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Frequent Pattern Mining in Continuous-Time
Temporal Networks

Ali Jazayeri

Abstract—Networks are used as highly expressive tools in dif-
ferent disciplines. In recent years, the analysis and mining of
temporal networks have attracted substantial attention. Frequent
pattern mining is considered an essential task in the network science
literature. In addition to the numerous applications, the investi-
gation of frequent pattern mining in networks directly impacts
other analytical approaches, such as clustering, quasi-clique and
clique mining, and link prediction. In nearly all the algorithms
proposed for frequent pattern mining in temporal networks, the
networks are represented as sequences of static networks. Then,
the inter- or intra-network patterns are mined. This type of rep-
resentation imposes a computation-expressiveness trade-off to the
mining problem. In this paper, we propose a novel representation
that can preserve the temporal aspects of the network losslessly.
Then, we introduce the concept of constrained interval graphs
(CIGS). Next, we develop a series of algorithms for mining the
complete set of frequent temporal patterns in a temporal network
data set. We also consider four different definitions of isomorphism
for accommodating minor variations in temporal data of networks.
Implementing the algorithm for three real-world data sets proves
the practicality of the proposed approach and its capability to
discover unknown patterns in various settings.

Index Terms—Continuous-time networks, frequent subgraphs,
pattern mining, temporal networks.

NOMENCLATURE
|A] Cardinality of a given set A
€ User-defined support threshold.
A% Time window of temporal network.
5 Time interval.
Z List of edges of temporal network.
M Map of vertices in Vv to their associated interval
trees.
agGw Aggregation window.
CIG Constrained Interval Graph.
cl Canonical labeling.
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DAG Directed Acyclic Graph.

DS Data set of temporal networks.

DS’ Data set of C'IG’s associated with temopral networks.
E; Set of edges in network ¢

freq(s) Frequency of subgraph s

1G Interval Graph.

1T Interval Tree.

M Map of vertices in V¢ to pair of vertices in Vi
N Temporal network.

s Subgraph.

V; Set of vertices in network ¢

1. INTRODUCTION

ETWORKS have been extensively adopted for modeling
N systems where in addition to the systems’ components,
the inter-component interactions may provide deeper insights
into the systems’ behavior. Networks, with a long history of
applications [1], [2], are used as highly expressive tools for
system modeling in different domains [3].

Among different analytical and mining techniques proposed
for network research, the mining of frequent network pat-
terns has an essential place [4]. The underlying idea behind
this problem is that the recurring patterns observed more fre-
quently may represent essential characteristics of the system
that networks represent [5], [6]. However, the implementa-
tion of network mining for identifying frequent patterns is a
non-trivial and computationally costly task. The main reason
is the requirement to verify the graph and subgraph isomor-
phism in different iterations of the frequent pattern mining
process.

Furthermore, in many applications, the temporality of the
systems should be included in the modeling effort. It is shown
that when the time scale of the changes in the system is
comparable, using dynamic and time-varying network models
can inform the identification of important components more
effectively [7], [8]. One approach is to represent the temporal
aspects of the system as attributes of the vertices and edges
of the corresponding network. However, this approach might
obscure some of the temporal information [9], [10]. Besides,
some of the well-defined metrics and concepts in static networks,
such as distance, diameter, centralities, and connectivity, have
been differently defined and interpreted for temporal networks.
Therefore, aggregating and representing temporal aspects of
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the system as static networks’ characteristics might adversely
impact the derived insight [11], [12], [13], [14], [15].

A. Background

Frequent subgraph mining problem has attracted substan-
tial attention in domains where the data can be represented
as networks, such as in chemo-informatics [16], [17], [18],
health informatics [19], [20], [21], [22], [23], public health [24],
[25], [26], bioinformatics [27], [28], [29], social network anal-
ysis [30], [31], [32], computer vision [33], [34], [35], [36],
[371, [38], and security [39], [40], [41], [42], [43]. The frequent
subgraph mining in these discplines are either applied to a data
set of small networks [44] or a data set of one large network [45].
These tasks are traditionally called network-transaction setting
and motif discovery, respectively. Also, the output of the mining
process is called frequent subgraphs (similar to frequent itemsets
in the frequent itemset mining literature) for the former setting
and motifs after a study by Milo et al. [46] for the latter setting.

Fig. 1 provides a taxonomy of the algorithms in the frequent
subgraph mining literature. These algorithms can be categorized
based on the network data available, either a single network or
a set or sequence of networks. These algorithms are then can be
categorized based on the temporality of the data. In cases where
the data set is composed of a set of static networks, the algorithms
can be classified based on the adopted approach for graph
traversal and pattern search strategy [17], [18], [47], [48]. In the
temporal network case, the algorithms can be classified based
on the patterns being mined; either each network in the sequence
is mined (inter-network subgraph mining) [49], [50], [51] or the
changes occurring between each pair of consecutive networks
in the sequence (intra-network subgraph mining) [52], [53]. In
some algorithms, the inter-network subgraph mining approach
is generalized to multiple sequences (extended inter-network
subgraph mining) [54], [S5]. Besides, in some applications, the
networks are added to the sequence in real-time, which creates a
separate category of algorithms [56], [57]. For further details and

Single large
network

Motif discovery in Motif discovery in
static networks temporal networks
Exact fr . .
act trequency Dynamic attributes
algorithms

Approximate frequency

algorithms Dynamic topology

Graphlet mining Network data streams

Other approaches

Taxonomy of frequent subgraph mining algorithms proposed in the literature.

adiscussion of algorithms in each subcategory, refer to [44]. The
algorithms can be classified based on the adopted approach for
frequency computations in single static networks in the motif
discovery problem [58], [59]. For motif discovery in a large
temporal network, the algorithms can be classified based on the
temporal changes occurring in the network data, such as in the
network’s attributes, network topology, or when the network
data is provided in real-time [60], [61], [62].

B. Our Contribution

One common approach for mining frequent subgraphs in
temporal networks is representing the temporal network as a
sequence of static networks. This type of representation of
temporal networks has attracted some popularity as it can capture
the system’s temporal aspects to some extent. However, as will
be discussed in the following section, adopting this model-
ing approach creates a computation-expressiveness trade-off.
In other words, increasing the expressiveness of the network
representation increases computational costs. For reducing the
computational cost, we need to sacrifice some of the system’s
temporal aspects. Due to this fact, when the duration of inter-
actions between system’s entities is not identical for all the
interactions, the equal-width temporal aggregation approach
might over-represent some of the interactions.

C. Problem Formulation and Paper Organization

Unlike other approaches proposed in the literature, our objec-
tive is to mine all frequent patterns in a data set of continuous-
time temporal networks while retaining their actual temporal
information. Therefore, this paper is dedicated to addressing the
following problem.

Problem definition: Given adataset DS = {Ny, Na,...N,}
of n continuous-time temporal networks and a user-defined
support threshold € € [0, 1], the problem of frequent pattern
mining in continuous-time temporal networks aims to identify
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Fig.2. Example of a contact sequence. The list of edges on the left is visualized
on the right with an explicit temporal dimension.

all patterns that appear in at least € x n of the networks in D.S
while preserving their actual temporal information.

To solve this problem, we first introduce a novel concept to
represent temporal networks in DS. In some cases, we might
be interested in mining structurally identical structures while
accepting minor variations in temporal information. To make this
possible, we propose a series of isomorphism definitions in the
context of temporal networks, adding some levels of tolerance
in temporal variations to find more generalizable patterns. Next,
we explain the algorithm developed for mining frequent patterns
in continuous-time temporal networks, called tempowork. We
discuss the performance of the proposed algorithms analytically
and evaluate them experimentally using three real-world data
sets from different disciplines. To accomplish all these tasks,
we need to introduce several novel concepts and heuristics and
provide definitions for some other available concepts.

II. TEMPORAL NETWORK REPRESENTATION

Networks are considered temporal if their components, ver-
tices and edges, or their associated attributes, change over time.
We define temporal networks as follows:

Temporal Network: A temporal network NV is defined over a
range of W as an ordered pair, N = (V, E), of two sets, V =
{v1, va,...,v,} which is the set of vertices of the network and
referred to as Vi, and E = {ej, ea,...,e,} CV x V, which
is the set of temporal edges of the network and referred to as
En.Anedge ey isrepresented as e, = {v;, v, a;, Ik, aj, Sk, Ok }
where:

® v; and v;: identifiers of the edge’s two end-points.

® a; and a;: attributes of v; and vj, respectively. These

attributes might be different between the same pair of
vertices in various interactions. Also, the same vertex might
take different attributes in its interaction with other vertices
in overlapping intervals.

® [;: edge attribute, which might differ between the same or

different pairs of vertices in various interactions.

® s;: the starting point of the interaction window in which

ey 18 active.

® 0 length of the interaction window in which ey, is active.

In some literature, the temporal networks are represented as
either a contact sequence or an interval network [13], [14], [15].
The contact sequence representation is composed of edges in the
form of {v;, v;,t}, where v; and v; are identifiers of the edge’s
two end-points and ¢ is the point in time that these vertex pairs
are connected. Fig. 2 shows an example of a list of edges in a
contact sequence and the corresponding visualization.

vertices

time

Fig.3. Continuous-time temporal network with vertices and edges active over
some period of time.

In applications where the interactions are instantaneous,
adopting a contact sequence representation is preferable (for
example, in email correspondence where send and receive events
happen in a fraction of seconds). However, in other applications,
the duration of interactions is not negligible, for example, in
face-to-face interactions, transportation networks, or some of
the applications of proximity networks. Therefore, edges are
shownas {v;, v, s,0} (or{v;,v;, s, f}), where s is the start time
of the interaction and d (f) is the duration (finish time) of the
interaction. In this case, the contact sequences are a special case
in which 6 = 0 (s = f). We adopt this latter representation in
this paper and generalize that to both attributed and unattributed
networks. Fig. 3 visualizes an unattributed temporal network of
this type. This network is composed of five pairs of vertices’
interactions over some period of time. Here, for example, we
have v at the starting time of interaction connected to vs at the
ending time of interaction, meaning that vy and vs interact for the
entire duration where they are connected. In Fig. 3, an undirected
network is shown. Therefore, we can change the starting point
andending point to be vz and vg, respectively. To establish a
standard visualization approach for directed networks, we can
opt to draw the edges from the tail vertices to the head vertices.

In the literature of frequent subgraph mining, on the other
hand, the common approach toward temporal network repre-
sentation and analysis is converting the temporal dimension to a
sequence of intervals and representing the continuous network as
a sequence of aggregated static networks [44]. In this represen-
tation, for the range of temporal network, W, and aggregation
window, agg,,, the number of aggregation windows or static
networks would be |seq| = [W/agg,, |. For each aggregation
window, the relationship between each pair of vertices is ag-
gregated. In other words, for each pair of vertices, a connecting
edge is assumed if at least there is one connection between the
pair of vertices in that aggregation window, independently from
the duration of the connection. It implies that by increasing the
agg., the probability of having a connection between every two
vertices in each aggregation window increases. On the other
hand, the number of static networks, |seq|, decreases. This
representation of temporal network is shown in Fig. 4(a) for
multiple agg,, as a sequence of static networks related to the
temporal network in Fig. 4(b).

When the agg,, = 0o, we consider an edge between each pair
of vertices if there is at least one connection between these
two vertices at some point in W. When the agg,, = oo, all
the network’s dynamic aspect is overlooked, and the continuous
network is represented as a single static network. By decreasing
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Fig. 4. Temporal network representation in sequential and continuous-time
forms. 4a: Sequences of static networks at different aggregation times repre-
senting a temporal network. 4b: Continuous-time representation of the same
temporal network.

the agg,,, more continuity characteristics of the network are
captured. This is also shown in Fig. 4(a) as we move from
aggs = 00 to agg,, = 0.1. However, there are some downsides
to this type of representation. For example, in Fig. 4(a), con-
sidering agg,, = 0.2, the representation can capture most of
the dynamics associated with the temporal network except for
t € [0.6,0.8]. In this period, the corresponding static network
shows a connection between vy and vy in [0.6,0.8], which is
not correct, as this interaction ends at ¢ = 0.7. Therefore, the
aggw = 0.2 over-represents the edge between these two vertices
from [0.6,0.7] to [0.6,0.8]. This over-representation can be mod-
ified by reducing the agg,, to 0.1. In this case, all the temporal
network’s dynamic characteristics are correctly captured by
static networks at regular time-stamps. However, many duplicate
static networks are generated at consecutive time-stamps. These
duplications negatively impact both the memory requirements
and the processing resources needed for frequent pattern mining.
Furthermore, considering that the actual duration of some of the
interactions might be more than the agg,,, some post-processing
might be necessary to evaluate the relationships between edges
mined in the sequence of static networks and their corresponding
interactions in the original network. To overcome these chal-
lenges, we adopt an interval network representation (examples
are shown in Figs. 3 and 4(b)). Besides, because there might
be multiple edges between each pair of vertices with different
attributes, a starting-point sorted edge-based representation is
utilized for each pair of vertices in the form of:

vi ={v; : [(ai, €], aj,51,07), (af  ef a3, 57, 67),

171 /)

.,(czf,ef,cﬁ,s’»C S} (1)

177

Then, the network can be written as follows (and potentially as
adjacency lists with extra dimensions for labels and interaction
windows):

N = {v; = {v; : edge_list;}} (2)

where edge_list; is the list of edges between vertices v; and v;
in the form of (1).

Note that there might be multiple edges between each pair of
vertices appearing at different intervals in W. The vertices might
appear or disappear over the continuous dimension. Besides, the
attribute of vertices, a; and a;, and edges, [}, might change in
different interactions, even between the same pair of vertices
interacting at different intervals in W.

Some other network representations would be special cases of
the proposed representation. For example, one can use identical
attributes for the network components; then, it is considered an
unlabeled or unattributed temporal network. Or, by considering
starting point for e; as constant and §; = oo fori € {1,...,m},
the network would represent a static network.

III. PRELIMINARY CONCEPTS AND ALGORITHMS

Based on the proposed representation, the next step is defining
and introducing the basic concepts of frequent subgraph mining
and concepts needed to adopt or develop for mining frequent
patterns in temporal networks. The typical approach adopted by
different algorithms for mining frequent subgraphs is composed
of multiple steps recursively repeated. First, the frequent single
vertices or edges in the network database are identified by com-
paring these simple subgraphs’ frequencies with a user-defined
threshold. In the subsequent step, some algorithms in the existing
literature employ an Apriori-like approach to generate a set of
candidates from already identified frequent subgraphs to detect
larger frequent subgraphs [17], [18]. Conversely, others aim to
eliminate candidate generation and false positive pruning adopt-
ing an optimized pattern growth strategy [47], [48]. We have
chosen the latter approach; however, incorporating temporality
into the data set of temporal networks introduces an additional
layer of complexity into the problem of frequent pattern mining.
These complexities arise due to the inclusion of interaction
duration and the delay between the initiation of interactions.
To effectively utilize the established practices from the frequent
pattern mining literature, such as efficient pruning strategies and
frequency computation, it is necessary to transform temporal
networks into well-established concepts within the domain of
graph theory. These concepts must be customized in a manner
that not only preserves the structural data of the networks but
also enables the lossless retrieval of associated temporal infor-
mation when required. Furthermore, given the computational
complexities inherent in the frequent pattern mining problem,
it is crucial to minimize other computational costs by adopting
efficient data structures for storing and retrieving network data.
Therefore, in addition to the fundamental concepts of frequent
pattern mining in network data sets, these considerations have
guided us to adopt, customize, and design a series of concepts
as outlined in the subsequent section. To understand both the
process of frequent pattern mining and complexities associated
with this problem, one must familiarize themselves with various
essential concepts. These include the graph and subgraph iso-
morphism problems, common pruning strategies, and canonical
labeling. Detailed explanations of these concepts can be found
in Appendix A, available online.
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Fig. 5. Interval graph created from four intervals.

A. Constrained Interval Graph

Compared to the previous approaches proposed in the lit-
erature in which the temporal dimension of networks are
transformed into equal-width intervals, we are interested in
preserving the actual duration of and delays between interac-
tions. Considering the uniqueness of this approach, we needed
to design a novel concept, Constrained Interval Graph (CIG), to
preserve both structural and temporal information of networks.
It also makes it possible to traverse the temporal network as a
crucial step in frequent pattern mining. The constrained interval
graph concept is developed on top of the definition of interval
graphs. Interval graphs are a special class of intersection graphs
with a rich history of analysis [63], [64]. Given a collection of
nonempty sets, an intersection graph is composed of vertices
representing sets in the collection and edges as connections
between vertices if and only if their corresponding sets’ inter-
section is nonempty. In cases where the objects of the collection
are intervals, and edges represent interval intersections, the
resulting graph is called interval graph. In the following, after
providing the formal definition of intervals and interval graphs,
the constrained interval graphs are explained in detail.

An interval I denoted by [z, T] as a subset of the real line is
defined as follows:

I=[z,7]={z€Rlz<z<T} 3)

We consider an interval closed if it includes both end-points
of the interval [65]. Then, given two intervals, I = [z, T] and
I' = [y, 7], the intersection of two intervals would be considered
empty if 7 < z or T < y, otherwise it is defined as follows [66]:

INI'={z]zelnzel}

= [max{z, y}, min{z,y}]

Interval Graph: Given a set of intervals, S(I), an interval
graph IG is defined as a network composed of:
® Vi, in which each vertex of I( is associated with an
interval in S(I), and
® Fra,inwhich an edge represents two connected vertices if
and only if the intersection of their corresponding intervals
in S(I) is non-empty [67].
Fig. 5 shows an interval graph constructed from four intervals.
The vertices of intersecting intervals are connected with an edge.
Constrained Interval Graph: For any given edge e; in a tem-
poral network N, the edge and its corresponding end-points are
associated with an interval, .%; = [s;, s; + ¢;]. We can transform
temporal networks into a particular type of interval graph by
using the intervals associated with edges and their corresponding
end-points. For each edge in the temporal network N, we add
one node to the interval graph. Then, for each pair of overlapping

Fig. 6. Constrained interval graph created for a temporal network composed
of two overlapping edges, e; and e; with one vertex in common shown with two
blue vertices and a red edge.

/../'

Fig. 7. Constrained interval graph created from two temporal networks, each
is composed of two overlapping edges with one vertex in common.

5

&

Fig. 8. Associated constrained interval graphs are identical for two different
temporal networks.

4 g
S

edges ¢; and ¢; in N, we connect their corresponding nodes in
the interval graph if they have end-points representing the same
vertex. In other words, using the definition of interval graphs,
the constrained interval graph C'IG is defined as a network
composed of a set of vertices, V1, which are the edges in
the temporal network /N and an edge set, Eo g, composed of
edges connecting pairs of overlapping edges’ in the temporal
network if they have a vertex in common. Fig. 6 shows how a
temporal network composed of two edges is transformed to a
CIG, as the two edges e; and e; overlap, and they have one
vertex in common.

Furthermore, we utilize edges in Ec; to capture the differ-
ences between starting points of edges in N. For this purpose,
an attribute is added to each edge of Ecrg computed as the
difference between the starting points of the corresponding
temporal edges in N connected by an edge in E¢jg, ie.,
max(s;, s;) — min(s;, s;). Fig. 7 shows examples of two tem-
poral networks and their associated C'I G's composed of one edge
with an attribute representing the differences between starting
points of the two temporal edges.

Although this definition of constrained interval graph creates
a deterministic representation of the corresponding temporal
network, it suffers from the edges’ delay’s symmetric nature.
Fig. 8 visualizes this problem. In this figure, two edges e; and e;
are shown in two configurations wherein the left configuration,
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Fig. 9. Constrained interval graphs are created with directed edges to differ-
entiate two temporal networks.
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Fig. 10. Right network shows the C'IG created from the continuous-time
temporal network shown on the left.

e; appears before e;, and in the right configuration e; appears
first. In both cases, the edge attribute would be identical, as the
difference between starting points of the two edges is the same.
In other words, given a CIG without the information related
to the starting point of edges and vertices, it is impossible to
reconstruct the original temporal network from the constrained
interval graph because none of the current labels and attributes
of C'IG expresses which edge appears first.

To solve this problem, we make the edges in C'IG directed,
e.g., connecting the vertex related to the edge with the smaller
starting point to the vertex pertaining to the edge appearing
later in the temporal network by a directed edge. As shown in
Fig. 9, now the two different temporal networks are uniquely
represented by two constrained interval graphs.

With the above solution, we can now preserve and retrieve
the precise temporal information of networks. However, the
proposed design involves summarizing the information of each
edge in the temporal network, including the two end points, into
one vertex in the corresponding C'IG. This aggregation makes it
challenging to extract the structural information of the temporal
network directly without prior knowledge. To address this issue,
edges in C'IG will be assigned a second label (in addition to the
delay label), which takes the form of “zy” & x,y € {1,2}. As
the edges in C'I G are directed, the label xy indicates that the end
point located in position x of the tail vertex is connected to the
end point located in position y of the head vertex. To maintain
the order of end points associated with each vertex in CIG
when referred to with xy labels, we will use an auxiliary map
M = {v: (v;,v;)}, where each vertex v in CIG is mapped to
the corresponding temporal edge’s end points.

Fig. 10 shows the C'IG associated with a continuous-time
temporal network. Each vertex of the C'I G represents one edge
of the temporal network. The direction of edges in CIG shows
the relative delay between starting points of each pair of edges in
the temporal network. The edges are attributed with these delays
and the labels associated with the structural information of the

corresponding temporal edges. However, for the sake of clarity,
these attributes are not shown in this figure.

We assume that the temporal network data available as a list
of temporal edges, -, in which the edges are sorted based on
their starting time. Therefore, to read the data and construct the
corresponding C'I GG, we need to iterate over .Z" edge by edge.
For each temporal edge e; in .Z, we need to perform two checks:

e whether any of the edges appeared earlier in £ has a vertex

in common with one of the two end-points of e;, and if yes,
® whether any of those edges appeared earlier overlap with
the interval associated with e;.

Considering that there might be multiple other edges passing
these checks for each edge, we need to create an efficient data
structure to keep track of each vertex and its associated intervals.
Once we read a new edge, the data structure should be updated
with the new edge information. The data structure adopted
for this purpose is the interval tree. Therefore, to efficiently
accomplish reading and updating the interval trees, we use a map
of vertex ids to interval trees, .# = {id : IT;4}, where the keys
of . represents the identifier of vertices in NV, and the values of
A are interval trees keeping track of intervals associated with
edges having vertex id as one of their end-points. When we read
anew edge e; with two vertices v,,, and v,,, we update the interval
trees mapped to v,,, and v,, with the interval of e;, [s;, s; + ;). In
the following, the characteristics of interval trees are described.
Then, we explain the C'IG construction step in detail.

B. Interval Tree

There are multiple data structures developed for operations
associated with intervals and ranges, such as interval trees, range
trees, and segment trees [68], [69]. Among them, the interval
tree is typically known as the most efficient data structure for
storing and querying continuous intervals. For the construction
of interval trees for the temporal network’s vertices, we follow
the approach proposed in [70]. The interval tree data structure
can be considered an augmented data structure constructed on
top of red-black trees. The red-black trees are (approximately)
balanced binary search trees with specific properties. The prop-
erties should hold for interval trees to make them efficient
data structure for implementing different types of operations,
including insertion, deletion, and interval search, on sets of
intervals.

In our application, we focus on interval insertion and search
operations. The interval insertion is used when we read a new
edge from £, and we want to update the interval trees as-
sociated with the two end-points of the edge in .#. On the
other hand, the interval search is used to connect the end-points
of the newly added edge to the end-points of edges already
inserted. Therefore, we need to know in which of the earlier
appearances of the desired vertices, their corresponding inter-
vals overlap with the new edge’s interval. The interval search
and insertion operations, based on their applications in this
paper, are described in more detail in Appendix B, available
online.
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Algorithm 1: C'/G Construction Algorithm.

procedure CONSTRUCT_CIG(.Z)
Initialize CIG = (V, E), Vorg = 0, Ecic=10
Initialize # = {id : IT}
while 'End of .Z do

Define . = [t;, t; + 0;]

>e; = {’l)m7’l)n,am7li,an,ti,(5i}

Add one vertex to C'IG representing e; with an associated attribute, “a;-e;-a;-6;;”

1:
2
3
4:
5: Read edge e; from &
6
7
8
9

Um_neighbors < IntervalTree_Search(IT,,, %) > 1T, = M)
: for v € v,,_neighbors do
10: Retrieve interval .%, = [t,, t, + J,] associated with v
11: Compute edges’ delay d = t; — t,
12: Connect vertex including v in CIG to the vertex in CIG
13: representing e; with a directed edge e
14: Label e with d
15: vp_neighbors < IntervalTree_Search(IT,, %) > IT, = A v,]
16: for v € v,,_neighbors do
17: Retrieve interval .%, = [t,, t, + J,] associated with v This loop is similar to
18: Compute edges’ delay d = t; — t, the previous For Loop,
19: Connect vertex including v in CIG to the vertex in CIG withm —n
20: representing e; with a directed edge e
21: Label e with d
22: Call IntervalTree_Insert(ITy,, %)
23: Call IntervalTree_Insert(IT,, %)

24: return CIG & A

C. Constrained Interval Graph Construction

Once we have operational functions for insertion and search
of intervals in interval trees, we are ready to construct the con-
strained interval graph, C'I G, representing the temporal network
N. For doing that, first, we create an empty map associating
vertex identifiers to the interval trees, .# = {id : IT,;4} and
initialize C'IG with empty sets for vertices and edges. Besides,
we assume that the temporal network data is provided as an edge
list .Z sorted based on the starting points of edges. Then, we
iterate over .2’ edge by edge. For each edge ¢;, the corresponding
interval .% = [s;, s; + ;] is created. The edge e; has two end
points, v, and v,,. Corresponding to the edge e;, a new vertex,
v;, is added to the vertex set of C'IG. In the next step, we
search the .7 to see if the interval trees associated with v,,, and
Uy, namely I'T},, and I'T;,, have any intervals overlapping with
4. Each of IT,, and IT,, might have none, one, or more than
one intervals overlapping with .# representing different edges
in N. Then, we connect vertices representing these edges of
N in C'IG to v; with a directed edge. Each vertex in CIG is
labeled with the data of the temporal edge it represents. The
labels of vertices in C'IG are composed of the labels of the
two end-points, a; and a;, the edge’s label, I, and the length
of the interval, J; of the corresponding edge in the temporal
network. Each edge in C'IG is attributed with the difference
in starting points of the associated edges with the vertices (as
shown in Fig. 9). Next, we update I7,,, and IT;, interval trees
with the new interval .. After reading all the edges in the edge
list, we have the C'IG representing the temporal network ready
for downstream analysis. Algorithm 1 provides the pseudo-code
for the construction of C'IG.

D. Temporal Network Reconstruction

In some of the applications, we need to convert subgraphs
of a CIG to the corresponding temporal networks that they
represent. It can be easily shown that the relationships be-
tween C'IGs and temporal networks are not one-to-one. In
other words, although Algorithm 1 always constructs a unique
C1IG for any temporal network given, there might be multiple
subgraphs of CIG representing the same temporal network.
The mapping of C'IG to the corresponding temporal network
is accomplished using the attributes of vertices and edges and
edge directions. The vertices’ attributes in C'IG provide the at-
tributes of edges in the associated temporal network. The edges’
attributes and directions in C'IG are to infer the magnitudes
of overlaps and delays between pairs of edges in the temporal
network.

Taking a more in-depth look into the constrained interval
graph and the temporal relationships of edges represented by
directed edges in this graph, it can be deduced that the con-
strained interval graph is a directed acyclic graph (as we assume
that time has a given direction).

For reconstructing a temporal network from a CIG, we
always start with the vertices having the smallest identifiers and
proceed in the vertex set. It is because the edge list . that the
C1IG is created from in the first place has been sorted based on
the starting points of the edges. Therefore the vertices with the
smallest identifiers represent the edges that appear earlier in .
and have a smaller starting time. Besides, we assume that the
first vertex in C'IG has a starting point of zero (or any other
arbitrary value). The starting points of other edges are derived
from relative delays to the other edges in C'IG.
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Algorithm 2: Temporal Network Reconstruction Algorithm.

1: procedure RECONSTRUCT_TEMPORALNETWORK(CIG, support)

> support is one of DS networks supporting CIG
> This list is used for recording edges of temporal network

2: Initialize .Z as an empty list

3: for all v in Vg do

4: v.wisited = False

5: Using the first node read from CIG, extract {a1, e, az, 612}

6: Using the support, identify the two nodes representing v; and v

and v; of the temporal network, and their connecting edge

Define temp_edge = {v1,v9, a1, €, a2,0, 512}
: Z .push_back(temp_edge)

9: Create an empty stack, S
10: S.push(vy)

® N

> Note: each v € C'IG represent two vertices v;

11: Create an empty map for recording start times of edges, ST's = {}

12: STs = {vy: 0}
13: while !S.empty() do

> We consider the starting time of v; as zero

14: v = S.pop()

15: if lv.visited then

16: v.wisited = True

17: for all u in v.neighbors() do

18: if lu.visited then > ——— Extra code relative to DFS starts here!
19: Extract temporal edge attributes from u, {a;, e, a;,d;;}

20: Using the support, identify the two nodes representing v; and v;

21: STs[u] = STs[v] + €, > €, is the label of the edge connecting vertices u and v in CIG
22: Define temp_edge = {v;, v;, ai, er, a5, STs[u], 0;;}

23: & .push_back(temp_edge) > ——— Extra code relative to DFS ends here!
24: S.push(u)

25: return .¥

The reconstruction of a temporal network from a C'IG or a
subgraph of C'IG is performed as follows. We start with the
vertex with the smallest identifier in the (subgraph of) C'IG, v.
Then we traverse the C'I G with one of the directed acyclic graph
traversal strategies (such as breadth-first search or depth-first
search). We consider the starting point of the edge represented
by v as zero. Therefore, we create the first edge of the temporal
network, e; = {v1,v2,4a1,l1, as,0,d; }. Using the attributes of
the edges originating from v, we can find the starting time of the
neighbor vertices (representing edges in the temporal network).
We traverse the C'I G vertex by vertex to generate the temporal
network’s edges using this strategy. Algorithm 2 provides the
pseudo-code for reconstructing temporal networks from their
associated C'IGs.

IV. THE TEMPOWORK ALGORITHM

After being able to construct constrained interval graphs from
temporal networks and reconstruct temporal networks from (any
subgraphs of) constrained interval graphs, we can discuss the
tempowork algorithm for the identification of frequent patterns
in temporal networks. Specifically, given a data set of n tempo-
ral networks, DS = {Ny, Na,..., N, } and support threshold
e € [0, 1], we would like to identify all the patterns appearing
in at least € * n networks of the D.S. The format of the input
data would be a list composed of network ids and edges for
each network, where the edges are sorted based on their starting

times.

N#t—1

N #t

1,1 1.1 1151
ev; vja; e a;s o

ev; vi"ai" et ajt s 6™
N#t+1

In this format, N and e at the begining of each line inform
the algorithm whether the line is associated with a network
or an edge. The line N #t specifies the id=t of the network.
The lines starting with an e represent the list of edges for each
network. In each edge line, the vertices (v;,v;) € V are the
two end points of each edge, (a;,a;) are the labels associated
with the vertices, e; is the label of the edge, and s and § are
the starting point and duration of the interaction between the
two vertices, all space-separated. The algorithm should produce
an output with the exactly similar format. However, the list of
edges provided represent a frequent pattern appearing at least
in € xn networks of DS. Also, the lines starting with an N
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denote the occurrence list of patterns, i.e., the space-seperated ids
of the temporal networks in DS including the pattern. Note that
the sequence of edges considered as frequent patterns might be
separated with infrequent edges in different networks of DS.

To accomplish these goals, first, we convert the N; € DS
for i € {1,n} to their associated C'IG; and create a secondary
data set of constrained interval graphs, D.S’. The DS’ can be
considered as a data set of static networks. However, CIG's has
multiple characteristics which should be noted in the mining
process. Furthermore, we need to adopt a series of strategies
for pattern growth, subgraph enumeration, graph isomorphism,
and subgraph isomorphism checks and verification. It would be
beneficial to adopt strategies such that no duplicates subgraphs
are generated, and any brute-force implementation of graph and
subgraph isomorphism problems are avoided.

During frequent pattern mining, the verification of graph
isomorphism is carried out to confirm that the current candidate
has not been examined earlier in the process and prevent any
redundant exploration of patterns. The algorithm should either
avoid generating duplicate candidates or identify identical can-
didates as soon as possible in the mining process. On the other
hand, the subgraph isomorphism is used when we want to verify
if any of the networks in the data set contain the candidates
being enumerated. In the worst-case scenario, we need to iterate
over the networks in the data set one by one and verify if any of
them contain the candidate of interest. Both of these tasks are
computationally very expensive. We adopt a set of heuristics to
avoid both of them as much as we can.

We start the mining process with the identification of frequent
vertices in DS’. These vertices represent frequent temporal
edges in the DS. Besides, we identify frequent edges in DS’.
Each frequent edge in DS’ represents a two-edge pattern in
DS. The frequent edges in DS" can be reordered based on
their frequencies. We use these frequent edges (as seeds and
in combination with other frequent patterns already detected) to
generate new candidates in each iteration of the mining process.

As we discussed, the C'I G's of temporal networks are directed
acyclic graphs, DAGSs. However, in addition to the character-
istics that C'IG's inherit from DAGSs, C'IGs have an essential
feature; for mining the C'IGs, we do not need to mine all the
edges. All the frequent subgraphs of temporal networks can
be represented with subtrees of the corresponding C'IGs. This
characteristic results from the temporal relationships between
vertices in C'IG (representing temporal edges in temporal net-
works). In other words, if some of the temporal relationships
between vertices of C'IG are known, we might be able to deduce
the temporal relationships between other vertices of C'IG.

Therefore, we start mining by adding one edge (with only
their delay attributes) at a time to known frequent subgraphs.
The first set of frequent subgraphs are frequent edges. We add
an edge to a frequent subgraph to create a new candidate; we
make sure that this new edge does not create any cycle in the
candidate’s undirected version. Also, to minimize the number of
duplicates generated, we will be using the lexicographic ordering
introduced in gSpan [47], [48]. For the sake of space, we do not
repeat the principles of and pattern growth strategies based on the
lexicographic ordering, as they are perfectly discussed in gSpan

papers. However, there are some changes we need to apply to
these principles based on the characteristics of DAGs and C'IG's
that will be addressed in the following.

The CIGs are directed networks. Therefore, we need to
consider the direction of edges when we are generating new
candidates. We only create new candidates by adding forward-
edges, as we are interested in mining non-cyclic patterns. The
edges that their addition to the candidates create cyclic subgraphs
in undirected versions of C'IG's result in duplicate candidates.
As discussed, each edge e of the CIGs carries the delay in-
formation between temporal edges that the two end-points of
the e represent. If these two end-points are already connected
through a different path, the delay that e represents can be
deduced from the path that connects these two end-points. In
other words, we do not need to create candidates using backward
edges. This approach eliminates a large number of duplicate
candidates. Although adopting the lexicographic ordering and
forward growth of candidates prevents the generation of many
duplicate candidates, the graph isomorphism problem can not
be avoided entirely. In fact, it is even worse than the case
where we mine a data set of static networks. It is because two
completely acyclic candidates might still represent the same
temporal network. Furthermore, the addition of a single edge can
create different valid patterns based on the structural information
connected to the edge’s vertices. To ensure the correct identi-
fication of both duplicate candidates and patterns with distinct
structures, we begin by converting candidates into their temporal
networks (using Algorithm 2) and recreating their C'/G's (using
Algorithm 1). If candidates represent identical temporal net-
works, their corresponding C'I GGs should be isomorphic, consid-
ering the structural information of edges within C'I G's. Further-
more, upon adding a new edge to a parent pattern, we examine
various frequent canonical labelings that the parent pattern might
represent. This validation step is vital for both pattern growth
and frequency computation. Thus, by recording the canonical
labeling of the C'IGs, we ensure the prevention of generating
duplicate candidates for pattern growth and identify all frequent
and structurally distinct patterns. The canonical labeling can be
created using the same lexicographic ordering principles or any
other known to be efficient approaches proposed in the literature,
such as nauty and Traces [71], or bliss [72]. The computational
complexity of this process is discussed in Section V.

We create an embedding list for each frequent subgraph for
frequency computation. When we add a forward edge to a
frequent parent subgraph to create a new child candidate, we only
check the embeddings that support the parent subgraph (instead
of searching all the networks in the data set). Suppose the new
edge added to a parent subgraph creates a valid child subgraph.
In that case, we check whether the embeddings supporting the
parent subgraphs can be extended in their associated networks
with the new edge. If the list of networks that support the child
subgraph meets the user-defined support threshold, we consider
the child frequent, which can be used for candidate generation
in the next iterations. Otherwise, neither the child nor the can-
didates created from this child (based on the downward-closure
property) would be frequent and can be eliminated. We can
avoid the subgraph isomorphism problem altogether by adopting
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Fig. 11.  Schematic representation of the four different isomorphism defini-
tions considered for the temporal networks. In the exact formulation, (a) all the
temporal edges’ durations and the inter-edge delays are identical between the
two networks. In the inexact-time version, (b) some user-defined variations in
edge durations are permitted. However, the magnitudes of delays between edge
pairs in the two isomorphic networks are exactly identical. In the exact-time
sequence-preserved formulation, (c) the edges mapped to one another have
exactly identical durations. However, two networks are considered isomorphic
if the edges’ appearances follow the same sequences in both networks. In
the inexact-time sequence-preserved formulation, (d) the constraint of duration
equality of corresponding edges is removed based on a user-defined variation
tolerance mechanism.

this strategy for subgraph enumeration and frequency computa-
tion. Algorithm 3 provides the pseudo-code for the tempowork
algorithm.

The temporal information of the temporal networks is
recorded in the C'IGs. The duration of the temporal edges (Js)
are recorded in the vertices of C'IGs, and the delays between
temporal edges (As) are recorded in the edges of C'IGs. In
certain scenarios, we may regard two interactions or the delays
between interactions as temporally identical if their variations
fall within an acceptable tolerance range. Therefore, when we
create the embedding lists, we can relax the temporal constraints
of isomorphisms at different levels to accommodate minor vari-
ations in interactions’ durations and initiation delays. In the
following, we define four types of graph isomorphism based
on the level of tolerance we consider two networks isomorphic.
A visual representation of these definitions is provided in Fig.
11.

Exact-time graph isomorphism: Two networks, N1 = (V1,
Ey) and Ny = (V3, Es), are exact-time isomorphic (N, ~ No)
if there is a bijective function I° such that in addition to the
constraints defined for graph isomorphism, for any {v;,v;} €
Ey mapped to {I°(v;),I°(v;)} € E5 and any pair of edges
ei,e; € Fy mapped to I°(e;), [°(e;) € Ea:

0{vi, v} = 0{1°(vi), 1(v;)}
Aleisej) = A(I¢(ei), 1°(e))) 4)

Where 6{v, v} represents the duration of the edge connecting
v and v and A(e, €’) denotes the delay between starting points
of any pair of edges e, ¢'.

Inexact-time graph isomorphism: Two networks, N1 = (V7,

Ey) and Ny = (Va, E»), are inexact-time isomorphic (N L
N,) if there is a bijective function I* such that in addition to the
constraints defined for graph isomorphism, for any {v;,v;} €
FE; mapped to {I'(v;),I'(v;)} € Eo and any pair of edges
ei,e; € E1 mapped to I'(e;), I'(e;) € Ex:
§{wvi v} = 6{I (), I'(v;)
A(ei,ej) = A(Iz(el),ll(ej) (5)
Exact-time sequence-preserved graph isomorphism: Two
networks, N1 = (V1, F1) and Ny = (Va, Es), are exact-time
sequence-preserved isomorphic (N, = Ny) if there is a bi-
jective function I°® such that in addition to the constraints
defined for graph isomorphism, for any {v;,v;} € E; mapped

to {I1°°(v;),1°*(vj)} € Eyand any pairof edges e;, e;, e, € Ey
mapped to 1°°(e;), I°(e;), [°*(e},) € Es:

6{vi, v} = 641 (vi), 1°°(v;) }

Ales,ej) < Alej,ep) —

AT (v3), I7(v5)) < A (vy), 1% (vr))
O(A(ei, ) # A (vi), 17 (v;))) A

O(A(ej, en) # A(I7(v;), 1 (vk)) (©)

Here, the expressions starting with {) means that the magni-
tude of delays can differ between corresponding isomorphisms.
The sequence of appearance of edges is identical among the two
networks.

Inexact-time sequence-preserved graph isomorphism: Two
networks, Ny = (V3, Ey) and Ny = (V5, E5), are inexact-time

}
)

sequence-preserved isomorphic (Ny 2 Ny) if there is a bijec-
tive function I* such that in addition to the constraints de-
fined for graph isomorphism, for any {v;,v;} € E; mapped to
{I*(v;),I'*(vj)} € F2 and any pair of edges e;, e;j,ex € Fy
mapped to I%(e;), I**(e;), I"*(ex) € Eo:

v, vy} o= {1 (i), I (v5)}
Alei,ej) < Alej,ex) <
AL (v3), I (v3)) < AT (v7), 1" (vy,))
O(A(eirej) # A (v:), I (v))))A
O(A(ej, ex) # AU (v5), 1™ (vr)) ©)

In these definitions, we need to provide user-defined thresh-
olds to show how much temporal variations are tolerable for
identifying inexact time equivalences. Also, we can discretize
the duration of edges. The discretization problem has its own rich
literature [73]. Different characteristics of the networks (such as
attribute of vertices and edges and classes of networks) can be
used to perform discretization in supervised or unsupervised
modes. To preserve the sequences, we can assume that all the
edges in the C'I G's have the same attribute and let the differences
between the duration of edges and their starting points create the
sequences of edge appearances.
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Algorithm 3: Tempowork Algorithm.

1: procedure PREPROCESSING (DS, min_supp, [SO_type)
2: Initialize DS’

3: Initialize 1_Node_map

4: Initialize 1_FEdge_map

5: forall Nin DS do

6: CIGy = Construct_CIG(T)
7. DS .push(CIGr)

8

> This is the C'IG data set

> This is a dictionary: {node_labels: location of their embeddings in DS’}
o> This is a dictionary: {edge_labels: location of their embeddings in DS’}

> If ISO_type € {i,es,is}, relabel §s and/or As accordingly

: Order node labels (“a;-¢;-a;-9;;”’s) and edge labels (As) descendingly based on their frequencies in CIGs of DS’
9: Remove node and edge labels in C'IG's with frequencies < min_supp
10:  Relabel lexicographically node and edge labels in C'IGs with frequencies > min_supp
11: Update 1_Node_map and 1_Edge_map dictionaries with the location of their embeddings in D.S’

12:  Return 1_Node_map, 1_Edge_map
13: procedure tempoworkD.S, min_supp, ISO_type
14: Initialize frequent_patterns
15: Initialize cl_list

> This is a dictionary: {frequent_patterns: location of their embeddings in DS’}
> It is a list for recording list of canonical labeling of C'IG already mined

16: 1_Node_map, 1_Edge_map = Preprocessing(DS, min_supp, [SO_type)
17: Update frequent_patterns with 1_Node_map and 1_FEdge_map

18: temp_l1_FEdge_map = 1_FEdge_map
19:  procedure CIG_MINING (pattern, pattern_support)
20: for all edge in temp_1_FEdge_map do

> We create a copy of the 1_Edge_map

21: new_pattern = add edge to pattern as forward edge

22: if new_pattern has the minimum lexicographical form then

23: temp_tw = Reconstruct_Temporal N etwork(new_pattern, support) t> support is one of D.S networks
supporting new_pattern created from the function input argument pattern_support

24: temp_cig = Construct_CIG(temp_tw)

25: cl = canonical_labeling(temp_cig) > This line computes the canonical labeling of temp_cig

26: if ¢l not already in cl_list then >> The ¢l is constructed for this child of all the

27: cl_list.push(cl) > frequent but structurally different parents.

28: frequent_patternsnew_pattern| = new_pattern_support

29: Call CIG_Mining(new_pattern, frequent_patternsinew_pattern))

30: for all edge, frequent_patternsledge] in 1_Edge_map do

31: Call CIG_Mining(edge, frequent_patternsedge])
32: Remove edge from temp_1_FEdge_map
33: Return frequent_patterns

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The frequent pattern mining process primarily drives the
computational complexity of the proposed approach. However,
for the sake of completeness, we provide the analysis of the
computational complexity for all steps. Also, the worst-case
computational complexity is discussed, including an explanation
of how often it might occur. The algorithm processes a data set
of n temporal networks, transforming each temporal network
N; € DS to a corresponding C'IG; to create a secondary data
set D.S’. For each network in DS, the algorithm reads each edge,
searches the two interval trees associated with the edge’s end
points, and then updates these interval trees with the new edge us-
ing two insertion operations. Assuming the worst-case scenario,
where all edges overlap with one another and share one common
vertex, the interval search at iteration ¢ + 1 has a computational
complexity of &(i). The insertion operation’s computational
complexity is &(logi) [70], which is less expensive than the
interval search operation in the corresponding iteration. As the
algorithm iterates over each edge and performs the interval

search for each edge, the total computational complexity for
network NN with the set of edges Ex amounts to &(| Ex|?). This
complexity, associated with Algorithm 1, should be performed
once for all the networks in DS to generate DS’ in lines 5-7
of Algorithm 3 and also repeated for all the candidate patterns
reaching to line 24 of the same Algorithm.

The computational complexity of reconstructing the tem-
poral network associated with a given (subgraph of) C'IG
is similar to that of Depth-First Search (DFS), as we tra-
verse the CIG to reconstruct the temporal network. The
complexity of DFS depends on the data structure used to
represent the network. If an adjacency matrix representa-
tion is used, it is in the order of &(|Vcig|?). However,
using an adjacency list representation can reduce the com-
plexity to O(|Veral+ |Ecra|) [70], where |Verg| is the
number of vertices and |E¢j| is the number of edges in
the CIG. This complexity is associated with Algorithm 2
called in line 23 for all the candidate patterns reaching to this
line in Algorithm 3.

Authorized licensed use limited to: Drexel University. Downloaded on January 04,2024 at 22:22:53 UTC from IEEE Xplore. Restrictions apply.



316 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

Mining frequent patterns in DS’ requires its own analysis.
The proposed approach mitigates the issue of subgraph iso-
morphism by creating embedding lists for frequent patterns.
However, for a subgraph s, we might still need to perform
graph isomorphism verification after reconstructing the tem-
poral network associated with s and constructing its CIG to
ensure that it has not been already evaluated (lines 25 and 26 of
Algorithm 3). A breakthrough study by Babai in [74], [75] shows
that graph isomorphism can be solved in quasipolynomial time
(exp((logn)?(M))), where n is the number of vertices in s, which
would be identical to the number of edges in the corresponding
temporal network. He later proposed an approach for canonical
labeling of graphs within the same time bound [76]. Therefore,
in the worst-case scenario a canonical labeling should be con-
structed for each pattern being mined. In [47], it was demon-
strated that the computational complexity of mining frequent
patterns from a data set of static networks is O(kFn + rF),
where k is the maximum number of subgraph isomorphism
verifications needed between a subgraph and networks in D.S’,
F' is the number of frequent patterns, and r is the maximum
number of duplicate labels generated (related to line 22 in
Algorithm 3 and for support enumeration in line 28 of the same
algorithm).

As noted, mining frequent patterns in networks is inherently
computationally expensive due to the verifications required for
graph and subgraph isomorphism. Adding the temporal layer
exacerbates the problem’s complexity due to the C'IG construc-
tion and reconstruction. However, there are several considera-
tions that can significantly improve performance. First, mining
labeled network data sets, prevalent in many real-world applica-
tions, is less costly. Moreover, the variations in interaction dura-
tions and delays act as implicit labels, reducing the complexities
associated with graph and subgraph isomorphism considerably.
Additionally, adopting established pruning strategies, such as
those discussed in [47], can significantly enhance the mining
algorithms’ performance. The degree of contribution of each
of these factors is highly application-dependent, determined by
the structural attributes of the networks being investigated, the
number and distribution of labels attributed to vertices and edges,
as well as the temporal properties of the networks. The fol-
lowing section provides an experimental analysis for real-world
scenarios.

VI. EXPERIMENTS

To the best of our knowledge, this is the first algorithm pro-
posed for mining frequent patterns in continuous-time temporal
networks. We evaluated the proposed algorithm’s performance
using three real-world data sets with different numbers of ver-
tices, edges, and time windows:
® Hospital Ward Proximity Networks: A data set of prox-
imity networks representing interactions between patients
and healthcare providers in a hospital ward in Lyon,
France [77], [78].

e High school Contact Networks: This data set includes
seven days of temporal interactions among high school
students of five classes [78], [79].

TABLE I
CHARACTERISTICS OF THE DATA SETS USED FOR THE EXPERIMENTS,
INCLUDING THE NUMBER OF NETWORKS IN EACH DATA SET AND THE
AVERAGE NUMBER OF VERTICES |V'| AND EDGES | E| OF NETWORKS IN
CONTINUOUS-TIME REPRESENTATIONS OF THE DATA SETS

data set |N| V| |E|
Hospital ward proximity network 5 48 2806
High school contact networks 7 151 2824
Sepsis EHR data set 13,229 5 24

o Sepsis EHR Data Set: This data set includes retrospectively
collected EHR data related to cellular and physiological
responses of sepsis patients in 13,229 visits [80].

A comprehensive depiction of these data sets is available in
Appendix C.1, available online, along with a detailed explana-
tion of the preprocessing conducted on these data sets for the
proposed approach in Appendix C.2, available online. Table I
summarizes these three data sets’ characteristics.

The proposed algorithm was applied to the three network
data sets described above using multiple frequency thresholds.
Also, we implemented the algorithm for different definitions of
isomorphism with different discretization parameters to evalu-
ate the impact of temporal variations allowed on the number
of frequent pattern detected by the algorithm. The results are
shown in Figs. 12, 13, and 14. The numerical values of results
are provided in Appendix D-Table 2, available online. The
findings are discussed in the following subsection. The Python
implementation of the algorithm used in this study is publicly
available from the PyPI repository and can be installed under
“tempowork”. The experiments were conducted on a personal
computer with an Intel Core 17-8700 3.20 GHz CPU processor
with 16.0 GB installed RAM.

A. Discussion

The proposed algorithm was applied to the pre-processed
data sets. We used the four different types of isomorphisms,
different support values, and different discretization parameters.
The results show that increasing the support thresholds decreases
the number of frequent patterns in all three data sets consistently
(Fig. 12).

The results of the implementation for the high school contact
networks when the ids are used as labels showed that most of
the frequent patterns are composed of either one temporal edge
(the interactions between two specific students for a particular
period) or two temporal edges (the interactions among three
specific students in different arrangements) (Fig. 12-(b)). This
can be attributed to the unique labels considered in this im-
plementation for each student. Also, the algorithm did not find
many frequent subgraphs for the sepsis EHR data set when it is
implemented in the exact-time or exact-time sequence-preserved
modes (Fig. 12-(d)). It can be attributed to the nature of this
data set. The lab measurements are recorded at times with a
precision of fractional portions of a second. At this precision,
it is very rare to find patterns with identical durations among
patients. However, when we implement the algorithm for the
high school contact networks with classes as labels (Fig. 12-(c))
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or for sepsis EHR data set for other two modes of isomorphism
(Fig. 12-(d)), the algorithm could find many frequent patterns at
different support thresholds.

It should be noted that although adoption of inexact-time
isomorphism increased the number of frequent patterns detected,
it might decrease the total number of frequent patterns in some
cases. In fact, inexact-time isomorphism has two opposing ef-
fects. It may group some infrequent patterns into one frequent
pattern (if they are isomorphic based on the inexact-time isomor-
phism definition). In this case, the number of frequent subgraphs
increases. Simultaneously, some of the different frequent sub-
graphs detected based on the exact-time isomorphism might be
considered one subgraph based on the inexact-time isomorphism
definition, consequently decreasing the total number of frequent
subgraphs.

In all the data sets, we observed that using the sequence-
preserved definitions almost always results in a higher number
of frequent patterns compared to their exact-time and inexact-
time counterparts, respectively. It is because we are relaxing the
constraints related to the overlaps between edges, as far as they
follow the same sequence of edge appearances.

Implementing the algorithm for different discretization pa-
rameters shows that these variations impact data sets differently
(Fig. 13). In the first and second data sets, using different dis-
cretization parameters does not significantly change the number
of frequent patterns. However, due to the nature of the sepsis
EHR data set and the temporal precision in data collection, we
do not have many frequent exactly identical patterns common
among patients. However, as we increase the discretization
parameters and allow higher tolerance of temporal variations,
we observe many frequent patterns among the patients. Also,
it should be noted that the opposing effect of inexact-time
isomorphism discussed earlier can affect the number of frequent
subgraphs detected for various discretization parameters differ-
ently as well.

The three data sets used in this study have some significant dif-
ferences that directly impact the frequent subgraph mining com-
putation time. The first data set is composed of five networks.

The average number of vertices and edges in this data set is 48
and 2,806, respectively, and each vertex is labeled with one of
the four possible labels. On the other hand, although the second
data set comprises seven networks (about the same number of
networks as the first data set), it is composed of a larger number
of vertices (about three times more than the first data set) with
almost the same number of edges (and nearly the same number of
vertex labels). This difference between the number of vertices
in these two data sets results in the lower density in the sec-
ond data set and consequently decreases the computation time
(Fig. 13-(a) versus Fig. 13-(c)). When the vertices in the second
data set are labeled with unique ids of students, it results in a
lower number of frequent patterns and, accordingly, significantly
lower computation time (Fig. 13-(b) versus Fig. 13-(c)). In the
sepsis EHR data set, we have a maximum of 19 vertices in
each of 13,229 networks. However, all the vertices are uniquely
labeled with one of the associated cellular and physiological
responses or biomarkers they represent. Also, not all of them are
necessarily present in the patients’ hospitalization records. The
labeling approach significantly reduces the computation time
required for performing the graph isomorphism (Fig. 13-(d)).
Fig. 14 shows two sample frequent subgraphs detected in the
four implementations of the algorithm on the three data sets.
Nearly all the frequent subgraphs detected in the first data set
were composed of paramedical staff interacting with each other
(Fig. 14-(a)-top). However, the algorithm also detected a few
frequent patterns among medical doctors 14-(a)-bottom). The
exact-time instances of these patterns are observed in at least
three (out of 5) networks of the data set. Fig. 14-(b) and (c)
show four frequent temporal patterns observed in at least 4 (out
of 7) networks of the second data set in the ids as labels and class
as labels implementations, respectively. The algorithm detected
a few frequent patterns in the second data set with ids as labels
with more than one temporal edge. These patterns are among
three students interacting in different formations, such as three
specific students interact for some particular time at the same
time, one student joins the other two students somewhere in
between of the first two students’ interaction 14-(b)-top), or two
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Fig. 15.  Co-failure of multiple cellular and physiological responses in patients
with sepsis over the same period of time (m: minutes, d: day, Bu: Blood
urea nitrogen, Cr: Creatinine, Fi: Fraction of inspired oxygen (F'iOz), Or:
SpO42/FiO2, Os: Oxygen (O2) source, Mp: Mean arterial pressure, Sb: Sys-
tolic blood pressure).

students are interacting for some time, and one of them ends this
interaction and start another interaction with a different student
for a while 14-(b)-bottom. When the students are labeled with
classes, there are many frequent patterns with a larger number
of temporal edges. However, most of the patterns are among
students of the same class 14-(c).

Finally, Fig. 14-(d) shows two patterns identified as frequent
patterns in at least 100 sepsis patients by running the algorithm
in the inexact-time isomorphism mode. Although these patterns
show some changes in the patterns’ edges over time, most of
the frequent patterns detected in the sepsis EHR data set are
related to the simultaneous failures of multiple cellular and
physiological responses over some period of time (Fig. 15). It
can be attributed to the nature of laboratory test measurements
performed almost simultaneously in pre-defined intervals. These
patterns can also be considered complete networks, as all the
vertices are connected with one another. Both patterns are iden-
tified using the algorithm in the inexact-time sequence-preserved
setting, one with 15 minutes duration deviation tolerance (left)
and the other one with one-hour duration deviation tolerance
(right).

Given the novel nature of the proposed method in extract-
ing patterns unattainable by existing approaches, conventional
benchmarking methods are not applicable for performance eval-
uation. Nevertheless, the performance of the proposed approach
can be assessed through alternative methods. One crucial aspect
of evaluation involves exploring the significance of patterns de-
tected by the proposed approach in critical real-world scenarios.
For instance, in a medical context, we investigated the impor-
tance of considering these patterns in predicting the outcomes
of sepsis patients. The results demonstrated the potential of
integrating these discovered patterns with traditional features
used for patient outcome prediction, leading to significant per-
formance improvements and early identification of deteriorating
patient conditions [81]. Furthermore, evaluating the efficiency of
the proposed approach is essential for practical applications. One
way to achieve this is by measuring the algorithm’s execution
time under various scenarios and data set sizes. In our research,
we provided an analysis of the approach’s computational com-
plexities and experimental execution times to better understand
its scalability and resource requirements.

VII. CONCLUSION

This study proposed a novel approach for mining the complete
set of frequent patterns in continuous-time temporal networks.
A novel representation of temporal networks for frequent pat-
tern mining is described. We developed an original method for
continuous-time temporal network traversal and considered four
types of isomorphism to detect frequent subgraphs in a temporal
network data set.

Additionally, we tested the proposed algorithms on three real-
world data sets, and the results revealed considerable variations
in interactions’ durations in many of these patterns (e.g., refer
to Fig. 14). This suggests that the transformation of continuous-
time temporal networks into sequences of networks might hinder
the detection of these patterns. Moreover, this transformation
necessitates prior knowledge of the appropriate interval width,
which may not be feasible in numerous real-world applications.

One avenue for future research would be mining frequent pat-
terns in network data streams. Most of the previous work defines
network streams as updating batches of network components at
discrete intervals [56], [82]. Investigating the frequent pattern
mining problem, including the data structure requirements, for
temporal networks with continuous updates of network compo-
nents would be a challenging future direction with a wide variety
of applications. Furthermore, in our future work, we want to use
the outcome of the proposed algorithm for mining the evolution
among frequent patterns, where patterns might emerge, merge,
shrink, or grow.

In conclusion, our approach represents a novel contribution
to the field of continuous-time temporal networks, offering
promising results in mining frequent patterns. There remain
opportunities for further enhancements that could significantly
amplify its effectiveness. Future research endeavors could focus
on refining and optimizing various steps within our proposed
framework, including the construction and reconstruction of
C1Gs, along with the formulation of pruning techniques to
circumvent graph isomorphism verifications, ultimately leading
to even more remarkable performance gains.
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