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SUMMARY
A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep
concentrations approximately constant. A key component of this is that global transcription rates increase in
larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription
with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other
components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where
global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucle-
oplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size,
which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting
RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.
INTRODUCTION

Cell size has a profound impact on cellular physiology because it

sets the scale of subcellular structures, metabolism, surface-to-

volume ratios, and most crucially, cellular biosynthesis. It is

generally thought that biosynthesis scales with cell size so that

total RNA and protein amounts increase with cell size, and their

concentrations remain approximately constant over the physio-

logical range of cell sizes (Figure 1A). A key aspect of this biosyn-

thetic scaling is that global transcription rates increase in larger

cells1–10 (Figure 1B). This size-dependent transcriptional scaling

is thought to increase global mRNA, rRNA, and tRNA amounts,

which drive increased protein synthesis with increased cell

size. The importance of this biosynthetic scaling is highlighted

by the observation that it only occurs within the physiological

range of cell sizes. Beyond this range, both RNA and protein

amounts cannot keep pace with the expanding cell volume, their

concentrations decline, and the cytoplasm becomes progres-

sively diluted.6,11 This breakdown in biosynthetic scaling is asso-

ciatedwith a collapse inmany aspects of cellular physiology, and

increasing evidence points to this being a causal driver of cellular

aging and senescence.11–15

While it is now clear that biosynthetic size scaling is important

for cellular functionality, the mechanistic origin of RNA scaling
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has remained mysterious despite being first reported by founda-

tional radio-labeling experiments in the 1970s.1–5 This is because

transcription increases continuously as a cell grows, even

among cells with the same template DNA amount.6–10 To explain

this phenomenon, several groups have proposed that transcrip-

tion initiation is controlled by a ‘‘limiting factor’’ whose amount in-

creases in proportion to cell size.6–8,16,17 In one striking illustra-

tion of this idea, Padovan-Merhar et al. made a heterokaryon

fusion of a large and a small cell and observed that the expres-

sion of a GFP reporter transcript from the small cell-derived nu-

cleus reflected the total cell size of the heterokaryon cell.7 This

suggests that the amount of some trans-activating limiting factor

is responsible for coupling cell size to transcription.

While potential mechanisms through which a limiting factor

could drive increased global transcription in larger cells have

been explored in theoretical work, they have yet to be tested

experimentally.8,16 In some models, it is the amount of the

limiting factor, rather than its concentration, that sets the global

transcription rate because it is titrated against the genome. In

suchmodels, as a cell grows larger there would be proportionally

more of the limiting factor so that it is bound to the genome at

higher densities to drive a size-proportional increase in transcrip-

tion. This increase in transcription does not depend on the DNA

concentration or cell ploidy so that similarly sized diploid and
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Figure 1. More RNAPII is loaded onto the genome with increasing cell size

(A) Macromolecule amounts need to increase with cell size to keep concentrations constant.

(B) Global RNA synthesis rates increase with cell size.

(C) Cell volume determined by Coulter counter of cell sizemutants. Low to highWHI5 expression is from a dose-responsive beta-estradiol-induced promoter (see

also Figure S1F).

(D) Schematic illustrating the spike-in normalized ChIP-seq workflow (see STAR Methods and Figures S1A–S1E for details).

(E) The occupancy per cell of total Rpb1, initiated Rpb1 (anti-S5-P), and elongating Rpb1 (anti-S2-P) in the size mutants shown in (C), plotted as a function of cell

size. Each point is the mean (± range) of two biological replicates.

(F) Average Rpb1, Rpb1-S5P, and Rpb1-S2P occupancy across the gene bodies of the top 10% of genes for WT, whi5D, and cln3D cells (see Figure S1G for

similar results in cells expressing low to high WHI5). Mean of two biological replicates is shown.

See also Figure S1.
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haploid cells are predicted to transcribe at a similar total rate,

because the haploid cell would have twice the density of the

limiting factor on its genome.8,16 Several groups have also sug-

gested that some components of the general transcriptional ma-

chinery, such as RNA polymerases, could function as a key

limiting factor.6–8,16,17

Here, we show that more transcriptional machinery is loaded

onto the budding yeast genome as cells increase in size. We

identify RNA polymerase II (RNAPII) as the major limiting factor

for increasing mRNA transcription with cell size. In contrast,

other components of the transcriptional machinery are not

limiting, and the chromatin environment into which transcrip-

tional machinery is loaded is similar in large and small cells.

Importantly, our data are inconsistent with previously proposed

titration models and instead support a dynamic equilibrium

model that is based on mass action recruitment kinetics of the

free nucleoplasmic RNAPII pool to the genome. Our dynamic

equilibrium model accurately predicts RNAPII loading at a given

size for both haploid and diploid cells. However, we observe that

transcription does not increase in direct proportion to cell size,

and so the RNAPII dynamic equilibrium alone is insufficient to

maintainmRNA concentrations as cells grow. This led us to iden-

tify an additional feedback on mRNA turnover, which stabilizes
the transcriptome in larger cells to extend the range of sizes

over which mRNA concentrations are kept near to constant.

Thus, the scaling of mRNA amounts with cell size is driven by

both the mass action recruitment kinetics of RNAPII to the

genome and feedback regulation on mRNA stability.

RESULTS

RNAPII occupancy on the genome increases with cell
size in budding yeast
Previous observations that bulk transcription rates increase with

cell size in budding yeast1 suggest that larger cells should have

more RNAPII loaded on their genomes. To test this, we em-

ployed a spike-in normalized chromatin immunoprecipitation

sequencing (ChIP-seq) methodology to measure RNAPII occu-

pancy (Figures 1C and 1D). This method is quantitative across

a wide dynamic range and is robust to variation in the spike-in

mixing ratio and cell density (Figures S1A–S1E). While conven-

tional ChIP-seq only resolves differences in the relative binding

at different genomic loci, spike-in normalization resolves sys-

tematic differences in the global amount of DNA-bound protein

(i.e., the relative global occupancy).18 We isolated the effect of

cell size from growth rate by examining yeast cultures of different
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average cell sizes but with similar doubling times (Figures 1C and

S7B). Spike-in normalized ChIP-seq of these cultures shows that

the total amount of RNAPII loaded on the genome increases with

cell size (Figure 1E). The initiated and elongating RNAPII popula-

tions, identified by S5 and S2 phosphorylation in the C-terminal

heptapeptide repeats on Rpb1, increased similarly with cell size

(Figure 1E). Moreover, the relative distributions across gene

bodies of total, initiated, and elongating RNAPII increase rela-

tively uniformly with cell size (Figure 1F), indicating that initiation

is primarily responsible for the size-dependent increase in tran-

scription, as has been suggested in fission yeast.8

Cellular and chromatin-bound amounts of
transcriptional machinery increase with cell size
The increase in transcription with cell size has previously been

attributed to a hypothetical limiting factor.6–8,16 In such models,

the amount of the limiting factor increases in proportion to cell

size, resulting in its increased binding to the genome. In principle,

this could be any factor essential for transcription. Thus, to iden-

tify candidate limiting factors, we quantified the protein amounts

of RNAPII and the general transcription factor complexes, which

together constitute the RNAPII pre-initiation complex (PIC). The

protein amounts of all PIC components that we examined

increased in close proportion to cell size (Figure 2A). We next

sought to determine how these factors change their association

with chromatin in larger cells. To this end, we adapted a chro-

matin purification technique called ChEP (chromatin enrichment

for proteomics)19 to work in yeast (Figures S2A and S2B) and

analyzed protein-chromatin associations in small and large cells

by mass spectrometry. The recruitment of all subunits of RNAPII

to the genome increased in larger cells, as expected, and so did

the initiation and elongation factors that regulate and associate

with RNAPII (Figures 2B and S2E). We note that only proteins

first validated as being enriched on chromatin were analyzed

here to minimize potential confounding background effects

(Figures S2C and S2D). Taken together, these experiments

show that more transcriptional machinery is expressed and

loaded on the genome in larger cells but does not delineate

which, if any, component is dosage limiting in a manner that

could couple global transcription to cell size.

RNAPII is the major limiting subcomplex of the PIC
To directly test potential limiting factors, we next performed a

local perturbation to the nuclear amounts of PIC components,

using the anchor-away approach to conditionally deplete half

of a targeted factor from the nucleus.20 To do this, we con-

structed heterozygous diploids where one of the two alleles of

a given PIC subunit is tagged with an FKBP-rapamycin-binding

(FRB) domain, allowing us to rapidly and conditionally deplete

half of it from the nucleus to a cytoplasmic FKBP12 anchor

upon rapamycin treatment (Figure 2C). This revealed that the

general transcription factor complexes are not significantly

limiting, because a 2-fold reduction in their nuclear amounts re-

sults in, at most, a 5%–10% reduction in RNAPII occupancy as

measured using spike-in normalized ChIP-seq (Figures 2D and

S3B). However, 2-fold depletion of RNAPII from the nucleus

led to a much larger reduction of �40% in occupancy

(Figures 2D and S3C–S3H), suggesting that RNAPII is a major
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limiting factor. Using a FLAG tag to quantify only the non-

depleted allele in an RPB1-FLAG/RPB1-FRB strain, we

confirmed the �40% value (Figures S3D and S3E). Thus, our

conditional depletion analysis shows RNAPII is a major limiting

component of the PIC, whereas the other subcomplexes of the

PIC are not particularly limiting.

Transient overexpression is sufficient to increase
RNAPII loading
If RNAPII is the limiting factor for its own recruitment to the

genome, then increasing the amounts of the 12-subunit

RNAPII complex should be sufficient to increase polymerase

loading. To test this, we first optimized overexpression condi-

tions of individual subunits from an anhydrotetracycline-induc-

ible promoter (TetPr). We compared the overexpressed protein

amounts (e.g., TetPr-RPB1-mNeonGreen) with that of their

endogenous counterpart (e.g., RPB1pr-RPB1-mNeonGreen)

for the 9 RNAPII subunits where C-terminal tagging of the endog-

enous copy did not cause severe growth defects (Figure S3I).

This allowed us to define an induction regime in which all tested

subunits are 2- to 3-fold overexpressed 45 min after anhydrote-

tracycline (atc) addition (Figure 2E). Next, we engineered a single

yeast strain (TetPr-RPB1-12) in which all 12 subunits are simul-

taneously and conditionally overexpressed. In this strain, we

observed a robust increase in global RNAPII occupancy across

the genome after induction, while there was no equivalent

change in a control strain expressing mNeonGreen from the

TetPr integrated at the same loci (Figures 2F and 2G). Impor-

tantly, RNAPII overexpression did not alter cell size in these

experimental conditions (Figure S3J). Thus, RNAPII is a limiting

component of the transcriptional machinery, because RNAPII

loading on the genome is sensitive to increases and decreases

in its own concentration.

RNAPII occupancy increases sub-linearly with cell size
Having established RNAPII as a major limiting component of

the PIC, we sought to examine more quantitatively how

this could drive the scaling of transcription with cell size. Prior

theoretical work proposed that polymerase could be titrated

against the genome.8,16 In these titration models total protein

amounts, rather than cellular concentrations, are critical

because the on-rate for binding is so high that nearly all mole-

cules are associated with the genome. This is predicted to

result in a directly proportional linear increase in DNA binding

with cell size.

To test this genome-titrated hypothesis, we first simplified our

experimental setup and measured RNAPII occupancy in cells of

different sizes but with the same fixed DNA amount. To do this,

we isolated small haploid G1 cells by centrifugal elutriation and

arrested them in G1 by turning off expression of the G1 cyclins.

By arresting cells for increasing amounts of time, we generated

populations of cells with increasing cell size but with the same

1 N DNA content (Figures 3A and S4A–S4C). We also confirmed

that the total cellular amounts of RNAPII subunits Rpb1 and

Rpb3 increase in proportion to cell size during G1 arrest

(Figures 3E and S4M). Spike-in normalized ChIP-seq shows

that RNAPII occupancy increases with cell size, but crucially,

this increase is not directly linearly proportional to cell size



Figure 2. RNAPII is a major limiting component of the transcriptional machinery

(A) Protein amount (mNeonGreen) plotted against cell size (forward scatter) for subunits of the RNAPII pre-initiation complex measured by flow cytometry. The

mean (± SD) is shown for each cell size bin. Bottom right panel shows the scaling of total protein with forward scatter.

(B) Chromatin association of transcriptional machinery measured by mass spectrometry. SILAC-labeled cells of different sizes (Figure S2E) were mixed, and

chromatin was extracted (ChEP) and analyzed by liquid chromatography-tandemmass spectrometry (LC-MS/MS) (see Figure S2B for controls). Each axis shows

an independent biological replicate for the normalized SILAC ratio of chromatin association between large (L) and small (H) cells. RNAPII subunits, initiation

factors, and elongation factors are shown relative to histones. Only chromatin-enriched proteins are shown (see also Figures S2C and S2D).

(C) Schematic illustrating the 50% depletion strategy to test dosage limitation. A pre-initiation complex subunit (TF) is tagged with the FRB domain20 and crossed

with WT to make a heterozygous diploid, allowing for conditional 2-fold reduction in nuclear concentrations upon rapamycin treatment.

(D) Average Rpb1 occupancy across gene bodies of the top 10% of genes measured by spike-in normalized ChIP-seq upon 2-fold nuclear depletion of the

indicated factor following rapamycin treatment. Rpb1-FRB anchor-away co-depletes Rpb3 (Figure S3A), indicating that the whole RNAPII complex is efficiently

co-depleted.

(E) The fold overexpression of individual RNAPII subunits from the TetPr after 45 min of anhydrotetracycline (atc) treatment. Overexpression was determined

using C-terminal mNeonGreen-tagged proteins measured by flow cytometry and compared with the endogenously tagged allele of the respective subunit

(Figure S3I). RPB2, RPB5, and RPB12 were not assessed, as tagging caused growth defects. All 12 subunits were integrated into a single strain to construct the

TetPr-RPB1-12 strain (see STAR Methods for details).

(F) Average Rpb1 occupancy, determined by spike-in normalized ChIP-seq, across the gene bodies of the top 10% of genes for the TetPr-RPB1-12 strain before

(�atc) or 45 min after (+atc) simultaneous overexpression of all 12 RNAPII subunits.

(G) The global Rpb1 occupancy measured by spike-in normalized ChIP-seq after atc induced expression of either all RNAPII subunits (TetPr-RPB1-12) or free

mNeonGreen (TetPr-mNG). Mean (± range) is plotted.

See also Figures S2 and S3.
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Figure 3. RNAPII recruitment to the genome is not directly proportional to cell size

(A) Cell volume distributions determined by Coulter counter for G1-arrested cells. Small G1 cells were collected by centrifugal elutriation and arrested in G1 by

conditional G1 cyclin shut-off to generate populations with increasing cell size (see Figures S4A and S4B for experimental design).

(B) Rpb1 (anti-Rpb1) occupancy per cell, determined by spike-in normalized ChIP-seq, as a function of cell size in the indicated populations of G1-arrested cells

shown in (A). Each point shows the mean (± range) of two biological replicates. The fit of two alternative mathematical models are shown.

(C and D) Schematics illustrating two alternative models that can account for the data in (B): the previously proposed titration-saturation model (C) and the

dynamic equilibrium model proposed here (D).

(E) Rpb1 and Rpb3 protein amounts as a function of cell size. mNeonGreen amounts were determined by flow cytometry. Cell volume was determined by Coulter

counter. Each point corresponds to a different time point after the G1 arrest was initiated (see also Figure S4M).

(F) Nuclear volume as a function of cell volume determined by wide-field fluorescence microscopy (see also Figures S4H–S4J).

See also Figure S4.
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(Figure 3B). Importantly, this sub-linear increase is not an artifact

of elutriation (Figures S4E andS4F) and is also clearly apparent in

our measurements of asynchronously cycling cell size mutants,

where a 3-fold increase in cell size results in only a 2-fold in-

crease in RNAPII occupancy (Figures 1E and S4G).

Since the sub-linear increase in RNAPII occupancy rules out a

simple titration model, we considered two alternatives. The first

model is a modification of the titration model in which the

genome becomes saturated at a specific size threshold so that

transcription cannot increase further (‘‘titration-saturation’’)16

(Figure 3C). The second model is a ‘‘dynamic equilibrium’’ model

(Figure 3D), in which the rate at which the free RNAPII, polfree, as-

sociates with the genome, DNA, is determined by mass action

kinetics so that

dpolbound
dt

= kon � DNA � polfree
Vnuclear

� koff � polbound = 0;

which we have approximated as steady state (dpolbounddt = 0)

because the timescale of cell volume changes (hours) is much

slower than that of transcription (minutes). To complete the set

of equations, we use the observation that the total amount of

RNAPII is proportional to cell volume (Figures 2A and 3E) so that

poltotal = polfree +polbound = c Vcell:
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These two algebraic equations can then be solved for the

amount of DNA-bound RNAPII as a function of cell and nu-

clear size:

polbound =
c Vcell

1+
koff Vnucleus

kon DNA

:

Consistent with prior work, we observed that nuclear volume

increases with cell size in G1 but that this increase is initially

slower than the cell volume increase21 (Figures 3F and S4H–

S4J). This results in a modestly higher nuclear-to-cell volume

ratio in the smallest cells in the range that we are examining (Fig-

ure S4I). We used this empirical relationship to substitute for the

Vnucleus term (see STAR Methods). We then separately fit the dy-

namic equilibrium model and the titration-saturation model to

our RNAPII occupancy measurements, which showed that

bothmodels are similarly capable of fitting these data (Figure 3B).

We note that the dynamic equilibrium model only has two free

parameters that we are fitting. In essence, one parameter is

the cellular concentration of RNAP II (c), and the other parameter

is the dissociation constant for RNAPII and the genome (koffkon
).

RNAPII binding is driven by dynamic equilibrium kinetics
While both models are consistent with the amount of RNAPII

bound as a function of cell size, they make very different
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predictions about what fraction of RNAPII is associated with the

genome. The titration-saturation model predicts that nearly all

nuclear RNAPII should be engaged on the genome, resulting in

a near-negligible free nucleoplasmic pool. Thus, the genome-

bound fraction should be fixed until cells surpass the saturation

threshold, at which point the bound fraction should decrease in

proportion to the inverse of the cell volume
�
1
=V

�
. In contrast, the

fit of the dynamic equilibrium model to our ChIP-seq data pre-

dicts that approximately 50% of nuclear RNAPII should be freely

diffusing in the nucleoplasm of a 50 fL G1 cell and that the bound

fraction should decrease gradually and continuously as cell size

increases.

To distinguish between these models, we measured the bound

fraction of RNAPII by imaging and tracking single molecules of its

subunit Rpb1-HALO. Freely diffusing molecules diffuse rapidly

and have a large radius of gyration, whereas chromatin-bound

molecules are relatively immobile and have a small radius of gyra-

tion. Consistent with expectations, wemeasured that the majority

of H2B histone molecules were tightly bound, and the vast major-

ity of a free nuclear mCitrine-NLS were highly mobile (Figures 4A

and 4B). Importantly, only half of the nuclear Rpb1 is freely

diffusing, and the other half is chromatin bound (Figures 4A and

4B), consistent with a recent independent single-molecule-based

analysis of Rpb1 bound fractions.22 Moreover, the bound fraction

of Rpb1 in individual G1 cells decreases gradually with cell size as

predicted by the dynamic equilibrium model (Figure 4C). In

contrast, these data show a very poor correspondence to the pre-

diction of the titration-saturation model (Figure 4C). We empha-

size that the two free parameters for the dynamic equilibrium

model were determined by fitting to the anti-Rpb1 ChIP-seq

data (Figure 3B) and are not adjusted in response to the single-

molecule imaging data.

In our dynamic equilibrium model, the RNAPII loading rate is

determined by the mass action recruitment kinetics of unbound

polymerase and its target sites on the genome (Figure 3D). Thus,

the amount of RNAPII on the genome should be sensitive to the

amount of DNA, as well as cell size. To test this, we determined

the effects of increasing the genome copy number by repeating

our spike-in normalized Rpb1 ChIP-seq experiment with elutri-

ated G1-arrested diploid cells (Figures 4D and S4A–S4D). These

data show that RNAPII occupancy is significantly higher in dip-

loids compared with haploid cells of the same size. Moreover,

these data show a very close correspondence to the model pre-

diction for doubling DNA amount (Figures 4E and 4F). Impor-

tantly, this prediction is made using no additional free parame-

ters, as we simply double the value of the ‘‘DNA’’ term in the

model after fitting to the haploid data. Taken together, our quan-

titative ChIP-seq and single-molecule tracking experiments are

inconsistent with any form of titration-based model. Instead,

we find that the size-dependent changes in global RNAPII occu-

pancy are best explained via a surprisingly simple dynamic equi-

librium model.

Stochastic simulations of RNAPII transcription
corroborate the assumptions of the dynamic
equilibrium model
The dynamic equilibrium model makes the important simplifying

assumptions that RNAPII occupancy can bemodeled using sim-
ple binding-unbinding kinetics and that promoters and gene

bodies do not saturate with polymerase (Figure S5A). While

this accurately predicts the global relationship between cell

size and RNAPII occupancy, in reality transcription is a highly

complex multistep process that occurs on a finite space on the

genome. To test the feasibility of our assumptions underpinning

the dynamic equilibrium model, we built a more complex gran-

ular stochastic stepwise simulation of RNAPII transcription that

includes promoter recruitment, initiation, and elongation on a

representative gene of finite length (Figures 4G and S5B). We

parameterized these simulations using measurements from the

budding yeast literature. For example, we used recently reported

single-molecule measurements of PIC subunits22 to define a

limited range of feasible parameter combinations for the pro-

moter association and transcriptional initiation rates (see STAR

Methods for details) (Figures S5C and S5D). In all cases, our sto-

chastic simulations predicted very similar relative changes in

global RNAPII occupancy compared with the dynamic equilib-

riummodel (Figures 4H and S5E). This is because, at the average

gene, RNAPII occupancy in the promoter and gene body is in a

linear regime with respect to the upstream recruitment kinetics

of RNAPII. This makes intuitive sense because the absolute

PIC occupancy of an average promoter is estimated to be

�4%, and there are only �0.4 RNAPII molecules in an average

gene body (Figure S5D). Thus, our more granular stochastic sim-

ulations revealed that RNAPII molecules are unlikely to interfere

with one another on the genome, consistent with the simplifying

assumptions underlying the dynamic equilibrium model.

While the dynamic equilibrium model reflects what is likely

occurring at most genes, the finite linear space of a gene may

impact the most highly expressed genes. To explore this, we

modeled genes of different strengths by varying the promoter

recruitment rate. Under some, but not all, parameter combina-

tions, this resulted in the top few percent of genes showing a

smaller increase in RNAPII occupancy in larger cells, compared

with the rest of the genome (Figures 4I, 4J, and S5F). Consistent

with this, whenwe binned genes according to their RNAPII occu-

pancy inourChIP-seqdata,wesawasimilar deviation in themost

highly expressed genes (Figure 4K). This suggests that the top

percentiles of the most highly expressed genes could be starting

to approach saturation kinetics. However, it is also possible that

this apparent saturation results from a programmed transcrip-

tional response that involves the regulated repression of highly

expressedgenes.Wenote that for this analysiswehaveexcluded

cell-cycle and stress response genes thatmight be anticipated to

alter their relative expression during a cell-cycle arrest.11

Taken together, our data andmodeling support the conclusion

that RNAPII occupancy is primarily determined via a surprisingly

simplemass action dynamic equilibrium. As a cell grows and syn-

thesizes more RNAPII, new RNAPII first enters the free fraction,

which increases the free nucleoplasmic concentration. This

thendrivesmorepolymeraseonto thegenomeuntil a newequilib-

rium is establishedat the increasedsize.However, this increase in

the free concentration is not in direct proportion to cell size,which

results in the sub-linear scaling of RNAPII occupancy on the

genome that becomes more pronounced as cells grow larger.

This sub-linear increase is not due to genome saturation as previ-

ously thought. Instead, this is due to a progressively smaller
Cell 186, 5254–5268, November 22, 2023 5259



Figure 4. A dynamic equilibrium model explains the size dependence of RNAPII recruitment to the genome

(A–C) Single-molecule imaging was used to determine the DNA-bound fraction of the RNAPII subunit Rpb1. (A) Example single-molecule tracks of the indicated

proteins in representative nuclei. (B) Histogram of the radius of gyration, determined from single-molecule imaging, for HALO-mCitrine-NLS fusion proteins (n =

8,057 tracks), H2B-HALO (Htb1; n = 35,978 tracks), and Rpb1-HALO (n = 16,008 tracks). (C) The fraction of DNA-bound Rpb1-HALOmolecules, determined from

single-molecule imaging, plotted as a function of cell size. Only G1 cells were analyzed. Themean (± SD) for each cell size bin is plotted. A combination ofWT (n =

182 cells) and cln3D (n = 87 cells) cells is shown. cln3Dwas used to increase the size range. The prediction of the bound fraction from the two alternative models

outlined in Figures 3C and 3D is shown. Dashed lines show 90% confidence intervals of the dynamic equilibriummodel prediction generated from bootstrapping.

(D–F) Comparison of RNAPII occupancy in haploid and diploid G1-arrested cells. (D) DNA content analysis by flow cytometry of haploid and diploid G1-arrested

cells. (E) Rpb1 (anti-Rpb1) occupancy per cell, determined by spike-in normalized ChIP-seq, as a function of cell size in haploid and diploid G1-arrested cells.

Each point is themean (± range) of two biological replicates. The dynamic equilibriummodel prediction for diploids is shown andwas calculated using the fit to the

haploid data. Dashed line shows 90% confidence intervals for the model prediction generated from bootstrapping. Haploid data are also show in Figures 3B and

6A. (F) Summary schematic illustrating the effects of increased ploidy on DNA-bound RNAPII in similarly sized cells.

(G–J) Stochastic simulations of RNAPII on a representative gene. 24 empirically derived feasible parameter sets were simulated (see also Figure S5 and STAR

Methods for details). (G) Schematic of the steps modeled in the simulation. (H) Comparison of the simulated RNAPII occupancy at a representative gene with the

dynamic equilibrium model. Simulation results from two parameter sets in different regimes of the range of feasible values are shown. (I) The average relative

RNAPII occupancy (RPKM) for gene groups binned according to their occupancy in�50 fL G1-arrested cells. The bin for percentiles 73–74 is closest to the global

average of all genes. (J) Fold change in the simulatedRNAPII occupancy on a gene representative of each of the gene bins shown in (I). Simulation results from two

parameter sets in different regimes of the range of feasible values are shown.

(K) Fold change in the average Rpb1 (anti-Rpb1 ChIP-seq) occupancy with cell size for the different gene groups shown in (I). Data are from the same experiment

as the haploid global averages shown in (E).

See also Figures S4 and S5.
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fraction of polymerase beingdepleted from the nucleoplasmonto

the genome in larger cells so that there is a smaller and smaller in-

crease in the concentration of free nuclear polymerase that deter-

mines loading kinetics as cells enlarge.
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The chromatin template is invariant with cell size
A key component of our dynamic equilibrium model is that

the on-rate ðkonÞ is independent of cell size so that changes

in the loading are only determined by changes in the free



Figure 5. The chromatin environment upstream of transcription is similar in large and small cells

(A) Schematic of the workflow for measuring global chromatin accessibility using spike-in normalized dual-enzyme single-molecule footprinting (dSMF).

(B) Mean unmethylated DNA fraction plotted around transcriptional start sites (TSSs) determined by dSMF in cells of different sizes (see also Figure S6A).

Unmethylated DNA corresponds to inaccessible chromatin. Mean (± range) of two technical replicates is shown.

(C–E) Histone modification occupancy measured in the cell size mutants shown in Figure 1C. (C) The occupancy H3K56ac and H3K36me3 plotted against cell

size (see also Figure S6B). (D) The slope (± SE) for the linear fit between histone modification occupancy and cell size. Larger slopes correspond to increased

modification occupancy in larger cells. Modifications shown in blue are reported to be downstream of RNAPII initiation and/or elongation (see main text). (E)

Average occupancy across gene bodies for the indicated modification. Each row corresponds to a different cell size mutant, ordered from small (top) to large

(bottom).

See also Figure S6.
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nucleoplasmic concentration of RNAPII. One prediction of this is

that chromatin accessibility should be similar in large and small

cells. To test this, we adapted dual-enzyme single-molecule

footprinting (dSMF)23 for use in yeast. Briefly, this involves treat-

ing nuclei with a combination of CpG and GpC methyltrans-

ferases so that more accessible DNA is methylated and inacces-

sible DNA is not. Differences in methylation patterns are then

quantified by sequencing and normalized to a spike-in (Fig-

ure 5A). When we performed dSMF on cell size mutants

spanning an approximately 3-fold range in size, we observed

no major differences in chromatin accessibility (Figures 5B and

S6A). Consistent with this, we also did not see changes in his-

tone occupancy measured by spike-in normalized ChIP-seq

(Figure S4D).

Although the physical accessibility of chromatin is unchanged

with size, the chromatin landscape could still be modified by an

altered pattern of histone modifications. To test this, we

measured a panel of histone modifications implicated in tran-

scription by spike-in normalized ChIP-seq. Most modifications

we measured did not change appreciably with cell size. How-

ever, four modifications associated with active transcription

did increase significantly in larger cells: H3K4me2, H3K4me3,

H3K79me3, and H3K36me3 (Figures 5C–5E and S6B). Impor-

tantly, these di/tri-methyl marks are known to be deposited

downstream of initiation or elongation so that their deposition

depends on the recruitment of RNAPII.24–29 Increased transcrip-

tional frequency is also proposed to broaden the spatial distribu-

tion, as well as the absolute intensity, of H3K4me3 as more

H3K4me1/2 becomes trimethylated.29 Indeed, we clearly see
this shift in the spatial pattern of H3K4me3 in large cells, further

supporting the conclusion that the changes in histone modifica-

tions that we observed are a downstream result of increased

RNAPII occupancy. We therefore conclude that the chromatin

landscape, both in terms of accessibility and histone modifica-

tions upstream of RNAPII recruitment, is predominantly invariant

with cell size.

mRNA decay feedback partially compensates for sub-
linear transcriptional scaling
The equilibrium kinetics of RNAPII produce a sub-linear scaling

of RNAPII occupancy that becomes more pronounced as cells

get larger. In other words, the increased transcription rate in

larger cells is insufficient to increase global mRNA amounts pro-

portionally with cell size. To assess how mRNA amounts are

impacted by this, we performed spike-in normalized RNA

sequencing (RNA-seq) on a panel of cell size mutants and on

cells arrested for increasing amounts of time in G1 after elutria-

tion (Figures 6A and S7A–S7E). As expected, this showed that

total mRNA amounts increase monotonically with cell size. How-

ever, it also reveals that mRNA amounts increase more than

RNAPII occupancy as size increases. Thus, while mRNA con-

centrations do start to decline in the largest cells, this decline

is both smaller and occurs at larger sizes than that predicted

from the global transcription rate alone (Figure 6A).

The fact that mRNA amounts increase faster than the tran-

scription rate implies that mRNA turnover rates are reduced

in larger cells (Figure 6B). To test this directly, we performed

pulse-chase experiments using the uridine analog 5-ethynyl
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Figure 6. Global mRNA stability increases in larger cells, partially compensating for sub-linear transcriptional scaling

(A) The relative total amount of mRNA per cell, determined by spike-in normalized RNA-seq, in cell size mutants (left, n = 4, mean ± SEM) and during G1 arrest

(right, n = 2, mean ± range). Anti-Rpb1 occupancies, determined by spike-in normalized ChIP-seq, from Figures 1E and 3B are shown for comparison. Dashed

gray line denotes proportional scaling.

(B) The predicted fold change in mRNA turnover rate during a haploid G1 arrest, calculated from the data in (A).

(C) Spike-in normalized EU pulse-chase experiment to determine global mRNA turnover rates in cells with low (33 fL) or high (109 fL)WHI5 expression. Left: total

EU-mRNA after EUwashout (chase) following a 1-hour EU pulse. Themean (± range) of two biological replicates is shown. Dashed line shows an exponential fit to

the data. Right: global mRNA turnover rate calculated from the fits in the left panel. Dotted black line shows the predicted change based on the data in (A).

(D) As in (C), for cells after G1 cyclin shut-off. After a 1.5-h shut-off, cells are not fully arrested, and so the average number of genomes per cells is 1.6 N. The

prediction for the fold-change accounts for both cell size and DNA content per cell. One biological replicate is shown.

(E) Cumulative frequency distributions of individual mRNA half-lives from the experiment shown in (D).

(F) Left:MET3mRNA levels relative toACT1 after methionine addition in cells with the indicated size. Right: mean (± range)MET3mRNA turnover rates (n = 2) (see

also Figures S7K–S7M and S8A–S8D).

(G) Comparison between wild-type diploid cells (WT/WT) and diploid cells in which 50% of the RNAPII has been depleted from the nucleus (WT/RPB1-FRB)

following a 40-min rapamycin treatment. Cell size distributions (left) and MET3 and MET17 mRNA decay rates after methionine addition (right) are shown. The

mean (± range) of two biological replicates is shown (see also Figure S8E).

(H) As in (G), but a comparison between�100 fL diploid cells and�100 fL haploid cells that have been arrested in G1 via G1 cyclin shut-off (see also Figure S8F).

See also Figures S7 and S8.
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uridine (EU). We quantified EU-labeled mRNA by spike-in

normalized EU-mRNA-seq, following EU washout. This allowed

us to directly monitor global mRNA turnover kinetics in unper-

turbed conditions across cells of different sizes (Figures S7F–

S7I). This clearly reveals that in both the cell size mutants and

the G1 arrest conditions, EU-labeled mRNA is turned over

more slowly in larger cells (Figures 6C-6E). Crucially, when we

calculate the fold change in total mRNA decay rate from these

data, we find a very close quantitative agreement to a prediction

of how the decay rate should change based on our measure-

ments of mRNA amounts per cell and RNAPII occupancy that

are shown in Figure 6A.

To validate this global finding that mRNA is more stable in

larger cells, using an independent approach, we conditionally

repressed the transcription of MET genes and then measured

MET3 and MET17 mRNA by RT-qPCR. This shows a clear

decrease in the mRNA decay rate in larger cells (Figures 6F

and S8A–S8D). Similar experiments to repress the GAL genes

GAL1,GAL7, andGAL10 also showed the same size-dependent

trend (Figures S7K–S7M). Thus, mRNA turnover rates decrease

with size to stabilize the transcriptome in larger cells and thereby

promote the scaling of mRNA amounts with cell size.

Next, we considered whether the regulation of mRNA turnover

was directly coupled to cell size or reflected a form of feedback

on mRNA concentration or transcription. To do this, we exam-

ined mRNA turnover rates in cells subject to a rapid depletion

of half the nuclear RNAPII, which results in a �40% reduction

in RNAPII occupancy on the genome (see Figures 2C and 2D).

In these experiments, MET3 and MET17 mRNA turnover rates

also decreased even though cell size does not change

(Figures 6G and S8E). Similarly, we also observed that �100 fL

G1 haploid cells have lower mRNA turnover rates than �100 fL

G1 diploid cells (Figures 6H and S8F), consistent with the lower

global transcription rate in haploids compared with diploids of a

similar cell size (Figures 4E and 4F). Taken together, these exper-

iments suggest that the compensatory adjustment in mRNA

turnover rates in larger sizes is more likely due to feedback on

global mRNA concentrations rather than any direct coupling to

cell size.

DISCUSSION

How cells scale global mRNA amounts with cell size during

growth is a long-standing question in cell biology.1–8,10 It was

previously suggested that the size scaling of mRNA was due to

its synthesis rates increasing in direct proportion to cell size. In

these models, such size scaling was proposed to be due to an

unknown limiting transcription factor being titrated against the

genome.8,16

Transcriptional scaling occurs via a dynamic equilibrium
model for limiting RNAPII
Here, we empirically identified RNAPII as a major limiting factor

in budding yeast as polymerase loading onto the genome is

sensitive to both increases and decreases in its own concentra-

tion. In contrast, a 2-fold reduction in nuclear concentrations of

other components of the transcriptional initiation machinery re-

sulted in only minimal reductions in RNAPII loading (Figure 2).
While our work shows that RNAPII is limiting for transcription,

we also identify important differences from previous versions

of the limiting factor model that were based on titration against

the genome. We found that RNAPII is not titrated against the

genome as about half the RNAPII is freely diffusing in the nucle-

oplasm, as revealed by single-molecule imaging experiments.

We note that a previous study claimed to have shown RNAPII

is titrated against the genome in S. pombe and is therefore

likely to be limiting for transcription. However, this conclusion

was based on confocal imaging of the localization of RNAPII

subunits, which cannot be used to distinguish the DNA-bound

and unbound states.8

While our data in budding yeast show that the amount of active

RNAPII increases in larger cells, it does not scale in direct pro-

portion with cell size so that larger cells exhibited systematically

larger deviations from the amount of RNAPII engaged on the

genome predicted by titrated factor models. This observation

led us to propose a dynamic equilibrium model in which the

loading of RNAPII on the genome is determined by mass action

kinetics with a defined on-rate kon, which is independent of cell

size (Figures 3 and 4). The size independence of kon is consistent

with ourmeasurements showing that there are nomajor changes

in chromatin accessibility as cells grow larger (Figure 5). In the

dynamic equilibriummodel, newly synthesized RNAPII increases

its free nucleoplasmic concentration as a cell grows. This drives

more polymerase onto the genome, thereby establishing a new

equilibrium between the bound and unbound RNAPII popula-

tions at the increased size. The increase in free nucleoplasmic

RNAPII concentrations is a combined effect of the underlying

equilibrium kinetics and the modest decline in the nuclear-to-

cell volume ratio in budding yeast, which occurs as cells increase

in size.21 We note that a similar decline in the nuclear-to-cell vol-

ume ratio is observed in other cell types.30 While our model

quantitively predicts the relationships between RNAPII occu-

pancy, cell size, nuclear size, and ploidy (Figures 3 and 4), it is un-

clear whether RNAPI and RNAPIII activities are governed in a

similar way or whether additional regulatory inputs are involved

in the scaling of rRNA and tRNA production. Investigating this

will be an important next step toward a complete picture of

how biosynthesis and cell size are coordinated.

mRNA concentrations are buffered in larger cells by
feedback on mRNA turnover
While our dynamic equilibrium model successfully accounts for

the size-dependent increase in RNAPII loading that we have

quantified, this alone is insufficient to explain the scaling of

mRNA amounts. This is because global mRNA concentrations

are not appreciably diluted as RNAPII loading first deviates

from proportional scaling. This observation led us to identify a

reduction in mRNA turnover in larger cells as a secondary pro-

cess promoting mRNA scaling with size (Figure 6). If mRNA

half-lives were independent of cell size, as previously thought,6–8

mRNA concentrations would decrease faster in larger cells than

we observed. Thus, mRNA stability increases in larger cells to

partially compensate for the sub-linear size dependence of tran-

scription (Figure 6). Taken together, our data show how limiting

RNAPII acts in concert with feedback on mRNA stability to in-

crease mRNA amounts nearly in proportion to cell size so that
Cell 186, 5254–5268, November 22, 2023 5263



Figure 7. Summary schematic

A dynamic equilibrium drives increase loading of limiting RNAPII onto the

genome in larger cells, resulting in a sub-linear increase in transcription with

cell size. Feedback on mRNA decay increases mRNA stability in larger cells to

partially compensate for the sub-linear transcriptional trend, thereby extend-

ing the range of sizes over which mRNA concentrations are close to constant.
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concentrations remain closer to constant as cells grow larger

(Figure 7).

We propose that the adjustment in mRNA turnover rates in

larger cells is driven by a form of feedback. The presence of

compensatorymodulation ofmRNAstability is highly reminiscent

of the previous observations, in both yeast and human cells, that

pertubations affecting transcription are buffered by a decrease

in mRNA turnover.9,31–37 This is most dramatically seen in a

recent study that examined global transcription rates and

RNA concentrations in a genome-wide small interfering RNA

(siRNA) screen. While perturbations affecting transcription were

numerous, thesedidnot result in changes toRNAconcentration.9

Thus, growing larger andperturbation to transcriptionboth elicit a

similar feedback effect to buffer mRNA concentrations. Consis-

tent with this, we observed that yeast cells of the same size

with quantitative differences in global RNAPII occupancy also

show corresponding changes in mRNA stability. Thus, we antic-

ipate that the feedback that maintains mRNA concentrations in

growing cells and in response to transcriptional mutations arises

from the same underlying molecular mechanism. Indeed, natural

variations in cell size may provide the physiological context for

which this mRNA stability feedback first evolved.

We note that while previous studies have reported no obvious

size-dependent changes in mRNA turnover for a handful of

candidate transcripts,6–8 these studies have relied on transcrip-

tional inhibitors such as thiolutin or actinomycin D. Since global

transcriptional inhibition severely reduces mRNA turnover rates,

it is not possible to use these data to quantitively evaluate the

size-dependent changes in mRNA turnover of unperturbed and

actively transcribing cells.
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Transcriptional scaling and optimal size ranges for
cellular fitness and function
While themechanisms we identify here work to keepmRNA con-

centrations close to constant at physiological sizes, the scaling

of macromolecule amounts with cell size breaks down when

cells grow excessively large. This causes global RNA and protein

concentrations to decline, effectively diluting the cytoplasm.11

Very large cell size is also associated with a decline in many as-

pects of cellular physiology, including reduced growth rate,

attenuated signal transduction, and defective conditional gene

expression programs.11 In addition, the fact that proliferation is

attenuated by increased cell size has recently been isolated as

a causal contributor to senescence, the tumor suppressive state

of irreversible cell-cycle exit characterized by massive cell

enlargement.11,13,14,38,39 Moreover, stem cells are among the ti-

niest in the body, but they tend to enlarge as an organism

ages40–42 and naturally or artificially enlarged hematopoietic or

intestinal stem cells accelerate the aging-associated decline in

stem cell function.40

The size-dependent patterns of global RNA and protein

scaling are likely to be important for determining these optimal

and non-optimal size range in different circumstances. How-

ever, it has not previously been established why cells cannot

scale biosynthesis with cell size above this upper size limit.

Our data provide a quantitative explanation for this, as we

observed that RNAPII recruitment to the genome does not in-

crease in direct proportion to cell size and eventually reaches

a plateau (Figures 1 and 3). The plateau does not arise because

of the saturation of the genome with RNAPII, as has been pre-

viously suggested,16 but is instead a natural consequence of

the mass action equilibrium kinetics that govern RNAPII

loading. As cells grow larger, there is a progressively more pro-

nounced divergence from a proportional relationship between

cell size and global transcription. Initially, global mRNA concen-

trations are not meaningfully affected because the sub-linear

transcriptional scaling is buffered by feedback on mRNA decay

rates to stabilize the transcriptome in larger cells. However, this

balancing act between global transcription and mRNA decay

slowly breaks down as the feedback on mRNA stability is no

longer able to effectively compensate for the ever-increasing

divergence between transcription and cell size. We speculate

that the upper cell size limit on cell function corresponds to

the point at which increased transcription and RNA turnover

regulation can no longer keep RNA concentrations close to

constant. Consistent with this, doubling the ploidy increases

the size-dependent loading of RNAPII onto the genome

(Figures 4D–4F) and increases the upper cell size at which

cells can function and grow efficiently.11 This also provides a

simple rationalization as to why polyploidy is commonly

coupled to increased cell size in nature; namely, polyploidy is

a simple route to promote efficient cellular biosynthesis in

bigger cells by scaling transcription with cell size over a wider

size range.

Limitations of the study
One unanticipated finding of our work is the role of mRNA

degradation alongside transcription for mRNA size scaling.

Here, we have focused on the mechanisms responsible for
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global transcriptional changes with cell size, and so an important

unresolved question is how, mechanistically, is global mRNA

degradation modulated to buffer mRNA concentrations? We

suggest this is via some form of feedback that might work by

sensing cytoplasmic mRNA concentrations. However, we have

not tested this directly and are yet to identify which steps of

mRNA degradation are affected or which enzymes and regula-

tors are responsible. A second limitation is that our study is

focused on the scaling of total mRNA. However, it is also well es-

tablished that individual transcripts can be uncoupled from these

global trends to decrease or increase their concentrations with

cell size. These behaviors are known as sub- and super-scaling,

respectively.13,43–45 Our modeling suggests that one feasible

mechanism is that the promoters of highly expressed genes

could start to saturate in larger cells (Figure 4), whichmay explain

why highly expressed genes such as the histones sub-scale.43,46

However, this does not satisfactorily explain how low-expressed

transcripts such as the cell-cycle inhibitor WHI5 are sub-

scaling43,47–49 or how super-scaling trends arise.
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anti-H4 Abcam Cat#ab10158; RRID:AB_296888

anti-H4K9ac Abcam Cat#ab4441; RRID:AB_2118292

anti-H3K56ac Millipore Cat#07-677; RRID:AB_390167

anti-H3K4me1 Abcam Cat#ab8895; RRID:AB_306847

anti-H3K4me2 Abcam Cat#ab7766; RRID:AB_2560996

anti-H3K4me3 Abcam Cat#ab1012; RRID:AB_442796

anti-H3K79me2 Abcam Cat#ab3594; RRID:AB_303937

anti-H3K79me3 Abcam Cat#ab2621; RRID:AB_303215

anti-H3K36me2 Abcam Cat#ab9049; RRID:AB_1280939

anti-H3K36me3 Abcam Cat#ab9050; RRID:AB_306966

anti-H3K18ac Abcam Cat#ab1191; RRID:AB_298692

anti-H3K27ac Millipore Cat#07-360; RRID:AB_310550

anti-H4K16ac Millipore Cat#07-329; RRID:AB_310525

Chemicals, peptides, and recombinant proteins

Beta-estradiol MP Biomedicals Cat#0210165605

Anhydrotetracycline Cayman Chemical Cat#10009542

Rapamycin Cayman Chemical Cat#13346

Critical commercial assays

NEBNext Ultra II DNA Library Prep kit NEB Cat#E7645

NEBNext Enzymatic Methyl-seq Kit NEB Cat#E7120

NEBNext Poly(A) mRNA Magnetic Isolation Module NEB Cat#E7490

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina NEB Cat#E7760

Click-iT Nascent RNA Capture Kit Invitrogen Cat#C10365

Dynabeads MyOne Streptavidin T1 Invitrogen Cat#65601

Deposited data

ChIP-seq data This study GEO: GSE242874

RNA-seq data This study GEO: GSE242874

Experimental models: Organisms/strains

S. pombe: PN10597: h- leu1-32::pFS181[adh1 hENT1::leu1+]_

his7336::pJL218[adh1-hsvTK::his7+]

Nurse lab PN10597

S. pombe: MSsp109: h- Rpb1-3xFlag::KanMX6 This study MSsp109

C. glabrata: MS99: WT Doncic lab MS99

S. Cerevisiae: W303 and derived strains This study See Table S1 for strain list

Software and algorithms

Bowtie (v.1.0.1) Langmead et al.50 N/A

eXpress (version 1.5.1) Roberts and Pachter 51 N/A

Trackmate Tinevez et al.52 N/A

Code for the dynamic equilibrium model This study https://doi.org/10.5281/zenodo.8327425

Code for the stochastic simulations of RNAPII transcription

at a representative gene

This study https://doi.org/10.5281/zenodo.8327425
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jan Sko-

theim (skotheim@stanford.edu).

Materials availability
All plasmids and strains generated in this study are available from the lead contact upon request without restriction.

Data and code availability
All sequencing data associated with this study are available at the GEO repository and assigned accession number GEO:

GSE242874. Original code (i.e., the modelling and simulations) has been deposited at Zendo: https://doi.org/10.5281/zenodo.

8327425. Any additional information required to reanalyze the data reported in this paper is freely available from the lead contact

upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Yeast genetics
All S. cerevisiae budding strains used in this study are in theW303 background. Full genotypes of all S. cerevisiae strains used in this

study are listed in Table S1. Lithium acetate based transformation was used for S. cerevisiae and S. pombe strain construction.

WHI5 induction strains (MS63, MS73 & MS96) are constructed to express WHI5 from a beta-estradiol responsive promoter

(LexOPr-WHI5 construct).

Strains used for G1 cyclin shut-off (MS54, MS64, MS65, MS66, MS67 & MS95) are modifications of a previously described G1

cyclin shut-off strain.53

Anchor away strains (all strains listed in Table S1 between MS202 andMS299) are derived from previously described anchor away

strains.20 Diploid strains were constructed by crossing the respective parent haploid strains listed in Table S1 and then selecting on

SCD -LEU -TRP.

Strains for EU-pulse chase experiments (MS95 &MS96) were constructed by genomic integration of pMS282 into theURA3 locus.

pMS282 was constructed by inserting a TEF2pr-HSV-TK and a TEF1pr-hENT1 sequence into the SIVu backbone.54 This allows the

uptake and incorporation of EU (5-ethynyl uridine) in yeast. In MS96 the URAmarker was then removed by Cre-LoxP recombination.

Yeast strains MS627-MS635 were used for the conditional overexpression of individual mNeonGreen tagged RNAPII subunits

(Figures 2E and S3I) and were constructed as follows. pMS153, which encodes the WTC846 TET transcription factor system

described in Azizoglu et al.,55 was linearized and integrated into theHIS3 locus. Each RNA polymerase II subunit was then separately

sub-cloned with a C-terminal mNeonGreen tag into the SIVu backbone54 with an upstream WTC846 TetPr55 and a downstream

ADH1 terminator. Each plasmid (pMS200-pMS208) was then linearized and integrated into the URA3 locus. 3 out the 12 RNA poly-

merase II subunits were not tested (RPB2, RPB5 and RPB12) because C-terminal tagging of the endogenous gene locus was either

inviable or had a significant growth defect.

Yeast strain MS698 was used for the simultaneous conditional overexpression of all RNA polymerase II subunits (Figures 2F, 2G,

S3I, and S3J) and was constructed as follows. First a plasmid (pMS152), which encodes the WTC846 TET transcription factor sys-

tem,55 was integrated into the HO locus to make strain MS46. Four plasmids (pMS226, pMS230, pMS231 and pMS232) were then

constructed, each based on a different single integration vector (SIV) backbone54 with three different RNAPII subunits cloned in tan-

dem into the multi-cloning site with an upstream WTC846 TetPr55 and a downstream ADH1 terminator. The RPB3 construct (in

pMS226) was also fused via a linker to themNeonGreen fluorescent protein. Each plasmid was linearized and sequentially integrated

into the URA3, HIS3, TRP1, and LEU2 loci, respectively, of MS46 and then WHI5 was deleted using a hygromycin resistance

cassette. A control strain (MS656) was constructed in the same manner as MS698 but using four integration vectors each encoding

mNeonGreen expressed from the WTC846 TetPr with an ADH1 terminator downstream (pMS198, pMS233, pMS234 and pMS235).

Yeast media, culturing conditions and drug treatments
Cells were cultured in synthetic complete media (SC) with either 2% glucose, 2% glycerol + 1% ethanol, or 2% raffinose as a carbon

source. Unless stated otherwise, SC + 2% glycerol + 1% ethanol was used for all experiments examining cell size mutants because

these conditions increase the range in cell size between mutants. SC + 2% glycerol + 1% ethanol was also used for the elutriation

experiments (see STAR Methods section: centrifugal elutriation G1 arrest experiments) and G1 arrest experiments (see STAR

Methods section: G1 arrest experiments). For GAL shut-off experiments cells were initially cultured in SC + 2% raffinose

(see STAR Methods section: RT-qPCR mRNA decay experiments ). For EU pulse-chase experiments, cells were initially cultured

in SC + 2% glycerol + 1% ethanol but uracil was omitted from the media and 100 nM uridine was added (see STAR

Methods section: EU (5-ethynyl uridine) pulse-chase RNA-seq to determine global mRNA turnover rates). All other experiments

were performed in SC + 2% glucose. Unless stated otherwise, cells were grown at 30�C, cultured below OD600 = 0.45, and collected

at an OD600 between 0.2 and 0.4.
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Low, medium, and high expression of WHI5 from MS63 or MS96, was induced by growing cells in 0nM, 3.5-10 nM, or 16-30 nM

beta-estradiol (MP Biomedicals), respectively, for >36 h at which point cell size is at a steady state. For TETpr induction, cells were

treated with 50 ng/ml anhydrotetracycline for 45 min. For anchor away experiments, cells were treated with 1 mg/ml rapamycin for

either 100 min (all samples in Figure 2D and S3B except Rpb1-FRB / WT) or 40 min (Rpb1-FRB / WT samples in Figure 2D and all

samples in Figures S3C–S3H). The shorter 40-min rapamycin treatment was used to avoid potential compensation in Rpb1 protein

amounts following 50% nuclear depletion.

For all SILAC (Stable Isotope Labeling by Amino acids in Cell culture) experiments (Figures 2B and S2C–S2E) SILAC compatible

strains (i.e., the lys1D arg4D CAN1+ background) were grown for more than 10 generations in SILAC media supplemented with light

(L-Arginine (unlabeled) & L-Lysine (unlabeled)), medium (L-arginine:HCL [U13C6] and L-lysine:2HCL [4,4,5,5-D4], or heavy (L-argini-

ne:HCL (13C6, 15N4) and L-lysine:2HCL (13C6, 15N2)) amino acid isotopes (Cambridge Isotope Laboratories Inc.).

METHOD DETAILS

Centrifugal elutriation G1 arrest experiments
For G1 arrest elutriation experiments (Figures 3A, 3B, 3F, 4D, 4E, 6A, and S4A–S4J), a G1 cyclin shut-off strain (cln2D cln3D LexOpr-

CLN1: (strains = MS64, MS67 or MS68) was grown in SC + 2% glycerol + 1% ethanol with 15 nM beta-estradiol. SC + 2% glycerol +

1% ethanol media was used as this allows for the collection of the smallest G1 cells without carbon source removal or cooling cells to

4�C during elutriation. The beta-estradiol is to induce expression of CLN1 from a synthetic beta-estradiol responsive promoter

(LexOpr-CLN1). Small G1-arrested cells were then collected as follows. 2 liters of culture were grown at 30�C to OD600 �0.7 and

then washed twice on a filter membrane in fresh pre-warmed media lacking beta-estradiol and re-inoculated into 4 liters of media

lacking beta-estradiol at 30�C and grown for 2 h. Cells were then collected on a filter membrane and resuspended in 100 ml fresh

room temperaturemedia. Cells were then sonicated (3 x 20 seconds, 4min between sonication cycles) and loaded into a JE 5.0 elutri-

ation rotor fitted for a two-chamber run (Beckman Coulter) in a J6-MI Centrifuge (2.4k rpm, 23�C). The elutriation chambers were pre-

equilibrated and run with room temperature SC + 2%glycerol + 1% ethanol. The pump speed was gradually increased until small G1

cells were collected with minimal additional debris. The smallest G1 fractions were then combined and concentrated on a filter mem-

brane, resuspended at 30�C in SC + 2% glycerol + 1% ethanol media, and split into 7 cultures. Each culture was arrested in G1 for

different periods of time before fixation and collection for ChIP-seq. At the point of splitting into 7 cultures, the OD600 of each culture

was adjusted, according to its arrest time, so that each culture was at OD600 �0.3 at the point of fixation and collection. For both the

haploid and diploid experiments, two independent biological replicates were performed. A control experiment was also conducted

where aWT strain (i.e., not theG1 cyclin shut-off strain) was subjected to the same procedure, but after elutriation all cells were recov-

ered from the elutriation rotor resulting in an asynchronous population that does not increase in cell size. Samples were then collected

at the same timepoints used for theG1 arrest, this therefore controls for all possible artefactual effects associated with handling of the

cultures during elutriation.

G1 arrest experiment
For the G1 arrest experiment without elutriation (Figures 3E, 6D, 6E, 6H, S4M, S7H, S7I, and S8F), a G1 cyclin shut-off strain was

grown in SC + 2% glycerol + 1% ethanol with 15 nM beta-estradiol. The beta-estradiol is to induce expression of CLN1 from a syn-

thetic beta-estradiol responsive promoter (LexOpr-CLN1). Cells were grown to OD600 �0.3 and washed 3x on a filter membrane in

pre-warmedmedia lacking beta-estradiol to inhibit G1 cyclin expression and initiate theG1 arrest. Cells were then collected when the

mean cell volume reached the indicated size.

Cell size measurements
Cell volume was measured using a Beckman Coulter Z2 counter. Cells were placed on ice, sonicated, and then diluted in 10-20 ml of

Isoton II diluent (Beckman Coulter #8546719) before measurement.

DNA content analysis
DNA content was determined by flow cytometry and was used to estimate genome copy number per cell for cell size mutants. 0.4 ml

culture was added to 1 ml 100% 4�C ethanol and stored at 4�C. Cells were pelleted (13k rpm, 2 min), washed, and resuspended in

50 mMSodium Citrate (pH 7.2). Cells were then incubated with 0.2 mg/ml RNAseA (overnight, 37�C) and then treated with 0.4 mg/ml

proteinase K (1-2 h, 50�C) before addition of 25 mMSytox Green (ThermoFisher Scientific). Cells were then sonicated, and DNA-con-

tent was analyzed for >10,000 events on either a BD Biosciences FACScan Analyzer or an Attune NxT flow cytometer. Genome copy

number per cell was then calculated after gating for single cells (FlowJo) andwas used to convert occupancy per genome determined

by spike-in normalized ChIP-seq to occupancy per cell (for details see STAR Methods section: spike-in normalized ChIP-seq).

Flow cytometry measurements of protein levels
Protein levels of C-terminally mNeonGreen-tagged proteins (Figures 2A, 2E, 3E, S3I, and S4M) were quantified using an Attune

NxT flow cytometer. 1 ml of cells were gently sonicated and placed on ice before acquisition of data from >10,000 cells per sample.

Single cells were gated based on FSC and SCC (FlowJo). mNeonGreen intensity was measured in the BL1-A channel and cell
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size was approximated using FSC-A. For cycling cells (strains: MS347, MS348, and all strains between MS615 and MS733) the size-

dependent autofluorescence background in the BL1-A channel was determined by measuring an untagged background control

strain (MS1 or MS47) and fitting a robust linear regression to BL1-A vs. FSC-A. This was then used to subtract the interpolated

BL1-A background for each cell based on its FSC-A. For G1 arrested cultures (strains: MS446 & MS447), autofluorescence back-

ground was determined from an untagged strain (MS64) also arrested in G1. For total protein measurements, cells were fixed in

70% ethanol (on ice, 30 min), washed in 1x PBS, stained with a total protein dye (Alexa Fluor 488 NHS Ester; 1 mg/ml) for 1 h, washed

3x in 1xPBS, sonicated, and analyzed.

Assessing efficiency of anchor away nuclear depletion using microscopy
Cells expressing mCitrine tagged Rpb1 or Rpb3 (strains: MS222, MS223 & MS226) were imaged on a wide-field epifluorescence

Zeiss AXIO Observer.Z1 microscope (63X/1.4NA oil immersion objective and a Colibri LED module). To assess the efficiency of an-

chor away nuclear depletion, a single z-plane was imaged after treatment with rapamycin for 1 generation. mCitrine fluorophores

were imaged in the yellow channel (505 nm LED module) and phase contrast images were taken to give cell boundaries. For the im-

ages in Figure S3A, the exposure and contrast were manually adjusted in imageJ individually for each image to allow comparison of

the relative subcellular localization of the signal and is therefore not appropriate for comparing relative total protein intensities.

Nuclear volume measurements during G1 arrest using microscopy
Cells expressing aPUS1-mNeonGreen nuclearmarker56 (strain: MS68) were used to determine the nuclear scalingwith cell size inG1

arrest (Figures 3F and S4H–S4J). Small G1 cells were collected and arrested in G1 as described above (see STAR Methods section:

centrifugal elutriationG1 arrest experiments). Cells were spun down and imaged live at different times during the arrest corresponding

to approximately the same cell sizes as the timepoints for the G1 arrest experiments used to determine RNAPII occupancy presented

in Figures 3A and 3B. Cells were imaged on a wide-field epifluorescence Zeiss AXIO Observer.Z1 microscope (63X/1.4NA oil immer-

sion objective and a Colibri LED module) and 11 z-slices were taken at intervals of 0.35 mm. mNeonGreen was imaged in the yellow

channel (505 nm LEDmodule; 100% intensity; 0.25 second exposure) and phase contrast images were taken to give cell boundaries.

For each image, the most in focus z-plane was determined by manual inspection and used to segment all cells in the image. Auto-

mated segmentation of cell boundaries was performed using Cell-ACDC (default settings) before manual correction of segmentation

errors in Cell-ACDC. Nuclei weremanually segmented from the PUS1-mNeonGreen fluorescence using the napari package (python).

Because the nucleus is not always in the same focal plane as the central plane of the cell, nuclei were individually segmented in the

individual z-plane in which they weremost in focus. Cell volumeswere taken directly from the Cell-ACDC output and nuclear volumes

were estimated as an ellipsoid where the first two axes are the long and short axes of the nuclear mask, and the third axis is themean

of the two measured axes. For all samples, Coulter counter measurements were collected at the same time as cells were imaged. A

linear regression (y=m*x) between the mean cell size of each condition of Coulter counter measurements (x) and microscopy mea-

surements (y) was used to re-scale the microscopy-based volume estimates by a factorm. This ensures the absolute values from the

imaging data are directly comparable to the Coulter counter measurements and can therefore be used for fitting the dynamic equi-

librium model to the ChIP-seq, for which size information is only from Coulter counter measurements.

Spike-in normalized ChIP-seq
The spike-in normalized ChIP-seq protocol was adapted from Hu et al.18 S. cerevisiae cultures were combined with spike-in cultures

(C. glabrata or S. pombe), mixed, and then immediately fixed (< 5 seconds after mixing) by the addition of formaldehyde to a final

concentration of 1% (15 min). Cells were then quenched with 0.125 M glycine (5 min), washed twice in cold PBS, pelleted, snap-

frozen, and stored at �80�C.
Sample and spike-in were mixed at a ratio between 1:2 and 1:5 by OD600. For most experiments C. glabrata (grown in the same

media conditions as S. cerevisiae) was used as the spike-in. For experiments where anti-FLAG ChIP was performed, the S. pombe

strain MSsp109 (Rpb1-3xFLAG) was grown in EMM4S and used as the spike-in. Within each batch of samples, the same spike-in

culture was used for all samples and all samples were collected at effectively the same time (a 20-30 second interval between

each sample and no more than 8 samples were collected in each batch). The only exception to the above is for the elutriation G1

arrest experiments where different S. cerevisiae cultures could not be mixed with the spike-in at the same time (because different

samples required different arrest durations). For this experiment, S. cerevisiae and C. glabrata were therefore separately fixed,

quenched, washed, and then mixed in PBS before being pelleted and snap frozen.

For the experiments in Figures 2, 3, and 4, a background sample was included within each batch of experiments to determine the

S. cerevisiae background-to-spike-in ratio. For anti-Rpb1 ChIP, the background was determined using a sample where TBP was

conditionally depleted from the nucleus (MS205 or MS289; TBP-FRB treated with rapamycin 60-65 min for SC + 2% glucose or

90 min rapamycin for SC + 2% glycerol + 1% ethanol) to block Rpb1 loading on the genome. For anti-FLAG ChIP, the background

was determined using an untagged sample with no FLAG epitope (MS207). Background samples were otherwise collected and pro-

cessed as other samples. See STAR Methods section: spike-in normalized ChIP-seq analysis for how this is used to calculate the

global occupancy value for each ChIP.

Pellets were thawed and lysed in 300 ml FA lysis buffer (50 mMHEPES–KOH (pH 8.0), 150mMNaCl, 1 mMEDTA, 1% Triton X-100,

0.1% sodium deoxycholate, 1 mM PMSF, Roche protease inhibitor) with �1 ml ceramic beads on a Fastprep-24 (MP Biomedicals).
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The entire lysate was then collected and adjusted to 1 ml before sonication with a 1/8’’ microtip on a Q500 sonicator (Qsonica) for

8-16min (cycles of 10 seconds on and 20 seconds off). The sample tubewas held suspended in a�20�C80%ethanol bath to prevent

sample heating during sonication. Cell debris was then pelleted, and the supernatant was retained for ChIP or input. For each ChIP

reaction, 20 ml Protein G Dynabeads (Invitrogen) were blocked (PBS + 0.5% BSA, incubate 40 min at room temperature), pre-bound

with 5 ml of antibody in PBS (incubate 40 min at room temperature), and washed 2x with PBS before being incubated with 0.5 ml su-

pernatant (4�C overnight). For RNA polymerase II ChIPs, the supernatant was adjusted so 0.5 ml corresponds to 50-100ml of cells at

OD600� 0.35. For histone and histonemodification ChIPs, the supernatant was adjusted so 0.5ml corresponds to 10-25ml of cells at

OD�0.35. See below for a list of antibodies used. After overnight incubation, Dynabeads were washed (5min per wash) 2x in FA lysis

buffer and 3x in high-salt FA lysis buffer (50 mMHepes-KOH (pH 8.0), 500mMNaCl, 1 mMEDTA, 1% Triton X-100, 0.1% sodium de-

oxycholate, 1mMPMSF).ChIPDNAwas theneluted inChIP elutionbuffer (50mMTris-HCl (pH7.5), 10mMEDTA, 1%SDS) at 65�C for

20min. At the same time, 15 ml of input wasmixed directly with 115 ml of ChIP elution buffer. Eluted ChIP DNA or input DNAwere then

incubated to reverse crosslinks (65�C, 5 h) before treatment with RNAse A (37�C, 1 h) and then Proteinase K (65�C, 2 h). DNAwas then

purified using the ChIP DNA Clean & Concentrator kit (Zymo Research). Indexed sequencing libraries were generated using the

NEBNext Ultra II DNA Library Prep kit (NEB #E7645), pooled, and then sequenced by paired-end (2x150bp) Illumina sequencing.

The following antibodies were used for ChIP against the indicated epitopes: anti-Rpb1 clone 8wG16 (mouse, monoclonal, Millipore

# 05-952), anti-Rpb1-S2-P clone 3E10 (rat, monoclonal, Millipore #04-1571), anti-Rpb1-S5-P clone 3E8 (rat, monoclonal, Millipore

#04-1572), anti-FLAG clone M2 (mouse, monoclonal, Sigma-Aldrich #F3165), anti-Histone 3 (rabbit, polyclonal, Abcam #ab1791),

anti-Histone 4 (rabbit, polyclonal, Abcam #ab10158), anti-H3K18ac (rabbit, polyclonal, Abcam #ab1191), anti-H3K27ac (rabbit, poly-

clonal, Millipore #07-360), anti-H4K9ac (rabbit, polyclonal, Abcam #ab4441), anti-H4K16ac (rabbit, polyclonal, Millipore #07-329),

anti-H3K56ac (rabbit, polyclonal, Millipore #07-677), anti-H3K4me1 (rabbit, polyclonal, Abcam #ab8895), anti-H3K4me2 (rabbit,

polyclonal, Abcam #ab7766), anti-H3K4me3 (mouse, monoclonal, Abcam #ab1012), anti-H3K79me2 (rabbit, polyclonal, Abcam

#ab3594), anti-H3K79me3 (rabbit, polyclonal, Abcam #ab2621), anti-H3K36me2 (rabbit, polyclonal, Abcam #ab9049), anti-

H3K36me3 (rabbit, polyclonal, Abcam #ab9050).

Dual enzyme single-molecule foot printing (dSMF)
The protocol for dSMF to measure chromatin accessibility (Figures 5A and 5B) was based on Krebs et al.23 and adapted for yeast as

follows. �1x108 S. cerevisiae cells were pelleted and resuspended in 1 ml digestion buffer (1.4 M sorbitol, 40 mM Hepes-KOH (pH

7.5), 0.5 mMMgCl2, 10mMDTT) andmixed with�1x107C. glabrata cells (spike-in) in 100 ml digestion buffer. Cells were pelleted and

resuspended in 0.5 ml digestion buffer + 0.5 mg/ml 100T Zymolase (MP biomedicals), and then incubated on a shaker (30�C,
10 min, 500 rpm). Cells were then pelleted (5k rpm, 2 min, 4�C), resuspended in 0.5 ml wash buffer (1.4 M sorbitol, 40 mM

Hepes-KOH (pH 7.5), 0.5 mM MgCl2), pelleted again (5k rpm, 2 min, 4�C), resuspended in 0.3 ml ice-cold lysis buffer (10 mM

Tris-HCl[pH7.5], 10 mM NaCl, 3 mM MgCl2, 0.1 mM EDTA (pH 7.5), 0.5% NP-40), and incubated on ice (10 min). Nuclei were

then pelleted (5k rpm, 4 min, 4�C), resuspended in 0.3 ml nuclei wash buffer (10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 3 mM

MgCl2, 0.1 mM EDTA (pH 7.5)), pelleted again, and resuspended in 50 ml 1x reaction buffer (50 mM Tris-HCl (pH 8.5), 50 mM

NaCl, 10mMDTT). Nuclei were then treated with M.CviPI (NEB) and M.SssI (NEB) methyltrasferases as follows. 50 ml cells in M.CviPI

reaction buffer weremixedwith 47 ml M.CviPI reactionmix (50mMTris-HCl (pH 8.5), 50mMNaCl, 10mMDTT, 0.7M sucrose, 1.3mM

SAM, 200 U M.CviPI) and incubated (8 min, 30�C) before mixing with 3 ml M.CviPI boost mix (100 U M.CviPI, 42.5 mM SAM), and re-

turning to incubation (7 min, 30�C). 10 ml M.SssI reaction mix (50 mM Tris-HCl (pH 8.5), 50 mM NaCl, 10 mM DTT, 0.11 M MgCl2,

12.8 mM SAM, 60 U M.SssI) was then added to the 100 ml M.CviPI reaction, mixed, and incubated (8 min, 30�C). The reaction

was then stopped with the addition of 190 ml lysis buffer (from MasterPure Yeast DNA Purification Kit (Lucigen)), and DNA was ex-

tracted with a MasterPure Yeast DNA Purification Kit (Lucigen). Unmethylated cytosines were then deaminated to uracil and indexed

libraries were prepared using the NEBNext Enzymatic Methyl-seq Kit (NEB #E7120) before being pooled and then sequenced by Il-

lumina paired-end (2x150bp) sequencing.

Spike-in normalized RNA-seq to determine global mRNA amount per cell
To determine global mRNA amounts per cell (Figures 6A and S7E), 1 ml of culture (OD600 = 0.2-0.35) was pelleted (30 seconds, 14k

rpm), snap-frozen, and stored at �80�C. 4 independent biological replicates were collected for each condition for the cell size

mutants, while two independent biological replicates were collected for each condition for the haploid elutriation G1 arrest experi-

ment. RNA samples for the haploid elutriation G1 arrest experiment were taken from the same culture as the ChIP-seq samples

(Figures S4A–S4C), while cell size mutants were collected from independent biological experiments (Figures S7A–S7D).

DNA and RNA were separately extracted from each pellet as follows. For each experiment, C. glabrata was used as the spike-in.

C. glabrata was cultured in the same media conditions as S. cerevisiae, pelleted, snap-frozen and stored at �80�C. The C. glabrata

pellet was thawed and resuspended in ice-cold PBS and 50 ml was then added to each S. cerevisiae pellet on ice so that the

S. cerevisiae-to-C. glabrata ratio was approximately 2:1 by OD600. The mixture of S. cerevisiae and C. glabrata in PBS was then

quickly mixed. 20 ml was removed for gDNA extraction (see below) and 300 ml TRI Reagent (Zymo Research) was added immediately

to the remaining �30 ml for RNA extraction.

Cells in TRI Reagent were lysed by bead beating using a Fastprep 24 (4�C, settings: 5.5 m/s, 1 x 35 seconds). Cell debris was pel-

leted (14k rpm, 1 min) and the supernatant recovered. RNA was then extracted using the direct-zol RNA microprep kit (Zymo
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Research). mRNA was enriched using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, #E7490) and NEBNext Ultra II

Directional RNA Library Prep Kit for Illumina (NEB, #E7760) was then used to prepare libraries for paired-end (2x150bp) Illumina

sequencing (Novogene). More than 10 million reads were sequenced per sample.

Separately, the 20 ml of cells for gDNA extraction was added to 110 ml YD Digestion Buffer (YeaStar Genomic DNA Kit; Zymo

Research) and gDNA was extracted according to Protocol 1 for the YeaStar Genomic DNA Kit (Zymo Research). DNA concentration

was then determined by Qubit and gDNAwas prepared for sequencing by tagmentation with custommade Tn5.57 Two tagmentation

reactions were performed for each sample, each with a slightly different DNA-to-Tn5 ratio: (A) 4 ng DNA, 4 ml Tn5, 1x TD buffer (50 ml

reaction) and (B) 4 ng DNA with 2 ml Tn5, 1x TD buffer (25 ml reaction). Tagmentation reactions were incubated (30 min at 37�C), and
then cleaned up (MinElute PCR Purification Kit, Quiagen). Tagmented DNA was then amplified (7 cycles) with NEBNext High-Fidelity

2X PCRMasterMix (M0541) and indexed as previously reported.58 Librarieswere then cleaned up using AMpure XP beads (Beckman

Coulter), pooled, and sequenced by paired-end (2x150bp) Illumina sequencing (Novogene) at >1 million reads per sample.

EU (5-ethynyl uridine) pulse-chase RNA-seq to determine global mRNA turnover rates
Strains expressing TEF2pr-HSV-TK and TEF1pr-hENT1 (MS95 & MS96) were used for pulse-chase experiments to allow rapid and

efficient uptake of the uridine analogue EU (5-ethynyl uridine). MS95 was used to compare global mRNA turnover between low and

highWHI5 induction conditions (Figures 6C and S7G). MS96 was used to compare global mRNA turnover between 1.5 hr and 7 hr G1

cyclin shut-off (Figures 6D, 6E, S7H, and S7I). Cells were grown in SC + 2% glycerol + 1% ethanol - uracil + 100 mM uridine. 5 mMEU

(MS95) or 10 mMEU (MS96) was added to cells at OD600�0.2 for 1 h (i.e., the pulse). Cells were then washed 3x in pre-warmedmedia

lacking EU on a filter membrane (total wash duration = 3-4min) and re-inoculated into pre-warmedmedia lacking EU at OD600�0.3 in

a shaking water bath (i.e., the chase). Samples were then collected at timepoints up to 36 min after the wash was completed: at the

respective timepoint, 1 ml cells were pelleted (30 seconds, 14k rpm), snap-frozen, and stored at �80�C. For each culture, a no-EU

background sample was also collected before the EU pulse. Two independent biological replicates were performed for low and high

WHI5 induction experiments, and 1 biological replicate was performed for the 1.5 h and 7 h G1 cyclin shut-off experiments. As a

spike-in, the S. pombe strain PN10597 (h- adh1pr-HSV-TK adh1pr-hENT1) was cultured in EMM media to OD600 �0.2, 200 mM

EU was then added for 2 h before 12ml cells were pelleted, snap-frozen, and stored at �80�C.
RNAwas then extracted and processed as follows. See Figure S7F for workflow schematic. The S. pombe pellet was resuspended

in TRI Reagent (Zymo Research) and was added to each S. cerevisiae pellet so that the S. cerevisiae-to-S. pombe ratio was approx-

imately 3:2 by OD600. Cells in TRI Reagent were lysed by bead beating using a Fastprep 24 (4�C, settings: 5.5 m/s, 1 x 35 seconds).

Cell debris was pelleted (14k rpm, 1min) and the supernatant recovered. RNAwas then extracted using the direct-zol RNAmicroprep

kit (Zymo Research). 5 mg RNA was then biotinylated by click reaction using the Click-iT Nascent RNA Capture Kit (Invitrogen). Bio-

tinylated RNA was then precipitated, resuspended in 50 ml nuclease free water, and used for mRNA enrichment with the NEBNext

Poly(A) mRNA Magnetic Isolation Module (NEB, E7490). mRNA was eluted from the Poly(A) beads in 14 ml Tris buffer. 12.3 ml

mRNA was used to enrich EU-mRNA and 1 ml was used directly for RNA-seq as the input sample.

EU-mRNAwas enriched using theClick-iT Nascent RNACapture Kit (Invitrogen #C10365) with the followingmodifications to the kit

protocol. 5 ml Dynabeads MyOne Streptavidin T1 (Invitrogen #65601) per sample were blocked and washed as follows. Beads were

washed 1x 50 ml wash buffer 2 (kit component J) and then resuspended in the 50 ml wash buffer 2 + 5% (v/v) Denhardt’s reagent and

incubated at room temperature (10 min). Blocked beads were then washed 3x in 50 ml wash buffer 2 and resuspended in 5 ml wash

buffer 2. 12.5 ml Click-iT RNA binding buffer (kit component G) and 0.2 ml RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen

#10777019) was then added to 12.3 ml mRNA, mixed, and incubated at 70�C (5 min). 5 ml of blocked and washed beads were then

added to each 25 ml mRNA reaction, mixed, and incubated on a rolling mixer at room temperature (30min) to bind biotinylated mRNA

to the Streptavidin beads. Beads were then washed 4x with 100 ml wash buffer 1 (kit component I), 2x 100 ml SDS wash buffer (1%

SDS, 5mMTRIS-HCL, 1mMEDTA), 4x with 100 ml wash buffer 2 and resuspended in 5 ml wash buffer 2. The 5 ml of beads was imme-

diately used as the input for cDNA synthesis on the beads using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina

(NEB, #E7760). cDNA synthesis reactions were mixed by pipetting every 10 min on the thermocycler to keep Streptavidin beads

in suspension. Beads were then removed prior to the cDNA clean-up step. For the input mRNA samples, 1 ml of the biotinylated

mRNA (i.e., no EU enrichment) was used directly for cDNA synthesis and library prep.�10million reads (EU-enrichment) or�3million

reads (input) were then sequenced by paired-end (2x150bp) Illumina sequencing (Novogene).

RT-qPCR mRNA decay experiments
To quantify MET3 and MET17 decay rates (Figures 6F and S8), cells were grown in SC + 2% glycerol + 1% ethanol media lacking

methionine. 1 mM methionine was then added to repress MET genes.59 To quantify GAL1, GAL7 and GAL10 decay rates

(Figures S7K–S7M), cells were grown in SCmedia + 2% raffinose before addition of 2%galactose for 75min. Cells were thenwashed

(1x) and resuspended in SC + 4%glucose.60 1ml of culture was pelleted (13k rpm, 30 seconds, 4�C) at the indicated time points after

either methionine addition (forMET3 andMET17) or after the start of the wash in SC + 4% glucose (forGAL1,GAL7 andGAL10). The

pellet was immediately snap frozen in liquid nitrogen at t + 1 min and stored at -80�C. Cells were subsequently thawed in 300 ml TRI

Reagent (Zymo Research) and lysed by bead-beating using a Fastprep 24 (4�C, settings: 5.5 m/s, 1 x 30 seconds). Cell debris was

pelleted (13k rpm, 2 min) and the supernatant recovered. RNA was then purified using the direct-zol RNA microprep kit (Zymo

Research #R2061) and cDNA was then synthesized using 800 ng of RNA with iScript Reverse Transcription Supermix for
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RT-qPCR (BioRad #1708841). cDNA was used for qPCR with iTaq Universal SYBR Green Supermix (BioRad #1725121). Two bio-

logical replicates were performed per experiment and 2-4 technical replicates were performed per biological replicate. All values

were normalized toACT1 and then rescaled so that the first time point is set = 1. Decay rates were calculated from a one-phase expo-

nential decay fit to the data (Prism 6; weighting = 1/Y, plateau = 0). For the purposes of fitting, only timepoints between 6 min and

21 min were used because 6 min is the earliest timepoint at which transcription was determined to be fully inactivated at MET3

and MET17 by anti-Rpb1 ChIP-qPCR (Figure S8D).

Single-molecule imaging microscopy
For the experiments shown in Figures 4A–4C, 1ml culture (SC + 2%glucose) was pelleted (4k rpm, 1min) and resuspended in 0.5 ml

fresh media. JF-PA549 (Janelia Farms photoactivatable 549) dye was added at a final concentration of 75 nM, except for MS162

(HTB1-HALO), where a concentration of 10 nMwas used to compensate for the higher protein copy number. Cultures were incubated

with dye (30�C,mixing at 550 rpm) for 40min. Cells were thenwashed (3x) in freshmedia to remove unbound dye and resuspended in

20 ml media, 4 ml of which was placed on an agarose pad. The agarose pad wasmade by mixing 0.5 ml 2% agarose Optiprep mixture

(20mg agarose in 1ml Optiprep (Sigma), heated to 90�C)with 0.5ml 2xmedia. Approximately 110 ml of this mixture was placedwithin

a Gene Frame (Thermo Scientific), with excess being removed with a KimWipe. Prior to imaging, we waited �15 min to let any re-

maining unbound dye be released from the cells. Coverslips were cleaned using 2% VersaClean detergent solution overnight.

The coverslips were then washed with MilliQ water 3 times, sonicated in acetone for 30 min, washed with MilliQ water 3 times,

washed in methanol (flame excess from coverslips), and then placed in a Plasma Etch plasma oven for 10 min.

Imaging was done at 23�C using a Leica DMi8 inverted microscope with a Roper Scientific iLasV2 (capable of ring total internal

reflection fluorescence (TIRF)) and an Andor iXon Ultra 897 EMCCD camera. An Andor ILE combiner was used and the maximum

power from the optical fiber was 100 mW for the 405 nm wavelength, and 150 mW for the 488 nm and 561 nm wavelengths. The

iLasV2 was configured for HILO (ring highly inclined and laminated optical sheet), selective illumination and single-molecule sensi-

tivity. Metamorph software was used to control acquisition. A Leica HCX PL APO 100x/1.47 oil immersion objective was used with

100 nm pixel size. Z-stacks were determined using a PIano piezo Z controller. Single-particle photoactivated localizationmicroscopy

(sptPALM) experiments were performed by using continuous activation ofmolecules with low power (0.1% – 10% inMetamorph soft-

ware) 405 nm light to photo activate�1molecule/cell, with simultaneous fast-exposure (10 ms) illumination with 561 nm light (70% in

Metamorph software) to image molecules. A bright field and a 561 nm z-stack of 10 mm (0.5 mm step size) were taken and used to

identify the unbudded G1 phase cells and to quantify nuclear area using the Pus1-GFP nuclear marker.

Chromatin enrichment for Proteomics (ChEP)
For SILAC (Stable Isotope Labeling by Amino acids in Cell culture) experiments (Figures 2B and S2C–S2E), SILAC compatible strains

were labeledwith amino acid isotopes (for details see STARMethods section: Yeastmedia, culturing conditions and drug treatments)

before collection. The ChEP chromatin enrichment protocol was based on Kustatscher et al.,19 and adapted for yeast as follows.

Cells were fixed by addition of formaldehyde to a final concentration of 1%, shaken for 15 min, quenched with 0.125 M glycine

(5 min), washed twice in cold PBS, pelleted, snap-frozen, and then stored at �80�C. Each pellet contained cells from 500 ml culture

at OD600� 0.4. Pellets were thawed and lysed in 300 ml FA lysis buffer (50 mMHEPES–KOH (pH 8.0), 150mMNaCl, 1 mMEDTA, 1%

Triton X-100, 0.1% sodium deoxycholate, 1 mMPMSF, 1x Roche protease inhibitor) with�1ml ceramic beads on a Fastprep-24 (MP

Biomedicals). The entire lysate was then collected and adjusted to 1.5 ml.

For the cytoplasmic fraction (CYTO), 50 ml lysate was adjusted to 0.5 ml, pelleted (4�C, 14k rpm, 10 min), and the supernatant was

then taken as the cytoplasmic fraction. At this stage, protein concentration was determined by Bradford before Laemmli sample

buffer was added to a 1x final concentration and the sample was then boiled to reverse crosslinks (99�C, 30 min). For whole cell

extract (WCE), 50 ml lysate was adjusted to 0.5 ml and then sonicated with a 1/800 microtip on a Q500 sonicator (Qsonica) for

5 min (Amp = 25%, 10 seconds on, 20 seconds off) to solubilize chromatin. Laemmli sample buffer was added to a 1x final concen-

tration, and the sample was then boiled to reverse crosslinks (99�C, 30 min) before pelleting (4�C, 14k rpm, 10 min). The supernatant

was then taken as theWCE.WCE protein concentration was assumed to be the same as was determined for the cytoplasmic fraction

for the same sample.

For chromatin fractions, the lysate was pelleted (4�C, 14k rpm, 30 min) and supernatant was removed and discarded. The pellet

was retained and either processed with extraction method A (high purity, low yield) or extraction method B (high purity, low yield). For

extraction method A, the fuzzy translucent top layer (high purity chromatin) of 3 pellets was resuspended in 300 mL FA lysis buffer

without disturbing the lower opaque portion of the pellets and combined to a single fresh tube that was adjusted to 1.45 ml. For

extraction method B, 1 entire pellet (top and bottom layer) was resuspended in FA lysis buffer to a final volume of 1.45 ml. Extractions

A and B were then processed identically for all subsequent steps. Chromatin was first treated with 100 mg/ml RNaseA (37�C,
15 min) and then pelleted (4�C, 14k rpm, 30 min). The supernatant was then discarded before the pellet was resuspended in

300 mL SDS buffer (4 % SDS, 10 mM EDTA, 25 mM Tris-HCl (pH 7.5), 1 mM PMSF, 1x Roche protease inhibitor) and incubated

at room temp (10 min). 1 ml urea buffer (8 M urea, 1 mM EDTA, 10 mM Tris-HCl (pH 7.5), 1 mM PMSF, 1x Roche protease inhibitor)

was then added and the sample was gently mixed. The sample was then pelleted (18�C, 14k rpm, 30 min) and the supernatant was

discarded. The pellet was resuspended in 300 ml SDS buffer mixed with 1 ml urea buffer before being again pelleted (18�C, 14k rpm,

30min). The supernatant was discarded, and the pellet was resuspended in 300 ml SDS buffer and then adjusted to 1.45 ml with SDS
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buffer before being again pelleted (18�C, 14k rpm, 30 min). The supernatant was again discarded and 0.6 ml Storage buffer (10%

glycerol, 1 mM EDTA, 10 mM Tris-HCl (pH 7.5), 25 mM NaCl, 1 mM PMSF, 1x Roche protease inhibitor) was added on top of the

pellet. DNA was then resuspended and sheared by sonication (1/8’’ microtip on a Q500 sonicator (Qsonica) for 10 min (Amp =

25%, 10 seconds on, 20 seconds off)). The sonicated sample was then pelleted (4�C, 14k rpm, 10 min) and the supernatant was re-

tained as the chromatin fraction. Protein concentration was determined by Bradford before Laemmli sample buffer was added to a 1x

final concentration and the sample was then boiled to reverse crosslinks (99�C, 30 min).

For the immunoblotting analysis presented in Figure S2B,� 5 mg of the chromatin fraction B was loaded per lane alongside�25 mg

CYTO andWCE. For the proteomics analysis in Figures S2C and S2D, chromatin andWCEwith opposite SILAC labels were mixed in

an approximately 1:2 protein amount ratio before processing� 100 mg for LC-MS/MS (for details see STARMethods section: LC-MS/

MS sample preparation and data acquisition). For the proteomics analysis in Figure 2B, heavy, medium and light labeled cultures

were mixed prior to fixation in an approximately 1:1:1 cell number ratio. Two biological replicates were performed for chromatin

extraction B.�50 mg of each replicate was then analyzed by LC-MS/MS (for details see STAR Methods section: LC-MS/MS sample

preparation and data acquisition).

Immunoblotting
Protein samples were resolved on a Bolt 4-12%Bis-Tris protein gel (Invitrogen) and transferred to a nitrocellulosemembrane with the

iBlot 2 dry blotting system (Invitrogen). The following primary antibodies were used for western-blotting at 1/1,000 dilution: anti-V5

clone SV5-Pk1 (mouse, monoclonal, BioRad, #MCA1360), anti-Rpb3 clone 1Y26 (mouse, monoclonal, BioLegend #665004), anti-

FRB (rabbit, polyclonal, Enzo #ALX-215-065-1), anti-Beta tubulin (rabbit, polyclonal, Abcam #ab15568), anti-Histone 3 (rabbit, poly-

clonal, Abcam #ab1791) and anti-Histone 4 (rabbit, polyclonal, Abcam #ab10158). Anti-GAPDH clone GAR1 (mouse, monoclonal,

ThermoFisher #MA5-15738) was used for western-blotting at 1/2,500 dilution. Primary antibodies were detected using the following

fluorescently labeled secondary antibodies at 1/10,000 dilution: IRDye 800CW goat anti-Mouse (Licor), Alexa Fluor 680 Donkey anti-

Mouse (Invitrogen), Alexa Fluor 680 donkey anti-Rabbit (Invitrogen) and Alexa Fluor 790 Goat anti-Rabbit (Invitrogen). Membranes

were then imaged using a LI-COR Odyssey CLx.

LC-MS/MS sample preparation and data acquisition
Each protein sample was reduced with 5 mM dithiothreitol for 25 min at 56�C, alkylated with 10 mM iodoacetamide (30 min, room

temperature, dark), and then quenched with 7.5 mM DTT. Samples were digested and cleaned using SP3 on-bead methodology61

with the modification that 50 mM HEPES (pH 8.5) was used in place of ammonium bicarbonate. Briefly, proteins were bound to the

SP3 beads (10:1 beads:protein (w/w)) in 50% ethanol (v/v) and then washed three times in 80% ethanol prior to resuspension in

50 mM HEPES (pH 8.5) with 1:40 (trypsin:protein (w/w)) overnight at 37�C. The peptides were then fractionated using the High pH

Reversed-Phase Peptide Fractionation Kit (Pierce) and dried under vacuum centrifugation. Peptides were subsequently resus-

pended in 0.1% trifluoroacetic acid and analyzed on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher) coupled to an

UltiMate 3000 HPLC system for online liquid chromatographic separation. Each run consisted of a 160 min gradient elution from

a 75 mm x 50 cm C18 column.

Modelling – Dynamic equilibrium model
The dynamic equilibrium model assumes that the genome does not saturate and that the rate at which the free RNAPII, polfree,

associates with the genome, DNA, is determined by mass action kinetics so that:

d½polbound�
dt

= kon � ½DNA� � ½polfree� � koff � ½polbound�;
which can be rewritten in terms of amounts:
dpolbound
dt

= kon � DNA � polfree
Vnucleus

� koff � polbound:

Because the time scale of transcription is more than an order of magnitude faster than that of appreciable cell growth, we can set

this at steady state so that:

0 = kon � DNA � polfree
Vnucleus

� koff � polbound:

As the total amount of RNAPII is proportional to cell size (Figures 3E and S4M) we can write:

poltotal = polbound + polfree = c � Vcell
5polfree = c � Vcell � polbound:
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Substituting this into the above equation gives:

kon � DNA � c � Vcell � polbound
Vnucleus

� koff � polbound = 0:

This can be rearranged to give the amount of DNA bound RNAPII as a function of cell and nuclear size:

polbound =
c Vcell

1+
koff Vnucleus

kon DNA

:

Measuring the relationship between cell volume and nuclear volume during G1 arrest (Figures 3F and S4H–S4J) shows that nuclear

volume increases continuously as cell size increases. However, we found this increase deviates from a directly proportional linear

scaling at smaller sizes, consistent with prior measurements reported by Jorgensen et al..21 To account for the larger nuclear fraction

at small cell sizes, we used a monotonically decreasing function for the nuclear to cell volume ratio, fnðVcellÞ, whose parameters were

fit to our data:

fnðVcellÞ = A expð�gVcellÞ + B:

Using this empirically determined function, we can then express the amount of DNA bound RNAPII as a function of cell size:

polbound =
c Vcell

1+
koff fnðVcellÞVcell

kon DNA

:

Given that DNA amount is constant during G1 arrest, and that cell and nuclear volume are empirically determined, the dynamic

equilibrium model only has two free parameters: (i) the cellular concentration of RNAP II (c) and (ii) the dissociation constant

(kd = koff
kon
) for the interaction of RNAPII with DNA. To derive values for c and kd we fit the above equation to our haploid RNAPII

ChIP-seq data after substituting the fitted nuclear fraction relationship and setting the DNA term to 1 (Figure 3B). Fitting was done

using curve_fit() from scipy (Python). When predicting the RNAPII occupancy in cycling cells or in G1-arrested diploids the values

for c and kd from the haploid fit were used, andDNAwas set to 1.46 (cycling cells; Figure S4G) or 2 (diploid; Figure 4E). We computed

confidence intervals by bootstrapping on 100 subsamples of 7 points. We can then predict the bound fraction of RNAPII as a function

of cell size so that:

fbound =
polbound
poltotal

=
1

1+
koff fnðVcellÞVcell

kon DNA

:

Wenote that if insteadwe assume a directly proportional relationship between cell size and nuclear volume (Vnucleus = 0:07 � Vcell),

as is the case in organisms such as fission yeast,62 the solution for DNA bound RNAPII is:

polbound =
c Vcell

1+
koff 0:07 Vcell

kon DNA

:

This constant nuclear fraction model also fits our ChIP-seq data very closely (Figure S4K) and gives only marginally less precise

predictions of the bound fraction of RNAPII (Figure S4L).

Modelling - Stochastic simulations of RNAPII transcription
The dynamic equilibrium model considers RNAPII occupancy as the product of simple binding and unbinding events and assumes

the genome size is so large that the amount of bound RNAPII never meaningfully saturates the genome (Figure S5A). To explore the

validity of these simplifying assumptions, wewrote amore detailed stochasticmodel that captures the salient feature of the transcrip-

tional cycle on a representative gene of a finite length (Figure S5B) as detailed below.

In this more complex model, a promoter is bound with RNAPII at the rate kon pr � polfree and can then either dissociate with a rate

koff pr or initiate transcription with a rate ⍺. Once initiated, RNAPII elongation is modelled as a series of 35 bp steps along a 1 kb gene-

body were each RNAPII has a 35 bp footprint. RNAPII then dissociates from the gene in the final termination step. We draw from

standard implementation and results of Totally Asymmetric Simple Exclusion Processes (TASEPs) to simulate this system. We

note that our version of this model is inspired by and conceptually related to that presented in Sun et al.,8 but here we have modelled

promoter-association as a reversible step and parameterized our model using empirically determined values from the budding yeast

literature as outlined below. This allowed us to bemore specific about the parameter regimewe limit ourmodel to and thus to bemore

confident in the biological relevance of its predictions.

Elongation rate

Weused an elongation rate of 2 kb/min fromMason andStruhl,63 whichwas calculated from high temporal resolution Rpb1ChIP time

course data following inhibition of a GAL1pr-YLR454 gene construct.
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Termination rate

Nguyen et al.22 reported an average RNAPII dwell time of 21-26 seconds based on single molecule tracking (21-23 seconds) and

FRAP (26 seconds) experiments. We therefore assumed that termination time in yeast for the average transcriptional event is negli-

gible so that RNAPII dissociates once it reaches the end of the gene-body.

Promoter on-rate (kon pr), promoter off-rate (koff pr), and initiation rate (⍺)

To explore the feasible range of kon pr, koff pr, and ⍺ values, we simulated the steady-state gene body occupancy and the promoter

occupancy of RNAPII at different combinations of kon pr and ⍺ values. For each parameter combination, koff pr was then derived by

constraining the average promoter residence time to 1.7 seconds based on the dwell time of the shortest-lived pre-initiation complex

(PIC) subunit (TFIIF) from single-molecule tracking experiments reported by Nguyen et al.22

We selected 24 empirically feasible combinations of kon pr, koff pr, and ⍺ (Figures S5C and S5D) on which subsequent analysis was

performed. These parameter sets were identified by simulating the steady-state number of RNAPII molecules per promoter

(polboundðpromoterÞ) and RNAPII molecules per gene body (polboundðgene bodyÞ) across a range of parameter sets. We then compared

this to empirical estimates of polboundðpromoterÞ and polboundðgene bodyÞ, which we calculated using data from Nguyen et al.22 and Ho

et al.64 as follows:

fraction stably bound to DNA = ðbound fractionÞ � ðstable fraction of the bound moleculesÞ
polboundðpromotersÞ =

�
PIC subunit

molecules per cell

�
�
�

PIC subunit fraction
stably bound to DNA

�

polboundðpromoters+gene bodiesÞ =

�
RNAPII subunit

molecules per cell

�
�
�

Rpb1 fraction
stably bound to DNA

�

bound fraction

Nguyen et al.22
stable fraction of the bound molecules

Nguyen et al.22
molecules per cell

Ho et al.64

TFIIB (Sua7) 0.21 0.15 3264

TFIIE (TFA1) 0.33 0.26 5351

Rpb1 0.48 0.4 20891

Rpb9 N.D. N.D. 5537
Assuming 6,000 PIC binding sites per genome,65 we can then convert from per cell to per gene to determine the gene-body bound

population as

polboundðgene bodyÞ = polboundðpromoter +gene bodyÞ � polboundðpromoterÞ

Because estimates of molecules per cell vary between PIC and RNAPII subunits, we used the above values to define a feasible

upper and lower limit as follows:

polboundðpromoterÞlower limit = 0:017 per pomoter; using TFIIB occupancy and copy number:
polboundðpromoterÞupper limit = 0:055 per pomoter; using TFIIE occupancy and copy number:
polboundðpromoter +gene bodyÞ upper limit = 0:67 RNAPII per gene; using Rpb1 copy number:
polboundðpromoter +gene bodyÞlower limit = 0:177 RNAPII per gene; using Rpb9 copy number: Rpb9 has the lowest estimated copy

number among RNAPII subunits and was therefore used to define the lower limit:

Simulation parameters

Unless stated otherwise, simulationswere performedwith the following parameters. A 1 kb genewas represented by a 29-site strand,

each site representing the 35 bp footprint of an RNAPII molecule. Similarly, the elongation rate was taken to be 0.94 steps/second,
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corresponding to the rate at which an RNAPII molecule moves 35 bp. For each parameter set, the time step was set adaptively to

accurately model the stochastic process and the number of iterations corresponded to 1000 binding events.

Comparison between simulations of RNAPII transcription on a representative gene and the dynamic
equilibrium model
We then set out to determine if the size-dependent kinetics in global RNAPII recruitment described by the dynamic equilibriummodel

can be recapitulated by our stochastic simulations of an average transcriptional event. We modeled changes in cell size by varying

the nucleoplasmic RNAPII concentration (polfree) as predicted for each size by the dynamic equilibrium model. We then asked how

the occupancy of RNAPII in the gene body responds. We repeated this across the 24 parameter combinations for kon pr, koff pr, and

⍺. For all the parameter sets we analyzed, the simulations give the same relative change in gene body occupancy as the dynamic

equilibriummodel (Figure S5E). This is because in all cases kon pr and ⍺ values are well below the point that promoters or gene bodies

start to saturate, and so transcription rates are in a linear regime with respect to polymerase recruitment rates, which are set by

kon pr � ½polfree�: Intuitively this makes sense because the absolute occupancy of the promoter is in the range of �2-6% and there

are only on average �0.2-0.7 RNAPII molecules in the entire gene body. Thus, our granular stochastic simulation – that models

the stepwise processes of promoter recruitment, transcriptional initiation, and elongation on a gene of finite length – supports the

simplifying assumptions of the dynamic equilibrium for describing global RNAPII binding kinetics in a typical gene.

Analysis of simulation predictions for highly expressed genes
While the above results demonstrate the global occupancy of RNAPII can be precisely modelled according to kinetics of the dynamic

equilibrium model, it only represents the average transcriptional unit in the genome. More highly expressed genes can have signif-

icantly higher PIC andRNAPII occupancies than considered in the average scenario, which could lead to saturation at large cell sizes.

To assess this, we binned genes from our ChIP-seq data according to their RNAPII occupancy at �50 fL in the elutriation G1 arrest

experiment. To reduce the possibility that we are assessing the effects of some gene-class specific transcriptional programs, we

excluded two groups of genes that are expected to change during G1 arrest in a programmed manner: cell cycle genes defined

in Swaffer et al.43 and the environmental stress response genes defined in Ho et al.66 For each of the initial parameter sets, we inter-

polated the representative kon pr for each gene bin using their RNAPII occupancy at�50 fL and then varied the free RNAPII concen-

tration, as above for the average gene. This revealed different behaviors between different parameter sets for the most highly ex-

pressed genes (Figures 4J and S5F). In some parameter sets, there is close to no difference between genes of different

occupancies as cell size increases. However, in others there is a modest saturation effect in the highest few percentiles of genes.

This saturation effect is always principally due a high kon pr that causes promoter saturation before gene body saturation.We observe

a similar trend in our data where the top few percentiles of genes do not increase their occupancy in larger cells asmuch as the global

average. This may indicate these top few percent of genes, while not fully saturated, are subject to a non-linear saturating effect.

However, it is also possible such changes emerge from a programmed transcriptional response instead of saturation, which would

be consistent with several other feasible parameter sets we defined in which kon pr is low enough that highly expressed genes are still

within the linear range and are, therefore, not subject appreciable saturation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike-in normalized ChIP-seq analysis
Unless otherwise specified, all analyses described were carried out using custom-written Python scripts (https://github.com/

georgimarinov/GeorgiScripts). Combined S. cerevisiae and spike-in (C. glabrata or S. pombe) genome FASTA files were created us-

ing the sacCer3 genome assembly forS. cerevisiae and the assemblies forC. glabrata (obtained from the Candida GenomeDatabase

(CGD)67) or S. pombe (ASM294v2). Combined gene annotations were created using S. cerevisiae gene models updated using tran-

script-endmapping data as previously described68 and either theC. glabrata genemodels available fromCGD or the S. pombe gene

models available from PomBase.69

Demultipexed FASTQ files were then mapped to the relevant combined genome indexes as 2336mers using Bowtie (v.1.0.1)50

with the following settings: -v 2 -k 2 -m 1 –best –strata. For subsequent analyses, reads that map to the S. cerevisiae or spike-in mito-

chondrial genomes were ignored and reads that map to both the S. cerevisiae and spike-in genomes were ignored.

To determine the global occupancy ratio, the sample-to-spike-in ChIP ratio of reads was calculated and then divided by the sam-

ple-to-spike-in input ratio for the same sample. For example, when using C. glabrata as the spike in:

Occupancy per genome =

�
S ChIP readsS: cerevisiae
S ChIP readsC: glabrata

���
S Input readsS: cerevisiae
S Input readsC: glabrata

�

The global occupancy ratio is therefore expressed per genome. For the data in Figures 1E, 4E, 6A, and S4D, the occupancy per

genomewas converted to occupancy per cell bymultiplying by the average genomes per cell determined by flow cytometry (see DNA

content analysis section above). For histone modification occupancies (Figures 5C–5E and S6B), the occupancy per genome was

calculated as above and then normalized to the anti-H3 or anti-H4 occupancy ratio for the same sample. For the anti-Rpb1 and
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anti-FLAG ChIP experiments in Figures 2D, 2F, 2G, 3B, 4E, S3B–S3H, S4D, and S4F a control strain was used to determine the back-

ground signal (see STAR Methods section: spike-in normalized ChIP-seq), which was subtracted from the global occupancy ratio.

RPM (Reads PerMillion) normalized read coverage genome browser tracks showing the 50 bpmid-point of eachmapped fragment

(i.e., midpoint ± 25 bp) were generated for the S. cerevisiae genome using custom-written Python scripts. Subsequent analysis uses

these 50 bp mid-point read coverage tracks to calculate per gene occupancies and metagene profiles. Per gene occupancy was

calculated as follows. RPKM (Reads Per Kb per Million reads) values were calculated for the gene body (TSS-to-TTS) for all verified

ORFs. ChIP RPKM values were thenmultiplied by the global ChIP occupancy factor described above to give the per gene occupancy

value. Metagene profiles showing the average occupancy across gene bodies were generated as follows. Average RPKM values

were calculated for the 500 bp upstream of the TSS, 500 bp downstream of the TTS, and gene bodies (TSS-to-TTS; rescaled to

be 1 kb). RPKM values were then multiplied by the global occupancy factor described above and smoothed using a 50bp averaging

window. The top 10% of genes (verified ORFs only) was determined based on anti-Rpb1 RPKMChIP and was used where indicated.

For the histonemodificationmetagene heatmaps (Figure 5E), values were re-scaled to themedian value of all samples displayed on a

given heatmap to aid comparison between modifications. For the G1 arrest ChIP data in Figures 3, 4, and S4 the global occupancy

ratios were also normalized to occupancy ratios of asynchronous control samples that were collected at the same timepoints but

where not arrested in G1 to control for non-specific effects of elutriation procedure.

Dual enzyme single-molecule foot printing (dSMF) analysis
Combined S. cerevisiae and C. glabrata genome and transcriptome files were created as described above (see STAR

Methods section: spike-in normalized ChIP-seq analysis). FASTQ files were trimmed of adapter using cutadapt (version 0.16) and

Trim Galore (version 0.4.4) with the following settings: –clip_R1 9 –clip_R2 9 –three_prime_clip_r1 6 –three_prime_clip_r2 6 –paired.

Trimmed reads were then mapped to the combined genome indexes using the bwameth package (https://github.com/brentp/

bwa-meth). Duplicate reads were removed using the MarkDuplicates programs (picard-tools-1.99). Methylation calls were extracted

using MethylDackel (https://github.com/dpryan79/MethylDackel) with the following settings: –CHG –CHH. The MethylDackel output

was used to create genome browser tracks showing methylation levels and to make metagene plots which were then normalized to

the global methylation fraction determined for the spike-in C. glabrata genome.

Spike-in normalized RNA-seq analysis
A combined S. cerevisiae and C. glabrata genome file and gene annotations were generated as described above (see STAR

Methods section: spike-in normalized ChIP-seq analysis). For the purposes of RNA-seq data quality evaluation and genome browser

track generation, reads were aligned against the combined genome and annotated set of splice junctions using the STAR aligner

(version 2.5.3a; settings: –limitSjdbInsertNsj 10000000 –outFilterMultimapNmax 50 –outFilterMismatchNmax 999 –outFilterMis-

matchNoverReadLmax 0.04 –alignIntronMin 10 –alignIntronMax 1000000 –alignMatesGapMax 1000000 –alignSJoverhangMin 8

–alignSJDBoverhangMin 1 –sjdbScore 1 –twopassMode Basic –twopass1readsN -1).70 Read mapping statistics and genome

browser tracks were generated using custom Python scripts. For quantification purposes, reads were aligned as 2x50mers in tran-

scriptome space against an index generated from the combined gene annotation model using Bowtie (Langmead et al.50; version

1.0.1; settings: -e 200 -a -X 1000). Alignments were then quantified using eXpress (version 1.5.1)51 as TPM (Transcripts Per Million

transcripts). The sum of the TPM for all genes for a given species (S RNAseq TPM) was calculated after filtering genes for verified

ORFs (www.yeastgenome.org) and removing genes with TPM < 0.1 in any sample. The relative amount of mRNA per cell for a given

culture is then calculated as:

mRNA amount per genome =

�
S RNAseq TPMS: cerevisiae

S RNAseq TPMC: glabrata

� ,  
S gDNAseq readsS: cerevisiae
S gDNAseq readsC: glabrata

!

mRNA amount per cell = ðmRNA amount per genomeÞ � ðgenomes per cellÞ
See also Figure S7E for the experimental workflow.S gDNAseq reads are calculated from gDNA-seq data, whichwas processed in

the same way as described above for ChIP-seq data (see STAR Methods section: spike-in normalized ChIP-seq analysis), and the

average ratio from two technical replicates was used. For cell size mutants, genomes per cell is determined by flow cytometry based

DNA content analysis (Figures S7C and S7D). For the G1 arrest cultures, genomes per cell is always constant. We note this is a rela-

tive measurement that allows comparisons between samples processed in the sample batch with the same spike-in, but it does not

provide absolute mRNA amounts per cell. For the data presented in Figure 6A all values are rescaled so the smallest samples = 1.

EU (5-ethynyl uridine) pulse-chase RNA-seq analysis
A combined S. cerevisiae and S. pombe genome file and gene annotations was used to align reads and calculate TPMs for EU-en-

riched and input samples as described above (see STAR Methods section: spike-in normalized RNA-seq analysis). The sum of the
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TPM for all genes for a given species (S mRNAseq TPM) was calculated after filtering genes for verified ORFs (www.yeastgenome.

org) and removing genes with TPM < 0.1 in any sample. The relative total amount of EU labeled mRNA in each sample is then calcu-

lated as follows:

total EU mRNA =

�
S EU mRNAseq TPMS: cerevisiae

S EU mRNAseq TPMS:pombe

���
S input mRNAseq TPMS: cerevisiae

S input mRNAseq TPMS: pombe

�

The total background signal, determined using the no-EU sample, was then subtracted and all values were then normalized so that

the first timepoint is set = 1. Global mRNA turnover rates (Figures 6C and 6D) were calculated from a one-phase exponential decay fit

to the total EU mRNA data (Prism 6; weighting = 1/Y, plateau = 0), excluding the first time point to permit a short lag after the chase.

Turnover rates for individual transcripts were calculated by first renormalizing S. cerevisiae TPM values to the spike-in reads and then

fitting an exponential decay fitting an exponential decay in R using the nls_multstart() function to fit the data to the SSasymp()model

with the asymptote constrained to be > 0.

Single-molecule imaging analysis
Aside from tracking, all analysis was performed using custom Matlab code. Tracking was performed using Trackmate.52 First, mol-

ecules were localized in each frame using a Laplacian of Gaussian (LoG) method with an estimated diameter of 5 pixels. An intensity

threshold was chosen that was low enough to still detect molecules that were moving out of the focal plane and were diffusing

quickly. After localization, tracks were formed using the Linear Assignment Problem algorithm by linking molecules in consecutive

frames. The linking distance was set to 5 pixels. A gap frame of 3 was used to allow for missed localization. The gap-linking distance

was set to 5 pixels more than the linking distance. Linking also had a cost of 0.3 for the ‘‘Quality’’ parameter to ensure that correct

molecules were linked. Tracks with fewer than five localizations were discarded.

Only unbudded G1 cells, determined from brightfield images, were retained for subsequent analysis. The cell outlines were

segmented by a custom-made Matlab code and then manually curated using the ‘‘Freehand’’ function in Matlab. Cell volumes

were estimated from the cell masks assuming ellipsoid geometry. The volumes of cells were estimated by adding up the cross-sec-

tion volume at each orthogonal pixel layer of the major axis of cells. Maximum intensity projections of z-stacks in 488nm were then

used to segment the nuclear regions using the Pus1-GFP nuclear marker and tracks outside the nucleus were discarded. The radius

of gyrations (RoG) was then calculated for each track using the following equation:

RoG =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i

�
ðxi � XÞ2 + ðyi � YÞ2

	s
where n is the number of localizations in each track, x and y are th
i i e coordinates of the track for each step i, and X and Y are themean

of the x, y coordinates of the track, respectively. To classify molecules as bound or unbound, a one-dimensional Gaussian mixture

model (GMM) was fitted to the log2-transformed RoG distribution. The initial values for fitting were inferred from the log-transformed

RoG distribution of H2B1-HALO and mCitrine-HALO-NLS, which have the majority of molecules bound and unbound, respectively.

To determine how many Gaussian groups exist in the RoG distribution, we fitted the distribution with different GMMs, where total

gaussian groups varied from 1 to 4. The Bayesian information criterion (BIC) was calculated for each GMM fitting. The model with

2 gaussian groups was selected on the basis that it had the lowest BIC. The Gaussian group with the lowest average RoG value

was classified as the group of boundmolecules. The tracks inside the chromatin bound fraction in each nucleus was then determined

by dividing the number of bound tracks by the number of total tracks. Nuclei with < 30 tracks were discarded from this analysis.

Analysis of ChEP LC-MS/MS data
MaxQuant (version 1.5.0.13) was used for all LC-MS/MS data processing. The data were searched against a UniProt extracted

S. cerevisiae proteome FASTA file. SILAC comparison between WCE and chromatin fractions (see Figures S2C and S2D and

STAR Methods section chromatin enrichment for proteomics (ChEP)) was used to determine a high confidence list of chromatin-en-

riched proteins (n=564). Chromatin-enriched proteins were defined as proteins enriched by chromatin extraction methods A and B

compared to WCE in both biological replicates. These 564 proteins and the threshold used to define enrichment are shown in Fig-

ure S2D. Normalization of SILAC ratios was not applied because there is no a priori assumption that the median of the distribution

corresponds to no change. Instead, raw SILAC ratios are plotted and the thresholds for each replicate were defined so that thresh-

olds intersect on the linear regression line between the two replicates (Figure S2D) at a point that separates known chromatin asso-

ciated factors fromabundant cytoplasmic factors (Figure S2C). The distribution of SILAC ratios for the experiment plotted in Figure 2B

was normalized so the average histone protein corresponds to a SILAC ratio = 1 and as such these data can be interpreted as protein

bound per genome, given histone occupancy per genome is approximately constant as a function of cell size, as determined by his-

tone Chip-Seq (Figure S4D).
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Supplemental figures

Figure S1. Controls and supporting data for the spike-in normalized ChIP-seq of Rpb1 in cell size mutants, related to Figure 1

(A–C) Mixing-ratio controls for spike-in normalized ChIP-seq. The design of the mixing-ratio control experiment is shown in (A): S. cerevisiae and C. glabrata

samples were mixed in 7 different ratios before anti-Rpb1, anti-S2P, or anti-H3 ChIP-seq. Input samples were also sequenced to determine the mixing ratio. This

experiment demonstrates the good dynamic range and linearity of spike-in normalized ChIP-seq, because differences in the input ratio of S. cerevisiae to

C. glabrata are proportional to the changes in the S. cerevisiae to C. glabrata ChIP ratio (B) so that the input normalized occupancy ratio was constant (C). ChIP

and occupancy ratios are expressed as the fold-change relative to the middle sample. This control is effectively the same as that reported for Scc1 ChIP-seq by

Hu et al.18 and demonstrates that different S. cerevisiae samples do not need to be mixed at identical ratios with spike-in cells, because variations in mixing ratio

are linearly accounted for in the input normalized occupancy ratio.

(D and E) Cell density control for spike-in normalized ChIP-seq. The design of the cell density control experiment is shown in (D): S. cerevisiae cells were grown to

different cell densities (OD600) and mixed with approximately the same number of C. glabrata cells. The sample was then fixed and processed for spike-in

normalized ChIP-seq. The occupancy ratio for anti-Rpb1, anti-S2P, and anti-H3 is constant as a function of cell density (E), showing that S. cerevisiae samples do

not need to be collected at identical cell densities to compare samples. All samples in the rest of the study were collected between OD600 = 0.2 and OD600 = 0.4,

unless stated otherwise.

(F) Cell size distributions determined by Coulter counter for the cell sizemutants used in the experiment presented in Figures 1C–1F. Low,medium, and high levels

of WHI5 expression were induced with increasing concentrations of beta-estradiol, respectively.

(G) Average occupancy across the gene bodies of the top 10% of genes for total Rpb1, initiated Rpb1 (anti-S5-P), and elongating Rpb1 (anti-S2-P) in cells

expressing low, medium, and high levels of WHI5. Global occupancy measurements for the same data are shown in Figure 1E.
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Figure S2. Supporting data and controls for chromatin enrichment for proteomics (ChEP), related to Figure 2B

(A) Schematic of the workflow for chromatin extraction by ChEP. Both the high-purity/low-yield extraction (method A) and the low-purity/high-yield extraction

(method B) were used (see STAR Methods for details).

(B) Control experiment showing that ChEP can quantify changes in protein chromatin association. To test this, TPB and RNAPII chromatin association was

conditionally prevented using a TBP-FRB strain where TBP is conditionally depleted from the nucleus upon rapamycin treatment, thus preventing RNAPII

recruitment to the genome. Upon rapamycin treatment for 1 h, TBP and RNAPII (Rpb1 and Rpb3) have reduced chromatin association measured by ChEP,

compared with the DMSO control treatment. Thus, ChEP can be used to quantify changes in chromatin association. We note that under these conditions RNAPII

is still present in the nucleus but is not associated with chromatin (see Figure S3A), indicating that ChEP signal is not dominated by large amounts of non-specific

chromatin interactions, at least in the case of RNAPII.

(C and D) Experiment to identify proteins enriched by ChEP. Cells were SILAC labeled with heavy (H) or light (L) isotopes, and three extractions were recovered

from each: whole-cell extract (WCE), chromatin extraction A, and chromatin extraction B. WCE and chromatin with opposite SILAC labels were mixed and

analyzed by LC-MS/MS. Each axis shows an independent biological replicate. Left-hand panels show chromatin extraction A (high purity, low yield). Right-hand

panels show chromatin extraction B (low purity, high yield). Known cytoplasmic factors (ribosomes and actin) and chromatin-associated proteins (RNA poly-

merase subunits, transcription factors, histones, and cohesion) are shown in (C), validating that ChEP enriches chromatin-associated factors. Proteins defined as

chromatin associated are shown in red in (D). A robust linear regression is shown in black. Chromatin-associated proteins were defined as proteins enriched in the

chromatin fraction of both replicates for both extraction method A and extraction method B. The thresholds used to define chromatin-associated proteins are

shown as dashed black lines (see STAR Methods for details).

(E) Cell size distributions determined by Coulter counter for the SILAC-labeled cultures used in the experiment in Figure 2B. All strains have a SILAC-compatible

genetic background (see STAR Methods for details).
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Figure S3. Supporting data for PIC subunits depletion and RNAPII overexpression experiments, related to Figures 2C–2G

(A) Microscopy images (phase contrast in white, mCitrine signal in yellow) of the indicated genotypes treated with DMSO or rapamycin for 1 generation before

imaging. Treatment of Rpb1-FRB cells leads to nuclear depletion of Rpb3, indicating the whole RNAPII complex is likely to be efficiently co-depleted. Treatment

of TBP-FRB cells does not alter Rpb3 localization, indicating that depletion of one subcomplex of the pre-initiation complex do not result in the co-depletion of

other subcomplexes.

(B) The global Rpb1 occupancymeasured by spike-in normalized ChIP-seq in wild-type diploid cells (WT/WT) or diploids where 50%of the indicated RNAPII pre-

initiation complex subunit was depleted from the nucleus following a 100-min rapamycin treatment. Mean (± SEM) is plotted. The corresponding average Rpb1

occupancy across the gene bodies of the top 10% of genes in these samples is shown in Figure 2D.

(C) The global Rpb1 occupancy measured by spike-in normalized ChIP-seq in wild-type diploid cells (WT/WT) or diploids where 50% of the RNAPII was depleted

from the nucleus by a 40-min rapamycin treatment. Mean (±SEM) is plotted. The corresponding average Rpb1 occupancy across the gene bodies of the top 10%

of genes in these samples is shown in Figure 2D.

(D) The global Rpb1-FLAG occupancy measured by spike-in normalized anti-FLAG ChIP-seq in wild-type diploid cells (RPB1-FLAG/RPB1-FLAG) or diploids

where one allele is FLAG tagged and the other is depleted from the nucleus upon rapamycin treatment (RPB1-FRB/RPB1-FLAG). Mean (± SEM) is plotted. These

data indicate that the nuclear depletion of Rpb1 is efficient and near complete (i.e., �50%) because ChIP against total Rpb1 in (C) and ChIP against the non-

depleted allele in (D) give similar values.

(E) The average Rpb1 occupancy across the gene bodies of the top 10% of genes for the samples shown in (D).

(F) The global Rpb1 occupancymeasured by spike-in normalized ChIP-seq in wild-type diploid cells (WT/WT) or diploids where 50% of the indicated RNAPII pre-

initiation complex subunits were depleted from the nucleus by a 40-min rapamycin treatment. Data are also show in an experiment with the simultaneous 50%

nuclear depletion TBP, TFIIA, and RNAPII. Mean (± SEM) is plotted.

(G) The average Rpb1 occupancy across the gene bodies of the top 10% of genes for the samples shown in (F).

(H) The mean per gene Rpb1 occupancy measured (left) in wild-type cells, (center) in cells after 50% nuclear depletion of RNAPII, or (right) in cells after the

simultaneous 50%nuclear depletion of TBP, TFIIA, and RNAPII. Each point corresponds to a single gene and shows the Rpb1 occupancy between TSS and TTS.

Dashed lines show the average trends for the respective samples. Global occupancy values for the same samples are shown in (F).

(I) Histogram (mode normalized) of the mNeonGreen signal measured by flow cytometry for the indicated RNAPII subunit C-terminal fusion with mNeonGreen

(mNG). Fusion proteins were either expressed from their endogenous promoter (blue; endogenous) or overexpressed from a Tet promoter alongside the un-

tagged endogenous copy of the same gene (green; TetPr). Expression from the TetPr was induced by anhydrotetracycline (atc) treatment for 45 min. The fold

overexpression that is induced upon atc addition was calculated by comparing themedian intensity of the overexpressed construct to the endogenous allele and

is shown in Figure 2E.

(J) Cell size distribution (left) and mean cell size (right) of the TetPr-RPB1-12 strain. Cell size was measured before (�atc) and 45 min after (+atc) the simultaneous

induction of all 12 RNAPII subunits.

ll
Article



(legend on next page)

ll
Article



Figure S4. Supporting data and additional controls for the G1 arrest experiments, related to Figures 3 and 4A–4F

(A and B) Schematic of the experimental design to generate populations of G1-arrested cells of increasing cell size. (A) A G1-cyclin shut-off strain was used that

allows the conditional inactivation of G1 cyclin expression upon removal of beta-estradiol from the media. (B) Small G1 cells were then collected by centrifugal

elutriation, and populations of increasing cell size were generated as G1 arrest duration increases (see STAR Methods for details).

(C) Cell volume distributions determined by Coulter counter for G1-arrested haploid (top) and diploid (bottom) cultures of increasing cell size used to analyze

Rpb1, histone 3, and histone 4 occupancy in (D) and Figures 3 and 4. Cell populations with larger sizes correspond to cells arrested for longer times.

(D) Rpb1 (anti-Rpb1), histone 3 (anti-H3), and histone 4 (anti-H4) occupancy per cell, plotted as a function of cell size in G1-arrested haploids (top) and diploids

(bottom). The mean (± range) of two biological replicates is shown for anti-Rpb1, whereas only a single replicate of anti-H3 and anti-H4 is shown. The anti-Rpb1

data are also plotted in Figures 3B, 4E, and 6A.

(E) Cell size distributions determined by Coulter counter for asynchronous control cultures used to analyze Rpb1, histone 3, and histone 4 occupancy in (F).

(F) Rpb1 (anti-Rpb1), histone 3 (anti-H3), and histone 4 (anti-H4) occupancy per genome, plotted as a function of cell size in asynchronous control cultures. The

mean (± range) of two biological replicates is shown for anti-Rpb1, whereas only a single replicate of anti-H3 and anti-H4 is shown.

(G) Fold change in RNAPII occupancy in cell sizemutants, compared with the prediction from the dynamic equilibriummodel that was fit to data fromG1-arrested

cells. Error bars show 90% confidence intervals for model prediction determined by bootstrapping. Dashed gray line indicates proportional scaling.

(H–J) Cells expressing a nuclear marker (PUS1-mNeonGreen) were imaged at different sizes after elutriation and G1 arrest to determine how nuclear volume

scales with cell volume. The experimental setup is the same as that outlined in (B). (H) Cell volume distributions determined by Coulter counter for G1-arrested

PUS1-mNeonGreen cells of increasing cell size. (I) The nuclear fraction of the cell volume as a function of cell volume determined by wide-field fluorescence

microscopy. Data from all 8 time points shown in (A) are pooled for this analysis. Bin mean (± SD) are shown in black. The blue line is the fit used to substitute

nuclear volume for cell volume in the dynamic equilibrium model (see STAR Methods for details). Figure 3F shows the same data plotted as nuclear volume. (J)

Representative images of Pus1-mNeonGreen signal and cell outlines.

(K–M) Comparison of dynamic equilibrium fit and prediction with either a variable nuclear fraction (blue) or a fixed nuclear fraction (red). (K) Rpb1 (anti-Rpb1)

occupancy per cell as a function of cell size during G1 arrest. The fit of the dynamic equilibrium model assuming variable nuclear fraction (blue) or a fixed nuclear

fraction (red) is shown. Mean (± range) of two biological replicates is shown. Data and variable nuclear fraction fit are also shown in Figures 3B, 4E, and 6A.

(L) The fraction of bound Rpb1 molecules plotted as a function of cell size in G1. Mean (± SD) of each bin is shown. The predictions of the dynamic equilibrium

model from the fits in (E) are shown for both a variable nuclear fraction (blue) or a fixed nuclear fraction (red). Error bars for the fits show the 90% confidence

interval generated by bootstrapping. Data and variable nuclear fraction fit are also shown in Figure 4C.

(M) The scaling of RNAPII subunit protein amounts with cell size was determined in G1-arrested cells following G1 cyclin shut-off. Cell volume distributions

determined by Coulter counter (top) and total mNeonGreen signal distributions determined by flow cytometry (bottom). Three strains were analyzed: untagged

cells (left), RPB1-mNeonGreen (center), and RPB3-mNeonGreen (right) (see Figure 3E for the quantitative comparison of protein amount with cell size).
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Figure S5. Supporting data for stochastic simulation of RNAPII transcription, related to Figures 4G–4K
(A) Schematic of the steps modeled in the dynamic equilibrium model. RNAPII association with the genome is simplified to a binding (kon) and an unbinding step

(koff) and assumes that the genome does not saturate with RNAPII.

(B) Schematic of the steps included in the stochastic simulation of RNAPII at a representative gene. RNAPII associationwith the genome ismodeled as amultistep

process on a gene of finite length on which a single RNAPII molecule has a 35-bp footprint. RNAPII binds a single site in the promoter with rate konpr and then

either initiates with rate ɑ or dissociates from the promoter with rate koffpr. Once initiated, RNAPII moves through the gene body (1 kb) at a fixed elongation rate

before terminating and dissociating from the gene.

(C andD) Themodel shown in (B) is parameterized using only values from the budding yeast literature. In the case of konpr, koffpr, and ɑ, 24 feasible parameter sets

were selected. Parameter sets were deemed feasible only if the absolute number of RNAPII molecules per gene (gene body occupancy) and per promoter

(promoter occupancy) falls within the empirically estimated range of these values. See STAR Methods for details on how the estimated ranges were calculated.

(C) Feasible matrix showing the parameter sets that are compatible with the empirical estimates of gene body and promoter occupancy. Numbers 1–24 are

assigned to each feasible parameter set and match the annotations in (D)–(F).

(D) Table of konpr, koffpr, and ɑ values for feasible parameter sets, as well as the absolute gene body occupancy and promoter occupancy per gene for each

parameter set.

(E) RNAPII occupancy per gene at different sizes predicted by the stochastic simulation of RNAPII at a representative gene and the fit of the dynamic equilibrium

model. 12 of the 24 feasible parameter combinations are shown (even numbered parameter sets). Because the dynamic equilibrium model is derived from fitting

to data that are expressed as relative changes, the values for dynamic equilibrium model fit were re-scaled so that at �50 fL it matches the absolute RNAPII

molecules per gene body of each simulation.

(F) Fold change in the simulated RNAPII occupancy on model genes representative of the genes in the indicated empirical RNAPII occupancy percentiles (higher

percentiles correspond to more highly occupied genes). 12 of the 24 feasible parameter combination are shown as in (E).
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Figure S6. Supporting data for the analysis of chromatin as a function of cell size, related to Figure 5

(A) Cell volume distributions determined by Coulter counter for the cultures used in the dSMF experiment in Figures 5A and 5B tomeasure chromatin accessibility

in cells of different sizes.

(B) Global histone modification occupancy of the data shown in Figures 5C-5E. H3K56ac and H3k36me3 data are also shown in Figure 5C. Line shows the linear

fit used to calculate the slope values shown in Figure 5D.

ll
Article



(legend on next page)

ll
Article



Figure S7. Supporting data for measurements of size-dependent mRNA amount and mRNA decay rates, related to Figure 6

(A–E) Cell size mutants were collected for spike-in normalized RNA-seq and gDNA-seq to determine the relative global mRNA amount per cell. Four biological

replicates were performed. (A) Mean cell volume determined by Coulter counter for the indicated cell size mutants (n = 4). (B) Doubling time, determined from

OD600 growth curves, of the indicated cell size mutants (n = 3). (C) Average genomes per cell, calculated from DNA content measurements shown in (D), of the

indicated cell size mutants (n = 4). (D) DNA content analysis, determined by flow cytometry, of the indicated cell size mutants. (E) Experimental workflow for

performing spike-in normalized RNA-seq to determine the relative global mRNA amount per cell (see STAR Methods for details).

(F–I) Cell size mutants and G1 cyclin shut-off cells were used to measure global mRNA turnover rates by EU pulse-chase, followed by EU-mRNA-seq. (F)

Experimental workflow for processing EU-labeled cell pellets to determine the EU-labeled fraction of mRNA (see STAR Methods for details). (G) Cell volume

distribution, determined by Coulter counter, of the indicated cell size mutants. Average of two biological replicates is shown. (H) Cell volume distribution,

determined by Coulter counter, of cells 1.5 or 7 h after removal of beta-estradiol to induce G1 cyclin shut-off. One biological replicate is shown. (I) DNA content

analysis, determined by flow cytometry, of the samples in (G). (J) Cumulative frequency distributions of individual mRNA half-lives from the EU pulse-chase

experiment shown in (G) and Figure 6C.

(K–M) GAL1, GAL7, and GAL10 mRNA decay rates were determined in small (low WHI5), medium (medium WHI5), and large (high WHI5) cells by RT-qPCR,

following transcriptional inhibition of these genes by the rapid replacement of galactose from the media with glucose (see STAR Methods for details). Two in-

dependent biological replicates were performed. (K) Mean cell volume in the indicated cell size mutant. (L) Mean (± range)GAL1,GAL7, andGAL10mRNA decay

rates calculated from the decay curves in (M). (M) GAL1 (left), GAL7 (center), and GAL10 (right) mRNA levels relative to ACT1 mRNA, determined by RT-qPCR,

after transcriptional inactivation by galactose replacement with glucose. Dashed line shows an exponential fit to the data.
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Figure S8. Supporting data for mRNA decay rate measurements of MET3 and MET17, related to Figures 6F–6H

(A–C) MET3 and MET17 turnover rates were determined by RT-qPCR following methionine addition (which inactivates MET3 and MET17 transcription) in the

indicated cell size mutants. Two independent biological replicates were performed. Part of these data are also shown in Figure 6F. (A) Mean cell volume,

determined by Coulter counter, for the indicated cell sizemutant. (B) Mean (± range)MET3 andMET17mRNA decay rates calculated from the decay curves in (C).

(C)MET3 (left) andMET17 (right) mRNA levels relative to ACT1mRNA determined by RT-qPCR after methionine addition. Dashed line shows an exponential fit to

the data.

(D)MET3 andMET17 transcriptional inhibition kinetics followingmethionine additionwere determined in small (lowWHI5) and large (highWHI5) cells by anti-Rpb1

ChIP-qPCR. Both MET3 and MET17 reach steady-state repression within 6 min in both conditions. For this reason, all fitting for mRNA decay curves excludes

time points before 6 min.

(E)MET3 (left) andMET17 (right) mRNA levels relative to ACT1mRNA were determined by RT-qPCR after methionine addition inWT/WT diploids or RPB1-FRB/

WT heterozygous diploids. Methionine was added 40 min after rapamycin treatment. Rapamycin treatment depletes �50% of the RNAPII from the nucleus (see

Figures 2C and 2D). Two independent biological replicates were performed. Dashed line shows an exponential fit to the data. Cell volume distributions and the

decay rates, calculated from these fits, are shown in Figure 6G.

(F)MET3 (left) andMET17 (right) mRNA levels relative to ACT1mRNA were determined, by RT-qPCR after methionine addition, in haploids and diploids arrested

in G1 until they reached�100 fL. Dashed line shows an exponential fit to the data. Two independent biological replicateswere performed. Cell volume distribution

and the decay rates, calculated from these fits, are shown in Figure 6H.
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