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Frequent Subgraph Mining Algorithms in
Static and Temporal Graph-Transaction
Settings: A Survey

Ali Jazayeri* and Christopher C. Yang

Abstract—Networks are known as perfect tools for modeling various types of systems. In the literature of network mining, frequent
subgraph mining is considered as the essence of mining network data. In this problem, the dataset is composed of networks
representing multiple independent systems or one system at multiple time stamps. The cores of mining frequent subgraphs are graph
and subgraph isomorphism. Due to the complexities of these problems, the frequent subgraph mining algorithms proposed in the
literature employ various heuristics for candidate generation, duplicate subgraphs pruning, and support computation. In this survey,
we provide a classification of proposed algorithms in the literature. The algorithms for static networks have found numerous
applications. Therefore, these algorithms will be reviewed in detail. Besides, it is discussed that consideration of temporality of data
can impact the derived insight and attracted substantial attention in recent years. However, prior surveys have not comprehensively
examined the algorithms of frequent subgraph mining in a database of temporal networks represented as network snapshots.
Therefore, the algorithms proposed for mining frequent subgraphs in temporal networks are reviewed. Moreover, most of the surveys

1443

have focused on main-memory algorithms. Here, we review disk-based, parallel, and distributed algorithms proposed for mining

frequent subgraphs.

Index Terms—Subgraph mining, network mining, temporal networks, static networks

1 INTRODUCTION

ETWORKS are modeling tools composed of sets of verti-
N ces, representing individual and discrete entities, and
edges, representing the interactions between pairs of verti-
ces. The potential of networks for modeling of various sys-
tems in different domains has been known since the early
years of the emergence of general systems theory. Berta-
lanffy points out to network theory as a representative of
“topology or relational mathematics” as one of the “novel
developments intended to meet the needs of a general the-
ory of systems” [1]. The advantages of networks for model-
ing and solving real-world problems have been identified
much earlier. The solution of the famous seven bridges of
Konigsberg (in 1,735) is considered as one of the first appli-
cations of network (or graph) theory [2].

Networks have been used as perfect tools for modeling of
systems in different disciplines. Hence, many of the net-
work-related concepts have been developed in parallel in
different domains, and therefore there is no universally
accepted terminology. For example, the first term used is
called networks in some domains and graphs in others.
There are several important concepts with crucial roles in
network mining traditionally using “graph”, such as
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subgraph mining, graph and subgraph isomorphism, and
graph-transaction setting. We use the terms network and
graph interchangeably. Here, a subgraph is considered as a
subset of network’s components, vertices, and edges, and
along with other concepts used throughout this paper will
be introduced formally in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TBDATA.2021.3072001.

The subgraphs that appear more frequently in one net-
work or multiple networks of a set of networks might
exhibit essential characteristics of the source system that
network(s) represent [3]. For example, in a set of networks
representing the chemical compounds of a set of drugs
developed for the treatment of a specific disease, the sub-
graphs that appear in most of them might help to identify
essential chemical substances that make this set of drugs
good candidates for curing the disease [4]. However, as it
will be discussed in this paper, finding such subgraphs is
not computationally trivial. Although data mining techni-
ques are being increasingly applied to non-traditional
domains, existing frequent pattern discovery approaches,
such as algorithms proposed for association rule mining,
cannot be directly used for finding frequent subgraphs. This
is mainly because the transactional frameworks assumed by
these algorithms cannot be directly applied to model the
datasets composed of networks effectively.

Some algorithms have been proposed which constrain
the outputs to a specific class of subgraphs. These con-
straints are, for example, based on the structure and fre-
quency, or some measures of significance or interest.
Nonetheless, the output of the algorithms proposed for
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frequent subgraph mining is generally composed of a
large number of subgraphs, not all of them are necessarily
significant. Besides that, systems work and change over
time. In many applications, the time scale of changes in
systems is large; therefore, considering the network as a
static representation of the system in short periods of
time does not significantly impact the derived insight.
However, it is not always the case, and the temporality of
networks should be taken into account. One common
approach is to aggregate and show the temporal aspects
of networks as attributes of vertices and edges of static
networks. It is shown that this approach might not cap-
ture all the temporal information of the network and, con-
sequently, impact the findings [5], [6].

On the other hand, metrics such as distance, diameter,
centralities, paths, and connectivity, which have relatively
known definitions in static networks, can be differently
interpreted and defined in temporal networks. Therefore,
the insights which can be drawn from temporal networks
might be significantly different from their static or aggre-
gated counterparts, and overlooking the temporal aspects
of the network decreases the richness of modeling and anal-
ysis [7], [8], [9], [10], [11]. On the other hand, utilizing net-
works as dynamic and time-varying modeling tools can
help to identify essential components of the network more
precisely [12], [13]. It is shown that temporal networks can
better model most of the natural and social systems. Fur-
thermore, temporal networks can reach controllability
(inject some inputs into some of the specific vertices to
direct the network toward the desired state) much faster
than their static counterparts. This phenomenon is attrib-
uted to the dynamic and changing topology and inherent
nonlinearity of temporal networks, which are absent in
static networks [14]. Despite all these advantages, the addi-
tion of the temporal aspect makes the mining of frequent
subgraphs even more complicated.

In general, mining and analytical approaches towards
networks can be categorized into three, not completely
independent categories. In the first category, we are inter-
ested in finding some individual nodes or edges based on
some pre-defined measures of significance. There are
many different metrics developed for mining and finding
these individual elements, such as centrality and prestige
measures. We call this category microscale mining or anal-
ysis of networks. In the second category, we are interested
in the characteristics of the network at the macro level.
Although these macro-level characteristics are created
from the characteristics of the individual elements, they
can be considered as emergent characteristics that appear
as collective or global features of the network. This cate-
gory is considered as macroscale analysis and mining of
networks. In the third category, we are interested in the
mesoscale characteristics of networks. At this scale, the
patterns of interest are subsets of the network’s compo-
nents, vertices, and edges, meeting some pre-defined crite-
ria. Many of the proposed algorithms for network analysis
and mining belong to this category. In [15], [16], a similar
categorization has been proposed for the classification of
approaches toward the investigation of the temporal
behavior of (web) networks. This survey covers a subcate-
gory of mining algorithms at the mesoscale.
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1.1 Survey Scope

This paper covers algorithms proposed for finding fre-
quent subgraphs in a database composed of a set or
sequence of networks. This setting is called network-trans-
action setting (also called network database, graph data-
base, or graph-transaction setting in some literature). The
output of this problem is traditionally called frequent sub-
graphs (coming after frequent itemsets in frequent itemset min-
ing literature). Another version of this problem is to
discover frequent or significant subgraphs in one giant net-
work. The outputs of this latter problem are traditionally
called motifs (after a study by [17]). Network motifs are
defined as inter-connected patterns occurring more than a
user-defined threshold in the network of interest than
some reference networks (generally randomized versions
of the original network). It should be noted that being fre-
quent is implied when we use motifs; however, for sub-
graphs, it should be explicitly mentioned. In this survey,
we focus on the first family of algorithms, mining frequent
subgraphs in a database of network transactions. For the
problem of mining frequent subgraphs (motifs) in one
giant static or temporal network, refer to [18].

In the graph-transaction setting, there is no specific limi-
tation on the topology of the subgraphs mined. However,
some algorithms might limit their search strategies to spe-
cific types of subgraphs. These algorithms still follow the
same logic for discovering frequent subgraphs. However,
the algorithms are modified to narrow down the search
space based on the topology of interest. The mined frequent
subgraphs then might be used as input features for different
mining techniques or machine learning algorithms.
Although we cover the algorithms used for mining frequent
subgraphs, other data mining and machine learning
approaches using the outputs of the frequent subgraph min-
ing algorithms as their inputs or feature set are not covered
in this survey. Interested readers may refer to unsupervised
and supervised pattern learning [19] such as clustering and
construction of decision trees using mined frequent sub-
graphs [20], [21], [22], [23], [24], integrating a frequent sub-
graph mining algorithm [25] with a boosting algorithm for a
binary classification problem[26], network indexing [27],
[28], and neural network applications [29] (Other interesting
studies are [30], [31], [32], [33]).

In most of the review papers in the literature of frequent
subgraph mining, the focus is on algorithms proposed for
mining static networks. Except for [34], which covers three
algorithms proposed for dynamic networks, the previous
review papers neither cover nor categorize the algorithms
proposed for dynamic and temporal networks (refer to Sec-
tion 2). Some of the algorithms proposed for dynamic and
temporal networks are an extension or modification of the
algorithms developed for static networks. Therefore, after
reviewing the algorithms proposed for static networks, the
algorithms proposed for mining dynamic and temporal net-
works are discussed. Furthermore, one of the main chal-
lenges that current popular algorithms face is that they are
developed for mining network datasets that can fit into the
main memory or be processed by processing units of
machines the data stored on. However, with the increasing
growth of network data available, for example from high
throughput sequencing technologies in bioinformatics,
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social network platforms, communication and transporta-
tion networks, or sensor-based collected network data, the
development of algorithms capable of managing disk-based
and streaming data or utilizing parallel computing are in
essential need. In [34], the importance of and need for the
development of parallel algorithms are noticed. However,
just four of the algorithms proposed in the literature are
reviewed. Other review papers slightly focus on the parallel
algorithms. Therefore another contribution of this survey
would be the review of papers proposed in the literature to
tackle the challenges of I/ O-bound or CPU-bound.

1.2 Related But Out-of-Scope Work

The mining of networks at mesoscale is a vast area of
research and study. Some of the very well-known problems
in network mining belong to this area. A subcategory of
mesoscale mining of networks is subgraph similarity search
(for the definition of network-related concepts, refer to
Appendix A, available in the online supplemental material).
In this problem, a set of networks or a giant network is
searched for a specific subtree or subgraph, query subtree/
subgraph (and it is called reverse similarity search if the
objective is to find all the networks in a set of networks
which are a subgraph of the query tree/network) [35], [36],
[37]. Other very popular subcategories of network mining
at mesoscale are link mining and prediction [38], [39], [40]
and clustering or community detection in static and
dynamic networks [41], [42], [43], [44]. Some of the
approaches toward this problem are through mining cliques
(or pseudo-cliques) to identify nodes that are densely con-
nected together. For example, MiMAG [45] (also refer to
[46]) is one of these approaches proposed for mining dense
clusters in multi-layer networks with edges labeled.
Although one of the steps in these categories is the detection
of subgraphs, because they do not focus on more general
types of subgraphs, the network or subgraph isomorphism
problem is not covered, and their objective is not to detect
frequent subgraphs, they are not covered in this survey.
Mining frequent trees in forests (a database of trees) is
another very relevant area of research not covered in this
paper. In frequent tree mining problems, the objective is to
discover all or some of the frequent trees in a forest or a sin-
gle large tree. As an example, interested readers may refer
to TREEMINER [47] as a popular algorithm and [48] for a
survey of algorithms proposed for mining frequent sub-
trees. Another set of problems at the mesoscale (not covered
in this survey) is detecting the heaviest subgraph(s) in tem-
poral or static networks. This problem is defined as mining
the (top k) subgraphs with the highest score (using a scoring
function defined over attributes of vertices or edges). For
example, MEDEN [49] is an algorithm proposed for detect-
ing top — k heaviest subgraphs in a temporal network. The
main application of these algorithms is in communication
or transportation networks in which the objective is to find
subgraphs with the highest traffic (over sub-intervals of
time in temporal networks). Anomaly detection, which
might be based on mesoscale mining of networks, is another
popular area of research in network studies not covered in
this survey. It is defined as mining unusual or rare appear-
ance, disappearance, behaviors, or attributes of vertices,
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edges, or subgraph in a single or a set of static and temporal
networks [50], [51], [52], [53], [54], [55], [56]. For a similar
list of sub-domains of network mining approaches, please
refer to [48].

1.3 Frequent Subgraph Mining Applications

The first generation of frequent subgraph mining algo-
rithms has emerged mainly to solve the chemo-informatics
domain problems, such as evaluating the chemical com-
pounds’ toxicology and carcinogenicity [57], [58], [59]. In
this problem, each molecule is modeled as a network. The
vertices of the network represent the atoms of the molecule,
and edges represent the chemical bonds between each pair
of atoms. The network might be attributed. The labels of
edges indicate the type of chemical bond, and the labels of
vertices indicate the atom labels or other characteristics
such as chemical charges [4]. A data set of molecules is rep-
resented as a data set of graph transactions, in which each
transaction models one molecule. The problem is defined as
finding molecular substructures in common among a pre-
defined percentage of molecules.

However, a simple search in academic search engines
shows that applications of frequent subgraph mining have
been generalized to various disciplines over the last two
decades. In all these applications, the entities of interest are
modeled as networks. Based on the domain of study, these
entities would be different. Nonetheless, the problem defini-
tion is the same: detection of patterns observed in at least a
pre-defined number or percentage of the networks in the
data set. In the chemo-informatics applications, the entities
are chemical compounds [57], [58], [59]. In health informat-
ics applications related to disease classification and predic-
tion, the entities might be patients” hospitalization [60], [61]
or imaging records [62], [63], [64]. In the public health
domain, different sources of information might be used for
creating network transactions, for example, online threads
[65], or geo-sensory, meteorological and air quality data
[66], [67]. In bioinformatics application, different biological
networks might be used for mining frequent subgraphs
[68], such as RNA substructures [69] and protein-protein
interactions [70]. The applications of frequent subgraph
mining in social network analysis focus mainly on belief
and intention inference and interaction analysis of users col-
lected from different online platforms [71], [72], [73]. One of
the domains adopted frequent subgraph mining extensively
is computer vision, focusing more on image classification
[74], [75], [76] and action and event recognition [77], [78],
[79]. In these applications, images are represented as net-
works, for example, using a region adjacency graph [80]. In
this representation, the sub-regions in each image are used
as vertices, and spatial relations among sub-regions are
used for edge description. These networks are then mined
for the identification of subgraphs frequent in different
image classes. Another set of applications that has grasped
frequent subgraph mining algorithms is malware detection
[81], [82] and intrusion detection [83] systems. In these
applications, the (intrusion and non-intrusion) transactions
[84], and system call traces are represented as networks
[85]. The set of networks are used as the input data to the
frequent subgraph miner. Then, the extracted frequent
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TABLE 1
Some Examples of Domains/Problems of Frequent Subgraph
Mining Applications

Domain Problem

Chemo-informatics Chemical compounds classification [86]
Chemical toxicity prediction [57], [58],
[59]

Biochemical reaction analysis [87]
Public health [65], [66], [67]

Disease prediction & classification [62],
[63], [64]

Disease progression and survival
prediction [60], [61]

RNA substructure mining [68], [69]
Conserved substructures mining [70]
Trust and deceptive behaviors [71], [73]
Knowledge-sharing [72]

Image classification [74], [75], [76]
Image Clustering [88]

Action & event recognition [77], [78],
[791

Malware detection [81], [82], [85], [89]

Health informatics

Bio-informatics
Social networks

Computer vision

Security

subgraphs are used for downstream analysis, such as classi-
fication and discriminatory pattern analysis [81], [85]. Some
of the applications of frequent subgraph mining in different
domains are listed in Table 1.

1.4 Organization of the Survey

In Section 3 and Appendix A, available in the online supple-
mental material, the concepts used throughout this paper,
and a classification of input data to the frequent subgraph
mining algorithms are introduced. Section 2 reviews some
of the related surveys available in the literature and the con-
tribution of this paper. In Section 4, the algorithms proposed
for mining different types of network data are reviewed.
This survey includes a section for the algorithms proposed
for mining big network data employing disk-based, parallel,
and distributed strategies (Section 5). Then, publicly avail-
able tools are discussed in Section 6. The paper concludes
with the limitations, critiques, and future directions of the
field in Section 7.

2 RELATED SURVEYS AND OUR CONTRIBUTION

The problem of frequent subgraph mining has attracted
substantial attention in the last two decades and is consid-
ered as the essence of mining network data [48]. And, conse-
quently, there have been several studies in which the
proposed algorithms and applications are reviewed. A list
of these review papers is provided in Table 2.

One of the challenges of evaluating and comparing dif-
ferent algorithms is that they are not written and imple-
mented in a common code with the same level of
experience and expertise of developers. So, to provide a bet-
ter comparison, some of the review papers re-implemented
different algorithms in the same framework by the same
developers. The comparison made adopting this approach
is very fair and reliable and can result in significant insights
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TABLE 2

Summary of Frequent Subgraph Mining Review Papers
Review paper Year
State of the art of graph-based data mining [90] 2003
A quantitative comparison of the subgraph miners 2005
MokFa, gSpan, FFSM, and Gaston [91]
Discovery of Frequent Substructures [92] 2006
Frequent pattern mining: current status and future 2007
directions [93]
Mining Graph Patterns [94] 2010
A survey of graph mining techniques for biological 2010
datasets [95]
A comparative survey of algorithms for frequent 2011
subgraph discovery [96]
Building blocks of biological networks: a review on 2012
major network motif discovery algorithms [97]
A survey of frequent subgraph mining algorithms [48] 2012
Performance Evaluation of Frequent Subgraph 2014
Discovery Techniques [98]
Frequent Subgraph Mining Algorithms — A Survey 2015
[99]
A qualitative survey on frequent subgraph mining 2018

[34]

that cannot be easily acquired with a qualitative approach.
For example, [91] compared four of the well-known algo-
rithms for network-transaction setting employing this
approach (also [98]). They conclude that strategies adopted
to prune duplicate candidates are not necessarily the most
critical factor, and algorithms should be judged not just by
their speed but also their functionalities. Due to the time
required to re-implement the algorithms, this approach can-
not be applied to a large number of algorithms. Therefore,
most of the review papers in Table 2 compared the algo-
rithms descriptively and based on the theoretical advan-
tages of strategies adopted by different algorithms for
candidate generation and frequency calculation. In our
knowledge, the review paper written by [90] is the first
review of the algorithms developed for mining frequent
subgraphs. This review paper categorizes the mining
approaches into five groups, greedy search-based
approaches, inductive logic programming, inductive data-
base-based algorithms, network theory-based approaches,
and kernel function-based approaches. Network theory-
based approaches have had the most impact on the next
generations of algorithms proposed for network-transaction
settings. Some of the most well-known algorithms proposed
in the literature are covered in the book written by Cook
and Holder [100]. Chapter 5 [92] of this book reviews algo-
rithms in network-transaction settings and categorizes these
algorithms into two groups, Apriori-based approaches and
pattern-growth approaches (also refer to [93], [99]). We fol-
low the same categorization scheme for the classification of
algorithms proposed in the literature for mining frequent
subgraphs in a database of static networks. A similar cate-
gorization is also performed in [96], however, in this paper,
the authors considered a larger number of algorithms, and
classified them based on their settings (single network or
network-transaction), the search strategy adopted by algo-
rithms (breadth-first or depth-first search strategy), and the
completeness of the frequent subgraphs mined by each
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algorithm. They also summarized the representation of net-
works, the candidate generation, and frequency evaluation
of candidates of different algorithms. [48] provides a
detailed review of some of the most well-known algorithms,
including adopted strategies by each algorithm for candi-
date generation and support computation (for both frequent
subtree and subgraph mining problems) (also refer to [34]).

3 TERMINOLOGY AND NETWORK CLASSIFICATION

To better understand the algorithms discussed in this sur-
vey, it is required to know about the foundational concepts
of networks and concepts related to the literature of fre-
quent subgraph mining, such as graph and subgraph iso-
morphism problems, pruning mechanisms, different
concepts of frequency and various types of subgraphs. The
terminology and concepts used throughout this survey are
defined in Appendix A, available in the online supplemen-
tal material. Besides, Appendix A, available in the online
supplemental material, briefly reviews the common format
of input data to the frequent subgraph mining algorithms as
well.

The algorithms proposed in the literature for mining fre-
quent subgraphs in different settings can be categorized
based on the characteristics of subgraphs. For example,
[101] provides three dimensions based on the type of sub-
graphs mined: topology (acyclic subgraphs such as paths
and trees, and cyclic subgraphs), frequency-based (closed
or maximal), and relations between different embeddings of
a subgraph (non-overlapping or partial overlapping). Con-
sidering the discussed concepts in Appendix A, available in
the online supplemental material, the algorithms are differ-
ent in terms of the temporality of the data, how they cope
with complexities of the graph and subgraph isomorphism
problems, methods adopted for candidate generation, the
approach taken for calling a subgraph frequent (exact\inex-
act isomorphic, exact\inexact frequency, and general\spe-
cific), and the approach adopted for computing frequency
or support. In the following, some of the well-known algo-
rithms in the literature proposed for mining frequent sub-
graphs in graph-transaction setting are described.
Furthermore, a detailed discussion of other algorithms in
each mining category is provided in Appendices B and C,
available in the online supplemental material. The problem
of interest is frequent subgraph mining. In this paper, we
focused on the algorithms proposed for mining frequent
patterns in a dataset of networks. Based on the temporality
of the data, the networks are represented either as sets or
sequences of networks. In the next level, algorithms are clas-
sified based on the most significant differences observed
among algorithms proposed in the literature. Fig. 1 visual-
izes this taxonomy and provides sections and subsections
covering each category of mining approaches. In the follow-
ing sections, when we are reviewing the algorithms pro-
posed in the literature, a table is provided representing
different characteristics of algorithms. These characteristics
are:

e whether algorithms are exact isomorphic or minor
topological variations or noises among embeddings
of a subgraph are accepted,
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Network
representation

Problem
setting

Problem of .
M h
interest ining approaches

Breadth-first search or
Apriori-based algorithms

Subsubsection 4.1.1

Depth-first search
algorithms
Subsubsection 4.1.2

( SUDSUDSECION .02 )

Static network-
transaction setting
Subsection 4.1

Other approaches
Subsubsection 4.1.3

Subgraph Mining
(Set or sequence of
networks)
Section 4

Inter-network subgraph
mining
Subsubsection 4.1.4

Extended inter -network
subgraph mining
Intra-network subgraph
mining
Subsubsection 4.2.2

 2UDSUDOSCLION s )

Frequent

i Temporal network-
subgraph mining

transaction setting
Subsection 4.2

Statis network
Temporal network

Fig. 1. Classification of frequent subgraph mining algorithms. The boxes
grayed out are not covered in this survey. Each mining category is further
discussed in Appendices B and C, available in the online supplemental
material.

Motif Discovery
(One single
large network)

Network data streams
Subsubsection 4.2.3

e whether the algorithms mine all the frequent sub-
graphs (i.e., the complete set of frequent subgraphs),
and

o whether the algorithms are limited to a specific class
of subgraphs (such as closed or maximal), or mines
all classes of subgraphs.

4 SuBGRAPH MINING

4.1 Static Network-Transaction Setting

The proposed algorithms in the literature of network-trans-
action settings adopt different candidate subgraph genera-
tion and frequency computation strategies. The general
approach is to generate candidate subgraphs from already
identified frequent subgraphs and compute the frequency
of candidate in the network database. The frequent sub-
graphs identified in each iteration are used for the genera-
tion of the set of candidates for the next iteration, and these
iterations are performed until no further frequent sub-
graphs are identified. This problem can be formally defined
as follows.

Problem Definition. Given a network database DB =
{{i,N;) |i = 1...n} composed of n network transactions
Fig. 2), and a minimum support min_supp € [0, 1], how
we can mine the set of subgraphs appear in at least
min_supp X |DB| number of transactions of DB.

The networks in the database may be directed/undi-
rected and labeled/unlabeled. And the objective of an

N1 N, N,

Fig. 2. A network database D composed of n independent undirected
labeled networks.
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algorithm is either mining all the frequent subgraphs, or a
particular class of subgraphs (such as maximal, closed, or
induced). In addition, the algorithms may compute the exact
frequencies of subgraphs or just provide an approximation
of the frequencies. Besides, some of the algorithms output a
complete list of frequent subgraphs in the database, and
some only mine a subset of the frequent subgraphs.

The algorithms proposed for subgraph mining in static
network databases can be categorized into two main catego-
ries based on the adopted methods for candidate genera-
tions; Apriori-based algorithms and pattern growth
algorithms. In Apriori-based algorithms, the candidates at
iteration 7 are generated by merging two subgraphs consid-
ered to be frequent at iteration ¢ — 1. The size of subgraphs
at each iteration generally increases by one (size is defined
as the number of edges or vertices in different algorithms).
To generate a complete list of candidate subgraphs at itera-
tion ¢, all the frequent subgraphs of size i — 1 should be
known. Therefore, the Apriori-based algorithms follow a
breadth-first search strategy (also called level-wise candi-
date generation). The pattern-growth algorithms start from
one subgraph (which can be a single vertex or edge) and
mine all the children of this subgraph iteratively by adding
a new vertex or edge in each iteration (this strategy is called
depth-first search, or DFS). Because the pattern-growth
algorithms do not depend on all the known frequent sub-
graphs at the previous iteration, there is no requirement for
detecting all the frequent subgraphs at each iteration. There-
fore, pattern-growth algorithms can be implemented with
both breadth-first or depth-first search strategies. These two
approaches to mining frequent subgraphs in the network
databases are explained in detail in [92]. For a summary of
the algorithms reviewed in this section, refer to Table 3.

4.1.1 Breadth First Search or Apriori Based Algorithms

As discussed, the algorithms in this category generate candi-
dates of each iteration by merging frequent candidates of the
previous iterations. One of the most well-known algorithms
in this category is FSG [59], [120], [121]. This algorithm uses a
sparse network representation of the network database. The
candidate generation in FSG is edge-based and composed of
joining (including self-joining) two frequent subgraphs of
size k, which have identical subgraphs of size k — 1, called
core. Therefore, to join two subgraphs, first, the core should
be identified, then two subgraphs should join to form a can-
didate. Some of the candidates may be removed in this step
to meet the downward closure property. By recording the
history of frequent subgraphs in each iteration, these steps
can be expedited. Also, note that two subgraphs with identi-
cal cores can be joined differently and produce multiple can-
didates. For frequency counting, FSG uses an optimized
approach. In each iteration, the list of transactions containing
the frequent subgraph is stored. Then after producing a can-
didate from two frequent subgraphs, the intersection of the
list of transactions containing both frequent subgraphs is cre-
ated. If the length of this intersection is less than the thresh-
old, the candidate subgraph can be pruned. Otherwise, the
transactions inside the intersection list can be examined
for computing the exact frequency. The FSG uses canonical
labeling for graph isomorphism. However, to reduce the
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TABLE 3
Summary of Algorithms Developed for Subgraph Mining in
Static Network-Transaction Setting

Algorithm Exact isomorphic Complete General
Breadth-first search or Apriori-based algorithms

AGM [58] -
AcGM [102]

FSG [59]

Inokuchi et al.[103] -
gFSG [104], [105]
Vanetik et al.[106]

Depth-first search algorithms

gSpan [25], [107]

CloseGraph [108] -
MoFa [4]

FFSM [109]

SPIN [110], [111] -
MARGIN [112] -

Other approaches to frequent subgraph mining

GASTON [113]

TSMiner [114] both

CLOSECUT & SPLAT [115] -
LEAP [116] -
MULE [117] - -
gPrune [118] -
GraphSig [119] -

*: This algorithm is discussed in Appendix B, available in the online supple-
mental material.

Exact isomorphic: if the algorithm mines the exact isomorphic subgraphs.
Complete: if the algorithm mines all the frequent subgraphs.

General: if the algorithm mines all the general types of subgraphs or limited to
a special class, such as induced, maximal, or closed.

“both”: the algorithm can mine the exact/inexact isomorphic subgraphs.

combinatorial space, vertex invariants such as labels and
degrees of vertices and the neighbor lists of vertices are used.
An extended version of FSG, gFSG [104], [105], is proposed
for mining datasets of geometric networks. This algorithm is
discussed in further detail in Appendix B.1.1, available in the
online supplemental material.

Another well-known algorithm in this category is Apri-
ori-based Graph Mining (AGM) [58] developed for mining
frequent induced subgraphs (the performance of the algo-
rithm has been improved and introduced as AcGM, the
new version can find both general and induced subgraphs
[102]). Most of the algorithms proposed in the literature
mine the network database for general subgraphs. The algo-
rithms proposed for mining induced subgraphs claim that
not all the frequent subgraphs necessarily preserve the orig-
inal input network structure. Mining the network database
for induced subgraphs both maintain the structure of the
original edges and simultaneously reduce the computa-
tional complexity of subgraph isomorphism, because the
algorithm does not need to search for non-induced frequent
subgraphs [103]. In AGM, the adjacency matrix of all fre-
quent induced subgraphs is vertex-based sorted. Two fre-
quently induced subgraphs are joined to form a candidate if
they differ by only one column and one row. The size of this
new candidate is one vertex more than the two parent sub-
graphs. To prevent the redundant generation of candidates,
the subgraph with the smaller code is considered the first
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subgraph and the second subgraph is joined to the first sub-
graph (code of a subgraph is defined as the concatenation of
elements of the upper triangle of the adjacency matrix along
the columns). The vertex-sorted adjacency matrix X(s) of
the generated candidate s is called normal form, represented
as code(X(s)). The normal form of a matrix is not necessarily
unique. Therefore, in AGM, for correct frequency calcula-
tion, canonical form of the adjacency matrices X.(s) is intro-
duced, which for a set of the normal form of identical
subgraphs NF'(s), is the one with the minimum code.

X.(s) = arg min code(X (s)). )
XENF(s)

In Vanetik et al. [106], an algorithm is proposed which
uses edge-disjoint paths for lexicographical ordering and
candidate generation. A brief description of this algorithm
is provided in Appendix B.1.1, available in the online sup-
plemental material.

Apriori-based algorithms have been very successful in
mining the complete set of general or induced subgraphs.
Some of the algorithms in this category are customized to
mine disconnected subgraphs, subgraphs with self-loops
and multi-edges, and subgraphs in a dataset of directed net-
works [58], [59], [102]. However, the algorithms in this cate-
gory are considered expensive due to the adopted level-
wise candidate generation strategy [92]. In addition, for fre-
quency counting, either the subgraph isomorphism should
be performed in each iteration, or the location of all the
instances of frequent subgraphs at successive iterations
should be recorded. The former strategy is computationally
expensive, and the latter increases the memory require-
ments [101]. The tracking of frequent subgraphs does not
require that much memory in algorithms adopting a depth-
first search strategy, which is discussed in the next part.

4.1.2 Depth First Search Algorithms

The DFS-based algorithms are developed to improve effi-
ciency and alleviate the challenges associated with Apriori-
based algorithms. One of the most well-known algorithms
in this category is gSpan [25], [107]. The gSpan utilizes two
novel constructs; DFS lexicographic order and minimum
DEFS code, which make the canonical labeling of networks
more efficient for DFS.

Given a support threshold, the gSpan can discover all the
frequent subgraphs in a network database. Adopting a DFS
strategy, gSpan searches for frequent subgraphs starting
from each 1-edge toward all the children of the subgraph.
gSpan continues searching until either the support of the
subgraph is less than the predefined threshold or the DFS
code is not the minimum code. In the latter case, it means
that the tree with the minimum DFS code is already found
(and all of its children are also evaluated) [108]. The gSpan
can be simply modified to mine frequently induced sub-
graph [107]. CloseGraph [108], an extended version of
gSpan, is another algorithm in this category that mine all
the closed frequent subgraphs. One, not desired approach,
is to generate all the frequent subgraphs and then prune
non-closed subgraphs. However, CloseGraph is modified
to terminate the iterations for preventing the generation
of non-closed subgraphs (through “non-closed graph
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pruning”). It uses a mechanism (equivalent occurrence) to
check for closed-ness of subgraphs and their children and
remove them as early as possible if they are not closed.

MokFa (or MoSS) [4] is another algorithm in this category
proposed for the identification of frequent subgraphs and
contrast subgraphs with minor modifications. Contrast sub-
graphs are defined as subgraphs frequent in one set of net-
work transactions and infrequent in another set. The
approaches proposed for contrast subgraph mining are gen-
erally using two support thresholds. One defines the mini-
mum support that subgraphs should have to be considered
frequent in the first set. The second one represents the maxi-
mum support that subgraphs can have in the second set of
transactions to be considered infrequent.

FFSM [109] is another popular algorithm in this category
which uses a novel approach to produce canonical forms.
Given the adjacency matrix A for a graph N, the code(A) is
defined as sequence obtained by concatenating the elements
located in the lower triangle of A

code(A) = 11021022 . .An1. . Gnp-10nn, (2)

where a; ; represents an element of A located at row i and
column j. Because the adjacency matrix representation of a
network is not unique, the canonical form of network N is
defined as

A (N) = arg maxcode(A(N)). 3)

The maximality is checked based on the lexicographic
order among the codes obtained from different representa-
tions of the adjacency matrix. The matrix A.(N) is called
canonical adjacency matrix CAM) of N. FFSM proposes two
FFSM-Join and FFSM-Extension operations on CAM for can-
didate generation, and a data structure for tracking frequent
subgraphs to avoid expensive subgraph isomorphism prob-
lem. The developers of FFSM show that these improve-
ments have been able to outperform gSpan, on both real-
world and synthetic datasets. SPanning tree-based maximal
graph mINing (SPIN) [110], [111] and MARGIN [112] are
two other algorithms in this category proposed for mining
maximal subgraphs and discussed in further detail in
Appendix B.1.2, available in the online supplemental
material.

It is shown in multiple studies that algorithms of this cat-
egory have been successfully outperformed Apriori-based
algorithms [25], [92], [113]. Because it is not required to
mine and keep all the (k)—size frequent subgraphs to create
(k+ 1)—size candidates. Besides, the frequency computa-
tion and verification can be performed more efficiently, as
the frequency of children candidates can be derived from
the frequent parent subgraph frequency. However, even
with these modifications, the algorithms of this category are
not challenge-free. First, the graph isomorphism still exists.
Also, the algorithms designed to mine the complete set of
general subgraphs produce a large number of frequent sub-
graphs. For example, in a dataset of 422 chemical com-
pounds with min_supp = 0.05, there are about 1,000,000
frequent subgraphs [108]. Although all these subgraphs are
considered frequent at this support level, not all of them are

necessarily significant or imgortant for the application of
Xplore. Restrictions apply.
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interest. Increasing the support threshold might eliminate
some of the significant but not frequent enough subgraphs.
Decreasing the support threshold would increase the min-
ing cost exponentially and may result in many frequent but
not significant enough subgraphs. Therefore, some of the
other algorithms proposed in the literature taking these
challenges into account and are designed to tackle the iso-
morphism problems more efficiently. Some other algo-
rithms are proposed to mine frequent subgraphs that
maximize (minimize) some user-defined objective (loss)
functions or enable users to control the mining process by
defining structural constraints over the mined subgraphs.
These algorithms are covered in the following subsection.

4.1.3 Other Approaches to Frequent Subgraph Mining

The algorithms in this category might still use one of the
search strategies discussed in the previous two subsections.
However, they generally employ more unique strategies for
subgraph mining that differentiate them from other algo-
rithms discussed previously. Therefore, we decided to put
these algorithms in a third category. One of the most well-
known algorithm in this category is GASTON (GrAph/
Sequence/Tree extractiON) [113] (assumed to be a pattern-
growth approach [92]). This algorithm first mines all the fre-
quent paths, then trees, and ends with the mining of sub-
graphs. The main reason is to reduce the computational
complexity of an expensive process in subgraph mining as
the mining of frequent paths and trees is less complex. Algo-
rithms like GASTON (or SPIN discussed earlier) show their
best performance when the frequent subgraphs are trees.
TSMiner [114] is another approach developed for mining fre-
quent topological structures based on the concept of topological
minor focusing on replacing independent paths (paths with
no inner nodes in common) with edges using appropriate
relabeling functions to preserve the edges’ information. The
topological structures can be obtained from topological
minors. They show that the frequent connected subgraph
mining problem is a special case of frequent topological
structure mining problems. The mining is performed in two
steps. First, frequent tree-topological structures are mined
(using the approaches introduced in GASTON[113]), then
using the frequent tree-topological structures, frequent net-
work-topological structures are mined. The frequent tree-
topological structures are the spanning trees of the frequent
network-topological structures.

In [115], two algorithms, CLOSECUT and SPLAT, are
proposed for mining relational networks. For network N,
the edge-cut, E., and edge-connectivity, (V) are defined as

E.={FE'|N(V,E/E') is disconnected} @
= (N) = mingeg,|&|.

Then, the proposed algorithms discover all the closed fre-
quent subgraphs with minimum edge connectivity of K.
These algorithms are different based on the approach they
adopt for creating new candidates (pattern-growth versus
pattern reduction, respectively). The nodes in relational net-
works have distinct labels. Therefore, frequent itemset min-
ing approaches can be applied to mine relational networks
using edges as items. However, the considered constraint,
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the minimum edge connectivity of K, is not downward
closed, and therefore, the algorithms should adopt appro-
priate heuristics to mine closed connected subgraphs with
the minimum edge connectivity of K.

MULE [117] and the algorithm proposed in [122] are
other relevant algorithms. The MULE is a domain-specific
algorithm proposed for mining frequent subgraphs in a
dataset of a few large directed networks. And, [122] pro-
poses an algorithm for mining frequent subgraphs in outer-
planar network-transactions. These two algorithms are
briefly described in Appendix B.1.3, available in the online
supplemental material.

In many subgraph mining applications, we are interested
in subgraphs maximizing or minimizing an objective func-
tion or satisfying some constraints. The simple approach is
to mine all the frequent subgraphs first, and then among the
frequent subgraphs, the ones which maximize or minimize
the objective function or meeting the constraints are
selected. However, this approach is not very efficient. The
ideal case is to mine the frequent subgraphs optimizing
objective function or satisfying the constraints in the run-
ning time. The gPrune [118] is a constraint-based frame-
work for mining frequent subgraphs in a network database
in which the discovered subgraphs are satisfying some
structural constraints. A structural constraint is expressed
as a boolean predicate, which either a subgraph, s, meets or
not. The constraints considered for the gPrune are:

Density ratio: 2 x |E(s)|/(|[V(s)|(|[V(s)] = 1))

Density: |E(s)|/|V(s)]|

Diameter: the maximum length of the shortest path
between any pair of nodes

o Edge wvertex) connectivity: refer to Equation (4)

The gPrune is based on gSpan with two extra checks in
the pattern-growth phase. A more in-depth discussion
about this algorithm is provided in Appendix B.1.3, avail-
able in the online supplemental material.

Instead of constraint-satisfying algorithms, some algo-
rithms are developed to find frequent subgraphs to mini-
mize or maximize an objective function. LEAP is one of
these algorithms proposed in [116]. Given a (potentially
non-monotonic) user-defined objective functions , F’, and an
user-defined threshold 6, LEAP is able to mine the set of
subgraphs such that F(s) > 6, or, the subgraph s* that maxi-
mizing the objective function

s" = arg maxF(s). (5)

This approach is based on this idea that we might be able
to use the correlation between the significance similarity
(defined based on the objective function) and structural sim-
ilarity to mine frequent subgraphs optimizing the objective
function. This algorithm uses structural proximity pruning,
meaning similar patterns in structure show similar frequen-
cies and significance, and frequency association, meaning that
significant patterns also have higher ranks in a list of sub-
graphs ranked based on their frequency. The GraphSig
[119] is another algorithm in this category combining the
mining of statistically significant and frequent subgraphs
and is briefly discussed in Appendix B.1.3, available in the
online supplemental material.
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The problem of mining frequent patterns in a set of static
networks has been around for a few decades. Numerous
research studies are devoted to the extension of theoretical
foundations and applications of this problem. Although
some of the algorithms proposed can be perfectly applied to
many applications, there are still some challenges associated
with frequent pattern mining in static network-transaction
settings. First, some of the systems modeled by these net-
works are changing over time. The static representation of
these systems might not capture the underlying dynamics.
Therefore, the frequent patterns identified by these algo-
rithms might not represent the actual frequent temporal pat-
terns in the systems that the static networks represent.
Furthermore, even with the progress made to avoid graph
and subgraph isomorphism problems and memory limita-
tions, the adverse computational impacts and the complexi-
ties associated with these problems still may limit the
proposed algorithms’ applications. Therefore, there have
been two streams of research to tackle these problems. In the
past few years, there has been an increasing interest to
include temporality into the network modeling of systems
where their dynamics cannot be ignored. Based on the prob-
lem and the dataset of interest, there have been several
approaches to generalize the problem of frequent subgraph
mining to temporal networks. In parallel, some of the studies
focus on implementing frequent subgraph mining algo-
rithms using different techniques to solve the computational
complexities and memory requirement problems. In the next
two sections, first, we review the algorithms proposed for
mining frequent patterns in temporal networks. Then, the
algorithms proposed for CPU- and I/O-bound problems are
reviewed and discussed.

4.2 Temporal Network-Transaction Setting
This category of subgraph mining algorithms can be consid-
ered as an extension of frequent subgraph mining in the
static network-transaction setting. Therefore, some of the
approaches proposed in the literature are a modified ver-
sion of algorithms discussed in Section 4.1. In the static ver-
sion of subgraph mining, we were interested in the exact or
approximate version of all or a subset of frequent sub-
graphs. And, a frequent subgraph was defined as a sub-
graph which has appeared at least in more than a
predefined number of network transactions. The embed-
dings of the subgraph are topologically identical or similar
enough. Also, it should be noted that although vertices and
edges on network transactions might have identical labels,
network transactions are entirely independent. In the
dynamic or temporal version of the same problem, on the
other hand, network transactions are not independent. In
fact, they represent the changing relations among the same
system components over a predefined dimension, such as
time. In this case, network transactions can be considered as
a sequence of small networks or time-series networks. These
changes might be realized through insertion, deletion, and
substitution of vertices, edges, and labels. The addition of
this dimension and sequentiality of network transactions
make the subgraph mining much more complicated.

The modeling approaches adopted in temporal network-
transaction settings are very similar to those adopted in
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motif discovery algorithms in a single large network. For a
detailed discussion of motif discovery in static and temporal
networks, refer to [123]. There are some minor differences
that can be helpful to differentiate these two problems. First,
the networks in the temporal network-transaction setting
usually are small, with less than a hundred or a few hun-
dred nodes. However, the networks in the motif discovery
problem are composed of thousands or millions of nodes.
Although the networks are labeled in some of the motif dis-
covery algorithms’ applications, the focus is generally more
on the structure or the structural dynamics. In temporal net-
work-transaction setting, the networks are typically labeled.
Even in some of the algorithms proposed in the temporal
network-transaction setting, the nodes are uniquely labeled.
In this case, the complexities of both graph and subgraph
isomorphisms significantly reduce and would be quadratic
in the number of nodes [124]. In most of these applications
and algorithms, the emphasis might shift toward which
components specifically interact with one another over
time. Nonetheless, there are no well-defined boundaries
between these two problems. Some of the algorithms pro-
posed for motif discovery in a single large network can be
customized for network-transaction setting applications. In
temporal network-transaction setting, subgraphs are con-
sidered frequent if the number of topologically isomorphic
embeddings of a subgraph preserving identical temporal
changes is more than a user-defined threshold. In the fol-
lowing, some of the proposed algorithms for subgraph min-
ing on temporal networks are discussed. For a summary of
the algorithms reviewed in this section, refer to Table 4.

4.2.1 Inter Network Subgraph Mining

In this subclass, the inter-network transformation patterns
are defined as changes that convert a network N, to the
next network in the sequence N, T Then, the problem of
this subclass can be expressed as follows:

Problem Definition. Given a network database DB =
{Ny,, Ny, .., Ny, } composed of an ordered sequence or
time-series of n networks representing the states of a sys-
tem at n time-points Fig. 3), a minimum support
min_supp, how we can mine the patterns appearing in at
least min_supp x |DB| number of inter-network trans-
formation patterns.

[125] proposed one of the algorithms in this subclass. In
[125], a sequence of n networks is considered as N, =
{N1,...,N,} = (V,E) in which V = [J_,;V(;) and edges
might be deleted or inserted over time. Then, the proposed
algorithm predicts future interaction patterns using the dis-
covered frequent subgraphs. In this algorithm, it is assumed
that vertices are uniquely labeled and can appear maximum
once in each timestamp. Because of the unique labeling of
vertices, the graph isomorphism test would be trivial. The
subgraph mining step of the algorithm is to extract the fre-
quently closed subgraphs for each timestamp. The different
ordered pairs of these subgraphs (also taking into consider-
ation the delay between them) are then used to estimate the
delay between their co-occurrences as a probability distri-
bution. Because of the elimination of graph isomorphism

roblem, they have used a modified version of MAFIA
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TABLE 4
Algorithms for Subgraph Mining in Temporal Network-Transac-
tion Setting
Algorithm Exact Complete  General
isomorphic

Inter-network subgraph mining
Lahiri et al. [125] -

PSEMiner [126] both -
You et al. [127] both -
GERM [128]

Ahmed et al. [129] -
Uno et al. [130] - -

Extended inter-network subgraph mining

GTRACE & *GTRACE-RS
[131], [132], [133]
FRISSMiner [134], [135] -

Intranetwork subgraph mining

EVOLVING-SUBGRAPHS - - -
[136]

Wackersreuther et al. [137]

TimeCrunch [138] - - -

Network data streams

Cuzzocrea et al. [139]

Inc-, Win-, & -
AdaGraphMiner [140]

Braun et al. [141]

Aggarwal et al. [142] - - -

*: This algorithm is discussed in Appendix B, available in the online supple-
mental material.

Exact isomorphic: if the algorithm mines the exact isomorphic subgraphs.
Complete: if the algorithm mines all the frequent subgraphs.

General: if the algorithm mines all the general types of subgraphs or limited to
a special class, such as induced, maximal, or closed.

“both”: the algorithm can mine the exact/inexact isomorphic subgraphs.

[143], a frequent itemset mining approach from a transac-
tional database, for extraction of frequent subgraphs.

A compression-based (instead of a frequency-based)
approach in this category is proposed in [127] (also refer to

frequent inter-network
transformation patterns are mined

-

e
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Fig. 3. A sequence or time-series of networks. In the subclass of inter-net-
work subgraph mining, the frequent inter-network transformation patterns
are mined. In this subclass, the transformation patterns, represented by
insertion or deletion of vertices or edges, and changes in their associated
labels, transform one network to the next network in the sequence. In this
figure, edges inserted are shown with green, and edges deleted are
shown with red, vertices, and the labels remained unchanged.
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[144]), developed for extracting structural transformation in
a sequence of networks. It is composed of two main steps,
in the first step, it extracts a set of rules in which, first, the
maximum common subgraph between every two consecu-
tive networks is extracted (e.g., N; and N;;; in Ny =
{Ny,...,N,} where 1 <i < n) and then the edges removed
and added from and to the first network, IN;, which in com-
bination with the maximum common subgraph have cre-
ated the second network,N;,, are recorded (called rewriting
rules). In other words, rewriting rules, RR; ;11, are a set of
network transformations that convert a prior network N; to
a posterior network N

Niz1 = N; ® RR; ;1. (6)

In the second step, using the rewriting rules, RR;;;1,
description rules are extracted used to describe the structural
changes in a sequence of networks as a set of subgraphs
repeatedly removed and added. The complexity of this prob-
lem is in finding the maximum common subgraph, which
because it is assumed that vertices are uniquely labeled, is
not very expensive. In [126] (also refer to [145] for more
details), a similar algorithm, PSEMiner, is proposed for
detection of structural (or close to) periodic behaviors of
sequential networks. The networks in the sequence are com-
posed of uniquely labeled vertices. Their algorithm is
designed to mine closed subgraphs, and they define a periodic
subgraph embedding as a set of subgraphs that appear in regu-
lar intervals in the network sequence. A subgraph is frequent
if the number of timestamps that this subgraph appears in
regular intervals is more than a predefined threshold. They
also make their algorithm flexible by allowing some noises in
the regularity in the appearances of embeddings. Consider-
ing the uniqueness of vertices’ labels in sequential networks,
they prove that mining periodic subgraphs in dynamic net-
works are in the time- and space-polynomial class. They also
converted the frequently closed subgraph mining problem
to a transactional itemsets problem and adopted MAFIA
[143] to mine the frequent patterns.

GERM [128] is proposed for graph evolution rule mining.
Similarly, authors of [129] and [130] propose algorithms for
mining persistent maximal evolution paths and preserving
structures, respectively. The problems defined in these
papers are similar in nature to the ones discussed in this sec-
tion. These algorithms are discussed in Appendix B.2.1,
available in the online supplemental material.

Some of the algorithms of this subclass of the temporal net-
work-transaction setting are limited to particular temporal
patterns. For example, in [126], the periodic or near-periodic
frequent patterns are mined. Or, the algorithm proposed in
[130] mines the subgraphs forming a clique or a connected
subgraph. Besides, in most of the algorithms in this subclass,
the dataset represents one sequence of networks, where each
network of the sequence represents the state of the system at
a timestamp, and the series represents the system’s dynamics
over time. In a similar category of algorithms, the frequent
transformation rules are of interest. However, instead of one
sequence of networks, the dataset is composed of multiple
sequences, and the complete set of patterns/sub-sequences
are mined. In the next subsection, the algorithms proposed
for this type of problem will be discussed.
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4.2.2 Extended Inter Network Subgraph Mining

The problem of this category is an extended version of prob-
lem discussed in Section 4.2.1. The extension is typically
over the number of sequences in the network. Here, the net-
work database DS = {S; = (n},n?,...,n;")} for i € {1..s} in
which S; represents the sequence i and n] represents the jth
observation of the sequence i. Therefore, the database is
composed of a set of sequences. Each sequence is an inde-
pendent time-series of networks similar to the sequence
shown in Fig. 3. Then, the problem is defined as follows:

Problem Definition. Given a database of network
sequences, DS, minimum support min_supp, how can
we mine the patterns appearing in at least min_supp x
| DS| number of sequences in DS.

In this problem, similar to the problem of the previous
subsection, the inter-network patterns are mined. However,
the support is measured over all the sequences of the data-
base, instead of one sequence.

In our knowledge, the first algorithm in this group is
GTRACE [131], [132]. The general idea is that there is a data-
base of sequential networks. The sequence i is composed of
k; observations (or interstates) of the network. The changes
of interstates show the structural changes of the correspond-
ing network over time in the form of vertex or edge inser-
tion or deletion or label substitution. The changes of a
network sequence are represented as transformation rules
in two consecutive states (intrastate), and the sequence of all
the consecutive transformation rules of a network sequence
is called intrastate transformation sequence. Therefore, each
network sequence can be replaced by its initial interstate n'
and the intrastate transformation sequence. The GTRACE
uses a graph grammatical framework to formulate these trans-
formation rules. In GTRACE, the union network, N, of a
sequence S; is defined as follows:

Nu(Si)=(V, )>
V= U .1:1...\51|{id(v)\v € V(n{)}
- U j:lA.A\si|{(id(v)7id(v’)|(v, V) € E(nd)}.
)

A sequence is called relevant if the corresponding
union network of the sequence is connected. The objec-
tive is to mine the frequent subsequence of transforma-
tion rules (FTS), which have connected union network.
To find the relevant FTS, any network mining algorithm
can be used. It is assumed that identical labels are
allowed. However, vertices have unique IDs in S;. Then,
a sequential pattern mining algorithm can be used for
mining the FTS. Note that, due to the uniqueness of
node IDs, the GTRACE can compute the consecutive
transformation rules in polynomial time. The support for
each transformation subsequence is computed as the
number of S;s in the DS, which includes the subse-
quence. The modified version of GTRACE, GTRACE-RS
[133] and Frequent Relevant, and Induced Subgraph Sub-
sequence (FRISS) Miner [134], [135], are discussed in
Appendix B.2.2, available in the online supplemental
material.
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patterns are mined from each network
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Fig. 4. A sequence or time-series of networks. In this subclass, the net-
works of the sequence are mined.

4.2.3 Intranetwork Subgraph Mining

A subset of algorithms in the temporal network-transaction
setting are the ones that perform mining on each of the net-
works of the sequence. Therefore, the definition of the prob-
lem would be as follows:

Problem Definition. Given a network database DB =
{Ny,, Niy, ..., Ny, } composed of an ordered sequence or
time-series of n networks Fig. 4), a minimum support
min_supp, then how we can mine the patterns appearing
in at least min_supp x |DB| number of networks in the
sequence. In this subclass, the proposed algorithm mines
the networks of the sequence, instead of the inter-network
patterns.

An algorithm from this category is proposed in [137]. In
this algorithm, the vertices are identical over all the net-
works of the sequence. However, their labels can change.
For mining frequent subgraphs, first, all the networks in the
sequence are aggregated into one single network. The edge
labels are concatenated too. If one of the edges does not exist
in one or multiple networks in the sequence, a character is
used to make the string concatenation complete. This aggre-
gated network is called summary graph. Then, in the first
step, all the frequent topological subgraphs of the summary
graph are mined using motif discovery algorithms in single
networks (In [137], the FANMOD [146] is used). From the
mined frequent motifs, the subgraphs that follow the same
temporal patterns of edges’ insertions, deletions, or label
substitutions are considered frequent dynamic subgraphs if
their frequencies are more than a predefined threshold. The
identification of temporal patterns is performed on the
concatenated labels of edges using string algorithms. Time-
Crunch [138] is another approach proposed for mining pat-
terns in a sequence of networks and briefly discussed in
Appendix B.2.3, available in the online supplemental
material.

In all the algorithms discussed, including the algorithms
proposed for the temporal network-transaction setting, it is
assumed that the entire dataset of interest is available
beforehand. Therefore, all the networks’ simple frequent
components, vertices and edges, can be identified and used
for the next iteration of subgraph/sub-sequence candidate
generation. Although this assumption that the dataset is
accessible in advance holds in many applications, the algo-
rithms discussed so far are not directly applicable to the
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cases where the temporal data is generated over time and
being gradually accessible. In addition to the challenges dis-
cussed so far in these types of problems, the continuity and
unboundedness of the input data and unknown distribution
of frequent subgraphs in the stream might be problematic. It
implies that the subgraphs considered infrequent at some
periods might be frequent in others [139], [141]. In this fol-
lowing subsection, some of the algorithms proposed to cope
with these complexities are discussed.

4.2.4 Network Data Streams

Another category in this subclass is when the input network
data is in the form of sequential networks streaming over
time. The problem can be defined based on any of the three
previous subclasses. However in this class of problems,
designing an efficient data structure to keep track of
observed subgraphs for later frequency evaluation is cru-
cial. In [139], three different data structure, DSTree,
DSTable, and DSMatrix (DS stands for Data Stream) are
briefly reviewed, with the DSMatrix to be the most mem-
ory-efficient structure for network data streams (also refer
to [141] in which the DSMatrix is proposed for mining fre-
quent subgraphs in a stream of dense networks). These data
structures are mainly used when data streaming is in the
form of batches of data. Then, two edge-based algorithms
are proposed to mine frequent co-occurring connected
edges in the network streams. In the first algorithm, the fre-
quent edges are mined first, and then disconnected edges
are pruned in the second step. The second algorithm com-
bines these two tasks in one step.

In [140], three algorithms are proposed for mining closed
subgraphs in network streams; IncGraphMiner, WinGraph-
Miner, and AdaGraphMiner, respectively incremental, win-
dow-based, and adapting closed subgraph mining
algorithms. In IncGraphMiner, batches are composed of a
small set of networks. After a new batch arrives, the fre-
quently closed subgraphs are mined, and the previous fre-
quent subgraph repository is updated. In WinGraphMiner,
a sliding window is considered. When a new batch of net-
works arrives, the frequent subgraph repository is updated,
however, in cases where the considered sliding window is
full, frequently closed subgraphs from the oldest batches
might be deleted. Finally, the AdaGraphMiner employs an
adaptive approach to the changes in the network stream by
using different adaptive sliding window strategies. A prob-
abilistic approach for mining frequent dense subgraphs in
streaming edge sets is proposed in [142] and explained in
Appendix B.2.4, available in the online supplemental
material.

The problem of mining frequent patterns in network data
streams is generally very challenging and complex. The
algorithms proposed for this subclass either provide
approximate estimations of frequencies or produce a subset
or particular classes of frequent patterns and subgraphs
(e.g., closed or dense subgraphs). As it is discussed in [142],
one of the assumptions made in some of these algorithms is
sparsity, meaning that even if the networks are composed
of a large number of vertices and edges, the streams are in
the form of batches of edges connecting a small subset of
vertices.
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TABLE 5
Algorithms Proposed for CPU-Bound and 1/0 Bound Problems
Name Exact Complete  General
isomorphic

ADI-Mine [147]
PartMiner &
IncPartMiner [148]
Nguyen et al. [149]
[150]

Parallelized gSpan &
MoFa [151]

FSM-H [152]
Buehrer et al. [153]
DB-FSG [154], [155]
OO-FSG [156]
MapReduce-FSG [157]
MRFSM [158]

*: This algorithm is discussed in Appendix C, available in the online supple-
mental material.

Exact isomorphic: if the algorithm mines the exact isomorphic subgraphs.
Complete: if the algorithm mines all the frequent subgraphs.

General: if the algorithm mines all the general types of subgraphs or limited to
a special class, such as induced, maximal, or closed.

“both”: the algorithm can mine the exact/inexact isomorphic subgraphs.

5 ALGORITHMS FOR CPU-BOUND
AND I/O BOUND PROBLEMS

In general, frequent subgraph mining algorithms require
extensive computational and memory resources. The
computational resources are required for the graph and
subgraph isomorphism evaluations and frequency compu-
tation. Recording the large number of candidate subgraphs
generated and frequent subgraphs identified at each itera-
tion, and the appearance list of subgraphs in the network
transactions necessitates a large amount of memory. How-
ever, in most of the algorithms reviewed so far, it is
assumed that the input data and the data generated during
the mining process can be held in the main memory, and
processing steps can be completed by computational resour-
ces available on the local machine.

An increasing amount of structured data is being generated
every day on different biological, communication, transporta-
tion, and social media platforms. The modification of previous
algorithms or the development of novel algorithms for mining
frequent subgraphs that can tackle the input/output (I/O) and
CPU-bound problems have been an avenue of extensive
research in the past few years. Most of these algorithms focus
on either I/O operations’ challenges or computational process-
ing limitations as the bottleneck of efficient frequent subgraph
mining. Therefore, the strategies adopted by these algorithms
for the successful mining of frequent subgraphs are inherently
different. In this section, these algorithms are reviewed in
detail. For a summary of the algorithms discussed in this sec-
tion, refer to Table 5.

To alleviate I/O bound limitations, several approaches
have been proposed. For example, in [147], the authors
developed and proposed an index structure, called ADI
(stands for adjacency index). This structure can be used
with traditional subgraph mining algorithms for mining
frequent subgraphs when the network database cannot be
held in the main memory (they adopted gSpan, and in
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combination with the index structure, they proposed ADI-
mine). In this case, the index structure represents the whole
database. Instead of scanning the database or its projection,
the index is used to check the support of edges, the net-
works that include them, and support the adjacent edge
evaluations for candidate generation and subgraph expan-
sion. The authors show that for a database composed of n
network, the space complexity of ADI is

0y |E<Ni>). ®

Some of the other algorithms in this category adopted a
data partitioning approach. PartMiner [159] is the first
approach proposed in this category. This algorithm is com-
posed of two main phases, each including two steps:

e Phasel:
— Bi-partitioning network transactions into
subgraphs
—  Grouping subgraphs into units
e Phase2:

- Mining frequent subgraph in each unit using tra-
ditional memory-based algorithms
— Performing merge-join operation to aggregate
frequent subgraphs
The major reason for partitioning is to reduce the com-
plexity of the problem for each partition. Therefore, the
memory-based algorithms proposed in the literature for
mining frequent subgraph can be adopted (In [159], GAS-
TON [113] is used). Given the supp threshold, the minimum
support for the subgraphs to be considered frequent, and k,
the pre-defined number of units, subgraphs in each unit are
considered frequent if their frequencies are more than
supp/k. To reduce the merge-join operation’s complexity,
PartMiner minimizes the connectivity among the subgraphs
of the units. The frequent subgraphs discovered in each unit
are recursively merged to find the complete set of frequent
subgraphs. In [149], it is discussed that the PartMiner may
not produce the correct complete set of frequent subgraphs,
and a new algorithm based on a horizontal partitioning
framework is proposed to accomplish that objective. Instead
of the bi-partitioning approach adopted in PartMiner, the
proposed algorithm in [149] adopts a clustering-based
approach for partitioning. The authors define % partitions
(or fragments). The centroid of partition ¢ is defined as

Ci = {(11-,11]1)7(]2,102)7--~,(Im,wm)}- (9)

Where, I; and w; (for j € {1..m}) represent 1-edge sub-
graphs and their frequencies in partition ¢. The network
assignments to partitions are performed based on the simi-
larity of each network (taking into consideration the 1-edge
subgraphs and their frequencies in the network) and the
centroid of partitions. Adopting this clustering-based parti-
tioning approach helps to create dissimilar fragments and
consequently reduce the complexity of the next aggregation
steps. A subgraph is considered frequent if it is at least fre-
quent in one of the partitions. First, all the locally (at the par-
tition level) frequent subgraphs are mined. The union of
these local frequent subgraphs is used to create a global
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candidate set. Then the partitions are scanned again to find
the globally frequent subgraphs.

Another popular set of strategies for I/O bound prob-
lems is to store and retrieve data from databases. However,
the required processing tasks for mining frequent sub-
graphs proposed in traditional algorithms cannot be used
directly. In the following, some of the algorithms proposed
to solve these challenges are discussed. These algorithms
are mainly an improved version of previously proposed
algorithms modified based on the constraints and available
operations and mechanisms in relational databases. The
pseudo-code describing the general approach in this cate-
gory of algorithms is shown in Algorithm 1.

Algorithm 1. Frequent Subgraph Mining in Databases

Require: graph_database (DB), vertex_table,

min_supp

edge_table,

one_edge  join vertex and edge table

one_edge  one_edge > min_supp

FS = frequent subgraphs  one_edge

repeat
candidates  join(FS,one_edge)
candidates  unique(candidates)  {Eliminate  pseudo-
duplicates}

scan DB and compute frequencies of unique candidates
temp_FS  candidates with frequency > min_supp
FS = FSUtemp_FS

until temp_FS = ()

DB-FSG [154], [155] and DB-SUBDUE [160] are proposed
for mining frequent subgraphs in relational databases. Also,
OO-FSG [156] is an object-oriented database approach pro-
posed based on the DB-FSG. The approaches adopted in
these three algorithms are discussed in Appendix C, avail-
able in the online supplemental material.

Similar to I/O bound problems, several algorithms are pro-
posed for CPU-bound problems employing different strategies
for parallel and distributed frequent subgraph mining. In
[151], thread-based parallelized implementations of gSpan
and MokFa is proposed. In this algorithm, each thread has a
copy of the gSpan or MoFa. Each tread mines frequent sub-
graphs. The network database is kept globally. Also, there is a
global data structure keeping the frequent subgraphs in com-
munication with local sets of frequent subgraphs of each
thread. The main difference in the implementation of the two
algorithms is the work distribution among threads. The MoFa
adopts a work donation approach for load balancing with a
global list of idle workers, and gSpan takes a work stealing
approach with a global list of active workers.

In [153], a chip multiprocessor (CMP) architecture with
gSpan as the subgraph mining algorithm is adopted. To per-
form the load balancing, distributed queuing is used in which
one processor processes each queue. Processors can search for
other processors’ queues when their queues are empty. The
load balancing can be performed through adaptive partition-
ing (the children of frequent subgraphs are generated and
added to the queue which can later be processed by the same
processor or other processors) and level-wise partitioning (in
which the tasks are added to the queue of each processor to a
pre-defined depth in the DFS tree and are processed by the
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dequeuing processor). To improve memory utilization, the
two adaptive network tiling (packaging the children of the
same parent in one task, considering that instances of children
of a parent are in the same network transactions as far as this
strategy does not negatively impact the load balancing) and
adaptive state management strategies are used. In adaptive
state management, embedding lists are used to speed up the
frequency computation at the expense of memory required for
keeping the embedding lists. These lists are defined as map-
pings between candidates and their location in the database. If
the same processor is used for mining children of candidates,
adopting this strategy might improve efficiency.

Another algorithm in this category is Frequent Subgraph
Mining using Hadoop (FSM-H) [152] developed on top of the
MapReduce programming model [161]. FSM-H adopts a
breadth-first approach for candidate generation and minimum
DEFS code (introduced in gSpan [25]) for checking graph iso-
morphism. The mining is performed in three main phases,
data partitioning, the preparation phase, and mining phase
(refer to Algorithm 2). The mining phase performs the mining
steps iteratively to identify all the frequent subgraphs.

Algorithm 2. Frequent Subgraph Mining Using Hadoop
(FSM-H) [152]

Require:graph_database (DB), min_supp
Data partition phase:

e input data is partitioned
e infrequent edges are eliminated
Preparation phase:

e Mappers:

— partition-specific data structures are prepared
including data structures for keeping possible
extension from vertices and occurrence list of
edges in the partition,

— mining process is initialized by creating frequent
edges as key-value pairs

e Reducers:

- key-value pairs are written in the Hadoop Dis-
tributed File Systems (HDFS)

Mining phase: frequent subgraphs are iteratively mined

e Mappers:
- mining starts by reading from HDFS
— required data structures are created
— candidates are generated
— isomorphism evaluation are performed
- occurrence lists are populated and with the DFS
codes are emitted
e Reducers:
— supports are computed for the subgraphs
— frequent subgraphs are written to HDFS

MapReduce-FSG [157] and MRFSM [158] are two other
MapReduce-based approaches (using Apache Hadoop) pro-
posed for CPU-bound problems. These algorithms are
described and discussed in Appendix C, available in the
online supplemental material.
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Similar to the other classes of the frequent subgraph mining
problem, the design and development of algorithms able to
cope with the CPU-bound or I/O-bound complexities have
their own challenges. Considering the downward-closure
property as the most critical pruning strategy in frequent sub-
graph mining, we need to identify infrequent candidates as
early as possible. In most of the algorithms proposed, the fre-
quency computation for a candidate requires evaluating the
network transactions containing the candidate’s parent(s). The
networks containing the parents’ subgraph might be located
on different working nodes [152] and/or distributed over dif-
ferent network partitions and fragments [149], [159]. These net-
works are not uniformly distributed among various nodes or
fragments; therefore, the frequency computation is not a trivial
task. Although it is shown that the algorithms proposed for
CPU-bound or I/O-bound are more practical, these challenges
have made their generalizations to different subclasses of fre-
quent subgraph mining relatively limited. For example, most
of these algorithms are limited to mining exact subgraphs with-
out any noise tolerance. Also, most of these algorithms are pro-
posed for static settings.

6 TooLs

Some of the proposed algorithms for frequent subgraph min-
ing have been implemented and are publicly available. Table 6
lists some of these tools categorized based on the classification
proposed in Fig. 1. In contrast to many other mining para-
digms proposed for tabular data that are unified in one library
or toolkit, there are just a few toolkits in frequent subgraph
mining literature offering an integrated implementation of
multiple subgraph mining algorithms with different function-
alities. In [162], frequent subgraph mining is packaged with
other frequent pattern mining approaches operating on item-
sets, sequences, and trees, into one toolkit, called Data Mining
Template Library (DMTL). They show that although these pat-
terns are different, all of them can be modeled by networks.
Their discovery is composed of a very similar set of tasks: can-
didate generation, isomorphism verification, and support
computation. The algorithm used in DMTL for frequent sub-
graph mining is a modified version of gSpan.

One package, including the implementation of MoFa,
gSpan, FFSM, and GASTON algorithms, is ParMol [163].
Some extensions are also provided in this package, such as
mining directed networks and frequently closed subgraphs.
The “subgraphMining” [164] is an R package including gSpan,
SUBDUE, and SLEUTH (an algorithm proposed in [165] for
mining frequent subtrees in a tree database).

7 CONCLUSION

In this paper, we reviewed some of the most popular algo-
rithms proposed in the literature for mining frequent patterns
in static and temporal networks. The frequent subgraph
mining problem in a dataset of static networks has been exten-
sively studied in the past decades. Considering the complexi-
ties associated with graph and subgraph isomorphism
problems, it is shown in multiple studies that some of these
algorithms can efficiently mine static networks, such as gSpan
[25], [107], FFSM [109], and GASTON [113]. Other algorithms
either are not as efficient as these algorithms or are proposed
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TABLE 6
Publicly Available Tools for Algorithms Reviewed in This Paper

Name Address

Programming language

Static network transaction setting

Breadth-first search or Apriori-based algorithms

FSG [59] http:/ / glaros.dtc.umn.edu/gkhome/pafi/overview ANSI C & C++
Depth-first search algorithms

gSpan [25], [107] https:/ /www.cs.ucsb.edu/ xyan/software/gSpan.htm Java & C++
MoFa (or MoSS) (including gSpan and http:/ /www.borgelt.net/moss.html Java
CloseGraph) [4]

FFSM [109] http:/ /web.cs.ucla.edu/ weiwang/software.html C++

Other approaches to frequent subgraph mining

GASTON [113] http:/ /liacs.leidenuniv.nl/ nijssensgr/gaston/ C++

MULE [117] http:/ /compbio.case.edu/koyuturk/software/mule/  C

GraphSig [119] http:/ /www.cse.iitd.ac.in/ ~sayan/software.html Java

Temporal network transaction setting

Inter-network subgraph mining

PSEMiner [126] https:/ /compbio.cs.uic.edu/software/periodic/ C++
Intranetwork subgraph mining

TimeCrunch [138] http:/ /nshah.net/publications.html MATLAB & Python
CPU-bounded and I/O bounded

FSM-H [152] https:/ / github.com/DMGroup-IUPUI/FSMH Java

and customized for mining particular categories of subgraphs
or specific domains. In general, there are multiple challenges
associated with frequent subgraph mining problem. One such
challenge is being able to utilize the information carried by fre-
quent subgraphs. It is shown that lowering the support thresh-
old results in an exponential increase in the number of
subgraphs discovered in a network database. On the other
hand, it is shown that the most frequent subgraphs are not nec-
essarily the significant ones as well [119]. However, by increas-
ing the support threshold, although we might have a smaller
set of candidates, we might miss the significant subgraphs. As
we discussed, there has been some algorithms proposed com-
bining the discovery of significant and frequent subgraphs in
the mining process. However, it seems that this area is an
important avenue for future research in subgraph mining
literature.

It is discussed that the exact algorithms consider two
embeddings different even if the differences are due to a minor
variation, such as a single extra edge, or a different label. In
practical applications, these variations sometimes can be attrib-
uted to the noises related to the uncertainties inherent in the
original system or errors attributed to the data collection and
modeling phase. As reviewed in this paper, some of the algo-
rithms try to allow some controlled structural variations
among subgraphs. In some other cases, it might be helpful to
use other smoothing procedures to create groups or clusters of fre-
quent subgraphs considered as structural representatives in
which all the frequent subgraphs within the range of accepted
structural variations are included [166]. These clusters then can
be used as features for secondary analysis of the data.

The frequent pattern mining in temporal networks has
attracted more attention in recent years. The functionalities

offered or subgraph categories covered by these algorithms are
Authorized licensed use limited to: Drexel University.

relatively limited compared to their static counterpart. As
more and more data is being generated and collected every
day in different disciplines and the complexities added to the
problem due to the temporality of the data, it seems that this
class of algorithms would be at the center of focus in the next
coming years. Another avenue for future research in this class
is mining frequent patterns and their evolution in network
data streams. Developing more efficient data structures for
keeping or indexing temporal data and probabilistic and deter-
ministic approaches for mining frequent patterns would be
other interesting research areas. Compared with other sub-
classes of frequent subgraph mining in temporal networks,
mining network data streams are more challenging as the input
data is unbounded, and the distribution of subgraphs is
unknown in the data stream in advance.

Another relevant area not covered in this study is using
inductive logic programming or graph grammar learning for
mining frequent subgraphs. Inductive logic programming-
based approaches are beneficial in mining structures carrying
semantic concepts, or when background knowledge can guide
the mining process [19] or recursive interactions are embedded
in the structure. It is shown that these approaches can mine
patterns cannot be easily discovered by frequent subgraph
mining algorithms [167].

We reviewed some of the algorithms proposed for 1/0O
and CPU-bound problems. Most of these algorithms are
proposed for static settings. Besides, the proposed algo-
rithms mine just the exact isomorphic frequent subgraphs
and general forms of subgraphs. Therefore, developing
algorithms for temporal and streaming network data and
for mining special classes of subgraphs (such as maximal
and closed), which allows for structural variations, is an
avenue for further research.
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In this survey, we also listed publicly available tools
for different algorithms. However, in comparison with
the number of algorithms reviewed, there are not many
publicly available implementations of the algorithms and
none for a few mining categories of Fig. 1, neither pack-
ages that integrate multiple algorithms from different
settings.
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