
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024 305

Frequent Pattern Mining in Continuous-Time
Temporal Networks
Ali Jazayeri and Christopher C. Yang

Abstract—Networks are used as highly expressive tools in dif-
ferent disciplines. In recent years, the analysis and mining of
temporal networks have attracted substantial attention. Frequent
pattern mining is considered an essential task in the network science
literature. In addition to the numerous applications, the investi-
gation of frequent pattern mining in networks directly impacts
other analytical approaches, such as clustering, quasi-clique and
clique mining, and link prediction. In nearly all the algorithms
proposed for frequent pattern mining in temporal networks, the
networks are represented as sequences of static networks. Then,
the inter- or intra-network patterns are mined. This type of rep-
resentation imposes a computation-expressiveness trade-off to the
mining problem. In this paper, we propose a novel representation
that can preserve the temporal aspects of the network losslessly.
Then, we introduce the concept of constrained interval graphs
(CIGs). Next, we develop a series of algorithms for mining the
complete set of frequent temporal patterns in a temporal network
data set. We also consider four different definitions of isomorphism
for accommodating minor variations in temporal data of networks.
Implementing the algorithm for three real-world data sets proves
the practicality of the proposed approach and its capability to
discover unknown patterns in various settings.

Index Terms—Continuous-time networks, frequent subgraphs,
pattern mining, temporal networks.

NOMENCLATURE

|A| Cardinality of a given set A
ǫ User-defined support threshold.

W Time window of temporal network.

I Time interval.

L List of edges of temporal network.

M Map of vertices in VN to their associated interval

trees.

aggw Aggregation window.

CIG Constrained Interval Graph.

cl Canonical labeling.

Manuscript received 21 May 2021; revised 16 August 2023; accepted 5
October 2023. Date of publication 16 October 2023; date of current version
5 December 2023. This work was supported in part by the National Science
Foundation under Grants IIS-1741306 and IIS-2235548, and in part by the
Department of Defense under Grants W81XWH-22-1-0581 and W81XWH-
22-1-0582. This material is based upon work supported by (while serving
at) the National Science Foundation. Recommended for acceptance by L. Li.
(Corresponding author: Ali Jazayeri.)

The authors are with the College of Computing and Informatics, Drexel
University, Philadelphia, PA 19104 USA (e-mail: ali.jazayeri@drexel.edu;
chris.yang@drexel.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPAMI.2023.3324799, provided by the authors.

Digital Object Identifier 10.1109/TPAMI.2023.3324799

DAG Directed Acyclic Graph.

DS Data set of temporal networks.

DS ′ Data set ofCIGs associated with temopral networks.

Ei Set of edges in network i
freq(s) Frequency of subgraph s
IG Interval Graph.

IT Interval Tree.

M Map of vertices in VCIG to pair of vertices in VN

N Temporal network.

s Subgraph.

Vi Set of vertices in network i

I. INTRODUCTION

N
ETWORKS have been extensively adopted for modeling

systems where in addition to the systems’ components,

the inter-component interactions may provide deeper insights

into the systems’ behavior. Networks, with a long history of

applications [1], [2], are used as highly expressive tools for

system modeling in different domains [3].

Among different analytical and mining techniques proposed

for network research, the mining of frequent network pat-

terns has an essential place [4]. The underlying idea behind

this problem is that the recurring patterns observed more fre-

quently may represent essential characteristics of the system

that networks represent [5], [6]. However, the implementa-

tion of network mining for identifying frequent patterns is a

non-trivial and computationally costly task. The main reason

is the requirement to verify the graph and subgraph isomor-

phism in different iterations of the frequent pattern mining

process.

Furthermore, in many applications, the temporality of the

systems should be included in the modeling effort. It is shown

that when the time scale of the changes in the system is

comparable, using dynamic and time-varying network models

can inform the identification of important components more

effectively [7], [8]. One approach is to represent the temporal

aspects of the system as attributes of the vertices and edges

of the corresponding network. However, this approach might

obscure some of the temporal information [9], [10]. Besides,

some of the well-defined metrics and concepts in static networks,

such as distance, diameter, centralities, and connectivity, have

been differently defined and interpreted for temporal networks.

Therefore, aggregating and representing temporal aspects of

0162-8828 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6468-1971
https://orcid.org/0000-0001-5463-6926
mailto:ali.jazayeri@drexel.edu
mailto:chris.yang@drexel.edu
https://doi.org/10.1109/TPAMI.2023.3324799

306 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Fig. 1. Taxonomy of frequent subgraph mining algorithms proposed in the literature.

the system as static networks’ characteristics might adversely

impact the derived insight [11], [12], [13], [14], [15].

A. Background

Frequent subgraph mining problem has attracted substan-

tial attention in domains where the data can be represented

as networks, such as in chemo-informatics [16], [17], [18],

health informatics [19], [20], [21], [22], [23], public health [24],

[25], [26], bioinformatics [27], [28], [29], social network anal-

ysis [30], [31], [32], computer vision [33], [34], [35], [36],

[37], [38], and security [39], [40], [41], [42], [43]. The frequent

subgraph mining in these discplines are either applied to a data

set of small networks [44] or a data set of one large network [45].

These tasks are traditionally called network-transaction setting

and motif discovery, respectively. Also, the output of the mining

process is called frequent subgraphs (similar to frequent itemsets

in the frequent itemset mining literature) for the former setting

and motifs after a study by Milo et al. [46] for the latter setting.

Fig. 1 provides a taxonomy of the algorithms in the frequent

subgraph mining literature. These algorithms can be categorized

based on the network data available, either a single network or

a set or sequence of networks. These algorithms are then can be

categorized based on the temporality of the data. In cases where

the data set is composed of a set of static networks, the algorithms

can be classified based on the adopted approach for graph

traversal and pattern search strategy [17], [18], [47], [48]. In the

temporal network case, the algorithms can be classified based

on the patterns being mined; either each network in the sequence

is mined (inter-network subgraph mining) [49], [50], [51] or the

changes occurring between each pair of consecutive networks

in the sequence (intra-network subgraph mining) [52], [53]. In

some algorithms, the inter-network subgraph mining approach

is generalized to multiple sequences (extended inter-network

subgraph mining) [54], [55]. Besides, in some applications, the

networks are added to the sequence in real-time, which creates a

separate category of algorithms [56], [57]. For further details and

a discussion of algorithms in each subcategory, refer to [44]. The

algorithms can be classified based on the adopted approach for

frequency computations in single static networks in the motif

discovery problem [58], [59]. For motif discovery in a large

temporal network, the algorithms can be classified based on the

temporal changes occurring in the network data, such as in the

network’s attributes, network topology, or when the network

data is provided in real-time [60], [61], [62].

B. Our Contribution

One common approach for mining frequent subgraphs in

temporal networks is representing the temporal network as a

sequence of static networks. This type of representation of

temporal networks has attracted some popularity as it can capture

the system’s temporal aspects to some extent. However, as will

be discussed in the following section, adopting this model-

ing approach creates a computation-expressiveness trade-off.

In other words, increasing the expressiveness of the network

representation increases computational costs. For reducing the

computational cost, we need to sacrifice some of the system’s

temporal aspects. Due to this fact, when the duration of inter-

actions between system’s entities is not identical for all the

interactions, the equal-width temporal aggregation approach

might over-represent some of the interactions.

C. Problem Formulation and Paper Organization

Unlike other approaches proposed in the literature, our objec-

tive is to mine all frequent patterns in a data set of continuous-

time temporal networks while retaining their actual temporal

information. Therefore, this paper is dedicated to addressing the

following problem.

Problem definition: Given a data set DS = {N1, N2, . . . Nn}
of n continuous-time temporal networks and a user-defined

support threshold ǫ ∈ [0, 1], the problem of frequent pattern

mining in continuous-time temporal networks aims to identify

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 307

Fig. 2. Example of a contact sequence. The list of edges on the left is visualized
on the right with an explicit temporal dimension.

all patterns that appear in at least ǫ× n of the networks in DS
while preserving their actual temporal information.

To solve this problem, we first introduce a novel concept to

represent temporal networks in DS. In some cases, we might

be interested in mining structurally identical structures while

accepting minor variations in temporal information. To make this

possible, we propose a series of isomorphism definitions in the

context of temporal networks, adding some levels of tolerance

in temporal variations to find more generalizable patterns. Next,

we explain the algorithm developed for mining frequent patterns

in continuous-time temporal networks, called tempowork. We

discuss the performance of the proposed algorithms analytically

and evaluate them experimentally using three real-world data

sets from different disciplines. To accomplish all these tasks,

we need to introduce several novel concepts and heuristics and

provide definitions for some other available concepts.

II. TEMPORAL NETWORK REPRESENTATION

Networks are considered temporal if their components, ver-

tices and edges, or their associated attributes, change over time.

We define temporal networks as follows:

Temporal Network: A temporal network N is defined over a

range of W as an ordered pair, N = (V,E), of two sets, V =
{v1, v2, . . . , vn} which is the set of vertices of the network and

referred to as VN , and E = {e1, e2, . . . , em} ⊆ V × V , which

is the set of temporal edges of the network and referred to as

EN . An edge ek is represented as ek = {vi, vj , ai, lk, aj , sk, δk}
where:
� vi and vj : identifiers of the edge’s two end-points.
� ai and aj : attributes of vi and vj , respectively. These

attributes might be different between the same pair of

vertices in various interactions. Also, the same vertex might

take different attributes in its interaction with other vertices

in overlapping intervals.
� lk: edge attribute, which might differ between the same or

different pairs of vertices in various interactions.
� sk: the starting point of the interaction window in which

ek is active.
� δk: length of the interaction window in which ek is active.

In some literature, the temporal networks are represented as

either a contact sequence or an interval network [13], [14], [15].

The contact sequence representation is composed of edges in the

form of {vi, vj , t}, where vi and vj are identifiers of the edge’s

two end-points and t is the point in time that these vertex pairs

are connected. Fig. 2 shows an example of a list of edges in a

contact sequence and the corresponding visualization.

Fig. 3. Continuous-time temporal network with vertices and edges active over
some period of time.

In applications where the interactions are instantaneous,

adopting a contact sequence representation is preferable (for

example, in email correspondence where send and receive events

happen in a fraction of seconds). However, in other applications,

the duration of interactions is not negligible, for example, in

face-to-face interactions, transportation networks, or some of

the applications of proximity networks. Therefore, edges are

shown as {vi, vj , s, δ} (or {vi, vj , s, f}), where s is the start time

of the interaction and δ (f) is the duration (finish time) of the

interaction. In this case, the contact sequences are a special case

in which δ = 0 (s = f). We adopt this latter representation in

this paper and generalize that to both attributed and unattributed

networks. Fig. 3 visualizes an unattributed temporal network of

this type. This network is composed of five pairs of vertices’

interactions over some period of time. Here, for example, we

have v0 at the starting time of interaction connected to v3 at the

ending time of interaction, meaning that v0 and v3 interact for the

entire duration where they are connected. In Fig. 3, an undirected

network is shown. Therefore, we can change the starting point

andending point to be v3 and v0, respectively. To establish a

standard visualization approach for directed networks, we can

opt to draw the edges from the tail vertices to the head vertices.

In the literature of frequent subgraph mining, on the other

hand, the common approach toward temporal network repre-

sentation and analysis is converting the temporal dimension to a

sequence of intervals and representing the continuous network as

a sequence of aggregated static networks [44]. In this represen-

tation, for the range of temporal network, W, and aggregation

window, aggw, the number of aggregation windows or static

networks would be |seq| = ⌈W/aggw⌉. For each aggregation

window, the relationship between each pair of vertices is ag-

gregated. In other words, for each pair of vertices, a connecting

edge is assumed if at least there is one connection between the

pair of vertices in that aggregation window, independently from

the duration of the connection. It implies that by increasing the

aggw, the probability of having a connection between every two

vertices in each aggregation window increases. On the other

hand, the number of static networks, |seq|, decreases. This

representation of temporal network is shown in Fig. 4(a) for

multiple aggw as a sequence of static networks related to the

temporal network in Fig. 4(b).

When the aggw = ∞, we consider an edge between each pair

of vertices if there is at least one connection between these

two vertices at some point in W. When the aggw = ∞, all

the network’s dynamic aspect is overlooked, and the continuous

network is represented as a single static network. By decreasing

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

308 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Fig. 4. Temporal network representation in sequential and continuous-time
forms. 4a: Sequences of static networks at different aggregation times repre-
senting a temporal network. 4b: Continuous-time representation of the same
temporal network.

the aggw, more continuity characteristics of the network are

captured. This is also shown in Fig. 4(a) as we move from

aggt = ∞ to aggw = 0.1. However, there are some downsides

to this type of representation. For example, in Fig. 4(a), con-

sidering aggw = 0.2, the representation can capture most of

the dynamics associated with the temporal network except for

t ∈ [0.6, 0.8]. In this period, the corresponding static network

shows a connection between v0 and v2 in [0.6,0.8], which is

not correct, as this interaction ends at t = 0.7. Therefore, the

aggw = 0.2 over-represents the edge between these two vertices

from [0.6,0.7] to [0.6,0.8]. This over-representation can be mod-

ified by reducing the aggw to 0.1. In this case, all the temporal

network’s dynamic characteristics are correctly captured by

static networks at regular time-stamps. However, many duplicate

static networks are generated at consecutive time-stamps. These

duplications negatively impact both the memory requirements

and the processing resources needed for frequent pattern mining.

Furthermore, considering that the actual duration of some of the

interactions might be more than the aggw, some post-processing

might be necessary to evaluate the relationships between edges

mined in the sequence of static networks and their corresponding

interactions in the original network. To overcome these chal-

lenges, we adopt an interval network representation (examples

are shown in Figs. 3 and 4(b)). Besides, because there might

be multiple edges between each pair of vertices with different

attributes, a starting-point sorted edge-based representation is

utilized for each pair of vertices in the form of:

vi = {vj : [(a
1
i , e

1
l , a

1
j , s

1
i , δ

1
i), (a

2
i , e

2
l , a

2
j , s

2
i , δ

2
i),

. . . , (aki , e
k
l , a

k
j , s

k
i , δ

k
i)]} (1)

Then, the network can be written as follows (and potentially as

adjacency lists with extra dimensions for labels and interaction

windows):

N = {vi = {vj : edge_listj}} (2)

where edge_listj is the list of edges between vertices vi and vj
in the form of (1).

Note that there might be multiple edges between each pair of

vertices appearing at different intervals inW. The vertices might

appear or disappear over the continuous dimension. Besides, the

attribute of vertices, ai and aj , and edges, lk, might change in

different interactions, even between the same pair of vertices

interacting at different intervals in W.

Some other network representations would be special cases of

the proposed representation. For example, one can use identical

attributes for the network components; then, it is considered an

unlabeled or unattributed temporal network. Or, by considering

starting point for ei as constant and δi = ∞ for i ∈ {1, . . . ,m},

the network would represent a static network.

III. PRELIMINARY CONCEPTS AND ALGORITHMS

Based on the proposed representation, the next step is defining

and introducing the basic concepts of frequent subgraph mining

and concepts needed to adopt or develop for mining frequent

patterns in temporal networks. The typical approach adopted by

different algorithms for mining frequent subgraphs is composed

of multiple steps recursively repeated. First, the frequent single

vertices or edges in the network database are identified by com-

paring these simple subgraphs’ frequencies with a user-defined

threshold. In the subsequent step, some algorithms in the existing

literature employ an Apriori-like approach to generate a set of

candidates from already identified frequent subgraphs to detect

larger frequent subgraphs [17], [18]. Conversely, others aim to

eliminate candidate generation and false positive pruning adopt-

ing an optimized pattern growth strategy [47], [48]. We have

chosen the latter approach; however, incorporating temporality

into the data set of temporal networks introduces an additional

layer of complexity into the problem of frequent pattern mining.

These complexities arise due to the inclusion of interaction

duration and the delay between the initiation of interactions.

To effectively utilize the established practices from the frequent

pattern mining literature, such as efficient pruning strategies and

frequency computation, it is necessary to transform temporal

networks into well-established concepts within the domain of

graph theory. These concepts must be customized in a manner

that not only preserves the structural data of the networks but

also enables the lossless retrieval of associated temporal infor-

mation when required. Furthermore, given the computational

complexities inherent in the frequent pattern mining problem,

it is crucial to minimize other computational costs by adopting

efficient data structures for storing and retrieving network data.

Therefore, in addition to the fundamental concepts of frequent

pattern mining in network data sets, these considerations have

guided us to adopt, customize, and design a series of concepts

as outlined in the subsequent section. To understand both the

process of frequent pattern mining and complexities associated

with this problem, one must familiarize themselves with various

essential concepts. These include the graph and subgraph iso-

morphism problems, common pruning strategies, and canonical

labeling. Detailed explanations of these concepts can be found

in Appendix A, available online.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 309

Fig. 5. Interval graph created from four intervals.

A. Constrained Interval Graph

Compared to the previous approaches proposed in the lit-

erature in which the temporal dimension of networks are

transformed into equal-width intervals, we are interested in

preserving the actual duration of and delays between interac-

tions. Considering the uniqueness of this approach, we needed

to design a novel concept, Constrained Interval Graph (CIG), to

preserve both structural and temporal information of networks.

It also makes it possible to traverse the temporal network as a

crucial step in frequent pattern mining. The constrained interval

graph concept is developed on top of the definition of interval

graphs. Interval graphs are a special class of intersection graphs

with a rich history of analysis [63], [64]. Given a collection of

nonempty sets, an intersection graph is composed of vertices

representing sets in the collection and edges as connections

between vertices if and only if their corresponding sets’ inter-

section is nonempty. In cases where the objects of the collection

are intervals, and edges represent interval intersections, the

resulting graph is called interval graph. In the following, after

providing the formal definition of intervals and interval graphs,

the constrained interval graphs are explained in detail.

An interval I denoted by [x, x] as a subset of the real line is

defined as follows:

I = [x, x] = {z ∈ R|x ≤ z ≤ x} (3)

We consider an interval closed if it includes both end-points

of the interval [65]. Then, given two intervals, I = [x, x] and

I ′ = [y, y], the intersection of two intervals would be considered

empty if y < x or x < y, otherwise it is defined as follows [66]:

I ∩ I ′ = {z|z ∈ I ∧ z ∈ I ′}

= [max{x, y},min{x, y}]

Interval Graph: Given a set of intervals, S(I), an interval

graph IG is defined as a network composed of:
� VIG, in which each vertex of IG is associated with an

interval in S(I), and
� EIG, in which an edge represents two connected vertices if

and only if the intersection of their corresponding intervals

in S(I) is non-empty [67].

Fig. 5 shows an interval graph constructed from four intervals.

The vertices of intersecting intervals are connected with an edge.

Constrained Interval Graph: For any given edge ei in a tem-

poral network N , the edge and its corresponding end-points are

associated with an interval, Ii = [si, si + δi]. We can transform

temporal networks into a particular type of interval graph by

using the intervals associated with edges and their corresponding

end-points. For each edge in the temporal network N , we add

one node to the interval graph. Then, for each pair of overlapping

Fig. 6. Constrained interval graph created for a temporal network composed
of two overlapping edges, ei and ej with one vertex in common shown with two
blue vertices and a red edge.

Fig. 7. Constrained interval graph created from two temporal networks, each
is composed of two overlapping edges with one vertex in common.

Fig. 8. Associated constrained interval graphs are identical for two different
temporal networks.

edges ei and ej in N , we connect their corresponding nodes in

the interval graph if they have end-points representing the same

vertex. In other words, using the definition of interval graphs,

the constrained interval graph CIG is defined as a network

composed of a set of vertices, VCIG, which are the edges in

the temporal network N and an edge set, ECIG, composed of

edges connecting pairs of overlapping edges’ in the temporal

network if they have a vertex in common. Fig. 6 shows how a

temporal network composed of two edges is transformed to a

CIG, as the two edges ei and ej overlap, and they have one

vertex in common.

Furthermore, we utilize edges in ECIG to capture the differ-

ences between starting points of edges in N . For this purpose,

an attribute is added to each edge of ECIG computed as the

difference between the starting points of the corresponding

temporal edges in N connected by an edge in ECIG, i.e.,

max(si, sj)−min(si, sj). Fig. 7 shows examples of two tem-

poral networks and their associatedCIGs composed of one edge

with an attribute representing the differences between starting

points of the two temporal edges.

Although this definition of constrained interval graph creates

a deterministic representation of the corresponding temporal

network, it suffers from the edges’ delay’s symmetric nature.

Fig. 8 visualizes this problem. In this figure, two edges ei and ej
are shown in two configurations wherein the left configuration,

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

310 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Fig. 9. Constrained interval graphs are created with directed edges to differ-
entiate two temporal networks.

Fig. 10. Right network shows the CIG created from the continuous-time
temporal network shown on the left.

ei appears before ej , and in the right configuration ej appears

first. In both cases, the edge attribute would be identical, as the

difference between starting points of the two edges is the same.

In other words, given a CIG without the information related

to the starting point of edges and vertices, it is impossible to

reconstruct the original temporal network from the constrained

interval graph because none of the current labels and attributes

of CIG expresses which edge appears first.

To solve this problem, we make the edges in CIG directed,

e.g., connecting the vertex related to the edge with the smaller

starting point to the vertex pertaining to the edge appearing

later in the temporal network by a directed edge. As shown in

Fig. 9, now the two different temporal networks are uniquely

represented by two constrained interval graphs.

With the above solution, we can now preserve and retrieve

the precise temporal information of networks. However, the

proposed design involves summarizing the information of each

edge in the temporal network, including the two end points, into

one vertex in the correspondingCIG. This aggregation makes it

challenging to extract the structural information of the temporal

network directly without prior knowledge. To address this issue,

edges in CIG will be assigned a second label (in addition to the

delay label), which takes the form of “xy′′ & x, y ∈ {1, 2}. As

the edges inCIG are directed, the label xy indicates that the end

point located in position x of the tail vertex is connected to the

end point located in position y of the head vertex. To maintain

the order of end points associated with each vertex in CIG
when referred to with xy labels, we will use an auxiliary map

M = {v : (vi, vj)}, where each vertex v in CIG is mapped to

the corresponding temporal edge’s end points.

Fig. 10 shows the CIG associated with a continuous-time

temporal network. Each vertex of the CIG represents one edge

of the temporal network. The direction of edges in CIG shows

the relative delay between starting points of each pair of edges in

the temporal network. The edges are attributed with these delays

and the labels associated with the structural information of the

corresponding temporal edges. However, for the sake of clarity,

these attributes are not shown in this figure.

We assume that the temporal network data available as a list

of temporal edges, L, in which the edges are sorted based on

their starting time. Therefore, to read the data and construct the

corresponding CIG, we need to iterate over L edge by edge.

For each temporal edge ei in L, we need to perform two checks:
� whether any of the edges appeared earlier in L has a vertex

in common with one of the two end-points of ei, and if yes,
� whether any of those edges appeared earlier overlap with

the interval associated with ei.
Considering that there might be multiple other edges passing

these checks for each edge, we need to create an efficient data

structure to keep track of each vertex and its associated intervals.

Once we read a new edge, the data structure should be updated

with the new edge information. The data structure adopted

for this purpose is the interval tree. Therefore, to efficiently

accomplish reading and updating the interval trees, we use a map

of vertex ids to interval trees, M = {id : ITid}, where the keys

of M represents the identifier of vertices in N , and the values of

M are interval trees keeping track of intervals associated with

edges having vertex id as one of their end-points. When we read

a new edge ei with two vertices vm and vn, we update the interval

trees mapped to vm and vn with the interval of ei, [si, si + δi]. In

the following, the characteristics of interval trees are described.

Then, we explain the CIG construction step in detail.

B. Interval Tree

There are multiple data structures developed for operations

associated with intervals and ranges, such as interval trees, range

trees, and segment trees [68], [69]. Among them, the interval

tree is typically known as the most efficient data structure for

storing and querying continuous intervals. For the construction

of interval trees for the temporal network’s vertices, we follow

the approach proposed in [70]. The interval tree data structure

can be considered an augmented data structure constructed on

top of red-black trees. The red-black trees are (approximately)

balanced binary search trees with specific properties. The prop-

erties should hold for interval trees to make them efficient

data structure for implementing different types of operations,

including insertion, deletion, and interval search, on sets of

intervals.

In our application, we focus on interval insertion and search

operations. The interval insertion is used when we read a new

edge from L, and we want to update the interval trees as-

sociated with the two end-points of the edge in M. On the

other hand, the interval search is used to connect the end-points

of the newly added edge to the end-points of edges already

inserted. Therefore, we need to know in which of the earlier

appearances of the desired vertices, their corresponding inter-

vals overlap with the new edge’s interval. The interval search

and insertion operations, based on their applications in this

paper, are described in more detail in Appendix B, available

online.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 311

Algorithm 1: CIG Construction Algorithm.

C. Constrained Interval Graph Construction

Once we have operational functions for insertion and search

of intervals in interval trees, we are ready to construct the con-

strained interval graph,CIG, representing the temporal network

N . For doing that, first, we create an empty map associating

vertex identifiers to the interval trees, M = {id : ITid} and

initialize CIG with empty sets for vertices and edges. Besides,

we assume that the temporal network data is provided as an edge

list L sorted based on the starting points of edges. Then, we

iterate over L edge by edge. For each edge ei, the corresponding

interval I = [si, si + δi] is created. The edge ei has two end

points, vm and vn. Corresponding to the edge ei, a new vertex,

vi, is added to the vertex set of CIG. In the next step, we

search the M to see if the interval trees associated with vm and

vn, namely ITm and ITn, have any intervals overlapping with

I. Each of ITm and ITn might have none, one, or more than

one intervals overlapping with I representing different edges

in N . Then, we connect vertices representing these edges of

N in CIG to vi with a directed edge. Each vertex in CIG is

labeled with the data of the temporal edge it represents. The

labels of vertices in CIG are composed of the labels of the

two end-points, ai and aj , the edge’s label, lk, and the length

of the interval, δk of the corresponding edge in the temporal

network. Each edge in CIG is attributed with the difference

in starting points of the associated edges with the vertices (as

shown in Fig. 9). Next, we update ITm and ITn interval trees

with the new interval I. After reading all the edges in the edge

list, we have the CIG representing the temporal network ready

for downstream analysis. Algorithm 1 provides the pseudo-code

for the construction of CIG.

D. Temporal Network Reconstruction

In some of the applications, we need to convert subgraphs

of a CIG to the corresponding temporal networks that they

represent. It can be easily shown that the relationships be-

tween CIGs and temporal networks are not one-to-one. In

other words, although Algorithm 1 always constructs a unique

CIG for any temporal network given, there might be multiple

subgraphs of CIG representing the same temporal network.

The mapping of CIG to the corresponding temporal network

is accomplished using the attributes of vertices and edges and

edge directions. The vertices’ attributes in CIG provide the at-

tributes of edges in the associated temporal network. The edges’

attributes and directions in CIG are to infer the magnitudes

of overlaps and delays between pairs of edges in the temporal

network.

Taking a more in-depth look into the constrained interval

graph and the temporal relationships of edges represented by

directed edges in this graph, it can be deduced that the con-

strained interval graph is a directed acyclic graph (as we assume

that time has a given direction).

For reconstructing a temporal network from a CIG, we

always start with the vertices having the smallest identifiers and

proceed in the vertex set. It is because the edge list L that the

CIG is created from in the first place has been sorted based on

the starting points of the edges. Therefore the vertices with the

smallest identifiers represent the edges that appear earlier in L

and have a smaller starting time. Besides, we assume that the

first vertex in CIG has a starting point of zero (or any other

arbitrary value). The starting points of other edges are derived

from relative delays to the other edges in CIG.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

312 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Algorithm 2: Temporal Network Reconstruction Algorithm.

The reconstruction of a temporal network from a CIG or a

subgraph of CIG is performed as follows. We start with the

vertex with the smallest identifier in the (subgraph of) CIG, v1.

Then we traverse theCIGwith one of the directed acyclic graph

traversal strategies (such as breadth-first search or depth-first

search). We consider the starting point of the edge represented

by v1 as zero. Therefore, we create the first edge of the temporal

network, e1 = {v1, v2, a1, l1, a2, 0, δ1}. Using the attributes of

the edges originating from v1, we can find the starting time of the

neighbor vertices (representing edges in the temporal network).

We traverse the CIG vertex by vertex to generate the temporal

network’s edges using this strategy. Algorithm 2 provides the

pseudo-code for reconstructing temporal networks from their

associated CIGs.

IV. THE TEMPOWORK ALGORITHM

After being able to construct constrained interval graphs from

temporal networks and reconstruct temporal networks from (any

subgraphs of) constrained interval graphs, we can discuss the

tempowork algorithm for the identification of frequent patterns

in temporal networks. Specifically, given a data set of n tempo-

ral networks, DS = {N1, N2, . . . , Nn} and support threshold

ǫ ∈ [0, 1], we would like to identify all the patterns appearing

in at least ǫ ∗ n networks of the DS. The format of the input

data would be a list composed of network ids and edges for

each network, where the edges are sorted based on their starting

times.

N # t− 1

...

N # t

e v1i v
1
j a

1
i e

1
l a

1
j s

1 δ1

...

e vmi vmj ami eml amj sm δm

N # t+ 1

...

In this format, N and e at the begining of each line inform

the algorithm whether the line is associated with a network

or an edge. The line N # t specifies the id=t of the network.

The lines starting with an e represent the list of edges for each

network. In each edge line, the vertices (vi, vj) ∈ V are the

two end points of each edge, (ai, aj) are the labels associated

with the vertices, el is the label of the edge, and s and δ are

the starting point and duration of the interaction between the

two vertices, all space-separated. The algorithm should produce

an output with the exactly similar format. However, the list of

edges provided represent a frequent pattern appearing at least

in ǫ ∗ n networks of DS. Also, the lines starting with an N

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 313

denote the occurrence list of patterns, i.e., the space-seperated ids

of the temporal networks in DS including the pattern. Note that

the sequence of edges considered as frequent patterns might be

separated with infrequent edges in different networks of DS.

To accomplish these goals, first, we convert the Ni ∈ DS
for i ∈ {1, n} to their associated CIGi and create a secondary

data set of constrained interval graphs, DS ′. The DS ′ can be

considered as a data set of static networks. However, CIGs has

multiple characteristics which should be noted in the mining

process. Furthermore, we need to adopt a series of strategies

for pattern growth, subgraph enumeration, graph isomorphism,

and subgraph isomorphism checks and verification. It would be

beneficial to adopt strategies such that no duplicates subgraphs

are generated, and any brute-force implementation of graph and

subgraph isomorphism problems are avoided.

During frequent pattern mining, the verification of graph

isomorphism is carried out to confirm that the current candidate

has not been examined earlier in the process and prevent any

redundant exploration of patterns. The algorithm should either

avoid generating duplicate candidates or identify identical can-

didates as soon as possible in the mining process. On the other

hand, the subgraph isomorphism is used when we want to verify

if any of the networks in the data set contain the candidates

being enumerated. In the worst-case scenario, we need to iterate

over the networks in the data set one by one and verify if any of

them contain the candidate of interest. Both of these tasks are

computationally very expensive. We adopt a set of heuristics to

avoid both of them as much as we can.

We start the mining process with the identification of frequent

vertices in DS ′. These vertices represent frequent temporal

edges in the DS. Besides, we identify frequent edges in DS ′.

Each frequent edge in DS ′ represents a two-edge pattern in

DS. The frequent edges in DS ′ can be reordered based on

their frequencies. We use these frequent edges (as seeds and

in combination with other frequent patterns already detected) to

generate new candidates in each iteration of the mining process.

As we discussed, theCIGs of temporal networks are directed

acyclic graphs, DAGs. However, in addition to the character-

istics that CIGs inherit from DAGs, CIGs have an essential

feature; for mining the CIGs, we do not need to mine all the

edges. All the frequent subgraphs of temporal networks can

be represented with subtrees of the corresponding CIGs. This

characteristic results from the temporal relationships between

vertices in CIG (representing temporal edges in temporal net-

works). In other words, if some of the temporal relationships

between vertices ofCIG are known, we might be able to deduce

the temporal relationships between other vertices of CIG.

Therefore, we start mining by adding one edge (with only

their delay attributes) at a time to known frequent subgraphs.

The first set of frequent subgraphs are frequent edges. We add

an edge to a frequent subgraph to create a new candidate; we

make sure that this new edge does not create any cycle in the

candidate’s undirected version. Also, to minimize the number of

duplicates generated, we will be using the lexicographic ordering

introduced in gSpan [47], [48]. For the sake of space, we do not

repeat the principles of and pattern growth strategies based on the

lexicographic ordering, as they are perfectly discussed in gSpan

papers. However, there are some changes we need to apply to

these principles based on the characteristics of DAGs and CIGs

that will be addressed in the following.

The CIGs are directed networks. Therefore, we need to

consider the direction of edges when we are generating new

candidates. We only create new candidates by adding forward-

edges, as we are interested in mining non-cyclic patterns. The

edges that their addition to the candidates create cyclic subgraphs

in undirected versions of CIGs result in duplicate candidates.

As discussed, each edge e of the CIGs carries the delay in-

formation between temporal edges that the two end-points of

the e represent. If these two end-points are already connected

through a different path, the delay that e represents can be

deduced from the path that connects these two end-points. In

other words, we do not need to create candidates using backward

edges. This approach eliminates a large number of duplicate

candidates. Although adopting the lexicographic ordering and

forward growth of candidates prevents the generation of many

duplicate candidates, the graph isomorphism problem can not

be avoided entirely. In fact, it is even worse than the case

where we mine a data set of static networks. It is because two

completely acyclic candidates might still represent the same

temporal network. Furthermore, the addition of a single edge can

create different valid patterns based on the structural information

connected to the edge’s vertices. To ensure the correct identi-

fication of both duplicate candidates and patterns with distinct

structures, we begin by converting candidates into their temporal

networks (using Algorithm 2) and recreating their CIGs (using

Algorithm 1). If candidates represent identical temporal net-

works, their correspondingCIGs should be isomorphic, consid-

ering the structural information of edges within CIGs. Further-

more, upon adding a new edge to a parent pattern, we examine

various frequent canonical labelings that the parent pattern might

represent. This validation step is vital for both pattern growth

and frequency computation. Thus, by recording the canonical

labeling of the CIGs, we ensure the prevention of generating

duplicate candidates for pattern growth and identify all frequent

and structurally distinct patterns. The canonical labeling can be

created using the same lexicographic ordering principles or any

other known to be efficient approaches proposed in the literature,

such as nauty and Traces [71], or bliss [72]. The computational

complexity of this process is discussed in Section V.

We create an embedding list for each frequent subgraph for

frequency computation. When we add a forward edge to a

frequent parent subgraph to create a new child candidate, we only

check the embeddings that support the parent subgraph (instead

of searching all the networks in the data set). Suppose the new

edge added to a parent subgraph creates a valid child subgraph.

In that case, we check whether the embeddings supporting the

parent subgraphs can be extended in their associated networks

with the new edge. If the list of networks that support the child

subgraph meets the user-defined support threshold, we consider

the child frequent, which can be used for candidate generation

in the next iterations. Otherwise, neither the child nor the can-

didates created from this child (based on the downward-closure

property) would be frequent and can be eliminated. We can

avoid the subgraph isomorphism problem altogether by adopting

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Fig. 11. Schematic representation of the four different isomorphism defini-
tions considered for the temporal networks. In the exact formulation, (a) all the
temporal edges’ durations and the inter-edge delays are identical between the
two networks. In the inexact-time version, (b) some user-defined variations in
edge durations are permitted. However, the magnitudes of delays between edge
pairs in the two isomorphic networks are exactly identical. In the exact-time
sequence-preserved formulation, (c) the edges mapped to one another have
exactly identical durations. However, two networks are considered isomorphic
if the edges’ appearances follow the same sequences in both networks. In
the inexact-time sequence-preserved formulation, (d) the constraint of duration
equality of corresponding edges is removed based on a user-defined variation
tolerance mechanism.

this strategy for subgraph enumeration and frequency computa-

tion. Algorithm 3 provides the pseudo-code for the tempowork

algorithm.

The temporal information of the temporal networks is

recorded in the CIGs. The duration of the temporal edges (δs)

are recorded in the vertices of CIGs, and the delays between

temporal edges (∆s) are recorded in the edges of CIGs. In

certain scenarios, we may regard two interactions or the delays

between interactions as temporally identical if their variations

fall within an acceptable tolerance range. Therefore, when we

create the embedding lists, we can relax the temporal constraints

of isomorphisms at different levels to accommodate minor vari-

ations in interactions’ durations and initiation delays. In the

following, we define four types of graph isomorphism based

on the level of tolerance we consider two networks isomorphic.

A visual representation of these definitions is provided in Fig.

11.

Exact-time graph isomorphism: Two networks, N1 = (V1,

E1) and N2 = (V2, E2), are exact-time isomorphic (N1
e
≃ N2)

if there is a bijective function Ie such that in addition to the

constraints defined for graph isomorphism, for any {vi, vj} ∈
E1 mapped to {Ie(vi), I

e(vj)} ∈ E2 and any pair of edges

ei, ej ∈ E1 mapped to Ie(ei), I
e(ej) ∈ E2:

δ{vi, vj} = δ{Ie(vi), I
e(vj)}

∆(ei, ej) = ∆(Ie(ei), I
e(ej)) (4)

Where δ{v, v′} represents the duration of the edge connecting

v and v′ and ∆(e, e′) denotes the delay between starting points

of any pair of edges e, e′.

Inexact-time graph isomorphism: Two networks, N1 = (V1,

E1) and N2 = (V2, E2), are inexact-time isomorphic (N1
i
≃

N2) if there is a bijective function Ii such that in addition to the

constraints defined for graph isomorphism, for any {vi, vj} ∈
E1 mapped to {Ii(vi), I

i(vj)} ∈ E2 and any pair of edges

ei, ej ∈ E1 mapped to Ii(ei), I
i(ej) ∈ E2:

δ{vi, vj} ≃ δ{Ii(vi), I
i(vj)}

∆(ei, ej) = ∆(Ii(ei), I
i(ej)) (5)

Exact-time sequence-preserved graph isomorphism: Two

networks, N1 = (V1, E1) and N2 = (V2, E2), are exact-time

sequence-preserved isomorphic (N1
es
≃ N2) if there is a bi-

jective function Ies such that in addition to the constraints

defined for graph isomorphism, for any {vi, vj} ∈ E1 mapped

to {Ies(vi), I
es(vj)} ∈ E2 and any pair of edges ei, ej , ek ∈ E1

mapped to Ies(ei), I
es(ej), I

es(ek) ∈ E2:

δ{vi, vj} = δ{Ies(vi), I
es(vj)}

∆(ei, ej) < ∆(ej , ek) ⇐⇒

∆(Ies(vi), I
es(vj)) < ∆(Ies(vj), I

es(vk))

♦(∆(ei, ej) �= ∆(Ies(vi), I
es(vj)))∧

♦(∆(ej , ek) �= ∆(Ies(vj), I
es(vk)) (6)

Here, the expressions starting with ♦ means that the magni-

tude of delays can differ between corresponding isomorphisms.

The sequence of appearance of edges is identical among the two

networks.

Inexact-time sequence-preserved graph isomorphism: Two

networks, N1 = (V1, E1) and N2 = (V2, E2), are inexact-time

sequence-preserved isomorphic (N1
is
≃ N2) if there is a bijec-

tive function Iis such that in addition to the constraints de-

fined for graph isomorphism, for any {vi, vj} ∈ E1 mapped to

{Iis(vi), I
is(vj)} ∈ E2 and any pair of edges ei, ej , ek ∈ E1

mapped to Iis(ei), I
is(ej), I

is(ek) ∈ E2:

δ{vi, vj} ≃ δ{Iis(vi), I
is(vj)}

∆(ei, ej) < ∆(ej , ek) ⇐⇒

∆(Iis(vi), I
is(vj)) < ∆(Iis(vj), I

is(vk))

♦(∆(ei, ej) �= ∆(Iis(vi), I
is(vj)))∧

♦(∆(ej , ek) �= ∆(Iis(vj), I
is(vk)) (7)

In these definitions, we need to provide user-defined thresh-

olds to show how much temporal variations are tolerable for

identifying inexact time equivalences. Also, we can discretize

the duration of edges. The discretization problem has its own rich

literature [73]. Different characteristics of the networks (such as

attribute of vertices and edges and classes of networks) can be

used to perform discretization in supervised or unsupervised

modes. To preserve the sequences, we can assume that all the

edges in theCIGs have the same attribute and let the differences

between the duration of edges and their starting points create the

sequences of edge appearances.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 315

Algorithm 3: Tempowork Algorithm.

1: procedure PREPROCESSING (DS, min_supp, ISO_type)

2: Initialize DS′ ⊲ This is the CIG data set

3: Initialize 1_Node_map ⊲ This is a dictionary: {node_labels: location of their embeddings in DS′}

4: Initialize 1_Edge_map ⊲ This is a dictionary: {edge_labels: location of their embeddings in DS′}

5: for all N in DS do

6: CIGT = Construct_CIG(T) ⊲ If ISO_type ∈ {i, es, is}, relabel δs and/or ∆s accordingly

7: DS ′.push(CIGT)
8: Order node labels (“ai-el-aj-δij”s) and edge labels (∆s) descendingly based on their frequencies in CIGs of DS ′

9: Remove node and edge labels in CIGs with frequencies < min_supp
10: Relabel lexicographically node and edge labels in CIGs with frequencies ≥ min_supp
11: Update 1_Node_map and 1_Edge_map dictionaries with the location of their embeddings in DS ′

12: Return 1_Node_map, 1_Edge_map
13: procedure tempoworkDS, min_supp, ISO_type
14: Initialize frequent_patterns ⊲ This is a dictionary: {frequent_patterns: location of their embeddings in DS ′}

15: Initialize cl_list ⊲ It is a list for recording list of canonical labeling of CIG already mined

16: 1_Node_map, 1_Edge_map = Preprocessing(DS,min_supp, ISO_type)
17: Update frequent_patterns with 1_Node_map and 1_Edge_map
18: temp_1_Edge_map = 1_Edge_map ⊲ We create a copy of the 1_Edge_map
19: procedure CIG_MINING (pattern, pattern_support)
20: for all edge in temp_1_Edge_map do

21: new_pattern = add edge to pattern as forward edge

22: if new_pattern has the minimum lexicographical form then

23: temp_tw = Reconstruct_TemporalNetwork(new_pattern, support) ⊲ support is one of DS networks

supporting new_pattern created from the function input argument pattern_support
24: temp_cig = Construct_CIG(temp_tw)
25: cl = canonical_labeling(temp_cig) ⊲ This line computes the canonical labeling of temp_cig
26: if cl not already in cl_list then ⊲ The cl is constructed for this child of all the

27: cl_list.push(cl) ⊲ frequent but structurally different parents.

28: frequent_patterns[new_pattern] = new_pattern_support
29: Call CIG_Mining(new_pattern, frequent_patterns[new_pattern])
30: for all edge, frequent_patterns[edge] in 1_Edge_map do

31: Call CIG_Mining(edge, frequent_patterns[edge])
32: Remove edge from temp_1_Edge_map
33: Return frequent_patterns

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The frequent pattern mining process primarily drives the

computational complexity of the proposed approach. However,

for the sake of completeness, we provide the analysis of the

computational complexity for all steps. Also, the worst-case

computational complexity is discussed, including an explanation

of how often it might occur. The algorithm processes a data set

of n temporal networks, transforming each temporal network

Ni ∈ DS to a corresponding CIGi to create a secondary data

setDS ′. For each network inDS, the algorithm reads each edge,

searches the two interval trees associated with the edge’s end

points, and then updates these interval trees with the new edge us-

ing two insertion operations. Assuming the worst-case scenario,

where all edges overlap with one another and share one common

vertex, the interval search at iteration i+ 1 has a computational

complexity of O(i). The insertion operation’s computational

complexity is O(log i) [70], which is less expensive than the

interval search operation in the corresponding iteration. As the

algorithm iterates over each edge and performs the interval

search for each edge, the total computational complexity for

network N with the set of edges EN amounts to O(|EN |2). This

complexity, associated with Algorithm 1, should be performed

once for all the networks in DS to generate DS′ in lines 5–7

of Algorithm 3 and also repeated for all the candidate patterns

reaching to line 24 of the same Algorithm.

The computational complexity of reconstructing the tem-

poral network associated with a given (subgraph of) CIG
is similar to that of Depth-First Search (DFS), as we tra-

verse the CIG to reconstruct the temporal network. The

complexity of DFS depends on the data structure used to

represent the network. If an adjacency matrix representa-

tion is used, it is in the order of O(|VCIG|
2). However,

using an adjacency list representation can reduce the com-

plexity to O(|VCIG|+ |ECIG|) [70], where |VCIG| is the

number of vertices and |ECIG| is the number of edges in

the CIG. This complexity is associated with Algorithm 2

called in line 23 for all the candidate patterns reaching to this

line in Algorithm 3.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

316 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Mining frequent patterns in DS ′ requires its own analysis.

The proposed approach mitigates the issue of subgraph iso-

morphism by creating embedding lists for frequent patterns.

However, for a subgraph s, we might still need to perform

graph isomorphism verification after reconstructing the tem-

poral network associated with s and constructing its CIG to

ensure that it has not been already evaluated (lines 25 and 26 of

Algorithm 3). A breakthrough study by Babai in [74], [75] shows

that graph isomorphism can be solved in quasipolynomial time

(exp((log n)O(1))), wheren is the number of vertices in s, which

would be identical to the number of edges in the corresponding

temporal network. He later proposed an approach for canonical

labeling of graphs within the same time bound [76]. Therefore,

in the worst-case scenario a canonical labeling should be con-

structed for each pattern being mined. In [47], it was demon-

strated that the computational complexity of mining frequent

patterns from a data set of static networks is O(kFn+ rF),
where k is the maximum number of subgraph isomorphism

verifications needed between a subgraph and networks in DS ′,

F is the number of frequent patterns, and r is the maximum

number of duplicate labels generated (related to line 22 in

Algorithm 3 and for support enumeration in line 28 of the same

algorithm).

As noted, mining frequent patterns in networks is inherently

computationally expensive due to the verifications required for

graph and subgraph isomorphism. Adding the temporal layer

exacerbates the problem’s complexity due to the CIG construc-

tion and reconstruction. However, there are several considera-

tions that can significantly improve performance. First, mining

labeled network data sets, prevalent in many real-world applica-

tions, is less costly. Moreover, the variations in interaction dura-

tions and delays act as implicit labels, reducing the complexities

associated with graph and subgraph isomorphism considerably.

Additionally, adopting established pruning strategies, such as

those discussed in [47], can significantly enhance the mining

algorithms’ performance. The degree of contribution of each

of these factors is highly application-dependent, determined by

the structural attributes of the networks being investigated, the

number and distribution of labels attributed to vertices and edges,

as well as the temporal properties of the networks. The fol-

lowing section provides an experimental analysis for real-world

scenarios.

VI. EXPERIMENTS

To the best of our knowledge, this is the first algorithm pro-

posed for mining frequent patterns in continuous-time temporal

networks. We evaluated the proposed algorithm’s performance

using three real-world data sets with different numbers of ver-

tices, edges, and time windows:
� Hospital Ward Proximity Networks: A data set of prox-

imity networks representing interactions between patients

and healthcare providers in a hospital ward in Lyon,

France [77], [78].
� High school Contact Networks: This data set includes

seven days of temporal interactions among high school

students of five classes [78], [79].

TABLE I
CHARACTERISTICS OF THE DATA SETS USED FOR THE EXPERIMENTS,
INCLUDING THE NUMBER OF NETWORKS IN EACH DATA SET AND THE

AVERAGE NUMBER OF VERTICES |V | AND EDGES |E| OF NETWORKS IN

CONTINUOUS-TIME REPRESENTATIONS OF THE DATA SETS

� Sepsis EHR Data Set: This data set includes retrospectively

collected EHR data related to cellular and physiological

responses of sepsis patients in 13,229 visits [80].

A comprehensive depiction of these data sets is available in

Appendix C.1, available online, along with a detailed explana-

tion of the preprocessing conducted on these data sets for the

proposed approach in Appendix C.2, available online. Table I

summarizes these three data sets’ characteristics.

The proposed algorithm was applied to the three network

data sets described above using multiple frequency thresholds.

Also, we implemented the algorithm for different definitions of

isomorphism with different discretization parameters to evalu-

ate the impact of temporal variations allowed on the number

of frequent pattern detected by the algorithm. The results are

shown in Figs. 12, 13, and 14. The numerical values of results

are provided in Appendix D-Table 2, available online. The

findings are discussed in the following subsection. The Python

implementation of the algorithm used in this study is publicly

available from the PyPI repository and can be installed under

“tempowork”. The experiments were conducted on a personal

computer with an Intel Core i7-8700 3.20 GHz CPU processor

with 16.0 GB installed RAM.

A. Discussion

The proposed algorithm was applied to the pre-processed

data sets. We used the four different types of isomorphisms,

different support values, and different discretization parameters.

The results show that increasing the support thresholds decreases

the number of frequent patterns in all three data sets consistently

(Fig. 12).

The results of the implementation for the high school contact

networks when the ids are used as labels showed that most of

the frequent patterns are composed of either one temporal edge

(the interactions between two specific students for a particular

period) or two temporal edges (the interactions among three

specific students in different arrangements) (Fig. 12-(b)). This

can be attributed to the unique labels considered in this im-

plementation for each student. Also, the algorithm did not find

many frequent subgraphs for the sepsis EHR data set when it is

implemented in the exact-time or exact-time sequence-preserved

modes (Fig. 12-(d)). It can be attributed to the nature of this

data set. The lab measurements are recorded at times with a

precision of fractional portions of a second. At this precision,

it is very rare to find patterns with identical durations among

patients. However, when we implement the algorithm for the

high school contact networks with classes as labels (Fig. 12-(c))

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 317

Fig. 12. Number of frequent patterns detected by the algorithm using different definitions of isomorphism from (a) hospital ward proximity, (b) high school
contact networks with ids as labels, (c) high school contact networks with classes as labels, and (d) sepsis EHR data sets at different support thresholds (|E|: number
of edges in the frequent subgraphs, |s|: number of frequent subgraphs detected, |p|: total number of patients in the sepsis EHR data set, 13,229).

Fig. 13. Computation time (left) and impact of different discretization parameters (right) on the number of frequent subgraphs detected at different support
thresholds for (a) hospital ward proximity networks, (b) high school contact networks with ids as labels, (c) high school contact networks with classes as labels, and
(d) sepsis EHR data sets. For discretization parameters, the inexact version of isomorphism is used. (|E|: number of edges in the frequent subgraphs, |s|: number
of frequent subgraphs detected, |p|: total number of patients in the sepsis EHR data set, 13,229).

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

318 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Fig. 14. Some of the frequent patterns detected in (a) hospital ward proximity networks, (b) high school contact networks with ids as labels, (c) high school
contact networks with classes as labels, and (d) sepsis EHR data sets. Vertices with the same labels are shown with identical colors. Each row represents one vertex.
The interactions of pairs of vertices over time are shown as edges spanning from left to right. Also, for each of the continuous-time temporal patterns detected, a
typical network representation is provided above the pattern. Note that when these patterns are frequent, any subgraph of these patterns is frequent as well, based
on the downward closure property (s: seconds, h: hour, Bu: Blood urea nitrogen, Cr: Creatinine, Mp: Mean arterial pressure, Sb: Systolic blood pressure).

or for sepsis EHR data set for other two modes of isomorphism

(Fig. 12-(d)), the algorithm could find many frequent patterns at

different support thresholds.

It should be noted that although adoption of inexact-time

isomorphism increased the number of frequent patterns detected,

it might decrease the total number of frequent patterns in some

cases. In fact, inexact-time isomorphism has two opposing ef-

fects. It may group some infrequent patterns into one frequent

pattern (if they are isomorphic based on the inexact-time isomor-

phism definition). In this case, the number of frequent subgraphs

increases. Simultaneously, some of the different frequent sub-

graphs detected based on the exact-time isomorphism might be

considered one subgraph based on the inexact-time isomorphism

definition, consequently decreasing the total number of frequent

subgraphs.

In all the data sets, we observed that using the sequence-

preserved definitions almost always results in a higher number

of frequent patterns compared to their exact-time and inexact-

time counterparts, respectively. It is because we are relaxing the

constraints related to the overlaps between edges, as far as they

follow the same sequence of edge appearances.

Implementing the algorithm for different discretization pa-

rameters shows that these variations impact data sets differently

(Fig. 13). In the first and second data sets, using different dis-

cretization parameters does not significantly change the number

of frequent patterns. However, due to the nature of the sepsis

EHR data set and the temporal precision in data collection, we

do not have many frequent exactly identical patterns common

among patients. However, as we increase the discretization

parameters and allow higher tolerance of temporal variations,

we observe many frequent patterns among the patients. Also,

it should be noted that the opposing effect of inexact-time

isomorphism discussed earlier can affect the number of frequent

subgraphs detected for various discretization parameters differ-

ently as well.

The three data sets used in this study have some significant dif-

ferences that directly impact the frequent subgraph mining com-

putation time. The first data set is composed of five networks.

The average number of vertices and edges in this data set is 48

and 2,806, respectively, and each vertex is labeled with one of

the four possible labels. On the other hand, although the second

data set comprises seven networks (about the same number of

networks as the first data set), it is composed of a larger number

of vertices (about three times more than the first data set) with

almost the same number of edges (and nearly the same number of

vertex labels). This difference between the number of vertices

in these two data sets results in the lower density in the sec-

ond data set and consequently decreases the computation time

(Fig. 13-(a) versus Fig. 13-(c)). When the vertices in the second

data set are labeled with unique ids of students, it results in a

lower number of frequent patterns and, accordingly, significantly

lower computation time (Fig. 13-(b) versus Fig. 13-(c)). In the

sepsis EHR data set, we have a maximum of 19 vertices in

each of 13,229 networks. However, all the vertices are uniquely

labeled with one of the associated cellular and physiological

responses or biomarkers they represent. Also, not all of them are

necessarily present in the patients’ hospitalization records. The

labeling approach significantly reduces the computation time

required for performing the graph isomorphism (Fig. 13-(d)).

Fig. 14 shows two sample frequent subgraphs detected in the

four implementations of the algorithm on the three data sets.

Nearly all the frequent subgraphs detected in the first data set

were composed of paramedical staff interacting with each other

(Fig. 14-(a)-top). However, the algorithm also detected a few

frequent patterns among medical doctors 14-(a)-bottom). The

exact-time instances of these patterns are observed in at least

three (out of 5) networks of the data set. Fig. 14-(b) and (c)

show four frequent temporal patterns observed in at least 4 (out

of 7) networks of the second data set in the ids as labels and class

as labels implementations, respectively. The algorithm detected

a few frequent patterns in the second data set with ids as labels

with more than one temporal edge. These patterns are among

three students interacting in different formations, such as three

specific students interact for some particular time at the same

time, one student joins the other two students somewhere in

between of the first two students’ interaction 14-(b)-top), or two

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 319

Fig. 15. Co-failure of multiple cellular and physiological responses in patients
with sepsis over the same period of time (m: minutes, d: day, Bu: Blood
urea nitrogen, Cr: Creatinine, Fi: Fraction of inspired oxygen (FiO2), Or:
SpO2/F iO2, Os: Oxygen (O2) source, Mp: Mean arterial pressure, Sb: Sys-
tolic blood pressure).

students are interacting for some time, and one of them ends this

interaction and start another interaction with a different student

for a while 14-(b)-bottom. When the students are labeled with

classes, there are many frequent patterns with a larger number

of temporal edges. However, most of the patterns are among

students of the same class 14-(c).

Finally, Fig. 14-(d) shows two patterns identified as frequent

patterns in at least 100 sepsis patients by running the algorithm

in the inexact-time isomorphism mode. Although these patterns

show some changes in the patterns’ edges over time, most of

the frequent patterns detected in the sepsis EHR data set are

related to the simultaneous failures of multiple cellular and

physiological responses over some period of time (Fig. 15). It

can be attributed to the nature of laboratory test measurements

performed almost simultaneously in pre-defined intervals. These

patterns can also be considered complete networks, as all the

vertices are connected with one another. Both patterns are iden-

tified using the algorithm in the inexact-time sequence-preserved

setting, one with 15 minutes duration deviation tolerance (left)

and the other one with one-hour duration deviation tolerance

(right).

Given the novel nature of the proposed method in extract-

ing patterns unattainable by existing approaches, conventional

benchmarking methods are not applicable for performance eval-

uation. Nevertheless, the performance of the proposed approach

can be assessed through alternative methods. One crucial aspect

of evaluation involves exploring the significance of patterns de-

tected by the proposed approach in critical real-world scenarios.

For instance, in a medical context, we investigated the impor-

tance of considering these patterns in predicting the outcomes

of sepsis patients. The results demonstrated the potential of

integrating these discovered patterns with traditional features

used for patient outcome prediction, leading to significant per-

formance improvements and early identification of deteriorating

patient conditions [81]. Furthermore, evaluating the efficiency of

the proposed approach is essential for practical applications. One

way to achieve this is by measuring the algorithm’s execution

time under various scenarios and data set sizes. In our research,

we provided an analysis of the approach’s computational com-

plexities and experimental execution times to better understand

its scalability and resource requirements.

VII. CONCLUSION

This study proposed a novel approach for mining the complete

set of frequent patterns in continuous-time temporal networks.

A novel representation of temporal networks for frequent pat-

tern mining is described. We developed an original method for

continuous-time temporal network traversal and considered four

types of isomorphism to detect frequent subgraphs in a temporal

network data set.

Additionally, we tested the proposed algorithms on three real-

world data sets, and the results revealed considerable variations

in interactions’ durations in many of these patterns (e.g., refer

to Fig. 14). This suggests that the transformation of continuous-

time temporal networks into sequences of networks might hinder

the detection of these patterns. Moreover, this transformation

necessitates prior knowledge of the appropriate interval width,

which may not be feasible in numerous real-world applications.

One avenue for future research would be mining frequent pat-

terns in network data streams. Most of the previous work defines

network streams as updating batches of network components at

discrete intervals [56], [82]. Investigating the frequent pattern

mining problem, including the data structure requirements, for

temporal networks with continuous updates of network compo-

nents would be a challenging future direction with a wide variety

of applications. Furthermore, in our future work, we want to use

the outcome of the proposed algorithm for mining the evolution

among frequent patterns, where patterns might emerge, merge,

shrink, or grow.

In conclusion, our approach represents a novel contribution

to the field of continuous-time temporal networks, offering

promising results in mining frequent patterns. There remain

opportunities for further enhancements that could significantly

amplify its effectiveness. Future research endeavors could focus

on refining and optimizing various steps within our proposed

framework, including the construction and reconstruction of

CIGs, along with the formulation of pruning techniques to

circumvent graph isomorphism verifications, ultimately leading

to even more remarkable performance gains.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] L. V. Bertalanffy, General System Theory: Foundations, Development,

Applications. New York, NY, USA: G. Braziller, 1972.
[2] M. E. J. Newman, “The structure and function of complex networks,”

SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003.
[3] L. da Fontoura Costa et al., “Analyzing and modeling real-world phenom-

ena with complex networks: A survey of applications,” Adv. Phys., vol. 60,
no. 3, pp. 329–412, 2011.

[4] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph mining
algorithms,” Knowl. Eng. Rev., vol. 28, no. 1, pp. 75–105, 2012.

[5] K. Yoshida, H. Motoda, and N. Indurkhya, “Graph-based induction as
a unified learning framework,” Appl. Intell., vol. 4, no. 3, pp. 297–316,
1994.

[6] C. Borgelt and M. R. Berthold, “Mining molecular fragments: Finding
relevant substructures of molecules,” in Proc. IEEE Int. Conf. Data Mining,
2002, pp. 51–58.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

320 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

[7] J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia, “Analysing
information flows and key mediators through temporal centrality metrics,”
in Proc. 3rd Workshop Social Netw. Syst., 2010, pp. 1–6. [Online]. Avail-
able: https://doi.org/10.1145/1852658.1852661

[8] V. Kostakos, “Temporal graphs,” Physica A, Stat. Mechanics Appl.,
vol. 388, no. 6, pp. 1007–1023, 2009.

[9] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal
motifs in time-dependent networks,” J. Stat. Mechanics, Theory Experi-

ment, vol. 2011, no. 11, Nov. 2011, Art. no. P11005. [Online]. Available:
https://doi.org/10.1088%2F1742--5468%2F2011%2F11%2Fp11005

[10] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora,
“Graph metrics for temporal networks,” in Temporal networks. Berlin,
Germany: Springer, 2013, pp. 15–40.

[11] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, “Characterising temporal
distance and reachability in mobile and online social networks,” Jan. 2010.
[Online]. Available: https://doi.org/10.1145/1672308.1672329

[12] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference
problems for temporal networks,” J. Comput. Syst. Sci., vol. 64, no. 4,
pp. 820–842, 2002. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0022000002918295

[13] R. K. Pan and J. Saramäki, “Path lengths, correlations, and centrality in
temporal networks,” Phys. Rev. E, vol. 84, Jul. 2011, Art. no. 016105. [On-
line]. Available: https://link.aps.org/doi/10.1103/PhysRevE.84.016105

[14] P. Holme and J. Saramäki, “Temporal networks,” Phys. Rep., vol. 519,
no. 3, pp. 97–125, 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0370157312000841

[15] P. Holme, “Modern temporal network theory: A colloquium,” Eur. Phys.

J. B, vol. 88, no. 9, Sep. 2015, Art. no. 234. [Online]. Available: https:
//doi.org/10.1140/epjb/e2015--60657-4

[16] L. Dehaspe, H. Toivonen, and R. D. King, “Finding frequent substructures
in chemical compounds,” in Proc. Int. Conf. Knowl. Discov. Data Mining,
1998, pp. 30–36.

[17] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for
mining frequent substructures from graph data,” in Principles of Data

Mining and Knowledge Discovery, D. A. Zighed, J. Komorowski, and J.
Żytkow Eds., Berlin, Germany: Springer, 2000, pp. 13–23.

[18] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in Proc.

IEEE Int. Conf. Data Mining, 2001, pp. 313–320.
[19] Y. Ren, K. Zhang, and Y. Shi, “Survival prediction from longitudinal health

insurance data using graph pattern mining,” in Proc. IEEE Int. Conf. Bioinf.

Biomed., 2019, pp. 1104–1108.
[20] C. Sun, Q. Li, L. Cui, H. Li, and Y. Shi, “Heterogeneous network-based

chronic disease progression mining,” Big Data Mining Analytics, vol. 2,
no. 1, pp. 25–34, 2019.

[21] X. Cui et al., “Classification of Alzheimer’s disease, mild cognitive im-
pairment, and normal controls with subnetwork selection and graph kernel
principal component analysis based on minimum spanning tree brain func-
tional network,” Front. Comput. Neurosci., vol. 12, 2018, Art. no. 31. [On-
line]. Available: https://www.frontiersin.org/article/10.3389/fncom.2018.
00031

[22] J. Du, L. Wang, B. Jie, and D. Zhang, “Network-based classification
of ADHD patients using discriminative subnetwork selection and graph
kernel PCA,” Computerized Med. Imag. Graph., vol. 52, pp. 82–88,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0895611116300350

[23] D. Zhang, L. Tu, L.-J. Zhang, B. Jie, and G.-M. Lu, “Subnetwork mining
on functional connectivity network for classification of minimal hepatic
encephalopathy,” Brain Imag. Behav., vol. 12, no. 3, pp. 901–911, 2018.

[24] R. Kavuluru, M. Ramos-Morales, T. Holaday, A. G. Williams, L. Haye,
and J. Cerel, “Classification of helpful comments on online suicide watch
forums,” in Proc. 7th ACM Int. Conf. Bioinf. Comput. Biol. Health Inform.,
2016, pp. 32–40. [Online]. Available: https://doi.org/10.1145/2975167.
2975170

[25] Z. Deng et al., “AirVis: Visual analytics of air pollution propagation,” IEEE

Trans. Vis. Comput. Graphics, vol. 26, no. 1, pp. 800–810, Jan. 2020.
[26] X. Li, Y. Cheng, G. Cong, and L. Chen, “Discovering pollution sources

and propagation patterns in urban area,” in Proc. 23rd ACM SIGKDD Int.

Conf. Knowl. Discov. Data Mining, 2017, pp. 1863–1872.
[27] A. Mrzic et al., “Grasping frequent subgraph mining for bioinformatics

applications,” BioData Mining, vol. 11, no. 1, pp. 20–24, 2018.
[28] Q. Chen, C. Lan, B. Chen, L. Wang, J. Li, and C. Zhang, “Exploring con-

sensus RNA substructural patterns using subgraph mining,” IEEE/ACM

Trans. Comput. Biol. Bioinf., vol. 14, no. 5, pp. 1134–1146, 2017. [Online].
Available: https://doi.org/10.1109/TCBB.2016.2645202

[29] F. C. Queiroz, A. M. Vargas, M. G. Oliveira, G. V. Comarela, and
S. A. Silveira, “ppiGReMLIN: A graph mining based detection of con-
served structural arrangements in protein-protein interfaces,” BMC Bioinf.,
vol. 21, no. 1, pp. 1–25, 2020.

[30] J. Wu and L. Zhou, “DOBNet: Exploiting the discourse of deception
behaviour to uncover online deception strategies,” Behav. Inf. Technol.,
vol. 34, no. 9, pp. 936–948, 2015.

[31] G. A. Wang, H. J. Wang, J. Li, A. S. Abrahams, and W. Fan, “An analytical
framework for understanding knowledge-sharing processes in online Q&A
communities,” ACM Trans. Manage. Inf. Syst., vol. 5, no. 4, pp. 1–31,
Dec. 2014. [Online]. Available: https://doi.org/10.1145/2629445

[32] G. Bachi, M. Coscia, A. Monreale, and F. Giannotti, “Classifying
trust/distrust relationships in online social networks,” in Proc. Int.

Conf. Privacy Secur. Risk Trust Int. Conf. Social Comput., 2012,
pp. 552–557.

[33] N. Acosta-Mendoza, A. Gago-Alonso, J. A. Carrasco-Ochoa, J. F.
Martínez-Trinidad, and J. E. Medina-Pagola, “Improving graph-based
image classification by using emerging patterns as attributes,” Eng. Appl.

Artif. Intell., vol. 50, pp. 215–225, 2016. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0952197616000348

[34] M. Dammak, M. Mejdoub, and C. B. Amar, “Histogram of dense sub-
graphs for image representation,” IET Image Process., vol. 9, no. 3,
pp. 184–191, 2014.

[35] N. Acosta-Mendoza, A. Gago-Alonso, and J. E. Medina-Pagola, “Frequent
approximate subgraphs as features for graph-based image classification,”
Knowl.-Based Syst., vol. 27, pp. 381–392, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0950705111002668

[36] N. B. Aoun, M. Mejdoub, and C. B. Amar, “Graph-based ap-
proach for human action recognition using spatio-temporal features,”
J. Vis. Commun. Image Representation, vol. 25, no. 2, pp. 329–338,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1047320313001910

[37] N. B. Aoun, H. Elghazel, and C. B. Amar, “Graph modeling based
video event detection,” in Proc. Int. Conf. Innov. Inf. Technol., 2011,
pp. 114–117.

[38] N. B. Aoun, M. Mejdoub, and C. B. Amar, “Bag of sub-graphs for
video event recognition,” in Proc. IEEE Int. Conf. Acoust. Speech Signal

Process., 2014, pp. 1547–1551.
[39] A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang, and

A. Mohaisen, “Subgraph-based adversarial examples against graph-based
IoT malware detection systems,” in Computational Data and Social Net-

works, A. Tagarelli and H. Tong Eds., Berlin, Germany: Springer, 2019,
pp. 268–281.

[40] N. Asrafi, “Comparing performances of graph mining algorithms to detect
malware,” in Proc. ACM Southeast Conf., 2019, pp. 268–269. [Online].
Available: https://doi.org/10.1145/3299815.3314485

[41] V. Herrera-Semenets and A. Gago-Alonso, “A novel rule generator for
intrusion detection based on frequent subgraph mining,” Ingeniare. Revista

chilena de ingeniería, vol. 25, no. 2, pp. 226–234, 2017.
[42] V. Herrera-Semenets, N. Acosta-Mendoza, and A. Gago-Alonso, “A

framework for intrusion detection based on frequent subgraph mining,”
in Proc. 2nd SDM Workshop Mining Netw. Graphs, 2015.

[43] T. Wüchner, A. Cisłak, M. Ochoa, and A. Pretschner, “Leveraging
compression-based graph mining for behavior-based malware detection,”
IEEE Trans. Dependable Secure Comput., vol. 16, no. 1, pp. 99–112,
Jan./Feb. 2019.

[44] A. Jazayeri and C. C. Yang, “Frequent subgraph mining algorithms in static
and temporal graph-transaction settings: A survey,” IEEE Trans. Big Data,
vol. 8, no. 6, pp. 1443–1462, Dec. 2022.

[45] A. Jazayeri and C. C. Yang, “Motif discovery algorithms in static and
temporal networks: A survey,” J. Complex Netw., vol. 8, no. 4, 2020,
Art. no. cnaa031.

[46] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: Simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002. [Online]. Available:
https://science.sciencemag.org/content/298/5594/824

[47] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in
Proc. IEEE Int. Conf. Data Mining, 2002, pp. 721–724.

[48] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
University of Illinois at Urbana-Champaign, Tech. Rep. UIUCDCS-R-
2002–2296, 2002.

[49] M. Lahiri and T. Y. Berger-Wolf, “Structure prediction in temporal net-
works using frequent subgraphs,” in Proc. IEEE Symp. Comput. Intell.

Data Mining, 2007, pp. 35–42.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/1852658.1852661
https://doi.org/10.1088%2F1742--5468%2F2011%2F11%2Fp11005
https://doi.org/10.1145/1672308.1672329
http://www.sciencedirect.com/science/article/pii/S0022000002918295
http://www.sciencedirect.com/science/article/pii/S0022000002918295
https://link.aps.org/doi/10.1103/PhysRevE.84.016105
http://www.sciencedirect.com/science/article/pii/S0370157312000841
http://www.sciencedirect.com/science/article/pii/S0370157312000841
https://doi.org/10.1140/epjb/e2015--60657-4
https://doi.org/10.1140/epjb/e2015--60657-4
https://www.frontiersin.org/article/10.3389/fncom.2018.00031
https://www.frontiersin.org/article/10.3389/fncom.2018.00031
http://www.sciencedirect.com/science/article/pii/S0895611116300350
http://www.sciencedirect.com/science/article/pii/S0895611116300350
https://doi.org/10.1145/2975167.2975170
https://doi.org/10.1145/2975167.2975170
https://doi.org/10.1109/TCBB.2016.2645202
https://doi.org/10.1145/2629445
http://www.sciencedirect.com/science/article/pii/S0952197616000348
http://www.sciencedirect.com/science/article/pii/S0952197616000348
http://www.sciencedirect.com/science/article/pii/S0950705111002668
http://www.sciencedirect.com/science/article/pii/S0950705111002668
http://www.sciencedirect.com/science/article/pii/S1047320313001910
http://www.sciencedirect.com/science/article/pii/S1047320313001910
https://doi.org/10.1145/3299815.3314485
https://science.sciencemag.org/content/298/5594/824

JAZAYERI AND YANG: FREQUENT PATTERN MINING IN CONTINUOUS-TIME TEMPORAL NETWORKS 321

[50] M. Lahiri and T. Y. Berger-Wolf, “Mining periodic behavior in dynamic
social networks,” in Proc. IEEE 8th Int. Conf. Data Mining, 2008,
pp. 373–382.

[51] C. H. You, L. B. Holder, and D. J. Cook, “Graph-based data mining
in dynamic networks: Empirical comparison of compression-based and
frequency-based subgraph mining,” in Proc. IEEE Int. Conf. Data Mining

Workshops, 2008, pp. 929–938.
[52] C. Robardet, “Constraint-based pattern mining in dynamic graphs,” in

Proc. IEEE 9th Int. Conf. Data Mining, 2009, pp. 950–955.
[53] B. Wackersreuther, P. Wackersreuther, A. Oswald, C. Böhm, and

K. M. Borgwardt, “Frequent subgraph discovery in dynamic networks,” in
Proc. 8th Workshop Mining Learn. Graphs, 2010, pp. 155–162. [Online].
Available: https://doi.org/10.1145/1830252.1830272

[54] A. Inokuchi and T. Washio, “A fast method to mine frequent subsequences
from graph sequence data,” in Proc. IEEE 8th Int. Conf. Data Mining, 2008,
pp. 303–312.

[55] A. Inokuchi and T. Washio, “Mining frequent graph sequence pat-
terns induced by vertices,” in Proc. SIAM Int. Conf. Data Mining,
2010, pp. 466–477. [Online]. Available: https://epubs.siam.org/doi/abs/
10.1137/1.9781611972801.41

[56] A. Cuzzocrea, Z. Han, F. Jiang, C. K. Leung, and H. Zhang, “Edge-based
mining of frequent subgraphs from graph streams,” Procedia Comput. Sci.,
vol. 60, pp. 573–582, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S187705091502311X

[57] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, “Mining frequent
closed graphs on evolving data streams,” in Proc. 17th ACM SIGKDD

Int. Conf. Knowl. Discov. Data Mining, 2011, pp. 591–599. [Online].
Available: https://doi.org/10.1145/2020408.2020501

[58] D. J. Cook and L. B. Holder, “Substructure discovery using minimum
description length and background knowledge,” J. Artif. Intell. Res., vol. 1,
no. 1, pp. 231–255, Feb. 1994.

[59] M. Kuramochi and G. Karypis, “Finding frequent patterns in a
large sparse graph*,” Data Mining Knowl. Discov., vol. 11, no. 3,
pp. 243–271, Nov. 2005. [Online]. Available: https://doi.org/10.1007/
s10618--005-0003-9

[60] R. Jin, S. McCallen, and E. Almaas, “Trend motif: A graph mining
approach for analysis of dynamic complex networks,” in Proc. IEEE 7th

Int. Conf. Data Mining, 2007, pp. 541–546.
[61] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther, “Pattern mining in

frequent dynamic subgraphs,” in Proc. 6th Int. Conf. Data Mining, 2006,
pp. 818–822.

[62] A. Ray, L. B. Holder, and S. Choudhury, “Frequent subgraph discovery in
large attributed streaming graphs,” in Proc. 3rd Int. Conf. Big Data Streams

Heterogeneous Source Mining Algorithms Syst. Program. Models Appl.,
2014, pp. 166–181.

[63] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory.
Philadelphia, PA, USA: SIAM, 1999.

[64] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New
York, NY, USA: Academic Press, 1980.

[65] D. Zwillinger, CRC Standard Mathematical Tables and Formulae. Boca
Raton, FL, USA: CRC, 2002.

[66] R. E. Moore, Interval Analysis, vol. 4. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1966.

[67] D. R. Fulkerson and O. A. Gross, “Incidence matrices and interval graphs,”
Pacific J. Math., vol. 15, no. 3, pp. 835–855, 1965. [Online]. Available:
https://projecteuclid.org:443/euclid.pjm/1102995572

[68] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduc-

tion. Berlin, Germany: Springer, 2012.
[69] D. Lee and H.-I. Yu, “Interval, segment, range, and priority search trees,” in

Handbook of Data Structures and Applications. London, U.K.: Chapman
and Hall/CRC, 2018, pp. 291–307.

[70] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.
[71] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” J.

Symbolic Comput., vol. 60, pp. 94–112, 2014.
[72] T. Junttila and P. Kaski, “Engineering an efficient canonical labeling tool

for large and sparse graphs,” in Proc. Meeting Algorithm Eng. Expermi-

ments, 2007, pp. 135–149.
[73] S. Ramírez-Gallego et al., “Data discretization: Taxonomy and Big Data

challenge,” WIREs Data Mining Knowl. Discov., vol. 6, no. 1, pp. 5–21,
2016.

[74] L. Babai, “Graph isomorphism in quasipolynomial time [extended
abstract],” in Proc. 48th Annu. ACM Symp. Theory Comput., 2016,
pp. 684–697. [Online]. Available: https://doi.org/10.1145/2897518.
2897542

[75] L. Babai, “Fixing the UPCC case of split-or-Johnson,” 2017. [Online].
Available: https://people.cs.uchicago.edu/laci/

[76] L. Babai, “Canonical form for graphs in quasipolynomial time: Preliminary
report,” in Proc. 51st Annu. ACM SIGACT Symp. Theory Comput., 2019,
pp. 1237–1246.

[77] P. Vanhems et al., “Estimating potential infection transmission routes in
hospital wards using wearable proximity sensors,” PLoS One, vol. 8, no. 9,
2013, Art. no. e73970.

[78] SocioPatterns collaboration. Accessed: Apr. 01, 2021. [Online]. Available:
http://www.sociopatterns.org/

[79] J. Fournet and A. Barrat, “Contact patterns among high school students,”
PLoS One, vol. 9, no. 9, 2014, Art. no. e107878. [Online]. Available:
http://dx.doi.org/10.1371%2Fjournal.pone.0107878

[80] A. Jazayeri, M. Capan, C. Yang, F. Khoshnevisan, M. Chi, and R. Arnold,
“Network-based modeling of sepsis: Quantification and evaluation of
simultaneity of organ dysfunctions,” in Proc. 10th ACM Int. Conf. Bioinf.

Comput. Biol. Health Inform., 2019, pp. 87–96. [Online]. Available:
https://doi.org/10.1145/3307339.3342160

[81] A. Jazayeri, C. C. Yang, and M. Capan, “Frequent temporal patterns of
physiological and biological biomarkers and their evolution in sepsis,”
Artif. Intell. Med., vol. 143, 2023, Art. no. 102576. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0933365723000908

[82] P. Braun, J. J. Cameron, A. Cuzzocrea, F. Jiang, and C. K. Le-
ung, “Effectively and efficiently mining frequent patterns from dense
graph streams on disk,” Procedia Comput. Sci., vol. 35, pp. 338–347,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877050914010795

Ali Jazayeri received the BS degree in materials
science and engineering from Amirkabir University
of Technology, in 2006, followed by an MS degree
in socio-economic systems engineering and sociol-
ogy from Sharif University of Technology and the
University of Tehran in 2010 and 2016, respectively,
and the PhD degree from the College of Computing
and Informatics (CCI), Drexel University, with his
dissertation focusing on mining frequent substruc-
tures and their evolution in temporal networks. He has
more than 20 publications in Artificial Intelligence

in Medicine, IEEE Transactions on Big Data, Journal of Complex Networks,
IEEE International Conference on Healthcare Informatics, ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, and more.

Christopher C. Yang is a professor in the College of
Computing and Informatics with Drexel University.
He also has a courtesy appointment with the School
of Biomedical Engineering, Science, and Health Sys-
tems. He is serving as the program director in the
Division of Intelligent and Information Systems (IIS),
Computer and Information Science and Engineering
(CISE), National Science Foundation in 2022 to 2024.
He is the director of the Healthcare Informatics Re-
search Lab. He was the Founding Director of Data
Science Programs and the Program Director of MS

in Health Informatics. His research interest includes data science, artificial
intelligence, machine learning, fairness AI, explainable AI, healthcare informat-
ics, social media analytics, electronic commerce, and intelligence and security
informatics. He has more than 360 publications in top-tier journals, conferences,
and books, such as ACM Transactions on Intelligent Systems and Technology,
ACM Transaction on Management Information Systems, IEEE Transactions on

Knowledge and Data Engineering, IEEE Transactions on Computational Social

Systems, PLOS One, Journal of Medical Internet Research, Artificial Intelligence

in Medicine, and more. He has received over $10M research fundings from
NSF, NIH, DoD, PCORI, HK RGC, etc. He is the editor-in-chief of Journal
of Healthcare Informatics Research and Electronic Commerce Research and
Application. He is the editor of the CRC book series on Healthcare Informatics
and the founding steering committee chair of the IEEE International Conference
on Healthcare Informatics. He has been the general chair of more than five
conferences and program chairs of more than ten conferences.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/1830252.1830272
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.41
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.41
http://www.sciencedirect.com/science/article/pii/S187705091502311X
http://www.sciencedirect.com/science/article/pii/S187705091502311X
https://doi.org/10.1145/2020408.2020501
https://doi.org/10.1007/s10618--005-0003-9
https://doi.org/10.1007/s10618--005-0003-9
https://projecteuclid.org:443/euclid.pjm/1102995572
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://people.cs.uchicago.edu/laci/
http://www.sociopatterns.org/
http://dx.doi.org/10.1371%2Fjournal.pone.0107878
https://doi.org/10.1145/3307339.3342160
https://www.sciencedirect.com/science/article/pii/S0933365723000908
http://www.sciencedirect.com/science/article/pii/S1877050914010795
http://www.sciencedirect.com/science/article/pii/S1877050914010795

