, L., Ramírez, O., Hernandez, J., ... Marques-Bonet, T.
31 (2013). Accelerated exon evolution within primate segmental duplications. *Genome Biology*, 14(1),
32 R9.

33 Lucas Lledó, J. I., & Cáceres, M. (2013). On the power and the systematic biases of the detection of
34 chromosomal inversions by paired-end genome sequencing. *PLoS One*, 8(4), e61292.

35 Luo, L. (2002). Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. *Annual
36 Review of Cell and Developmental Biology*, 18, 601–635.

37 Lupiáñez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., ... Mundlos, S. (2015).
38 Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer
39 interactions. *Cell*, 161(5), 1012–1025.

1 Lynch, M., & Conery, J. S. (2000). [Review of *The evolutionary fate and consequences of duplicate*
2 *genes*]. *Science*, 290(5494), 1151–1155.

3 Maggiolini, F. A. M., Sanders, A. D., Shew, C. J., Sulovari, A., Mao, Y., Puig, M., ... Antonacci, F.
4 (2020). Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and
5 breakpoint reuse during primate evolution. *Genome Research*, 30(11), 1680–1693.

6 Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C., & Sedlazeck, F. J. (2019).
7 Structural variant calling: the long and the short of it. *Genome Biology*, 20(1), 246.

8 Mantere, T., Kersten, S., & Hoischen, A. (2019). Long-Read Sequencing Emerging in Medical Genetics.
9 *Frontiers in Genetics*, 10, 426.

10 Mao, Y., Catacchio, C. R., Hillier, L. W., Porubsky, D., Li, R., Sulovari, A., ... Eichler, E. E. (2021). A
11 high-quality bonobo genome refines the analysis of hominid evolution. *Nature*.
12 <https://doi.org/10.1038/s41586-021-03519-x>

13 Marques-Bonet, T., & Eichler, E. E. (2009). The evolution of human segmental duplications and the core
14 dupilon hypothesis. *Cold Spring Harbor Symposia on Quantitative Biology*, 74, 355–362.

15 Marques-Bonet, T., Girirajan, S., & Eichler, E. E. (2009). The origins and impact of primate segmental
16 duplications. *Trends in Genetics: TIG*, 25(10), 443.

17 Marques-Bonet, T., Kidd, J. M., Ventura, M., Graves, T. A., Cheng, Z., Hillier, L. W., ... Eichler, E. E.
18 (2009a). A burst of segmental duplications in the genome of the African great ape ancestor. *Nature*,
19 457(7231), 877–881.

20 Marques-Bonet, T., Kidd, J. M., Ventura, M., Graves, T. A., Cheng, Z., Hillier, L. W., ... Eichler, E. E.
21 (2009b). A burst of segmental duplications in the genome of the African great ape ancestor. *Nature*,
22 457(7231), 877–881.

23 McCarroll, S. A., Hadnott, T. N., Perry, G. H., Sabeti, P. C., Zody, M. C., Barrett, J. C., ... International
24 HapMap Consortium. (2006). Common deletion polymorphisms in the human genome. *Nature
25 Genetics*, 38(1), 86–92.

26 McClintock, B. (1931). Cytological observations of deficiencies involving known genes, translocations
27 and an inversion in Zea mays. Retrieved July 24, 2022, from
28 <https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/52974/age000163.pdf?sequence=1>

29 McKayed, K. K., & Simpson, J. C. (2013). Actin in action: imaging approaches to study cytoskeleton
30 structure and function. *Cells*, 2(4), 715–731.

31 McLean, C. Y., Reno, P. L., Pollen, A. A., Bassan, A. I., Capellini, T. D., Guenther, C., ... Kingsley, D.
32 M. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits.
33 *Nature*, 471(7337), 216–219.

34 Mefford, H. C., & Eichler, E. E. (2009). Duplication hotspots, rare genomic disorders, and common
35 disease. *Current Opinion in Genetics & Development*, 19(3).
36 <https://doi.org/10.1016/j.gde.2009.04.003>

37 Mills, R. E., Walter, K., Stewart, C., Handsaker, R. E., Chen, K., Alkan, C., ... 1000 Genomes Project.
38 (2011). Mapping copy number variation by population-scale genome sequencing. *Nature*,
39 470(7332), 59–65.

1 Molnár, Z., Clownry, G. J., Šestan, N., Alzu’bi, A., Bakken, T., Hevner, R. F., ... Kriegstein, A. (2019a).
2 New insights into the development of the human cerebral cortex. *Journal of Anatomy*, 235(3), 432–
3 451.

4 Molnár, Z., Clownry, G. J., Šestan, N., Alzu’bi, A., Bakken, T., Hevner, R. F., ... Kriegstein, A. (2019b).
5 New insights into the development of the human cerebral cortex. *Journal of Anatomy*, 235(3), 432–
6 451.

7 Molnár, Z., & Pollen, A. (2014). How unique is the human neocortex? *Development*, 141(1), 11–16.

8 Mora-Bermúdez, F., Badsha, F., Kanton, S., Camp, J. G., Vernot, B., Köhler, K., ... Huttner, W. B.
9 (2016). Differences and similarities between human and chimpanzee neural progenitors during
10 cerebral cortex development. *eLife*, 5. <https://doi.org/10.7554/eLife.18683>

11 Moreno-Igoa, M., Hernández-Charro, B., Bengoa-Alonso, A., Pérez-Juana-del-Casal, A., Romero-Ibarra,
12 C., Nieva-Echebarria, B., & Ramos-Arroyo, M. A. (2015). KANSL1 gene disruption associated with
13 the full clinical spectrum of 17q21.31 microdeletion syndrome. *BMC Medical Genetics*, 16, 68.

14 Namba, T., Dóczsi, J., Pinson, A., Xing, L., Kalebic, N., Wilsch-Bräuninger, M., ... Huttner, W. B.
15 (2020). Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by
16 Glutaminolysis. *Neuron*, 105(5), 867–881.e9.

17 Nédélec, Y., Sanz, J., Baharian, G., Szpiech, Z. A., Pacis, A., Dumaine, A., ... Barreiro, L. B. (2016).
18 Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to
19 Pathogens. *Cell*, 167(3), 657–669.e21.

20 Nicholas, T. J., Cheng, Z., Ventura, M., Mealey, K., Eichler, E. E., & Akey, J. M. (2009). The genomic
21 architecture of segmental duplications and associated copy number variants in dogs. *Genome
22 Research*, 19(3), 491–499.

23 Nickerson, E., & Nelson, D. L. (1998). Molecular definition of pericentric inversion breakpoints
24 occurring during the evolution of humans and chimpanzees. *Genomics*, 50(3), 368–372.

25 Noor, M. A., Grams, K. L., Bertucci, L. A., & Reiland, J. (2001). Chromosomal inversions and the
26 reproductive isolation of species. *Proceedings of the National Academy of Sciences of the United
27 States of America*, 98(21), 12084–12088.

28 Northcott, P. A., Lee, C., Zichner, T., Stütz, A. M., Erkek, S., Kawauchi, D., ... Pfister, S. M. (2014).
29 Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. *Nature*, 511(7510), 428–
30 434.

31 Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., ... Phillippy, A. M.
32 (2022). The complete sequence of a human genome. *Science*, 376(6588), 44–53.

33 O’Blenness, M., Searles, V. B., Dickens, C. M., Astling, D., Albracht, D., Mak, A. C., ... Sikela, J. M.
34 (2014). Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human
35 genome. *BMC Genomics*, 15, 387.

36 O’Blenness, M., Searles, V. B., Varki, A., Gagneux, P., & Sikela, J. M. (2012). Evolution of genetic and
37 genomic features unique to the human lineage. *Nature Reviews. Genetics*, 13(12), 853–866.

38 Ohno, S. (1970). *Evolution by Gene Duplication*.

39 Ohno, S. (1972). An argument for the genetic simplicity of man and other mammals. *Journal of Human*

1 *Evolution*, 1(6), 651–662.

2 Olson, M. V. (1999). When less is more: gene loss as an engine of evolutionary change. *American*
3 *Journal of Human Genetics*, 64(1), 18–23.

4 Osborne, L. R., Li, M., Pober, B., Chitayat, D., Bodurtha, J., Mandel, A., ... Scherer, S. W. (2001). A 1.5
5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. *Nature*
6 *Genetics*, 29(3), 321–325.

7 Pääbo, S. (2014). The Human Condition—A Molecular Approach. *Cell*, Vol. 157, pp. 216–226.
8 <https://doi.org/10.1016/j.cell.2013.12.036>

9 PacBio Announces Revio, a Revolutionary New Long Read Sequencing System Designed to Provide 15
10 Times More HiFi Data and Human Genomes at Scale for Under \$1,000. (2022, October 26).
11 Retrieved January 15, 2023, from PacBio website: https://www.pacb.com/press_releases/pacbio-announces-revio-a-revolutionary-new-long-read-sequencing-system-designed-to-provide-15-times-more-hifi-data-and-human-genomes-at-scale-for-under-1000/

14 Pajic, P., Lin, Y.-L., Xu, D., & Gokcumen, O. (2016). The psoriasis-associated deletion of late cornified
15 envelope genes LCE3B and LCE3C has been maintained under balancing selection since Human
16 Denisovan divergence. *BMC Evolutionary Biology*, 16(1), 265.

17 Pajic, P., Pavlidis, P., Dean, K., Neznanova, L., Romano, R.-A., Garneau, D., ... Gokcumen, O. (2019).
18 Independent amylase gene copy number bursts correlate with dietary preferences in mammals. *eLife*,
19 8. <https://doi.org/10.7554/eLife.44628>

20 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-
21 aware quantification of transcript expression. *Nature Methods*, 14(4), 417–419.

22 Perry, G. H., Dominy, N. J., Claw, K. G., Lee, A. S., Fiegler, H., Redon, R., ... Stone, A. C. (2007). Diet
23 and the evolution of human amylase gene copy number variation. *Nature Genetics*, 39(10), 1256–
24 1260.

25 Perry, G. H., Tchinda, J., McGrath, S. D., Zhang, J., Picker, S. R., Cáceres, A. M., ... Lee, C. (2006).
26 Hotspots for copy number variation in chimpanzees and humans. *Proceedings of the National*
27 *Academy of Sciences of the United States of America*, 103(21), 8006–8011.

28 Perry, G. H., Yang, F., Marques-Bonet, T., Murphy, C., Fitzgerald, T., Lee, A. S., ... Redon, R. (2008).
29 Copy number variation and evolution in humans and chimpanzees. *Genome Research*, 18(11), 1698–
30 1710.

31 Piatigorsky, J. (2003). Crystallin genes: specialization by changes in gene regulation may precede gene
32 duplication. *Journal of Structural and Functional Genomics*, 3(1-4), 131–137.

33 Pollen, A. A., Bhaduri, A., Andrews, M. G., Nowakowski, T. J., Meyerson, O. S., Mostajo-Radji, M. A.,
34 ... Kriegstein, A. R. (2019). Establishing Cerebral Organoids as Models of Human-Specific Brain
35 Evolution. *Cell*, 176(4), 743–756.e17.

36 Popejoy, A. B., & Fullerton, S. M. (2016). [Review of *Genomics is failing on diversity*]. *Nature*,
37 538(7624), 161–164.

38 Porubsky, D., Harvey, W. T., Rozanski, A. N., Ebler, J., Höps, W., Ashraf, H., ... Eichler, E. E. (2022).
39 Inversion polymorphism in a complete human genome assembly (p. 2022.10.06.511148).
40 <https://doi.org/10.1101/2022.10.06.511148>

1 Porubsky, D., Höps, W., Ashraf, H., Hsieh, P., Rodriguez-Martin, B., Yilmaz, F., ... Korbel, J. O. (2022).
2 Recurrent inversion polymorphisms in humans associate with genetic instability and genomic
3 disorders. *Cell*, 185(11), 1986–2005.e26.

4 Porubsky, D., Sanders, A. D., Höps, W., Hsieh, P., Sulovari, A., Li, R., ... Eichler, E. E. (2020).
5 Recurrent inversion toggling and great ape genome evolution. *Nature Genetics*.
6 <https://doi.org/10.1038/s41588-020-0646-x>

7 Porubsky, D., Vollger, M. R., Harvey, W. T., Rozanski, A. N., Ebert, P., Hickey, G., ... Eichler, E. E.
8 (2022). Gaps and complex structurally variant loci in phased genome assemblies (p.
9 2022.07.06.498874). <https://doi.org/10.1101/2022.07.06.498874>

10 Prabhakar, S., Visel, A., Akiyama, J. A., Shoukry, M., Lewis, K. D., Holt, A., ... Noonan, J. P. (2008).
11 Human-specific gain of function in a developmental enhancer. *Science*, 321(5894), 1346–1350.

12 Prado-Martinez, J., Sudmant, P. H., Kidd, J. M., Li, H., Kelley, J. L., Lorente-Galdos, B., ... Marques-
13 Bonet, T. (2013). Great ape genetic diversity and population history. *Nature*, 499(7459), 471–475.

14 Prüfer, K., Munch, K., Hellmann, I., Akagi, K., Miller, J. R., Walenz, B., ... Pääbo, S. (2012). The
15 bonobo genome compared with the chimpanzee and human genomes. *Nature*, 486(7404), 527–531.

16 Puig, M., Casillas, S., Villatoro, S., & Cáceres, M. (2015). Human inversions and their functional
17 consequences. *Briefings in Functional Genomics*, 14(5), 369–379.

18 Puig, M., Lerga-Jaso, J., Giner-Delgado, C., Pacheco, S., Izquierdo, D., Delprat, A., ... Cáceres, M.
19 (2020). Determining the impact of uncharacterized inversions in the human genome by droplet
20 digital PCR. *Genome Research*, 30(5), 724–735.

21 Quan, C., Li, Y., Liu, X., Wang, Y., Ping, J., Lu, Y., & Zhou, G. (2021). Characterization of structural
22 variation in Tibetans reveals new evidence of high-altitude adaptation and introgression. *Genome
23 Biology*, 22(1), 159.

24 Rakic, P. (2009). Evolution of the neocortex: a perspective from developmental biology. *Nature Reviews.
25 Neuroscience*, 10(10), 724–735.

26 Rautiainen, M., Nurk, S., Walenz, B. P., Logsdon, G. A., Porubsky, D., Rhie, A., ... Koren, S. (2022).
27 Verkko: telomere-to-telomere assembly of diploid chromosomes (p. 2022.06.24.497523).
28 <https://doi.org/10.1101/2022.06.24.497523>

29 Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., ... Hurles, M. E. (2006).
30 Global variation in copy number in the human genome. *Nature*, 444(7118), 444–454.

31 Rees, J. S., Castellano, S., & Andrés, A. M. (2020). The Genomics of Human Local Adaptation. *Trends in
32 Genetics: TIG*, 36(6), 415–428.

33 Rochette, C. F., Gilbert, N., & Simard, L. R. (2001). SMN gene duplication and the emergence of the
34 SMN2 gene occurred in distinct hominids: SMN2 is unique to *Homo sapiens*. *Human Genetics*,
35 108(3), 255–266.

36 Rogers, J., & Gibbs, R. A. (2014). Comparative primate genomics: emerging patterns of genome content
37 and dynamics. *Nature Reviews. Genetics*, 15(5), 347–359.

38 Romero, I. G., Pavlovic, B. J., Hernando-Herraez, I., Zhou, X., Ward, M. C., Banovich, N. E., ... Gilad,
39 Y. (2015). *A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative*

1 *functional genomics*. <https://doi.org/10.7554/eLife.07103>

2 Saitou, M., & Gokcumen, O. (2019a). An Evolutionary Perspective on the Impact of Genomic Copy
3 Number Variation on Human Health. *Journal of Molecular Evolution*.
4 <https://doi.org/10.1007/s00239-019-09911-6>

5 Saitou, M., & Gokcumen, O. (2019b). Resolving the Insertion Sites of Polymorphic Duplications Reveals
6 a HERC2 Haplotype under Selection. *Genome Biology and Evolution*, 11(6), 1679–1690.

7 Saitou, M., Masuda, N., & Gokcumen, O. (2021). Similarity-based analysis of allele frequency
8 distribution among multiple populations identifies adaptive genomic structural variants. *Molecular
9 Biology and Evolution*. <https://doi.org/10.1093/molbev/msab313>

10 Saitou, M., Satta, Y., & Gokcumen, O. (2018). Complex Haplotypes of GSTM1 Gene Deletions Harbor
11 Signatures of a Selective Sweep in East Asian Populations. *G3*, 8(9), 2953–2966.

12 Saitou, M., Satta, Y., Gokcumen, O., & Ishida, T. (2018). Complex evolution of the GSTM gene family
13 involves sharing of GSTM1 deletion polymorphism in humans and chimpanzees. *BMC Genomics*,
14 19(1), 293.

15 Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J., & Lansdorp, P. M. (2017). Single-cell
16 template strand sequencing by Strand-seq enables the characterization of individual homologs.
17 *Nature Protocols*, 12(6), 1151–1176.

18 Sanders, A. D., Hills, M., Porubský, D., Guryev, V., Falconer, E., & Lansdorp, P. M. (2016).
19 Characterizing polymorphic inversions in human genomes by single-cell sequencing. *Genome
20 Research*, 26(11), 1575–1587.

21 Scally, A., Dutheil, J. Y., Hillier, L. W., Jordan, G. E., Goodhead, I., Herrero, J., ... Durbin, R. (2012).
22 Insights into hominid evolution from the gorilla genome sequence. *Nature*, 483(7388), 169–175.

23 Schmidt, E. R. E., Kupferman, J. V., & Stackmann, M. (2019). The human-specific paralogs SRGAP2B
24 and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. *Scientific
25 Reports*, 9. <https://doi.org/10.1101/596940>

26 Schmidt, E. R. E., Zhao, H. T., Park, J. M., Dipoppa, M., Monsalve-Mercado, M. M., Dahan, J. B., ...
27 Polleux, F. (2021). A human-specific modifier of cortical connectivity and circuit function. *Nature*,
28 599(7886), 640–644.

29 Scott, A. J., Chiang, C., & Hall, I. M. (2021). Structural variants are a major source of gene expression
30 differences in humans and often affect multiple nearby genes (p. 2021.03.06.434233).
31 <https://doi.org/10.1101/2021.03.06.434233>

32 Sedlazeck, F. J., Lee, H., Darby, C. A., & Schatz, M. C. (2018). Piercing the dark matter: bioinformatics
33 of long-range sequencing and mapping. *Nature Reviews. Genetics*, 19(6), 329–346.

34 Seo, J.-S., Rhie, A., Kim, J., Lee, S., Sohn, M.-H., Kim, C.-U., ... Kim, C. (2016). De novo assembly and
35 phasing of a Korean human genome. *Nature*, 538(7624), 243–247.

36 Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H. E., Bosworth, C., ... Paten, B. (2020).
37 Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human
38 genomes. *Nature Biotechnology*. <https://doi.org/10.1038/s41587-020-0503-6>

39 Sharp, A. J., Cheng, Z., & Eichler, E. E. (2006). Structural variation of the human genome. *Annual*

1 *Review of Genomics and Human Genetics*, 7, 407–442.

2 Sharp, A. J., Locke, D. P., McGrath, S. D., Cheng, Z., Bailey, J. A., Vallente, R. U., ... Eichler, E. E.
3 (2005). Segmental duplications and copy-number variation in the human genome. *American Journal*
4 *of Human Genetics*, 77(1), 78–88.

5 Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., ... Chang, W. (2022). DAVID: a
6 web server for functional enrichment analysis and functional annotation of gene lists (2021 update).
7 *Nucleic Acids Research*. <https://doi.org/10.1093/nar/gkac194>

8 Shew, C. J., Carmona-Mora, P., Soto, D. C., Mastoras, M., Roberts, E., Rosas, J., ... Dennis, M. Y.
9 (2021). Diverse molecular mechanisms contribute to differential expression of human duplicated
10 genes. *Molecular Biology and Evolution*. <https://doi.org/10.1093/molbev/msab131>

11 She, X., Cheng, Z., Zöllner, S., Church, D. M., & Eichler, E. E. (2008). Mouse segmental duplication and
12 copy number variation. *Nature Genetics*, 40(7), 909–914.

13 Shi, L., Guo, Y., Dong, C., Huddleston, J., Yang, H., Han, X., ... Wang, K. (2016). Long-read sequencing
14 and de novo assembly of a Chinese genome. *Nature Communications*, 7, 12065.

15 Sirén, J., Monlong, J., Chang, X., Novak, A. M., Eizenga, J. M., Markello, C., ... Paten, B. (2021).
16 Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. *Science*,
17 374(6574), abg8871.

18 Slatkin, M. (2008). Linkage disequilibrium — understanding the evolutionary past and mapping the
19 medical future. *Nature Reviews Genetics*, Vol. 9, pp. 477–485. <https://doi.org/10.1038/nrg2361>

20 Song, J. H. T., Grant, R. L., Behrens, V. C., Kučka, M., Roberts Kingman, G. A., Soltys, V., ... Kingsley,
21 D. M. (2021). Genetic studies of human–chimpanzee divergence using stem cell fusions.
22 *Proceedings of the National Academy of Sciences*, Vol. 118.
23 <https://doi.org/10.1073/pnas.2117557118>

24 Soto, D. C., Shew, C., Mastoras, M., Schmidt, J. M., Sahasrabudhe, R., Kaya, G., ... Dennis, M. Y.
25 (2020). Identification of Structural Variation in Chimpanzees Using Optical Mapping and Nanopore
26 Sequencing. *Genes*, 11(3), 276.

27 Sporny, M., Guez-Haddad, J., Kreusch, A., Shakartzi, S., Neznansky, A., Cross, A., ... Opatowsky, Y.
28 (2017). Structural History of Human SRGAP2 Proteins. *Molecular Biology and Evolution*, 34(6),
29 1463–1478.

30 Stankiewicz, P., & Lupski, J. R. (2002). Genome architecture, rearrangements and genomic disorders.
31 *Trends in Genetics: TIG*, 18(2), 74–82.

32 Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human genome and its role in disease.
33 *Annual Review of Medicine*, 61, 437–455.

34 Stedman, H. H., Kozyak, B. W., Nelson, A., Thesier, D. M., Su, L. T., Low, D. W., ... Mitchell, M. A.
35 (2004). Myosin gene mutation correlates with anatomical changes in the human lineage. *Nature*,
36 428(6981), 415–418.

37 Stefansson, H., Helgason, A., Thorleifsson, G., Steinhorsdottir, V., Masson, G., Barnard, J., ...
38 Stefansson, K. (2005). A common inversion under selection in Europeans. *Nature Genetics*, 37(2),
39 129–137.

1 Steinberg, K. M., Antonacci, F., Sudmant, P. H., Kidd, J. M., Campbell, C. D., Vives, L., ... Eichler, E.
2 E. (2012). Structural diversity and African origin of the 17q21.31 inversion polymorphism. *Nature Genetics*, 44(8), 872–880.

4 Stoner, R., Chow, M. L., Boyle, M. P., Sunkin, S. M., Mouton, P. R., Roy, S., ... Courchesne, E. (2014).
5 Patches of disorganization in the neocortex of children with autism. *The New England Journal of Medicine*, 370(13), 1209–1219.

7 Stranger, B. E., Forrest, M. S., Dunning, M., Ingle, C. E., Beazley, C., Thorne, N., ... Dermitzakis, E. T.
8 (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes.
9 *Science*, 315(5813), 848–853.

10 Sturtevant, A. H. (1913). The linear arrangement of six sex-linked factors in Drosophila, as shown by
11 their mode of association. *Journal of Experimental Zoology*, Vol. 14, pp. 43–59.
12 <https://doi.org/10.1002/jez.1400140104>

13 Sturtevant, A. H. (1917). Genetic Factors Affecting the Strength of Linkage in Drosophila. *Proceedings
14 of the National Academy of Sciences of the United States of America*, 3(9), 555–558.

15 Sudmant, P. H., Huddleston, J., Catacchio, C. R., Malig, M., Hillier, L. W., Baker, C., ... Eichler, E. E.
16 (2013). Evolution and diversity of copy number variation in the great ape lineage. *Genome Research*,
17 23(9), 1373–1382.

18 Sudmant, P. H., Kitzman, J. O., Antonacci, F., Alkan, C., Malig, M., Tselenko, A., ... Eichler, E. E.
19 (2010). Diversity of Human Copy Number Variation and Multicopy Genes. *Science*, 330(6004),
20 641–646.

21 Sudmant, P. H., Mallick, S., Nelson, B. J., Hormozdiari, F., Krumm, N., Huddleston, J., ... Eichler, E. E.
22 (2015). Global diversity, population stratification, and selection of human copy-number variation.
23 *Science*, 349(6253), aab3761.

24 Sudmant, P. H., Rausch, T., Gardner, E. J., Handsaker, R. E., Abyzov, A., Huddleston, J., ... Korbel, J. O.
25 (2015). An integrated map of structural variation in 2,504 human genomes. *Nature*, 526(7571), 75–
26 81.

27 Suzuki, I. K., Gacquer, D., Van Heurck, R., Kumar, D., Wojno, M., Bilheu, A., ... Vanderhaeghen, P.
28 (2018). Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch
29 Regulation. *Cell*, 173(6), 1370–1384.e16.

30 Taillon-Miller, P., Bauer-Sardiña, I., Zakeri, H., Hillier, L., Mutch, D. G., & Kwok, P. Y. (1997). The
31 homozygous complete hydatidiform mole: a unique resource for genome studies. *Genomics*, 46(2),
32 307–310.

33 Tapon, N., & Hall, A. (1997). Rho, Rac and Cdc42 GTPases regulate the organization of the actin
34 cytoskeleton. *Current Opinion in Cell Biology*, 9(1), 86–92.

35 Taylor, J. S., & Raes, J. (2004). Duplication and divergence: the evolution of new genes and old ideas.
36 *Annual Review of Genetics*, 38, 615–643.

37 Tóth, K., Hofer, K. T., Kandrács, Á., Entz, L., Bagó, A., Erőss, L., ... Wittner, L. (2018).
38 Hyperexcitability of the network contributes to synchronization processes in the human epileptic
39 neocortex. *The Journal of Physiology*, Vol. 596, pp. 317–342. <https://doi.org/10.1113/jp275413>

40 Treangen, T. J., & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing:

1 computational challenges and solutions. *Nature Reviews. Genetics*, 13(1), 36–46.

2 van de Leemput, J., Boles, N. C., Kiehl, T. R., Corneo, B., Lederman, P., Menon, V., ... Fasano, C. A.
3 (2014). CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex
4 development from human embryonic stem cells. *Neuron*, 83(1), 51–68.

5 Varki, A., & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: Searching for
6 needles in a haystack. *Genome Research*, Vol. 15, pp. 1746–1758.
7 <https://doi.org/10.1101/gr.3737405>

8 Vollger, M. R., DeWitt, W. S., Dishuck, P. C., Harvey, W. T., Guitart, X., Goldberg, M. E., ... Eichler, E.
9 E. (2022). Increased mutation rate and interlocus gene conversion within human segmental
10 duplications (p. 2022.07.06.498021). <https://doi.org/10.1101/2022.07.06.498021>

11 Vollger, M. R., Dishuck, P. C., Sorensen, M., Welch, A. E., Dang, V., Dougherty, M. L., ... Eichler, E. E.
12 (2019). Long-read sequence and assembly of segmental duplications. *Nature Methods*, 16(1), 88–94.

13 Vollger, M. R., Guitart, X., Dishuck, P. C., Mercuri, L., Harvey, W. T., Gershman, A., ... Eichler, E. E.
14 (2021). Segmental duplications and their variation in a complete human genome (p.
15 2021.05.26.445678). <https://doi.org/10.1101/2021.05.26.445678>

16 Vollger, M. R., Guitart, X., Dishuck, P. C., Mercuri, L., Harvey, W. T., Gershman, A., ... Eichler, E. E.
17 (2022). Segmental duplications and their variation in a complete human genome. *Science*,
18 376(6588), eabj6965.

19 Vollger, M. R., Logsdon, G. A., Audano, P. A., Sulovari, A., Porubsky, D., Peluso, P., ... Eichler, E. E.
20 (2019). Improved assembly and variant detection of a haploid human genome using single-molecule,
21 high-fidelity long reads. *Annals of Human Genetics*. <https://doi.org/10.1111/ahg.12364>

22 Wagner, G. P., Amemiya, C., & Ruddle, F. (2003). Hox cluster duplications and the opportunity for
23 evolutionary novelties. *Proceedings of the National Academy of Sciences of the United States of
24 America*, 100(25), 14603–14606.

25 Wainszelbaum, M. J., Charron, A. J., Kong, C., Kirkpatrick, D. S., Srikanth, P., Barbieri, M. A., ... Stahl,
26 P. D. (2008). The hominoid-specific oncogene TBC1D3 activates Ras and modulates epidermal
27 growth factor receptor signaling and trafficking. *The Journal of Biological Chemistry*, 283(19),
28 13233–13242.

29 Wang, T., Antonacci-Fulton, L., Howe, K., Lawson, H. A., Lucas, J. K., Phillippy, A. M., ... Human
30 Pangenome Reference Consortium. (2022). The Human Pangenome Project: a global resource to
31 map genomic diversity. *Nature*, 604(7906), 437–446.

32 Warren, W. C., Harris, R. A., Haukness, M., Fiddes, I. T., Murali, S. C., Fernandes, J., ... Eichler, E. E.
33 (2020). Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical
34 utility. *Science*, 370(6523). <https://doi.org/10.1126/science.abc6617>

35 Watson, C. T., Marques-Bonet, T., Sharp, A. J., & Mefford, H. C. (2014). The genetics of microdeletion
36 and microduplication syndromes: an update. *Annual Review of Genomics and Human Genetics*, 15,
37 215–244.

38 Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., ... Hunkapiller,
39 M. W. (2019). Accurate circular consensus long-read sequencing improves variant detection and
40 assembly of a human genome. *Nature Biotechnology*. <https://doi.org/10.1038/s41587-019-0217-9>

1 Williams, T. N., Wambua, S., Uyoga, S., Macharia, A., Mwacharo, J. K., Newton, C. R. J. C., &
2 Maitland, K. (2005). Both heterozygous and homozygous alpha+ thalassemias protect against severe
3 and fatal *Plasmodium falciparum* malaria on the coast of Kenya. *Blood*, 106(1), 368–371.

4 Wray, G. A., Hahn, M. W., Abouheif, E., Balhoff, J. P., Pizer, M., Rockman, M. V., & Romano, L. A.
5 (2003). The Evolution of Transcriptional Regulation in Eukaryotes. *Molecular Biology and
6 Evolution*, 20(9), 1377–1419.

7 Xing, L., Kubik-Zahorodna, A., Namba, T., Pinson, A., Florio, M., Prochazka, J., ... Huttner, W. B.
8 (2021). Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and
9 increased memory flexibility. *The EMBO Journal*, 40. <https://doi.org/10.15252/embj.2020107093>

10 Xue, Y., Sun, D., Daly, A., Yang, F., Zhou, X., Zhao, M., ... Tyler-Smith, C. (2008). Adaptive evolution
11 of UGT2B17 copy-number variation. *American Journal of Human Genetics*, 83(3), 337–346.

12 Yamanaka, M., Kato, Y., Angata, T., & Narimatsu, H. (2009). Deletion polymorphism of SIGLEC14 and
13 its functional implications. *Glycobiology*, 19(8), 841–846.

14 Yang, L. (2020). A practical guide for structural variation detection in human genome. *Current Protocols
15 in Human Genetics / Editorial Board, Jonathan L. Haines ... [et Al.]*, 107(1), e103.

16 Yang, M., Safavi, S., Woodward, E. L., Duployez, N., Olsson-Arvidsson, L., Ungerbäck, J., ... Paulsson,
17 K. (2020). 13q12.2 deletions in acute lymphoblastic leukemia lead to upregulation of FLT3 through
18 enhancer hijacking. *Blood*, 136(8), 946–956.

19 Yan, S. M., Sherman, R. M., Taylor, D. J., Nair, D. R., Bortvin, A. N., Schatz, M. C., & McCoy, R. C.
20 (2021). Local adaptation and archaic introgression shape global diversity at human structural variant
21 loci. *eLife*, 10. <https://doi.org/10.7554/eLife.67615>

22 Young, J. M., Endicott, R. M., Parghi, S. S., Walker, M., Kidd, J. M., & Trask, B. J. (2008). Extensive
23 copy-number variation of the human olfactory receptor gene family. *American Journal of Human
24 Genetics*, 83(2), 228–242.

25 Yousaf, A., Liu, J., Ye, S., & Chen, H. (2021). Current Progress in Evolutionary Comparative Genomics
26 of Great Apes. *Frontiers in Genetics*, 12, 657468.

27 Yunis, J. J., & Prakash, O. (1982). The Origin of Man: A Chromosomal Pictorial Legacy. *Science*, Vol.
28 215, pp. 1525–1530. <https://doi.org/10.1126/science.7063861>

29 Yunis, J. J., Sawyer, J. R., & Dunham, K. (1980). The striking resemblance of high-resolution G-banded
30 chromosomes of man and chimpanzee. *Science*, 208(4448), 1145–1148.

31 Zhang, F., Carvalho, C. M. B., & Lupski, J. R. (2009). Complex human chromosomal and genomic
32 rearrangements. *Trends in Genetics: TIG*, 25(7), 298–307.

33 Zhang, J. (2003). Evolution by gene duplication: an update. *Trends in Ecology & Evolution*, 18(6), 292–
34 298.

35 Zhang, J., Rosenberg, H. F., & Nei, M. (1998). Positive Darwinian selection after gene duplication in
36 primate ribonuclease genes. *Proceedings of the National Academy of Sciences of the United States of
37 America*, 95(7), 3708–3713.

38 Zheng-Bradley, X., Streeter, I., Fairley, S., Richardson, D., Clarke, L., Flicek, P., & 1000 Genomes
39 Project Consortium. (2017). Alignment of 1000 Genomes Project reads to reference assembly

1 GRCh38. *GigaScience*, 6(7), 1–8.

2 Zody, M. C., Jiang, Z., Fung, H.-C., Antonacci, F., Hillier, L. W., Cardone, M. F., ... Eichler, E. E.
3 (2008). Evolutionary toggling of the MAPT 17q21.31 inversion region. *Nature Genetics*, Vol. 40,
4 pp. 1076–1083. <https://doi.org/10.1038/ng.193>