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Hard-magnetic soft materials are a class of magnetically responsive composites obtained by embedding hard-
magnetic particles into a soft polymeric matrix. They have found widespread applications in shape-morphing
systems, soft robotics, biomedical devices, and active metamaterials due to their ability to feature complex,
untethered, reversible, and rapid deformations in response to magnetic loads. To guide the rational design of
these functional applications, extensive efforts have been devoted to studying the mechanical behavior of hard-
magnetic soft materials. In this paper, we review the recent progress in the mechanics of hard-magnetic soft
materials. First, we introduce existing constitutive models capable of describing the coupled magneto-elastic
deformations of hard-magnetic soft materials. Then, we discuss the mechanical response of structures made of
hard-magnetic soft materials, including rods, beams, plates, and shells, under mechanical and magnetic loading.
Subsequently, we introduce the design and behavior of magneto-mechanical metamaterials with tunable prop-
erties enabled by hard-magnetic soft materials. In addition, optimization-guided inverse design strategies for
hard-magnetic soft materials to achieve predefined properties or deformations are also briefly reviewed. Finally,
we provide our views on the potential future directions in the field of mechanics of hard-magnetic soft materials.
We expect the current review to guide researchers to better understand different theoretical and computational
frameworks of mechanics of hard-magnetic soft materials and thus aid with designing functional systems using

these materials for various applications.

1. Introduction

Magnetic-responsive soft materials consisting of ferromagnetic par-
ticles and polymeric matrix have recently attracted significant research
interests due to their untethered, reversible, and rapid actuation under
external magnetic fields (Cui et al., 2019; Hu et al., 2018; Kim et al.,
2018; Novelino et al., 2020; Wu et al., 2020b). The actuation and per-
formance of magnetic-responsive soft materials largely depend on the
magnetization of the ferromagnetic particles, the applied magnetic field,
and the structure. Depending on the magnetization characteristics,
ferromagnetic materials can be categorized into soft-magnetic materials
and hard-magnetic materials. As shown in Fig. 1(a-i), soft-magnetic
materials, such as iron and iron-nickel alloys, have low coercivity (HS,
representing the resistance to being demagnetized), which can be
readily demagnetized and remagnetized under a relatively small mag-
netic field. As a result, magnetic-responsive soft materials embedded
with soft magnetic particles (e.g., magnetorheological elastomers and
ferrogels) typically undergo simple elongation or shortening de-
formations by harnessing the magnetic force generated in a magnetic
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field. This, to some extent, limits the potential of magnetic-responsive
soft materials in applications that require complex transformations.

By contrast, hard-magnetic materials, such as neodymium-iron-
boron (NbFeB) and alnico, possess high coercivity (H®) (Fig. 1(a-i)),
which makes the materials easy to maintain the remanent magnetization
across a wide range of applied magnetic fields. The high remanence of
saturated hard-magnetic materials allows them to maintain high resid-
ual magnetic flux density (B") even in the absence of external magnetic
fields. Due to these characteristics, magnetic-responsive soft materials
embedded with hard-magnetic particles, referred to as hard-magnetic
soft materials, can induce large magnetic body torque to create com-
plex elastic deformation, such as bending and twisting, when the applied
magnetic field is not aligned with the magnetization direction (Kim
et al., 2018; Zhao et al., 2019). Such rapid and complex transformations
of hard-magnetic soft materials open a new avenue for the design of
functional applications like shape-morphing structures (Cui et al., 2019;
Kim et al., 2018; Lum et al., 2016; Yi et al., 2022), soft robotics (Gu et al.,
2020; Huang et al., 2022; Jiang et al., 2023; Ren et al., 2019; Wu et al.,
2021; Xu et al., 2019; Ze et al., 2022b), flexible electronics (Deng et al.,
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2020; Qi et al., 2021; Rahmati et al., 2023a), and active metamaterials
(Chenetal., 2021a; Gu et al., 2019; Sim et al., 2023), among others. The
combination of controllable remanent magnetizations of hard-magnetic
soft materials and remotely tunable magnetic stimuli significantly
enhance the application potential and performance of these functional
designs. For example, conventional soft robots usually rely on either
slow, tethered, or bulky actuators (or a combination of such). By inte-
grating hard-magnetic soft materials, magnetic soft robots can achieve
diverse functionalities across different length scales through untethered
and rapid actuation under remote magnetic fields (Hu et al., 2018; Ze
et al., 2022a). In addition, conventional metamaterials can only exhibit
specific behavior or properties and lack tunability once they are fabri-
cated. By incorporating hard-magnetic soft materials, the metamaterials
can change their shapes and corresponding behavior or properties in
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response to magnetic stimuli (Montgomery et al., 2021; Wu et al., 2019,
2022).

The functional design and realization of these applications largely
rely on the coupled magneto-elastic deformations of hard-magnetic soft
materials. To guide the rational design of these functional applications,
understanding the mechanical behavior of hard-magnetic soft materials
is crucial. In recent years, extensive efforts have been devoted to
studying the mechanical behavior of hard-magnetic soft materials,
ranging from developing constitutive models that govern the coupled
magneto-elastic deformation (Garcia-Gonzalez and Hossain, 2021;
Mukherjee et al., 2021; Zhao et al., 2019), analyzing structural response
(e.g., large amplitude bending and instabilities) under mechanical and
magnetic loading (Rajan and Arockiarajan, 2021; Wang et al., 2020; Yan
et al., 2021), exploring the design and behavior of magneto-mechanical
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Fig. 1. Hard-magnetic soft materials. (a-i) Magnetic hysteresis loops (i.e., magnetic flux density B versus magnetic field H curves) of hard-magnetic and soft-
magnetic materials. (a-ii) A hard-magnetic soft material placed in a uniform magnetic field generated by a pair of electromagnetic coils in air (or vacuum). (a-
iii) Comparison of the free-end deflection of a hard-magnetic cantilever beam with small deformation under a vertical magnetic field obtained by finite element
simulation, analytical solution, and experiment. (a-iv) Comparison of the deformed configuration of a hard-magnetic cantilever beam with large deformation under a
horizontal magnetic field obtained by finite element simulations and experiments. (b) Comparisons of the shape-morphing of a Miura origami (top) and a pyramid-
shaped thin-walled structure (bottom) under magnetic fields obtained by finite element simulations and experiments. Fig. (a) is adapted with permission from Zhao
et al. (2019). Copyright 2018 by Elsevier. Fig. (b) is adapted with permission from Kim et al. (2018). Copyright 2018 by Macmillan Publishers Limited, part of

Springer Nature.
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metamaterials with tunable properties (Chen et al., 2021a; Ma et al.,
2021), to developing optimization-guided inverse design strategies
(Lum et al., 2016; Zhao and Zhang, 2022).

In this review, we focus on the recent advances in the mechanics of
hard-magnetic soft materials. In Section 2, we introduce various
constitutive models capable of describing the coupled magneto-elastic
deformation of hard-magnetic soft materials. In Section 3, we discuss
the mechanical response of structures made of hard-magnetic soft ma-
terials under external mechanical and magnetic loading, including hard-
magnetic rods, beams, plates, and shells. In Section 4, we introduce the
design and mechanical behavior of magneto-mechanical metamaterials
with tunable properties enabled by hard-magnetic soft materials. In
Section 5, we introduce optimization guided-inverse design strategies of
hard-magnetic soft materials. In Section 6, we provide our insights on
the future directions in the mechanics of hard-magnetic soft materials.

2. Constitutive models

To describe the coupled magneto-mechanical induced large defor-
mation of hard-magnetic soft materials, various constitutive models
have recently been developed. In this section, we introduce three typical
categories of constitutive models for hard-magnetic soft materials,
which consider the hyperelasticity, the dipole-dipole interactions be-
tween magnetic particles, and the viscoelasticity of the polymer matrix.

2.1. Hyperelastic constitutive model

Zhao et al. (2019) developed the first constitutive model for
hard-magnetic soft materials within the framework of finite deformation
theory. In the model, the hard-magnetic soft material is considered as a
deformable, elastic, and homogenized continuum body, and its defor-
mation gradient F is defined as

F= Grady, 2.1)

where Grad represents the gradient with respect to the position vector X
in the reference (undeformed) configuration, and y is the mapping of the
position vector from the reference configuration to the current
(deformed) configuration, i.e., x = ¥(X). The deformation Jacobian is
defined as J = det F > 0.

The magnetic field vectors in the current and reference configuration
are defined as H and H, respectively, and the relationship between them
are

H=F"H orH=F'H. (2.2)

Accordingly, the magnetic flux density vector in the current and refer-

ence configurations are denoted by B and B, respectively, which are
related by

B=J"'FB orB=JF'B. (2.3)

Hard-magnetic soft materials have a high coercivity, allowing them
to retain a high residual magnetic flux density B" over a wide range when
the applied magnetic field is below the coercive field strength HS. As
shown in Fig. 1(a-i), it is reasonable to assume that the magnetic flux
density is linearly related to the applied magnetic field within the
working range, and the slope of the linear relation depends on the
vacuum (or air) permeability yo, which gives

H-L(B_B). (2.4)
Ho
For a hard-magnetic soft material under a uniform magnetic field, as
shown in Fig. 1(a-ii), the magnetic potential energy, i.e., the magnetic
Helmholtz free energy, per unit volume in the current configuration is
equal to the work required to realign the magnetic moment y;'B" along
the applied magnetic field B®Pd, which can be written as
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Wmagne(ic: _ iBr.Bapplicd. (25)
Ho

Then, the magnetic Helmholtz free energy of the hard-magnetic soft
material per unit volume in the reference configuration can be obtained
as

Wmagnelic :JWmagnelic:

_L FB' Bt (2.6)
Ho

The elastic Helmholtz free energy W**, namely the strain energy,
per unit volume in the reference configuration is a function of the
deformation gradient F, which can be evaluated by various hyperelastic
models, such as the neo-Hookean (Rivlin, 1948a), Mooney-Rivlin
(Mooney, 1940; Rivlin, 1948b), Ogden (Ogden, 1972), and
Arruda-Boyce (Arruda and Boyce, 1993) models.

Therefore, the total Helmholtz free energy of the hard-magnetic soft
material consisting of the elastic part and the magnetic part can be
expressed as

~ ~ 1 o~
W(F) = W"(F) — ”—FB‘ BePlied, 2.7)
0

Note that since B" and B**"! are usually specified as constant values,
W is a function of F only. By using Eq. (2.7), the Cauchy stress in hard-
magnetic soft materials can be obtained as

1 oW(F)

1 a~ lastic (F) 1 . )
—_ VT __ T _ applied T
R i B e e L (2.8)

where the operation ® denotes the dyadic product.

Under quasi-static conditions, the following equilibrium equation
must be satisfied everywhere in the current configuration of the mate-
rial:

dive +f =0, 2.9)

where div represents the divergence with respect to x, and f is the body
force per unit volume in the current configuration. By substituting Eq.
(2.8) into Eq. (2.9) and solving the equilibrium equation, the deforma-
tion gradient F can be obtained, which determines the equilibrium
configuration of the hard-magnetic soft material under magnetic
actuation.

To validate the developed constitutive model for hard-magnetic soft
materials, Zhao et al. (2019) implemented the theoretical framework
into a user-element subroutine in the commercial finite element soft-
ware Abaqus and compared the simulation results with analytical so-
lutions and experiments. As shown in Fig. 1(a-iii), the free-end
deflection of a hard-magnetic cantilever beam under a vertical mag-
netic field with small deformation, predicted by finite element simula-
tions, shows good agreement with the theoretical predictions and
experiments. Comparison of the large deformation behavior of a
hard-magnetic cantilever beam under a horizontal magnetic field pre-
dicted by finite element simulations and experiments is presented in
Fig. 1(a-iv). For different magnetic flux density B4 the deformed
configurations of the beam obtained by the two methods are strikingly
similar. The constitutive model not only accurately captures the me-
chanical behavior of one-dimensional (1D) slender structures, but also
predicts the complex transformation of shape-morphing structures very
well, such as the two-dimensional (2D) Miura origami and the
three-dimensional (3D) pyramid-shaped thin-walled structure shown in
Fig. 1(b) (Kim et al., 2018). Subsequently, the constitutive model has
been widely used to investigate the mechanical behaviors of various
structures made of hard-magnetic soft materials, which will be pre-
sented in subsequent sections.

When the applied magnetic field is not aligned with the magnetiza-
tion direction, a magnetic body torque is generated to align the
magnetization direction of the hard-magnetic soft material with the
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magnetic field. The generated magnetic body torque per unit volume in
the current configuration can be expressed as

m:iBr x Bappliedl’
Ho

(2.10)

which creates internal stresses that enable a macroscale response of the
hard-magnetic soft material. It should be stated that the magnetic
Cauchy stress induced by the magnetic body torque in the material is
asymmetric. As a result, the total Cauchy stress, accounting for both the
magnetic and mechanical components, is also asymmetric. Therefore,
the asymmetric part of the Cauchy stress and the magnetic body torque
need to satisfy the conservation of angular momentum to ensure equi-
librium, which gives

6—o"

2

e: +m=0, (2.11)
where ¢ is the third-order permutation tensor.

In general, actuation of hard-magnetic soft materials is achieved by
transferring the magnetic body torques on the embedded magnetic
particles, which are generated in response to externally applied mag-
netic fields, to the surrounding soft matrix. The transmission efficiency
of these magnetic torques to the matrix is significantly affected by the
interactions between the magnetic particles and the soft matrix. To
evaluate the torque transmission efficiency and understand its working
mechanism, Zhang et al. (2020) studied the actuation efficiency in
hard-magnetic soft materials using a micromechanics approach through
representative volume element (RVE) simulations. The torque trans-
mission efficiency is evaluated by the ratio of the total reaction torque
from the matrix to the total torque generated on the magnetic particles.
The torque in the matrix can be obtained from the RVE model and the
torque on the particles can be acquired using Eq. (2.10). Based on the
RVE simulation results, they further proposed a simple theoretical for-
mula for the torque transmission efficiency, which is given by

q:cos{g (1 - gf) {1 —exp<—0.165%>} }

where f is the volume fraction of the magnetic particles in the material,
M is the magnetization, B is magnetic flux density, and G is the shear
modulus of the matrix. Their theoretical and simulation results reveal
that to ensure the actuation efficiency of hard-magnetic soft materials,
one needs to consider the particle volume fraction, stiffness of the ma-
trix, and the aspect ratios of the particles.

(2.12)

2.2. Constitutive model with consideration of dipole-dipole interactions

Hard-magnetic soft materials are composed of hard-magnetic parti-
cles and polymeric matrices, in which the mechanical response of the
materials may be influenced by the dipole-dipole interactions between
the embedded magnetic particles. To take this into account, Garcia--
Gonzalez and Hossain (2021) presented a constitutive model for
hard-magnetic soft materials that considers the dipole-dipole in-
teractions between magnetic particles. In their model, the total Helm-
holtz free energy consists of the elastic part and the magnetic part.

The magnetic Helmholtz free energy per unit volume in the reference
configuration is written as
Winag(F, B) = Wy (F) + 7., (F, B),

mag

(2.13)

where F is the deformation gradient and B is the magnetic flux density in
the reference configuration. ‘I‘fn;‘é is the magnetic potential energy
related to the diploe-dipole interactions, and ¥, is the magnetic po-
tential energy induced by the applied magnetic field. The two parts of

the magnetic potential energy are calculated as
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o @~ 3[RV [FRY] J[[RM]-[FRY] | [RM]:[RM]
R IFR?|° FR?|*
(2.14)

Yo (F) =

e (F,B)= —RM - FB, (2.15)
in which yo is the relative permeability of the vacuum, ¢ is the volume
fraction of the magnetic particles, and y is a parameter to account for the
number of particles per representative lattice. Moreover, R? is the
dimensionless distance between magnetic particles, M is the magneti-
zation in the reference configuration, and R is the rotation component of
the deformation gradient F, i.e., R=FU™! with U being the stretch
component. Eq. (2.14) shows that the influence of the dipole-dipole
interactions on the overall mechanical response of the hard-magnetic
soft material depends on its magnetization, the relative distance be-
tween embedded magnetic particles, as well as the volume fraction of
the particles in the material. The elastic Helmholtz free energy can be
defined by various hyperelastic or visco-hyperelastic models, depending
on the properties of the matrix materials. Once the total Helmholtz free
energy is determined, the constitutive relations can be derived.

2.3. Constitutive models with consideration of viscoelasticity

In addition to the dipole-dipole interactions, several works have also
extended Zhao et al.’s model by accounting for the viscoelasticity of the
polymeric matrix of hard-magnetic soft materials, including Garcia--
Gonzalez (2019), Kadapa and Hossain (2022), Narayanan et al. (2023),
Rambausek et al. (2022), and Stewart and Anand (2023), and so on. For
example, Stewart and Anand (2023) derived a finite deformation
framework for magneto-viscoelasticity of hard-magnetic soft materials,
in which the overall free energy is written as

M
Wr =W Ty, ) + Y W (C,AY) 4 .

a=1

(2.16)

Here, W5 is the equilibrium part of the elastic free energy which
captures the elastic response of the matrix. In their model, a simple neo-
Hookean free energy is employed, which is given by
1 - 1

pres =5G(h-3)+ EK(Jfl)Z, (2.17)
where G and K are the shear modulus and bulk modulus, respectively,
and I; = J ?3tr(FTF). ¥3*" is the non-equilibrium part of the elastic
free energy that captures the viscous characteristic of the matrix, which
is given by (Green and Tobolsky, 1946; Linder et al., 2011)

me 1
lI/I:c, neq(a) _ EGf:c),ncq

(A :C-3) — In(det A)), (2.18)

where Gg’g,neq are the non-equilibrium shear moduli, C = J-2/3F"F, and
A“@ is an internal variable to model the viscous effects. Its evolution rule
is governed by a set of differential equations, as

- () — with initial

A" =—(C"-A")

1
(a) _ —
- AD(X, 1= 0)=1, (2.19)

conditions
in which 7@ is the relaxation time for each viscoelastic mechanism a.
Moreover, Wg° is the magnetic free energy per unit reference volume.
Here, they assume that the magnetic free energy depends on the rotation
component R of the deformation gradient F (F=RU, with U being the
stretch component), which is written as

\P:s: 7Rm;{em,bupp7 (2.20)

where mg™ is the remanent magnetization in the reference configura-
tion, and b?P is the applied magnetic flux density. Based on Egs. (2.16)-
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(2.20), the first Piola-Kirchhoff stress can be obtained as

T =J %3G {F - %tr(C)F’T} +JK(J - 1DF T

M
1, — 2.21
+IRY ngQJ,CqF<A<“> —E(C:A(””)C*‘) @21)
a=1

aR ! a] rem
_<07F> [b pp ® me L

By implementing the constitutive model in the finite-element soft-
ware package FEniCS (the FEniCS codes are available online), the model
can reproduce the experimental results of damped free oscillations and
dynamic snap-through of hard-magnetic arcs under external stimuli
(Tan et al., 2022).

Apart from the above-mentioned constitutive models, Mukherjee
et al. (2021) developed an explicit dissipative model for incompressible
hard-magnetic soft materials (a user-element (UEL) subroutine in
ABAQUS is available online), which can capture the magnetic energy
dissipation due to ferromagnetic hysteresis. Moreover, Rahmati et al.
(2023b) proposed a nonlinear theoretical framework to capture the
magnetoelectric effect in hard-magnetic soft materials with electrets.

3. Mechanical response of hard-magnetic soft materials

Based on the developed constitutive models, a large amount of work
has focused on studying the mechanical response of structures made of
hard-magnetic soft materials such as rods, beams, plates, and shells. In
this section, we discuss the mechanical response of these fundamental
building blocks in engineering applications under magnetic and me-
chanical loads. Some typical theoretical models are also briefly
discussed.

3.1. Hard-magnetic slender structures

To study the mechanical behavior of hard-magnetic slender struc-
tures, diverse theoretical models have been developed. Lum et al. (2016)
derived a simple beam model based on the force and torque balance,
which can predict the planar motions of hard-magnetic slender struc-
tures under uniform or gradient magnetic fields. The beam is assumed to
be inextensible and unshearable, meaning that the length of the beam
remains unchanged, and the cross-section remains perpendicular to the
centerline during deformation. With these assumptions, the governing
equation of the model is given by

EI 0°0

oL L
T + / Fydscos 6 — / F.dssin 6= W

3.1
where E, I, L, and A are the Young’s modulus, area moment of inertia,
length, and cross-sectional area of the beam, respectively. 6 denotes the
rotation angle between the tangent direction and the reference direction
of the centerline, and is a function of the arc length coordinate s and the
time t. Moreover, 7y, is the magnetic torque, and Fx and F, are the
magnetic forces along the x and y axes, respectively, which are given by

Tn(s,) = [0 0 1T{[R(s,)m(s)]| x B(7) },
Fu(s,) =[1 0 OK{[R(s,)m(s) ]V } B(z), (3.2)
Fy(s,) =[0 1 O{[R(s,)m(s) ]V } B(r).

Here, R (s, t) is the rotational matrix, m(s) is the magnetization profile,
and B(t) is the magnetic field. V denotes the gradient operator. Based on
the developed model, the authors proposed a universal programming
strategy for small-scale soft matter to achieve desired time-varying
shapes, which will be further discussed in Section 5.

Later, Wang et al. (2020) reformulated this model using the principle
of minimum potential energy, which was referred to as hard-magnetic
elastica. Under a uniform magnetic field (i.e., VB = 0), the governing
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equation of the hard-magnetic elastica is given by

2

% % + MBsin(p — 6)= 0, (3.3)
where M is the magnitude of the magnetization in the reference
configuration, B is the magnitude of the magnetic field, and ¢ is the
angle between the direction of the magnetic field and x-axis, as shown in
Fig. 2(a-i). The elastica model, i.e., Eq. (3.3), was validated by
comparing its theoretical predictions with finite element simulations
and experimental results reported in Zhao et al. (2019), and good
agreements were observed. Based on the model, the authors examined
the large deformation bending behavior of hard-magnetic elastica under
uniform magnetic fields with different angles . As shown in Fig. 2(a-ii),
as the normalized magnetic field strength increases, the angular
displacement at the free-end (f;) monotonically increases until it ap-
proaches ¢, at which the free-end of the elastica aligns with the applied
magnetic field. For the deflection of the hard-magnetic elastica at the
free-end, it also monotonically increases and then becomes saturated
when ¢ < 90° (Fig. 2(a-iii)). However, when ¢ > 90°, the free-end
deflection first increases to a peak value and then drops as the elastica
bends to its final configuration. When the magnetic field is antiparallel
to the x-axis, i.e., ¢ = 180°, buckling instability of the hard-magnetic
elastica takes place when the magnetic field strength exceeds a critical
value Be. This critical field strength can be predicted by equating the
magnetic field action to a point force applied at the free end, which is
given by

_ mEl
T AMALY

3.4

Following the inextensible and unshearable assumption, several
works have studied the large deformations and instabilities of hard-
magnetic slender structures (Abbasi et al., 2023; Wang et al., 2021,
2022; Zhang et al., 2023b). For example, Abbasi et al. (2023) investi-
gated the snap buckling of hard-magnetic curved beams composed of
two segments with antiparallel magnetizations along the centerline, as
shown in Fig. 2(b-i). The curved beam is formed by imposing an
end-to-end shortening to a doubly clamped straight beam. Fig. 2(b-ii)
shows that as the end-to-end shortening increases, the required mag-
netic field strength to trigger snapping also increases. For small values of
end-to-end shortening (less than 0.1), the critical magnetic field is pro-
portional to its square root. When the beam is under combined me-
chanical and magnetic loading, the mechanical load-displacement curve
can be tuned by controlling the applied magnetic field (Fig. 2(b-iii)).

The elastica model assumes the structure is inextensible, meaning it
does not consider the stretching deformation. Recently, Chen and Wang
(2020) developed a hard-magnetic beam model considering centerline
stretching. In the model, the residual magnetic flux density of the beam
and the applied magnetic field are both considered to be uniform. The
governing equations for the hard-magnetic beam model are written as

ao 1

- _ |BY|IB? —a)=0, .

d}. l’[U | 0|| |COS(0 (l) 0 (3 5)
&0 A, .

Elﬁfﬂ—o{BoHB"M sin(@ — a)= 0, (3.6)

where @ is the strain energy per unit reference volume, which can be
evaluated by various hyperelastic models, and / is the stretch ratio of the
centerline of the beam. |Bj| and |B?| are the residual magnetic flux
density and the applied magnetic field, respectively, and uo is the
permeability in vacuum. Moreover, 6 is the angle between the tangent
direction of the centerline and the reference configuration of the beam,
and a is the angle between the magnetic field and the reference
configuration of the beam. E, I, and A are the Young’s modulus, area
moment of inertia, and cross-section area of the beam, respectively.

To verify the accuracy of the beam model, the authors compared the
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Fig. 2. Mechanical response of hard-magnetic slender structures with planar deformation. (a-i) Schematic of a hard-magnetic elastica under a uniform magnetic
field. (a-ii) Free-end angular displacement and (a-iii) deflection versus normalized magnetic field strength of a hard-magnetic elastica. (b-i) Schematic of a bistable
curved hard-magnetic beam under combined mechanical and magnetic loading. (b-ii) Normalized critical magnetic field of the curved beam under magnetic
actuation as a function of the end-to-end shortening. (b-iii) Normalized poking force versus the mid-span displacement for the curved beam under different magnetic
fields. (c) Comparison of the normalized free end deflections of hard-magnetic cantilever beams with different length-to-thickness ratio (L/C) obtained by the
theoretical model, simulations, and experiments. (d-i) Free-end rotation angle as a function of the normalized magnetic flux density of a hard-magnetic cantilever
beam under a uniform antiparallel magnetic field. (d-ii) Deformed configurations of the cantilever beam under a uniform antiparallel magnetic field with different
magnetic flux densities. Fig. (a) is reproduced with permission from Wang et al. (2020). Copyright 2020 by Elsevier. Fig. (b) is adapted with permission from Abbasi
et al. (2023). Copyright 2023. The Authors. Published by the Royal Society. Fig. (c) is reproduced with permission from Chen and Wang (2020). Copyright 2020 by
ASME. Fig. (d) is adapted with permission from Dehrouyeh-Semnani (2021). Copyright 2021 by Elsevier.

free-end deflections of hard-magnetic cantilever beams predicted by
their theoretical model, in which a neo-Hookean hyperelastic model is
adopted to capture the stretching energy, with the free-end deflections
obtained by finite element simulations and experiments in Zhao et al.
(2019). As shown in Fig. 2(c), the predictions of the beam model show
good agreement with the simulation and experiment results when the
beams have relatively large length-to-thickness ratios (e.g., 20.5 and
41). For small length-to-thickness ratios (e.g., 10 and 17.5), the beam
model overestimates the deflections due to neglecting shear deforma-
tion. In addition, the beam model shows that although the beam un-
dergoes large deformation under the external magnetic field, the axial
stretch of the centerline is small. Therefore, it is sufficient to use a linear
elastic constitutive relation in the beam model, i.e., ® = E¢%/2 with ¢ =
A—1. Note that when 1 = 1, Eq. (3.6) reduces to the elastica model, i.e.,
Eq. (3.3).

Considering small deformations of the centerline, Chen et al. (2020)
derived a hard-magnetic beam model considering the effect of volume
fraction of magnetic particles. In the model, the residual magnetic flux
density B" and the effective elastic modulus E of the beam are considered
to be dependent of the particle volume fraction y, as (Kim et al., 2019)

2.5y
e 1.3511/), 3.7

where B, is the magnetic flux density of the particles, and Ej is the elastic

B'=By.E=E exp (1

modulus of the polymeric matrix. By using the model, the authors
studied the buckling and post-buckling behaviors of hard-magnetic
beams with volume fraction of the magnetic particles linearly or expo-
nentially varying in the axial direction. Results show that the critical
buckling load and the post-buckling configurations can be tuned by
adjusting the volume fraction and distribution of the magnetic particles.
Moreover, Dehrouyeh-Semnani (2021) studied the bifurcation behavior
of hard-magnetic cantilever beams under external magnetic fields. It is
revealed that when the magnetic field is antiparallel to the initial state of
the beam, the beam undergoes a pitchfork bifurcation. The first two
bifurcation modes are presented in Fig. 2(d-i). It is seen that the two
stable branches are symmetric about the reference configuration of the
beam, and the deformed configurations for different magnetic flux
densities are shown in Fig. 2(d-ii).

The elastica and beam models are limited to studying planar motions
of hard-magnetic slender structures. Recently, Sano et al. (2022) pre-
sented a magnetic Kirchhoff rod model that can be used to predict the
mechanical response of hard-magnetic rods with natural curvatures
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under geometrically nonlinear deformation in three dimensions, as
shown in Fig. 3(a-i). The magnetic Kirchhoff rod equations are written as

F(5)+P(5) + Prag (5)=0, (3.8)

M (s) +d3(5) X F(5) +q(5) + G (5)= 0, 3.9)
in which F(s) and M(s) are the internal forces and moments with s being
the arc length coordinate, p(s) and q(s) are the distributed external force

and torque per unit length, respectively, and d5 is the unit vector along
the tangent direction of the centerline of the rod. Moreover, ppag(s) and
Gmag(s) are the distributed magnetic force and torque, respectively,
which are defined as

Pinag(8) =M - (VB*) Gy (5) =M X B, (3.10)
where .# is the magnetization density vector per unit length, and B? is
the applied magnetic flux density vector.

By using the magnetic Kirchhoff rod model, Sano et al. (2022)
studied the buckling instability of a naturally curved, twisted rod (i.e., a
helix) under a constant magnetic field. For a helix with a pitch angle y,
the critical magnetic field can be evaluated by

B (£)2 Fo e (3.11)

2L/ ABr cos? y + (EI/GJ)sin® y
where o is the magnetic permeability in vacuum, B is the residual
magnetic flux density, A is the cross-sectional area, and L is the length of
the rod. Moreover, I is the area moment of inertia, J is the torsional
constant, and E and G are the Young’s modulus and the shear modulus,
respectively. Fig. 3(a-ii) presents the phase diagram of the buckling
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instability of a hard-magnetic helix. When the applied magnetic field B*
is smaller than B?*, the helix remains uniformly helical, as shown by the
filled data in Fig. 3(a-ii), while the helix buckles when B* > B**, as
depicted by the open symbols. The boundary between the uniformly
helical state and the buckled state corresponds to the critical buckling
state, which agrees with the theoretical prediction (3.11) (dashed line in
the figure) remarkably. Deformation of a hard-magnetic helix under a
gradient magnetic field is further investigated based on the magnetic
Kirchhoff rod model and experiments in Fig. 3(a-iii), and shows good
agreement. It is shown that the magnetic field gradient is analogous to a
unidirectional force. As the rescaled magnetic field gradient A, de-
creases, the helix contracts. Also, several other 3D hard-magnetic rod/
beam models have recently been proposed (Chen et al., 2021b; Huang
et al., 2023; Li et al., 2023; Sano, 2022; Wu et al., 2023; Yang et al.,
2022). For example, Chen et al. (2021b) derived a 3D hard-magnetic
beam model considering the coupling of stretching, bending, and
twisting deformations. The model can predict the 3D large deformation
behavior of initially straight beams with non-uniform magnetizations
under uniform magnetic fields (Fig. 3(b-i)), such as the two examples
shown in Fig. 3(b-ii) and 3(b-iii), in which the beams have an in-plane
sinusoidal magnetization and an out-of-plane sinusoidal magnetiza-
tion, respectively. Moreover, Huang et al. (2023) formulated a discrete
magneto-elastic Kirchhoff rod model that can be used to analyze both
the static and dynamic behaviors of hard-magnetic slender structures
under magnetic fields.

In addition to these theoretical models, several numerical compu-
tational models have been developed to study the mechanical behavior
of hard-magnetic slender structures. For example, Xing and Yong (2023)
presented a finite element framework for simulating the large de-
formations and instabilities of visco-hyperelastic hard-magnetic soft
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Fig. 3. Mechanical response of hard-magnetic slender structures with spatial deformation. (a—i) Schematic of a naturally curved and twisted rod under a magnetic
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materials. Their results indicate that hard-magnetic beams show
different buckling behaviors at various loading rate ranges. At moderate
loading rates, delayed buckling occurs due to viscoelastic creep defor-
mation. Ye et al. (2021) developed a lattice model for hard-magnetic soft
materials by dividing the elastic energy into lattice stretching and
volumetric change (the OpenFSI package for the model is available
online), which can be used to investigate the large deformation of
hard-magnetic beams and origami plates. By integrating with the Lattice
Boltzmann method, the lattice model can predict the swimming motion
of magnetic soft robots in water. Moreover, Liu et al. (2023) formulated
a meshfree model for hard-magnetic soft materials based on the radial
point interpolation method, which is capable of not only evaluating the
bending and buckling of hard-magnetic beams but also predicting the
crawling, walking, and rolling motions of hard-magnetic soft robots.

3.2. Hard-magnetic plates

Magnetic plates are also important building blocks for some engi-
neering applications. Recently, Yan et al. (2023) derived a
reduced-order model for thin hard-magnetic plates, in which the
magnetization of the plate in the deformed configuration was considered
to be independent of the stretching deformation. The model can predict
the large deformation of hard-magnetic plates with different boundary
conditions under magnetic and mechanical loading, and the predictions
agree with the experiments. Chen and Tan et al. investigated the
snap-through instability of a hard-magnetic flat arc formed by com-
pressing a flat plate until it buckles (Chen et al., 2022a; Tan et al., 2022),
as shown in Fig. 4(a-i). The flat arc has opposite magnetization di-
rections in the left and right segments and is subjected to a quasi-static or
dynamic magnetic field. The displacement at the middle point of the flat
arc under a quasi-static magnetic field is presented in Fig. 4(a-ii). During
the loading process, as the applied magnetic field increases to the

i Static snapping iii

Mechanics of Materials 189 (2024) 104874
threshold Bl the displacement snaps from point ‘a’ to point ‘b’,
accompanied by the arch reversing from one equilibrium state to
another. For the unloading process, the arch snaps from point ‘c’ to point
‘d’ when the applied magnetic field reaches B. The two critical values
of the magnetic flux density corresponding to the onset of snapping are
equal in magnitude but opposite in sign, which can be estimated by (Tan
et al., 2022)

3 3£3172
!~ wErS  pETEH 7 (3.12)
2438 72V/3B'L(1 —1?)

where E is the Young’s modulus, v is the Poisson’s ratio, L is the length, H
is the thickness, ¢ = aon/L is the dimensionless geometric parameter
with ag being the rise of the arc, ug is the permeability in vacuum, and B
is residual magnetic flux density. Correspondingly, the displacement at
the middle point of the arc under an increasing DC pulse magnetic field
is illustrated in Fig. 4(a-iii). Under the dynamic magnetic loading, the
arc takes about 96 ms to reach the snapping point ‘a’, and then snaps to
the reversed equilibrium state at point ‘b’ in about 48 ms. The average
speed of the flat arc during the snapping process is about 120.83 mm/s,
demonstrating the rapid response capability of magnetic actuation.
Moreover, due to the high speed of snapping, a significant oscillation of
the arc is produced by the inertia effect. In another work, Zhang and
Rudykh (2022) studied the transverse elastic waves in periodic lami-
nates made of hard-magnetic soft materials. As shown in Fig. 4(b-i), the
periodic laminate consists of two isotropic incompressible alternating
hard-magnetic active elastomers with different magnetizations and
thicknesses. In the absence of a magnetic field, the laminate has four
transverse wave band gaps (Fig. 4(b-ii)). By contrast, in the presence of a
magnetic field, the band gaps are widened and shifted to higher fre-
quencies due to the induced deformation of the magnetic excitation
(Fig. 4(b-iii)). In other words, the transverse wave band gaps in
hard-magnetic laminates can be actively controlled by a remotely
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Fig. 4. Mechanical response of hard-magnetic plates. (a-i) Schematic of a hard-magnetic flat arch formed by a buckled plate. (a-ii) Snapping of the hard-magnetic
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(2022). Copyright 2022 by Elsevier. Fig. (b) is reproduced with permission from Zhang and Rudykh (2022). Copyright 2022. The Authors. Published by Elsevier.
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applied magnetic field. In a recent study, Alam et al. (2023) have shown
that the width and position of the longitudinal wave band gaps in
hard-magnetic soft laminates can also be tuned by the external magnetic
field.

3.3. Hard-magnetic shells

Several works have also focused on the mechanical behavior of hard-
magnetic shell structures (Chen et al., 2022b; Dadgar-Rad and Hossain,
2023; Seong et al., 2023; Stewart and Anand, 2023; Yan et al., 2021). To
mention a few, Yan et al. (2021) presented a robust mechanism to
dynamically tune the buckling strength of shells by exploiting the
coupled magneto-mechanical deformation in hard-magnetic soft mate-
rials. The considered hemispherical shell is made of hard-magnetic soft
material and its magnetization direction is perpendicular to its equato-
rial plane. It is shown from Fig. 5(a-i) that when applying a magnetic
field in the same direction as the magnetization, the critical buckling
pressure of the shell increases and the pressure gradually drops at the
onset of buckling. By contrast, when the applied magnetic field is
opposite to the magnetization of the shell, the critical buckling pressure
decreases, and the pressure drop is more abrupt. This indicates that the
buckling strength of a hard-magnetic shell can be tuned by the external
magnetic field on demand. Furthermore, the knockdown factor (i.e., the
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ratio of the critical buckling pressure of an imperfect shell with respect
to that of its perfect counterpart) of a hard-magnetic shell with geo-
metric defect can also be adjusted by the applied magnetic field. To
demonstrate this, Yan et al. (2021) fabricated a series of hard-magnetic
shells with axisymmetric 2D defects of varying amplitudes at their poles
(defect profiles are depicted in Fig. 5(a-ii)) and tested their knockdown
factors. As shown in Fig. 5(a-iii), when the magnetic field is aligned with
the magnetization direction, the knockdown factors of the
hard-magnetic shells increase as the applied magnetic flux density in-
creases for different defect amplitudes, and the increment can be up to
about 30% within the accessible magnetic field compared to the no-field
case. Stewart and Anand (2023) formulated a magneto-viscoelastic
constitutive model for hard-magnetic soft materials and studied the
snap-through eversion of a hemispherical shell induced by magnetic
actuation. The shell has a uniform remanent magnetization in the
ep-direction. As shown in Fig. 5(b-i), when applying a 200 mT magnetic
field opposite to the ep-direction but with a slight 1° misalignment, the
hemispherical shell everts itself in 0.1 s by harnessing the snap-through
instability. Moreover, the eversion is reversible. When applying an 80
mT magnetic field aligned with the ep-direction but with a slight 1°
misalignment, the hemispherical shell reverts to its initial configuration,
as illustrated in Fig. 5(b-ii). Variations of the applied magnetic flux
density and the induced displacement at top of the shell (red point)
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Fig. 5. Mechanical response of hard-magnetic shells. (a-i) Tunable buckling strength of a hard-magnetic shell under combined pressure and magnetic loading. (a-ii)
Axisymmetric 2D defect profiles for hard-magnetic shells. (a-iii) Tunable knockdown factors of hard-magnetic shells with different defect geometries. (b) Dynamic
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during eversion and reversion are shown in Fig. 5(b-iii) and 5(b-iv),
respectively. It is seen that the hemispherical shell undergoes an
obvious oscillation during the dynamic snap-through instability. In
another work, Dadgar-Rad and Hossain (2023) developed a 10-param-
eter micropolar shell model to simulate the finite elastic deformation
of thin hard-magnetic soft materials. Using the micropolar shell model,
they studied the elastic response of a doubly clamped hard-magnetic
cylindrical shell under magnetic loading. As shown in Fig. 5(c), the
remnant magnetic flux density of the cylindrical shell is tangent to its
surface and has a positive component along the X3 axis. When subjected
to a magnetic field in the X3 direction, as the magnetic flux density in-
creases, the displacement components at points A, B, and C on the sur-
face of the shell gradually increase, and the contraction deformation of
the shell becomes prominent.
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4. Magneto-mechanical metamaterials

Mechanical metamaterials are a class of architected structures often
consisting of specifically designed periodic building blocks (Bertoldi
et al., 2017; Yu et al., 2018), which have attracted a great deal of
attention in recent years due to their unique properties and functional-
ities that differ from conventional materials. These metamaterials can
have negative Poisson’s ratio (Lakes, 1987; Saxena et al., 2016), high
stiffness-to-weight ratio (Zheng et al., 2014), compression-torsion
coupled deformation (Frenzel et al., 2017), and multistability (Zhang
etal., 2021). However, conventional mechanical metamaterials can only
exhibit specific behavior once they are fabricated, resulting in a lack of
tunability. Hard-magnetic soft materials enable fast, untethered, and
reversible actuation by the application of a remotely applied magnetic
field (Kim et al., 2018), which provide an ideal platform for the design of
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active mechanical metamaterials with tunable properties or function-
alities. Recently, a variety of active mechanical metamaterials have been
developed based on the hard-magnetic soft materials.

4.1. Shape transformation enabled magneto-mechanical metamaterials

Shape transformation is one commonly used strategy to achieve the
tunable properties or behavior of magneto-mechanical metamaterials.
Wu et al. (2019) developed an active metamaterial by employing an
asymmetric joint design using hard-magnetic soft materials. The asym-
metric joint has a bending mode based on elastic deformation and a
folding mode based on rigid body rotation under opposite-direction
magnetic fields. By regulating the magnetic field, the metamaterial
can change its shape and thus tune its stiffness. Based on the
magnetic-responsive asymmetric joint design, Montgomery et al. (2021)
presented a magneto-mechanical metamaterial whose mechanical
properties (e.g., Poisson’s ratio and stiffness) and acoustic/elastic
bandgaps can be actively controlled in a wide range by coupled mag-
netic actuation and mechanical forces. Recently, Ma et al. (2021)
fabricated a magneto-mechanical metamaterial with multiple unique
shape configurations by integrating magnetic soft materials (MSM) with
magnetic shape memory polymers (M-SMP). As shown in Fig. 6(a), at
room temperature (22 °C), the metamaterial shows a shear deformation
mode because only the MSM component can deform due to the high
stiffness of the M-SMP part at low temperature. By contrast, at a high
temperature (90 °C), both materials deform simultaneously, and the
metamaterial shows a biaxial deformation mode. By altering the mag-
netic field, the strain and Poisson’s ratio at the two deformation modes
can be programmed. In another work, Alapan et al. (2020) presented an
auxetic metamaterial using hard-magnetic soft materials with reprog-
rammable magnetizations. The metamaterial shows a tunable negative
Poisson’s ratio under a given magnetic field, while exhibiting a tunable
positive Poisson’s ratio by reprogramming the magnetization through
heating. In addition to programming mechanical properties,
magneto-mechanical metamaterials can also be designed to tune fluidic
properties in water. Xia et al. (2022) fabricated a metamaterial using
silicone elastomers doped with NdFeB particles where the
shape-morphing behavior can be actuated by solvent and magnetic
stimuli. As shown in Fig. 6(b), when immersed in the organic solvent,
the magneto-elastomer deforms into a wave shape. When subjected to a
time-varying magnetic field, the positions of the peaks and troughs
change with the direction of the applied magnetic field. By harnessing
the dynamic shape transformation, the magneto-elastomer can manip-
ulate the flow direction and velocity in fluidic systems.

In magneto-mechanical metamaterials, shape transformation often
significantly changes their area density and overall dimensions during
magnetic actuation due to the internal deformations of the unit cells.
Recently, Sim et al. (2023) presented a 2D magneto-mechanical bilayer
metamaterial made of hard-magnetic soft materials that can maintain its
overall area while tuning the acoustic/elastic bandgaps and wave
propagations under external magnetic fields. As shown in Fig. 6(c), the
bilayer unit cell is designed by overlaying two units with flipped
magnetization distributions. The magnetization distribution is carefully
designed such that only one layer can be actuated regardless of the di-
rection of the applied magnetic field and thus, preserving its global area
during reconfiguration. The flipped bilayer can exhibit four different
modes by controlling the magnitude and direction of the applied mag-
netic field, including the initial, intermediate, top layer folded, and
bottom layer folded modes. More importantly, each of the four modes
has a constant global dimension but shows different acoustic/elastic
bandgaps, as shown in Fig. 6(c). On the other hand, the actuated shape
of magneto-mechanical metamaterials by magnetic control usually
cannot be held once the applied magnetic field is removed. Recently,
inspired by the reversible and shape-locking transformations in
magnetic-SMP (Ze et al., 2020), Zou et al. (2023) presented an SMP
lattices made of poly(lactic acid) (PLA) with permanent magnets
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embedded on the vertices, as shown in Fig. 6(d), which can transform
into prescribed shapes and recover to its initial configuration under
magnetic field and heating. By exploiting the reprogrammable trans-
formation of the SMP lattice, they designed a series of
magneto-thermomechanical metamaterials with multimodal deforma-
tion and shape locking capacities. Two examples are presented at the
bottom of Fig. 6(d), which possess tunable Poisson’s ratio and stiffness,
respectively.

4.2. Snap-through instability enabled magneto-mechanical metamaterials

Another popular method to construct magneto-mechanical meta-
materials is to harness the snap-through instabilities of bistable or
multistable structures under magnetic actuation. Recently, Chen et al.
(2021a) introduced a mechanical metamaterial consisting of an array of
physical binary elements, which enables stable memory and on-demand
reprogrammability of mechanical properties. As shown in Fig. 7(a), each
binary element is a magnetic bistable elastic conical shell which can
independently and reversibly switch between its two stable states, i.e.,
the ON and OFF states, under magnetic actuation. The two states exhibit
distinct mechanical responses such as structural stiffness, yield strength,
and stored strain energy (which can be extracted from the
force-displacement curves). Specifically, the ON state is quite stiff, while
the OFF state is relatively soft. The transition from the OFF state to the
ON state leads to an increase in all three quantities by nearly an order of
magnitude. By tessellating n x n binary elements into a square-lattice
configuration, the obtained planar-array structure can exhibit n+1
different mechanical responses. Pal and Sitti (2023) presented a me-
chanical response programable metamaterial using bistable curved
beams made of hard-magnetic soft materials, as shown in Fig. 7(b). By
periodically linking multiple bistable beam elements in a lattice, the
metamaterial system allows for the propagation of transition waves,
where the transition distance, speed, and direction can be effectively
controlled by the remotely applied magnetic field. Moreover, the met-
amaterial can be used to create mechanical logic gates for binary logical
operations. Also, functionalities of the logic gate can be programmed by
merely changing the external magnetic field. Zhang et al. (2023a)
designed a magnetic field-induced asymmetric mechanical meta-
material with tunable local resonant bandgap, as shown in Fig. 7(c). The
resonating cores are made of hard-magnetic soft materials which are
connected to the elastomeric matrix by highly deformable curved
beams. Under magnetic actuation, the induced magnetic body torque
rotates the core and deforms the curved beam, and thus alters the nat-
ural frequency of the resonators. When the magnetic field is large
enough, the magnetic torque triggers the snap-through of the curved
beams and brings the metamaterial to a new stable configuration. By
changing the applied magnetic induction, the local resonant bandgap
can be tuned within a broadband low-frequency range.

In addition to bistable shells and beams, kirigami-inspired rotating
squares are also employed to create bistable or multistable meta-
materials by embedding permanent magnets into the squares (Slesar-
enko, 2020; Tipton et al., 2012; Yasuda et al., 2020). Recently, Korpas
et al. (2021) integrated liquid crystal elastomers (LCEs) with such a
kirigami system and designed a temperature-responsive multistable
metamaterial. As shown in Fig. 7(d), the rotating squares with
embedded magnets are connected by small hinges consisting of an LCE
layer and a polydimethylsiloxane (PDMS) layer. When the temperature
is changed, the LCE layer contracts and softens with respect to the PDMS
layer, which causes the bilayer hinges to bend and the squares to rotate.
Competition between the magnetic potential of the squares and the
elastic energy of the hinges creates multiple stable states for the meta-
material. As the temperature increases from 25 °C to 80 °C, the initially
monostable metamaterial first changes to tristable and then becomes
bistable. By linking multiple individual units into chains to form a me-
chanical metamaterial, the metamaterial allows for the propagation of
transition waves, and its propagation behavior can be tuned by
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Fig. 7. Magneto-mechanical metamaterials enabled by snap-through instability. (a) Mechanical metamaterial consisting of bistable conical shells with magnetic

caps. The caps are made of hard-magnetic soft materials, which can generate a

torque to trigger the snapping of the shell under magnetic actuation. (b) Mechanical

metamaterial consisting of bistable curved beams. The two segments of the curved beam have opposite magnetization directions. (c) Mechanical metamaterial

consisting of resonating cores made of hard-magnetic soft materials. The cores

are connected with an elastomeric matrix through highly deformable curved beams.

(d) Multistable mechanical metamaterial consisting of rotating squares and LCE-PDMS bilayer hinges. The squares are embedded with permanent magnets. Fig. (a) is
reproduced with permission from Chen et al. (2021a). Copyright 2021. The Authors, under exclusive license to Springer Nature Limited. Fig. (b) is adapted with
permission from Pal and Sitti (2023). Copyright 2023. The Authors. Published by PNAS. Fig. (c) is reproduced with permission from Zhang et al. (2023a). Copyright
2023. The Authors. Published by Elsevier. Fig. (d) is reproduced with permission from Korpas et al. (2021). Copyright 2021 by American Chemical Society.

controlling its temperature. Moreover, Liang et al. (2022) presented a
bistable elasto-magnetic metamaterial by embedding permanent mag-
nets into a polymeric sheet with orthogonally aligned elliptical pores.
The metamaterial can reversibly transition between an open phase
(having pores between adjacent units) and a closed phase (no pores
between adjacent units) under an external force. They showed that
phase transition of the metamaterial not only alters its constitutive
response but also significantly improves the energy release in dynamic
recoil and mitigates the impact loading.

5. Design optimization of hard-magnetic soft materials

Although hard-magnetic soft materials have enabled diverse func-
tional applications, most designs rely on experimental trial and error or
intuition-based approaches, which may limit the design freedoms and
application potentials of hard-magnetic soft materials. Recently, re-
searchers have started to design hard-magnetic soft materials with
predefined properties or deformations by employing optimization-based
methods, such as machine learning (Ma et al., 2022; Lloyd et al., 2020;
Yao et al., 2023), evolutionary algorithms (Lum et al., 2016; Wu et al.,
2020a; Wang et al., 2021), topology optimization (Zhao and Zhang,

2022, 2023; Wang et al., 2023a), and gradient-based optimization
(Wang et al., 2023b).

5.1. Machine learning-guided design

Machine learning techniques are a type of novel artificial intelligence
that have emerged in recent years and have been widely used in various
fields. They have also been recently employed in the design of hard-
magnetic soft materials. Lloyd et al. (2020) proposed an inverse design
method based on artificial neural network (ANN) for planar cantilever
beams made of hard-magnetic soft materials with predefined de-
formations under magnetic actuation. The database for training the ANN
was created by performing many finite element simulations. By using the
trained ANN, the corresponding magnetization profile for a
multi-segment cantilever beam to achieve predefined deformations
under a uniform magnetic field can be found. Ma et al. (2022) presented a
deep learning-guided inverse design framework for magneto-mechanical
metamaterials with predefined global strains under magnetic actuation.
In their work, a discrete artificial bee colony algorithm is adopted to
optimize the magnetization distribution (including directions and mag-
nitudes) for the target strains, in which a deep residual network is trained
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to replace the time-consuming finite element simulations to accelerate
the optimization. The unit cell of the magneto-mechanical metamaterial
to be optimized is shown in Fig. 8(a), which consists of 32 magnetic
segments. For each segment, there are nine different possible magneti-
zation distribution assignments. By using the established inverse design
framework, magneto-mechanical metamaterials with optimized magne-
tization distributions that can achieve different target strains under
opposite magnetic fields were designed, such as the demonstration shown
in Fig. 8(a). The metamaterial has an equal target strain —0.2 in x- and
y-directions under a negative magnetic field, while it exhibits zero strain
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under a positive magnetic field. Recently, Yao et al. (2023) developed an
inverse design strategy based on deep reinforcement leaning algorithms
to find desired magnetic fields to actuate strip-like magnetic soft robots.
To achieve this, the authors presented a Cosserat rod model incorporating
magnetic torques and dissipation forces which could simulate the dy-
namic behavior of strip-like magnetic soft robots. Then, the reinforce-
ment learning framework was trained using the results produced by the
model. The trained framework can provide the information of magnetic
fields to achieve the movement of strip-like soft robots with different
magnetizations.
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5.2. Topology optimization-guided design

Topology optimization is another widely used tool for the optimiza-
tion design of hard-magnetic soft materials. Recently, Zhao and Zhang
(2022) established a 2D topology optimization framework for the inverse
design of hard-magnetic soft materials by simultaneously optimizing
topology, remanent magnetization distribution, and applied magnetic
fields. The optimized structures can achieve multiple target functional-
ities under the optimized magnetic fields. For example, as shown in Fig. 8
(b), the frog-inspired swimming robot (top) with the optimized magne-
tization distribution can achieve three different target shapes, and the
optimized magnetic-responsive unit cell (bottom) can achieve four
adaptable actuation modes under their corresponding optimized mag-
netic fields. Later, Wang et al. (2023a) extended the topology optimiza-
tion framework to achieve programmable 3D shape morphing of
hard-magnetic soft materials under magnetic actuation. Also, topology
optimization has been utilized to design magneto-active metamaterials
with reprogrammable properties which exhibit one response under pure
mechanical loading while featuring a distinct response under combined
mechanical and magnetic stimuli (Zhao and Zhang, 2023).

5.3. Evolutionary algorithm-guided design

Apart from machine learning and topology optimization, evolu-
tionary algorithms have also been used to guide the rational design of
hard-magnetic soft materials with programmable deformations or
functionalities. Lum et al. (2016) proposed a universal programming
method that can produce the required magnetization profile and mag-
netic fields for hard-magnetic soft materials to achieve prescribed
time-varying shapes, as shown in Fig. 8(c). The programming method-
ology is demonstrated with a cantilever beam made of NdFeB particles
and soft silicone rubber, whose deformation behavior can be pro-
grammed by tuning the magnetization profile m, magnetic field B, and
spatial gradient of the magnetic field VB (see Egs. (3.1) and (3.2) in
Section 3). To achieve a target deflection, the authors first represented
the three vectors with their corresponding 1D Fourier series, and then
employed an optimization method to find the optimal values of those
Fourier coefficients. Based on the proposed programming methodology,
a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an
artificial cilium that achieve desired movements were designed. In
addition, Wu et al. (2020a) integrated an evolutionary algorithm-guided
design strategy with the voxel-encoding direct-ink-writing (DIW)
printing method, which allows for programming the magnetization
distribution of hard-magnetic soft materials to achieve prescribed
functional deformation and dynamic motions. One such example the
authors present is the biomimetic soft robot shown in Fig. 8(d), which
can mimic the walking motion of a dog. Based on the hard-magnetic
elastica model and the genetic algorithm, Wang et al. (2021) pre-
sented an optimization design framework capable of maximizing the
workspaces of magnetic soft continuum robots by tuning the magneti-
zation and the volume fraction of the magnetic particles.

5.4. Gradient-based optimization design

Additionally, based on a gradient-based optimization approach,
Wang et al. (2023b) developed a differentiable inverse design frame-
work for kirigami made of hard-magnetic soft materials. By optimizing
the cuts and magnetization distributions, the active kirigami can achieve
a wide range of target shapes and transition between different stable
states under magnetic actuation. For example, as shown in Fig. 8(e-i),
the optimized kirigami achieves a target shape in the zero state, while
morphing into two different compact states (negative state and positive
state) under magnetic fields with the same magnitude but opposite di-
rections. Energy landscape during the shape morphing is depicted in
Fig. 8(e-ii). It is seen that the active kirigami resides in the minimum
energy state (i.e., stable state) in all three configurations.
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6. Conclusions and outlook

In this paper, we reviewed recent works on the mechanics of hard-
magnetic soft materials. Several existing constitutive models that can
describe the coupled magneto-elastic deformation of hard-magnetic soft
materials were first introduced. Then, mechanical response of structures
made of hard-magnetic soft materials under mechanical and magnetic
loading was discussed with emphasis placed on the large deformations
and instabilities of hard-magnetic rods, beams, plates, and shells. Also,
various magneto-mechanical metamaterials with tunable mechanical
properties or behavior enabled by shape transformation and snap-
through instability were presented. In addition, optimization-guided
inverse design strategies of hard-magnetic soft materials based on ma-
chine learning, evolutionary algorithms, topology optimization, and
gradient-based optimization were introduced. Despite the recent prog-
ress on the mechanics of hard-magnetic soft materials, there is still
considerable work left in the field. Here, we provide our points on the
future challenges and potential directions.

e Although various constitutive models for hard-magnetic soft mate-
rials have been developed, all of them are limited to hard-magnetic
soft materials with inactive polymeric matrices. Recently, several
works have embedded hard-magnetic particles into an active poly-
mer matrix, such as shape memory polymers (Ze et al., 2020) and
liquid crystal elastomers (Sun et al., 2023), to achieve more func-
tionalities. Therefore, developing constitutive models for
hard-magnetic soft materials with active polymeric matrices is a
potential direction worthy of study.
Most of the existing works on the mechanical response of structures
fabricated from hard-magnetic soft materials focus on slender rods or
beams, little attention has been paid to hard-magnetic plates and
shells. Hard-magnetic plate and shell elements have also been used in
engineering applications (Chen et al., 2021a; Hu et al., 2018; Kim
et al., 2018), and understanding their mechanical behavior is bene-
ficial in guiding designs in related applications.

Mechanical response of hard-magnetic soft materials has been

extensively studied, yet most studies are limited to hard-magnetic

soft materials under uniform magnetic fields. In practical applica-
tions, hard-magnetic soft materials may be subjected to nonuniform

or time-varying magnetic loading (Lum et al., 2016; Hu et al., 2018;

Xia et al., 2022; Ze et al., 2020). Therefore, it is important to study

the mechanical response (e.g., large deformation and instability) of

hard-magnetic soft materials under nonuniform or dynamic mag-
netic fields.

e Hard-magnetic soft materials have shown great potential in the
design of magneto-mechanical metamaterials with tunable proper-
ties, but most of the related works are based on experimental trial
and error or intuition-based forward design processes. How to ach-
ieve the inverse design of magneto-mechanical metamaterials with
prescribed properties to meet specific application requirements re-
mains largely unexplored. Although there are some works that have
achieved such design (Ma et al., 2022; Zhao and Zhang, 2023), a
significant effort is still required. For example, how to design
magneto-mechanical metamaterials with prescribed acoustic/elastic
bandgaps and energy landscapes is still underexplored.

In summary, hard-magnetic soft materials have been demonstrated
to be a promising candidate for the design of multifunctional intelligent
devices or systems. We envision that the present review can help re-
searchers better understand the mechanics of hard-magnetic soft mate-
rials, and thus achieve more functional applications.
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