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The emergence of moiré materials with flat bands provides a platform to systematically investigate
and precisely control correlated electronic phases. Here, we report on a rich phase diagram of
interpenetrating Hofstadter states and electron solids in a twisted WSe2/MoSe2 heterobilayer using
local electronic compressibility measurements. We show that this reflects the presence of both flat
and dispersive moiré bands whose relative energies, and therefore occupations, are tuned by density
and magnetic field. At low density, the competition between moiré bands leads to a transition from
commensurate arrangements of singlets at doubly occupied sites to triplet configurations at high
fields. Hofstadter states are generally favored at high density as dispersive bands are populated, but
are suppressed by an intervening region of reentrant charge-ordered states in which holes originating
from multiple bands cooperatively crystallize. Our results reveal the key microscopic ingredients that
favor distinct correlated ground states in semiconductor moiré systems, and they demonstrate an
emergent lattice model system in which both interactions and band dispersion can be experimentally
controlled.

In correlated many-body systems, two distinct classes
of phases serve as the pillars of our microscopic under-
standing: crystalline, in which the constituent particles
are strongly localized in a periodic configuration; and
fluid, in which the wavefunctions of the particles are itin-
erant. The interplay and transition between these two
regimes is of central interest in diverse contexts, ranging
from metal-insulator transitions [1] to two-dimensional
electron gases in a quantizing magnetic field [2] to ul-
tracold quantum gases [3]. These two types of phases,
if they coexist in the same physical system, often com-
pete due to the intrinsic incompatibility between their
microscopic degrees of freedom.

In recent years, moiré transition metal dichalcogenide
(TMD) systems have emerged as a new manifestation
of strongly correlated quantum matter because they can
host flat electronic bands [4, 5]. In heterobilayers, the
low-energy Hamiltonian takes a simple form when the
interlayer tunneling is suppressed: the bare electronic
structure of one constituent layer is subject to a long
wavelength moiré potential imposed by the other. Elec-
tron (hole) Wannier orbitals are localized into minima
(maxima) of the moiré potential, thereby forming a su-
perlattice that can be well described by an extended
Hubbard model [6–17]. In the presence of long-range
Coulomb interactions, these systems naturally favor com-
mensurate charge-ordered states that maximally benefit

from the underlying potential at densities correspond-
ing to fractional fillings of electrons/holes per moiré unit
cell, known as generalized Wigner crystals [8–17]. Elec-
tron solids are known to compete closely with (fractional)
quantum Hall liquids in two-dimensional electron gases
subject to high magnetic fields. However, whether this
interplay exists in a lattice system, and how it is modified
by the strong underlying periodic potential, is unknown.
To date, study of quantum Hall analogues on a lattice,
known as the Hofstadter butterfly, has been limited to
graphene-based heterostructures whose moiré potential
modulation is weak [2], and such states have not been
reported in TMD systems.
Here we report local electronic compressibility mea-

surements of a twisted MoSe2/WSe2 heterobilayer. The
small lattice mismatch between constituents leads to a
long moiré wavelength at low twist angles and enables us
to explore an unprecedentedly large range of filling and
magnetic flux per moiré unit cell. We observe a complex
pattern of competing/coexisting Hofstadter and charge-
ordered states, with phase transitions separating regimes
of distinct behavior. We show that this can be rational-
ized in terms of flat and dispersive moiré bands (respec-
tively hosting heavy and light fermions), with changes
in occupancy tuned by both density and magnetic field.
Within the flat bands, our measurements demonstrate
multiple commensurate arrangements of doubly occupied
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moiré sites. These are generalized Wigner crystals for
doublons, whose charge gaps exhibit nontrivial depen-
dence on magnetic field. In the dispersive bands, we
observe interpenetrating Hofstadter states at high mag-
netic flux. Most strikingly, we find reentrance of charge-
ordered states at moderate fields and densities, formed by
collective crystallization of holes from both flat and dis-
persive bands. Our results establish semiconductor moiré
superlattices as a rich platform to investigate phase tran-
sitions between crystalline and fluid correlated states,
and they demonstrate that both the real space structure
of the electronic orbitals and strong Coulomb interactions
play essential roles in the transitions.

COEXISTENCE OF HOFSTADTER AND
CHARGE-ORDERED STATES

The experimental measurement setup is schematically
illustrated in Fig. 1a. We use a scanning single-electron
transistor (SET) to study an AA-stacked MoSe2/WSe2
heterobilayer with a small twist angle between layers (Ex-
tended Data Fig. 1 and Supplementary Section 1-2). Fig-
ure 1b shows the local inverse electronic compressibility,
dµ/dn, as a function of magnetic field B and hole fill-
ing per moiré unit cell ⌫ at a location with twist an-
gle ✓ = 1.33� (Supplementary Section 2). We observe
an intricate pattern of incompressible states that fol-
low linear trajectories in the ⌫ � B plane. Each state
can be described by two rational quantum numbers (t, s)
through the Diophantine equation ⌫ = t(�/�0)+s, where
�0 = h/e is the flux quantum, t is the Chern number,
and s is the intercept at zero magnetic flux �. We clas-
sify the majority of these gapped states into two distinct
types. Gaps with t = 0 and fractional s are topologically
trivial and generally correspond to charge-ordered (crys-
talline) insulators in which holes form localized moments
at the moiré lattice sites, known as generalized Wigner
crystals (Fig. 1c). In contrast, gaps with nonzero (inte-
ger) t emerge at finite B and carry a nonzero Chern num-
ber. These are Hofstadter (Chern) insulators, topological
states whose wavefunctions consist of moving wavepack-
ets formed by magnetic Bloch states [18] (Fig. 1d).

The Hofstadter and charge-ordered states occur in dis-
tinct regions of the ⌫ �B plane. At low magnetic fields,
charge order is present at multiple commensurate filling
factors between �2 < ⌫ < �1: �3/2,�4/3,�5/3, and
�7/5. We observe an abrupt change at a critical field
Bc ⇡ 6 T, above which the charge-ordered states weaken
and a Hofstadter state with (t, s) = (1,�2) appears. The
transition manifests over this whole range of filling and
the critical field depends only weakly on density, suggest-
ing that it is driven by a change in the underlying moiré
bands.

Very di↵erent behavior occurs for ⌫ < �2, where an
unexpected series of incompressible Hofstadter states in-

stead emerge. Most of these states emanate from s = �3,
with a singly-degenerate Landau fan at low field spanning
towards lower hole doping, reminiscent of the asymmet-
ric Landau fan in magic-angle twisted bilayer graphene
[19]. At high fields, multiple Hofstadter states that re-
spectively extrapolate to s = �2,�3 and �4 are visible.
Remarkably, reentrant charge order is present at inter-
mediate fields for ⌫ < �2, within a slanted narrow strip
of width �⌫ ⇡ 1/2 that penetrates through and com-
pletely suppresses the Hofstadter states. The fractional
fillings (modulo an integer) at which charge order occurs
in this region are identical to those between �2 < ⌫ < �1
at low fields. Together, these observations reveal a rich
phase diagram of competing ground states with di↵ering
qualitative character. The incompressible states that we
observe, and the regions of distinct phenomenology are
summarized in Fig. 1e.
In addition to the incompressible states, our measure-

ment also reveals large areas of negative compressibility,
indicative of flat bands and strong electron-electron in-
teractions [20–22]. We observe a negative background
over the entire range �2 < ⌫ < �1, with the most neg-
ative values near ⌫ = �1 and a weaker but qualitatively
similar dependence beyond ⌫ = �2. The transition at
Bc ⇡ 6 T for �2 < ⌫ < �1 is associated with a change
in this background, including a region of enhanced neg-
ative dµ/dn near ⌫ = �2. Negative compressibility also
occurs in other localized regions such as at the bound-
aries separating the slanted stripe of reentrant charge or-
der from the surrounding Hofstadter states (this is more
clearly visible at 330 mK, see Supplementary Fig. S12).
The di↵erence between the background compressibility
in regions where Hofstadter states and charge order re-
spectively occur, together with sharper negative dµ/dn
at the boundaries between them, indicate phase transi-
tions and therefore realization of two physically distinct
regimes [23–28].

INTERACTION-DRIVEN MOIRÉ BAND
CROSSING

The interplay between moiré band structure and
Coulomb interactions is central to understanding the
competition between Hofstadter states and charge order.
Figure 2a shows a density functional theory calculation of
the moiré potential landscape in real space. It is charac-
terized by an array of deep potential wells for holes at MX
sites interpolated by a smooth potential profile, realizing
a well-defined triangular lattice [29, 30]. As a result, elec-
tronic states at other sites are disfavored and the lowest
few moiré bands are well described at the single-particle
level by the hybridized eigenstates of an individual poten-
tial well (Fig. 2b-c). For s-orbitals (corresponding to the
lowest energy eigenstate of a single well), the hybridiza-
tion is very weak due to the vanishing inter-site wave-
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function overlap, resulting in extremely flat bands with
a twofold spin degeneracy. For the four-fold degenerate
p-orbitals, the larger spatial spread of the wavefunctions
leads to stronger overlap and therefore more dispersive
bands. At ⌫ < �1, on-site Coulomb repulsion splits the
s-orbitals into lower and upper Hubbard bands separated
by an energy gap U . Competition between the single-
particle splitting of the noninteracting moiré bands and
the on-site repulsion controls which band is populated
between �2 < ⌫ < �1. Experimentally, the magnetic
field a↵ects the energetic ordering of the moiré bands
through spin/orbital Zeeman coupling. The observation
of a field-driven phase transition with an abundance of
low-field charge ordered states between �2 < ⌫ < �1
that are suppressed at high fields provides experimental
evidence that the opposite-spin flat (s) band is favored
at B = 0, but is close enough to a spin-aligned disper-
sive (p) band such that their energetic ordering can be
switched.

The di↵erence in dispersion of the competing bands is a
natural seed for the experimentally observed dichotomy
of crystalline and fluid ground states, as large e↵ective
mass favors Wigner crystals and suppresses cyclotron
gaps. We construct a phenomenological Stoner model
consisting of flat and dispersive bands, which captures
many key features in the experimental data. We simplify
the system at fillings ⌫ < �1 as a perfectly flat (upper
Hubbard) band and a manifold of dispersive bands with
a constant density of states D. The free energy of the
system can be expressed as:

E(⌫f , ⌫d, B) = (�� gB)|⌫d|+
⌫d2

2D
+ Ufd|⌫f ||⌫d|, (1)

where ⌫d < 0 and �1 < ⌫f < 0 are the respective fill-
ings of the dispersive and upper flat bands, � > 0 is the
zero-field energy gap between the dispersive band and the
upper flat band (Fig. 2c), g is the di↵erence of the e↵ec-
tive Zeeman coupling constant between the bands, and
Ufd is a Stoner parameter describing repulsion between
the states in the flat and dispersive bands. Minimizing
the free energy with respect to ⌫ and under the constraint
⌫ = ⌫f +⌫d�1, we obtain the band filling phase diagram
shown in Fig. 2d (Supplementary Section 7).

The charge order and Hofstadter regimes in the ex-
perimental data closely coincide with the areas in the
phase diagram where flat and dispersive bands are re-
spectively being populated, providing a natural explana-
tion for the distinct behaviors. The model also predicts
a region where holes are transferred from the dispersive
bands to the flat band (purple, Fig. 2d), which matches
the reentrant charge order regime in Fig. 1b. Within this
region, |⌫d| decreases as total |⌫| is increased (Fig. 2d, in-
set). That charge-ordered states occur at the same com-
mensurate fractional fillings in the reentrant regime as
for �2 < ⌫ < �1 implies simultaneous localization of
coexisting light and heavy holes from both flat and dis-

persive bands into crystalline phases, as opposed to lo-
calizing only those from flat bands. The exact nature of
these composite charge orders is an interesting open ques-
tion (see Supplementary Section 7). While the simplified
model does not incorporate microscopic details, it cap-
tures the key qualitative features in the data, and demon-
strates that energetic competition between flat and dis-
persive bands gives rise to the experimental phase dia-
gram.
Electronic interaction e↵ects beyond the simplified

model modify the details of the phase transition for
�2 < ⌫ < �1. For example, the abrupt change at
Bc ⇡ 6 T is suggestive of a first order transition. More-
over, the gap at ⌫ = �2 does not evolve linearly with
magnetic field (Fig. 2e). Instead, it decreases nonlin-
early at low fields, with a sharp drop before stabilizing
at high fields. These observations are incompatible with
a smooth crossover driven by single-particle energetics.
To understand the sharp transition at Bc ⇡ 6 T in the

range �2 < ⌫ < �1, we introduce a Hubbard model de-
scription of the competing flat and dispersive hole bands.
In the limit of a perfectly flat band, this model becomes
integrable and can be solved exactly (Supplementary Sec-
tion 8). The resulting phase diagram, computed us-
ing the phenomenological parameters used in the Stoner
model and in the relevant limit of large Hubbard inter-
action, is shown in Fig. 2f. The phase diagram indeed
shows a sharp transition at Bc associated with sudden
depopulation of the flat band. The shape of the phase
boundary is in close agreement with the experimental
data. In addition, the region of highly negative compress-
ibility observed near the upturn around ⌫ ⇡ �2 (Fig. 1b)
is predicted within the model (Supplementary Fig. S9).
Since the ground state at ⌫ = �2 changes abruptly at
Bc from a spin-unpolarized to a spin-polarized state, the
⌫ = �2 gap should also abruptly change at Bc, as ob-
served experimentally.
The close competition between opposite-spin bands for

�2 < ⌫ < �1 discussed above requires no fine-tuning
and can be understood from general theoretical grounds
in the limit of large moiré period, for which the field-
driven transition is analogous to a singlet-triplet phase
transition of a doubly occupied quantum dot. In the ab-
sence of interactions, the spin transition occurs when the
Zeeman energy gain is su�cient to overcome the gap be-
tween moiré bands (⇠ 40 meV from first principles [Sup-
plementary Section 6]), which would imply an extremely
high critical field Bc. However, Bc decreases rapidly with
interaction strength and falls in an experimentally ac-
cessible regime for realistic interaction strengths (Sup-
plementary Fig. S10). Thus, the finite field transition
observed at �2 < ⌫ < �1 at Bc ⇡ 6 T is a direct con-
sequence of strong electronic interactions. In fact, Bc

remains non-zero even in the limit of strong interactions,
which follows from the fact that the zero-field ground
state of a two-electron system with a spin-independent
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potential and arbitrarily strong Coulomb interaction is
necessarily a spin singlet [31].

The experimental phase diagram is qualitatively simi-
lar at multiple independent spatial locations with di↵er-
ent twist angles (Supplementary Section 5), demonstrat-
ing the general applicability of our theoretical framework.
Small di↵erences in observed behavior provide further in-
dications regarding the role of twist angle. Larger twist
angle favors an additional Hofstadter state (�1,�1) be-
tween �3/2 < ⌫ < �1, whereas smaller twist angle sup-
presses all Hofstadter states for ⌫ > �2. This is consis-
tent with the decreased bandwidth at smaller twist angles
and the associated tendency to favor charge order.

DOUBLON WIGNER CRYSTALS

Having established this general framework, we next
present higher-resolution measurements of the charge-
ordered states between �2 < ⌫ < �1 (Fig. 3a-c) and
discuss them in more detail. While commensurate charge
order has been observed in various moiré TMD heter-
obilayers [8–16], the unique moiré potential profile in
MoSe2/WSe2 di↵erentiates the states we observe in es-
sential ways. Crucially, at low magnetic fields, holes oc-
cupy the upper Hubbard band at �2 < ⌫ < �1, implying
that s-orbitals at each site of the triangular moiré lat-
tice are doubly occupied, forming ‘doublons’ with energy
cost U . This contrasts with systems in which the sec-
ond moiré band comes from orbitals located in di↵erent
high-symmetry stacking sites, realizing a charge-transfer
insulator without double occupation of the same orbitals
[32]. Consequently, the charge-ordered states we observe
between �2 < ⌫ < �1 necessarily involve periodic ar-
rangements of doublons on a background of otherwise
singly occupied sites, realizing a new type of generalized
Wigner crystal which we refer to as a ‘doublon Wigner
crystal’ (DWC) (Fig. 3d). Thus, the ground state order
as well as the available charge excitations are distinct
from conventional generalized Wigner crystals with only
singly occupied sites. It is likely that the very deep moiré
potential and large moiré unit cell (i.e. flat bandwidth)
combine to stabilize the DWCs that we observe [33].

The thermodynamic gaps �⌫ of the DWCs at filling
fraction ⌫ exhibit an unexpected dependence on mag-
netic field (Fig. 3c). The gap at ⌫ = �3/2 is the largest,
and surprisingly, we find that it and other DWC gaps
grow with increasing B below the critical field Bc ⇡ 6 T.
After the transition, the remaining charge-ordered gaps
decrease slightly with increasing B. Increasing gaps are
also observed in other independent locations for certain
filling factors, though quantitative details depend on po-
sition (Supplementary Fig. S5). This is inconsistent with
expectations from a scenario where particle- and hole-like
excitations of the DWCs carry the same spin/orbital mo-
ments, and implies that the excitations couple di↵erently

to the magnetic field. One possibility is that the hole-like
excitations involve itinerant doublons dressed by local re-
gions in which an antiferromagnetic spin configuration is
favored, thus giving rise to quasiparticle with a di↵er-
ent e↵ective spin [22, 34–37]. This scenario is favored
in the large U/t limit of the triangular Hubbard model,
which our system realizes [6, 32]. Orbital e↵ects such
as a momentum-dependent Berry curvature could induce
an orbital moment that could also give rise to di↵erent
e↵ective Zeeman coupling between particle- and hole-like
excitations [38]. Our results motivate additional exper-
imental and theoretical work to distinguish these possi-
bilities.

HOFSTADTER PATCHWORK AT HIGHER
HOLE DOPING

The large moiré unit cell of MoSe2/WSe2 renders hole
doping beyond ⌫ = �6 accessible, allowing us to probe
higher moiré bands in the Hofstadter regime. Figure 4a
shows dµ/dn in a large hole doping range ⌫ < �2 at
T = 330 mK, measured at a location near that of Fig. 1b
with slightly decreased tip height above the sample. The
reduced thermal and spatial broadening reveals a signif-
icantly richer pattern of Hofstadter and charge-ordered
states whose (t, s) are identified in Fig. 4b. At high fields,
additional incompressible states form sequences emanat-
ing downward from commensurate flux �/�0 = 1/2 and
⌫ = �5/2,�7/2, clearly indicating a Hofstadter origin.
The most prominent features at low fields remain the
singly-degenerate Landau fan surrounding ⌫ = �3, with
weaker incompressible states having negative t also visi-
ble.
We observe multiple phase transitions that result from

energetic reordering of Hofstadter subbands, leading to
changes in their occupations. States within the negative-
t Landau fan from ⌫ = �3 terminate at a series of neg-
ative compressibility features at intermediate fields, in-
dicating a cascade of phase transitions. These can be
thought of as the Hofstadter subband analogue of the
moiré band transition between �2 < ⌫ < �1. Similarly,
gaps at ⌫ = �3/2,�3, and �4 all exhibit transitions in
which they close and reopen as a function of magnetic
field. Competition between di↵erent subband occupan-
cies is especially prominent at higher doping ⌫ < �4,
where multiple interpenetrating Hofstadter states with
s = �1,�2,�3,�4 and �5 appear over narrow ranges in
density and magnetic field. The filling at which some of
these Hofstadter states occur deviates from their B = 0
intercept by more than five filling factors. This pat-
tern is in sharp contrast to the flavor symmetry bro-
ken Hofstadter-Chern insulators observed in magic-angle
twisted bilayer graphene systems [28, 39–42], which are
generally bounded between |s| and |s+ 1|. It does, how-
ever, resemble the Hofstadter pattern observed in hBN-
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aligned graphene devices [43–47], where such a bound
appears absent.

Certain aspects of the Hofstadter spectrum match
single-particle expectations. For example, the Laudau
fan asymmetry between �3 < ⌫ < �2 is qualitatively
consistent with single-particle Hofstadter calculations,
which show a pronounced asymmetry of e↵ective masses
for opposite band edges of the first dispersive band (Sup-
plementary Section 10-11). The single-particle calcula-
tions are also consistent with the absence of gaps at in-
teger fillings ⌫  �4 at low magnetic fields, where Hof-
stadter subbands of the dispersive moiré bands overlap.
States with varying s can result from minigaps emanating
down from rational fluxes in a single-particle Hofstadter
spectrum [46]. However, such e↵ects have typically been
observed at larger fluxes, and given the relatively narrow
bandwidth, we speculate that the details of the patch-
work of Hofstadter states with di↵erent s at high density
likely reflect both single-particle and interaction e↵ects.
One mechanism by which interactions can favor states
with non-monotonic s is through filling-dependent inter-
action energies, which can cause the ordering of Hofs-
tadter subbands originating from di↵erent moiré bands
to reshu✏e in a highly non-monotonic fashion.

CONCLUSION

In conclusion, our measurements demonstrate both
Hofstadter and charge-ordered states in a twisted
MoSe2/WSe2 heterobilayer, bridging two distinct phys-
ical regimes in a single system. The coexistence of dis-
persive and flat bands with tunable energies may pro-
vide a venue to investigate Kondo lattice physics [48].
The large moiré unit cell allows long-range and even on-
site Coulomb interactions to be controlled by placing a
screening layer nearby [49]. This enables the study of
melting of (generalized) Wigner crystals [50], and pro-
vides a route to realize more exotic quantum phases of
matter, including fractional Chern insulators [51, 52], Na-
gaoka ferromagnets [53], and quantum spin liquids [53].
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FIGURE LEGENDS/CAPTIONS

Figure 1

Competing Hofstadter and charge-ordered

states. a, Setup of the scanning single-electron tran-
sistor (SET) measurement. V2D and VG are voltages ap-
plied to the sample and back gate, respectively. VSET and
IG are bias across and current through the SET (Meth-
ods). b, Local inverse electronic compressibility dµ/dn
measured at a location with twist angle ✓ = 1.33�, as
a function of magnetic field B (with the number of flux
quanta per moiré unit cell �/�0 indicated on the right
axis) and hole doping per moiré unit cell ⌫. Data ex-
ceeding the limits of the color scale are truncated. c,d,

Cartoon illustration of the two distinct types of ground
states, crystalline (c) and fluid (d). A strong underly-
ing moiré potential (Vm) favors spatially ordered charge
arrangement (c), whereas Hartee screening from filled
states weakens the e↵ective potential and supports ex-
tended quantum liquid ground states (d). e, Incompress-
ible states identified from (b). Sloped linear trajectories
correspond to Hofstadter states, whereas vertical trajec-
tories at fractional ⌫ correspond to charge-ordered states.
The Chern numbers t of the Hofstadter states are labeled,
and their intercepts s are denoted by their line colors:
red (s = �2), blue (s = �3), and cyan (s = �4). The
background colors reflect distinct regimes where di↵erent
classes of states are favored.
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Figure 2

Tuning between flat and dispersive moiré

bands. a, Density function theory (DFT) calculation
of the real space moiré potential profile. VM , moiré po-
tential. aM , moiré lattice constant. Yellow, green and
pink dots denote XM, MX and MM stacking configura-
tions, respectively. b,c, Schematic of eigenstates in the
moiré potential wells (b) whose hybridization results in
flat and dispersive moiré bands (c). On-site Coulomb in-
teraction U further splits the flat bands into lower and
upper Hubbard bands (cyan), the latter of which has an
energy o↵set � from the dispersive bands (orange). d,

Change of dispersive band occupation d⌫d/d⌫, calculated
within the phenomenological Stoner model. Inset, Upper
Hubbard (dispersive) band filling factor ⌫f(d) as a func-
tion of ⌫ calculated at zero field (top) and at B = 11 T
(bottom). e, Magnetic field dependence of the ⌫ = �2
gap size. The gap shrinks rapidly in the shaded region
where the transition occurs. f, ⌫f as a function of ⌫ and
B calculated within the Hubbard model. The rapid de-
pletion of ⌫f occurs at the gap closing field in (e).

Figure 3

Magnetic field dependence of charge-ordered

states. a, High-resolution measurement of dµ/dn as a
function of ⌫ and B. b, Line cuts of dµ/dn at B = 0, 4, 7,
and 11 T as indicated by the arrows in (a). Each line is
o↵set by 0.28⇥ 10�9 meV cm2 (dashed lines on the right
correspond to dµ/dn = 0). c, Magnetic field dependence
of the thermodynamic gaps of charge-ordered states. d,

Illustration of ⌫ = �4/3 charge-ordered state showing a
periodic arrangement of doubly occupied sites.

Figure 4

Interpenetrating Hofstadter states. a, Higher
resolution measurement of dµ/dn as a function of B over
a larger range of ⌫ at T = 330 mK. b, Incompressible
states identified from (a). Chern numbers t of Hofstadter
states are labeled, and the s for each state is indicated
by their line colors (legend).
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METHODS

Sample fabrication

The twisted MoSe2/WSe2 device (Extended Data Fig.
1) was fabricated using standard dry transfer tech-
niques [54]. The MoSe2 and WSe2 monolayers, few-layer
graphite, and hexagonal boron nitride (hBN) flakes were
exfoliated from bulk crystals. All pickup steps were per-
formed with poly(bisphenol A carbonate) (PC) / poly-
dimethylsiloxane (PDMS) stamps. First, pre-patterned
Pt contacts (5 nm thickness) were evaporated using stan-

dard electron beam (e-beam) lithography and metalliza-
tion techniques onto a 30-nm hBN previously stacked
on few-layer graphite. Annealing was performed at
400°C and ⇠10�6 mbar for 8 hours before and after pre-
patterning to eliminate any polymer residue. A 30-nm
hBN flake was then used to pick up monolayers of MoSe2
and WSe2, which were deposited atop the pre-patterned
contacts to complete the stack. The full stack under-
went another 8-hour annealing process at 180°C, cho-
sen to prevent any alloying between the Pt contacts and
TMD layers [55]. Finally, e-beam lithography, CHF3/O2

etching, and metal deposition were used to pattern local
‘contact’ gates above the Pt contact area, and to make
electrical contact to the Pt leads and graphite gate with
Cr/Au (2 nm/100 nm). The ‘contact’ gates served to
locally dope the transition metal dichalcogenide (TMD)
to achieve Ohmic contact [56].

Single-electron transistor (SET) fabrication and
measurement

The single-electron transistor (SET) sensor was fab-
ricated by evaporating aluminium onto the apex of a
pulled quartz rod. The size of the apex, and thus the
lateral dimension of the SET, is estimated to be 50-
100 nm based on scanning electron microscope imag-
ing of tips fabricated using the same procedure. It was
brought approximately 50 nm above the sample surface,
resulting in an overall spatial resolution of about 100-
150 nm. The scanning SET measurements were per-
formed in a Unisoku USM 1300 scanning probe micro-
scope with a customized microscope head. An AC exci-
tation of VG,AC = 4 � 8 mV at frequency fG = 233.33
Hz was applied to the back gate, and an AC excitation
V2D,AC = 5 mV at frequency f2D = 167.77 Hz was ap-
plied to the sample. We then measured the inverse com-
pressibility dµ/dn / IG/VG,AC

I2D/V2D,AC
, where IG and I2D are

demodulated from the SET current through the SET
probe using standard lock-in techniques. A DC o↵set
voltage V2D,DC is further applied to the sample to main-
tain the SET at its maximum sensitivity point within
a Coulomb blockade oscillation fringe chosen to be near
the ‘flat-band’ condition where the tip does not gate the
sample. This minimizes tip-induced doping and provides
an independent direct DC measurement of µ(n). If the
sample or contacts are highly resistive such that the in-
verse measurement frequency is short compared to the
RC charging time of the sample, the AC measurement of
inverse compressibility can be artificially enhanced. The
DC measurement is noisier but less susceptible to these
e↵ects. For the data presented in this manuscript, the
AC and DC measurements agree within the noise, indi-
cating su�cient charging even in the AC scheme. We
therefore obtain µ(n) by integrating the lower-noise AC
measurement of dµ/dn. To reduce contact resistance and
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facilitate sample charging, a large negative voltage VCG

is applied to the ‘contact’ gates. All measurements were
performed at temperature T = 1.6 K unless specified
otherwise.
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1. DETERMINATION OF STACKING CONFIGURATION

Second harmonic generation (SHG) can be used to determine the relative twist between monolayer WSe2 and
monolayer MoSe2 due to their lack of inversion symmetry [1, 2]. By tracking the reflected signal at the second
harmonic frequency of the incoming signal as the linear polarizer rotates, crystallographic orientations of monolayer
portions of the device are identified as shown in Fig. S1. The SHG signal also clarifies the stacking of the heterobilayer.
For a bilayer, the second harmonic fields add constructively for AA stacking and destructively for AB stacking. The
strong SHG signal over the heterobilayer portion of the device demonstrates that it has AA stacking configuration
(Fig. S1b).

2. DETERMINATION OF THE TWIST ANGLE AND FILLING FACTORS

For homobilayers and heterobilayers with small lattice mismatch, the moiré unit cell area diverges as the twist angle
approaches zero. Twist angle disorder can therefore generate local variability in the unit cell area. Thus, while SHG
measurements distinguish between AA and AB stacking, we apply a more precise method to estimate the local twist
angle in SET measurements. First, we calculate the conversion between back gate voltage VG and carrier density
n. An initial estimate for the voltage-to-density conversion can be obtained from the geometric capacitance based
on AFM measurements of the device. However, the dielectric constant of hBN can vary across di↵erent samples, so
this provides an approximation only (which is consistent with the more detailed fitting discussed below). We refine
the calibration based on the Hofstadter features we observe. The densities at which Hofstater features occur have
quantized slopes proportional eB/h, where e represents the elementary charge, B denotes the magnetic field strength,
and h is Planck’s constant. The voltage-to-density conversion is determined by performing a linear regression to the
slope of a t = 1 incompressible state (the estimated geometric capacitance allows us to unambiguously identify the
integer value of t) as a function of B and VG. We then identify one and two holes per moiré unit cell (⌫ = �1,�2)
as the densities with the largest peaks in inverse compressibility (the relative gate voltages they occur at in di↵erent
locations with distinct twist angles further confirms this filling factor assignment). The B = 0 intercept obtained
from extrapolation of the Hofstadter states also matches these assignments and confirms that the largest peaks are
at integer fillings. From the density at ⌫ = �2, we calculate the twist angle according to the relation, valid for small
✓, n = 4p

3
✓
2+�

2

a
2
Mo

, where � = 1� aW
aMo

and aW(Mo) = 3.282 Å (3.290 Å) is the lattice constant for WSe2 (MoSe2).
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FIG. S1. Second harmonic generation (SHG) measurements. a, Zoom-in of the device with WSe2 (orange) and MoSe2
(green) monolayers outlined. The colored circles indicate the locations where SHG measurements were taken. b, SHG signal
from each isolated monolayer and the heterobilayer region as a function of polarization angle �. The larger signal from the
heterobilayer indicates that the constituent layers have AA stacking.

3. GAP EXTRACTION

The thermodynamic gap �⌫ of a given incompressible state at filling ⌫ is given by the corresponding step in chemical
potential. We extract the energy gaps by integrating dµ/dn with respect to the density n,

�⌫ ⌘ �µ = µ(n+)� µ(n�)

=

Z
n+

n�


dµ

dn
�
✓
dµ

dn

◆

B

�
dn,

where n+(�) is the density at the local maximum (minimum) chemical potential above (below) the state of interest,

and
⇣

dµ
dn

⌘

B

is the negative compressibility background to be removed.

As noted in the main text, there is a strong background of negative compressibility over large ranges of filling factor
and magnetic field. Simply integrating the raw measured dµ/dn would therefore result in gaps that are suppressed
relative to their true value. To account for the background and obtain more accurate gap sizes, we implement
a method (Method 1) analogous to that followed in Ref. [3]. Specifically, a linear fit to the dµ/dn background
surrounding the incompressible charge ordered states at fractional filling is subtracted from the raw dµ/dn (purple
dashed line, Fig. S2a). This method only assumes a slowly varying negative background and is insensitive to details
in the vicinity of the incompressible peaks. The chemical potential before and after accounting for the negative
background is shown in red and purple, respectively, in Fig. S2b. The corresponding gaps extracted from the raw
and background-corrected chemical potential are plotted as a function of magnetic field in Fig. S2c and Fig. S2d,
respectively.

Finally, for completeness we also show a di↵erent method (Method 2) of accounting for the background. Rather
than linearly fitting to the background far from the peaks, we identify the local minima in dµ/dn adjacent to each
incompressible peak (black dashed lines, Fig. S2a). Integrating the area under the peak but above the line connecting
these local minima yields the energy gaps shown in Fig. S2e. The gaps extracted from the raw dµ/dn provide an
e↵ective lower bound, and those extracted using Method 2 serve as an upper bound. We believe that Method 1 is
the most physically justified, and present the corresponding gaps in Fig. 3 of the main text. We emphasize that
the method used to account for the negative background compressibility changes the gap sizes quantitatively but not
qualitatively. Specifically, for all three gap extraction methods, the gaps of charged ordered states at fractional fillings
increase with B at magnetic fields below the phase transition at 6 T and decrease with B above this critical field.
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FIG. S2. Inverse electronic compressibility dµ/dn background and determination of gaps at fractional fillings.
a, Local dµ/dn as a function of moiré filling factor ⌫ (red). Purple and black dashed lines correspond to Methods 1 and 2,
respectively, of accounting for the negative compressibility background. The purple dashed line is a linear fit to the overall
negative background outside the peaks (Method 1), while the black dashed lines linearly connect the local minima surrounding
the incompressible peaks of the charge-ordered states (Method 2). b, Chemical potential µ as a function of ⌫ from the raw
dµ/dn (red) and after subtracting the purple linear fit from (a) (purple). c-e, The gap size �⌫ of each charge-ordered state
as a function of magnetic field B. These correspond to the step size in chemical potential at each respective ⌫ from the raw
dµ/dn (c), that obtained using Method 1 to account for the negative background (d), and that determined from Method 2 (e).

4. COMPARISON BETWEEN TRANSPORT AND COMPRESSIBILITY MEASUREMENTS

Transport measurements across the device at B = 0 (Fig. S3a) show prominent resistance peaks that can be
matched to gapped states visible in SET measurements conducted in an intervening region of the sample (Fig. S3b).
However, the local electronic compressibility measurements are significantly sharper and reveal additional charge
ordered states at fractional fillings. The mobility edge in transport also occurs further from the band edge than in
SET measurements.

5. SPATIAL DEPENDENCE

The general pattern of Hofstadter and charge-ordered phases are not unique to a particular twist angle or location in
our device. Measurements of inverse compressibility as a function of carrier density and magnetic field at five di↵erent
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FIG. S3. Comparison of transport and dµ/dn. a, Two-probe resistance R as a function of back gate voltage VG at
temperature T = 4 K. Inset: Circuit diagram showing the contacts used for the measurement. b, Local dµ/dn measurement
at a location with twist angle ✓ = 1.35� at temperature T = 1.6 K. Inset: The approximate tip location of this measurement
is indicated by the circle.

locations of the sample demonstrate the robustness of these phases and their phenomenology (Fig. 1b and Fig. S4).
All of these locations show magnetic field driven phase transitions indicated by an abrupt decrease of the ⌫ = �2
gap and weakened or absent charge-ordered states between �2 < ⌫ < �1 at high field, with near perfect agreement
in two independent locations that have almost identical twist angles (Fig. S4a,b). Other features, such as regions
of negative compressibility and the overarching pattern of where Hofstadter and charge-ordered states respectively
dominate, are linked to filling factor and occur at similar locations within the phase diagram, showing that they are
caused by intrinsic local physics in the heterobilayer and do not simply occur at a specific gate voltage or field.

Beyond this general agreement, we note qualitative di↵erences at larger and smaller twist angles (Fig. S4c,d). At
smaller twist angles, we resolve fewer Hofstadter states emanating from s = �3, and the t = 1, s = �2 state is
absent. In addition, the ⌫ = �3 gap is stronger, appears for a larger range in B, and persists all the way down to
B = 0 (Fig. S4c). In contrast, at larger twist angles, we observe an extra t = �1, s = �1 state (Fig. S4d) and a
⌫ = �2 gap that closes fully at intermediate fields. Thus, the twist angle tunes the competition between Hofstadter
and charge-ordered states. We ascribe this to di↵erences in the electronic bandwidth, which is highly sensitive to the
twist angle. Smaller twist angles produce flatter bands, favoring charge-ordered phases, while the more dispersive
bands at larger twist angles favor Hofstadter states.

For heterobilayers with small twist angles and lattice mismatch, it is expected that strain and lattice reconstructions
are present [4, 5]. On the mesoscopic scale, these e↵ects can generally be thought of as disorder of the pristine moiré
lattice. In extreme cases, it can broaden or even completely eliminate the signatures of fragile correlated states. In
our experiment, we obtain data from regions where the twist angle variation is minimal (based on the widths of the
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FIG. S4. Spatial dependence. a-d, Measurements of local dµ/dn as a function of ⌫ and B at four independent locations
which are each separated by at least 150 nm from each other and from the data presented in Fig. 1b of the main text. The
corresponding local twist angles are 1.35� a, 1.36� b, 1.24� c, and 1.44� d. A qualitatively similar phase diagram of competing
Hofstadter and charged-ordered states is evident in each location, demonstrating the generality of the underlying physics. In
d, a constant background compressibility of 8 ⇥ 10�12 meV cm2 was subtracted from the raw AC signal, which exhibited a
spurious enhancement due to poorer sample charging. The subtracted background was benchmarked based on a simultaneous
DC measurement, and the uncertainty of this background is < 2⇥ 10�12 meV cm2.

observed incompressible peaks and from spatial optimization of measurement locations). For locations with similar
twist angles, we observed nearly identical behavior of all prominent correlated states (See Fig. 1b and Fig. S4a,b).
The small broadening of the incompressible peaks suggests that the mesoscopic relaxation is weak on the scale that
our SET probe is sensing. The similar behavior in multiple independent locations also suggests that strain does not
have a dominant influence on our experimental results, though we note that our experimental probe does not directly
measure strain.

Finally, we comment on the possiblility of additional charge-ordered states between �2 < ⌫ < �1, as suggested
by the additional vertical features in dµ/dn between the most prominent charge-order peaks (e.g. those visible in
Fig. 3a). Similar peaks appear in multiple locations, but they show spatial variability and do not generally have
corresponding commensurate fractional fillings with low integer denominators. One possible explanation for the weak
satellite peaks/dips in dµ/dn is that they correspond to charging of localized states [6]. Namely, small amounts of
local disorder in the sample can induce a potential landscape, and corresponding spatial variations in density, which
leads to the formation of local quantum dots. These dots can host localized electronic states, and when a given state
is populated, the experimental signature is a dip in dµ/dn (and corresponding incompressible behavior between such
charging events). We note that this possible explanation for the additional features is not inconsistent with near-
commensurate arrangements of charge pinned to the local moiré potential, i.e. the details of the localized states can
themselves be influenced by a tendency toward charge order, but need not occur at exactly commensurate rational
fillings, depending on the details of the local potential and twist angle disorder.

In Fig. S5, we show the magnetic field dependence of the thermodynamic gaps of charge-ordered states in two
di↵erent locations (those shown in Fig. 1b of the main text and in Fig. S4b) that have similar twist angle to Fig. 3c
but are su�ciently far away to represent independent measurements. Contradictory to theoretical predictions for a
single band Hubbard model in a triangular lattice [7, 8], the ⌫ = �3/2 gap is generally larger than those at �4/3 and
�5/3 in our device. This contrasts with several previous measurements in other materials systems where states at
multiples of ⌫ = 1/3 are strongest [9–12]. However, we note that a larger gap at ⌫ = �3/2 has also been previously
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FIG. S5. Magnetic field dependence of charge-ordered states at other locations. a,b, Gaps at fractional fillings
extracted from Fig. 1b in the main text. c,d, Gaps at fractional fillings extracted from Fig. S4b. Gray regions indicate fields
at which we cannot extract quantitatively accurate gaps because the lock-in amplifier overloaded during measurement.

reported in measurements of aligned WS2/WSe2 heterobilayers between 1 < |⌫| < 2 [13, 14].
Details of the magnetic field evolution of charge-ordered states at fractional fillings depend on exact location. The

increase in the charge gap at ⌫ = �3/2 as a function of magnetic field is reproducible in multiple locations. However,
it is harder to identify generic behavior for other fillings. In particular, the gaps at �4/3 and �5/3 in Fig. S5b
increase up to B = 1.6 T beyond which the gap dependence is more ambiguous. In Fig. S5d, there is not a large
change in gap size over the magnetic fields where we can extract reliable data. We note that while spin physics has
been predicted for ground states on a triangular moiré lattice [7, 8, 15], the very large U/t ⇡ O(102) implies that the
energy scale associated with the spin physics, J = t2/U ⇡ 1 mK, is much smaller than the experimental temperature,
and is therefore unlikely to be relevant to the gap scaling with magnetic field. An applied magnetic field squeezes the
wave function of an electron in a harmonic potential well, which decreases |t| by reducing the inter-well wavefunction
hybridization. This e↵ect could in principle lead to an increase in the gaps of the charge-ordered states with field.
However, for realistic parameters of this system, the cyclotron frequency !c = eB/(2⇡m⇤) ⌧ !0 is very small (!0 is
the natural frequency of the harmonic potential), indicating that this e↵ect is also negligible.

6. DENSITY FUNCTION THEORY (DFT) AND HARTREE-FOCK (HF) CALCULATIONS

We study the TMD heterobilayer WSe2/MoSe2 with a small twist angle starting from AA stacking, where every
metal (W) or chalcogen (Se) atom on the top layer is aligned with the same type of atom on the bottom layer. Within
a local region of a twisted bilayer, the atom configuration is identical to that of an untwisted bilayer (the lattice
mismatch between WSe2 and MoSe2 is less than 0.2%), where one layer is laterally shifted relative to the other layer
by a corresponding displacement vector d0. For this reason, the moiré band structures of twisted TMD bilayers can
be constructed from a family of untwisted bilayers at various d0, all having 1 ⇥ 1 unit cell. Our analysis thus starts
from untwisted bilayers.
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In particular, d0 = 0, (�a1 + a2) /3, (a1 + a2) /3, where a1,2 is the primitive lattice vector for untwisted bilayers,
correspond to three high-symmetry stacking configurations of untwisted TMD bilayers, which we refer to as MM,
XM, MX. In MM (MX) stacking, the M atom on the top layer is locally aligned with the M (X) atom on the bottom
layer, likewise for XM. The bilayer structure in these stacking configurations is invariant under three-fold rotation
around the z axis.

Density functional calculations are performed using generalized gradient approximation with SCAN+rVV10 van
der Waals density functional [16], as implemented in the Vienna ab initio Simulation Package [17]. Pseudopotentials
are used to describe the electron-ion interactions. We first construct the zero-twisted angle WSe2/MoSe2 bilayer
at MM, MX, and XM lateral configurations with vacuum spacing larger than 20 Å to avoid artificial interaction
between the periodic images along the z direction. The structure relaxation is performed with force on each atom
less than 0.001 eV/Å. We use 12⇥ 12⇥ 1 for structure relaxation and self-consistent calculation. The more accurate
SCAN+rVV10 van der Waals density functional gives the relaxed layer distances as 6.46 Å, 6.45 Å and 6.92 Å for
MX, XM and MM stacking structures, respectively. By calculating the work function from electrostatic energy of
converged charge density, we obtain the band structure of MM, MX, and XM-stacked bilayers, with reference energy
E = 0 chosen to be the absolute vacuum level, shown in Fig S6.

FIG. S6. DFT band structure for high symmetry stacking structures.

The low-energy moiré band structure for the K valley valence bands is described by the continuum model Hamil-
tonian [18],

Hg0,g(k) ⌘
~2(k + g)2

2m⇤ �g0,g � V
3X

j=1

(ei��g0,g+gj + e�i��g0,g�gj ). (1)

We use aM = 13.5 nm, m⇤ = 0.5me, and (V,�) = (12.3 meV,�125.1�) as obtained from the DFT bands at the three
stacking regions. Note here that we use a sign convention such that the kinetic energy of holes is positive, which is
appropriate to describing interacting systems. In the limit ~2

2m⇤a2
M
/V ! 1, the model becomes an electron gas and,

in the opposite limit, it approaches an array of isolated quantum dots. The long moiré wavelength of our sample
aM = 14 nm puts it closer to the quantum dot array limit with ~2

2m⇤a2
M
/V = 0.034.

The lowest several non-interacting moiré bands in our sample originate from two-dimensional harmonic oscillator-
like orbitals on a triangular lattice of XM stacking sites. As holes are doped into moiré bands, it is possible that their
mutual Coulomb repulsion could cause them to localize to other regions of the moiré unit cell, a scenario known as
charge transfer [19]. The small value of ~2

2m⇤a2
M
/V in our system suggests that holes will remain localized to triangular

lattice sites between filling factors �2 < ⌫ < �1. To test this, we calculate the self-consistent, unrestricted HF ground
state at spin-projected filling factors ⌫" = �1, ⌫# = 0 and at ⌫" = ⌫# = �1. In the HF approximation, the continuum
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model Hamiltonian becomes [20]

Hs0g0,sg(k) ⌘ �s0,s[
~2(k + g)2

2m⇤ �g0,g � V
3X

j=1

(ei��g0,g+gj + e�i��g0,g�gj )]

+
1

A

X

k0,g00

[�s0,s
X

s00

Vs,s00(g
0 � g)⇢s00,g0+g00;s00,g+g00(k0)� Vs0,s(g

00 + k0 � k)⇢s0,g0+g00;s,g+g00(k0)].

(2)

The first line of this expression contains the single-particle terms and the second line contains the interaction terms.
The first interaction term is the local Hartree potential an the second is the Fock non-local exchange potential. Here
s0 and s are spin indices, ⇢s0g0;sg ⌘ h HF | c†s,k+gcs0,k+g0 | HF i is the single-particle density matrix in the basis of
simultaneous p, Sz eigenstates, and | HF i is the single-slater-determinant ground state. We perform the calculation
with an 9 ⇥ 9 Monkhorst-Pack Brillouin zone mesh and the lowest 13 shells of reciprocal lattice vectors. We do not
explore states with broken translation symmetry which are unlikely at integer filling factors. We fix the Sz eigenvalue
of our state at the outset of the calculation so that ⇢s0,g0;s,g / �s0,s. We use the single-gate-screened Coulomb

interaction in the image charge approximation, Vs0,s(q) =
e
2

2✏✏0

(1�e
�2dq)
q

where d = 30 nm is the sample-gate distance

and q ⌘ |q|. Additionally, we choose ✏ = 5 to account for the hexagonal boron nitride dielectric environment of the
superlattice.

In Fig. S7a we plot the non-interacting continuum model band structure. The top (flat) band originates from an s
orbital and the next pair of (dispersive) bands originate from two p orbitals at each triangular lattice site. We note
that the bandwidth is a↵ected by screening from the underlying filled bands. Hartree terms tend to weaken the moiré
potential and therefore lead to more delocalized wavefunctions and stronger inter-site orbital hybridization, causing
the bandwidth to be increased and filling-dependent.

In Fig. S7b, we plot the hole number density of the HF ground state at spin-projected filling factors ⌫" = �1, ⌫# = 0,
and in Fig. S7c, the same quantity at ⌫" = ⌫# = 1. In both cases, the charge density within the moiré unit cell is
concentrated to the triangular lattice sites of V0(r) maxima. The charge density within the triangular lattice site
at ⌫" = ⌫# = �1 is spread out compared to when ⌫" = �1, ⌫# = 0 because of the repulsion between the two holes
on each site. Although we do not enforce  n"k =  n#k (in other words, our HF calculation is unrestricted), our
self-consistent solution in this case satisfies this condition. These results serve as additional evidence that our system
is appropriately modeled as a triangular lattice and that the charge transfer scenario does not occur at least for filling
factors ⌫ � �2.

FIG. S7. Hartree-Fock (HF) study of charge configuration between filling factors ⌫ = �1 and ⌫ = �2. a, Non-
interacting continuum model band structure. b, Hole number density of the HF ground state at ⌫" = �1, ⌫# = 0 and c, at
⌫" = ⌫# = �1. The hole number density in both cases is localized to the XM triangular lattice sites within the moiré unit cell.

Finally, we comment on the possible role of � valley bands. At the MX and XM regions, the DFT band structure
(Fig. S6) suggests that the � pocket is competitive in energy with the K pocket. While a continuum model describing
both K and � valleys show that the first band is indeed from K valley, the first � valley band is only ⇠ 10 meV away.
We note that the competition of � and K valley bands in DFT is very delicate, and depends sensitively on details such
as choice of van der Waal density functional and relaxed lattice structure. In our analyses, we have assumed that the
K valley bands are energetically favored and the � band can be safely ignored. This is consistent with prior reports
that have shown the valence band extrema reside at the K valley for AA stacking configuration [21–24]. We cannot
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conclusively rule out the possibility that the � bands are energetically favored in our experiment, but we remark
that the underlying physical picture would remain largely unchanged. The valley structure can be probed directly in
future experiments via magnetic circular dichroism or through the application of an in-plane magnetic field.

For completeness, we additionally remark that an alternative (although less likely) scenario for the origin of the
dispersive and flat bands we observe could arise from competition between the � and K valleys. In this scenario, the �
valley bands, which have larger e↵ective mass and feel a stronger moiré potential, play the role of the flat bands, while
the K valley bands play the role of the dispersive bands. However, this scenario requires fine tuning (the first � and K
bands must be very close in energy) and fails to explain some observations. First, the presence of observable LL gaps
in the dispersive band is at odds with the flatness of the first K band (without significant interaction broadening).
Indeed, in other moiré TMD systems with smaller moiré period, charge order is generally favored even though the
smaller moiré unit cell corresponds to larger bandwidth relative to interaction energy. Additionally, the first K band,
associated with an s orbital, should display more prominent hole-like LL gaps (see Fig. S11), which is at odds with
the observation of only electron-like LL gaps in the first dispersive band.

7. PHENOMENOLOGICAL STONER MODEL

The set of parameters used in the phenomenological model to generate Fig. 2d in the main text are as follows:
density of states of the dispersive band D = 1/9t, e↵ective interaction Ufd = 1/3D = 3t, band separation � = 1/D
(see Fig. 2c), and g = 0.22W/Tesla. Here, t is the hopping matrix element of the p-orbitals in the tight-binding
Hamiltonian and is an adjustable parameter. Parameters are chosen such that the model quantitatively matches the
experimental phase diagram in Fig. 1b, but we note that a realistic value of t ⇡ 0.2 meV yields a g-factor of 8µB ,
which is of similar magnitude to values from other measurements in the same system [22].

In this model, the width of the reentrant region in which both flat and dispersive bands are partially filled is
constant and given by �⌫ = (2DUfd � 1)/(DUfd � 1). In the experimental phase diagram, the width of this region is
also roughly constant �⌫ ⇡ 1/2. This implies that the e↵ective interaction parameter must be Ufd ⇡ 1/(3D). Note,
however, that this does not imply that the on-site Hubbard interaction is 1/(3D), as the parameter Ufd is generically
not equal (or even proportional) to the Hubbard interaction. We substantiate this statement through our analysis of
an integrable microscopic model in the next section. The model also predicts that for smaller angle (larger D), the
crossover from filling the flat band to filling the dispersive band should occur at smaller B for given (⌫f , ⌫d). This is
also consistent with our experimental observations in Fig. S4.

Compressibility dµ
d⌫ = d2

E

d⌫2 can be calculated from the phenomenological model, as is shown in Fig. S8. Within

the region where reentrant charge-ordered states appear, a constant negative dµ/d⌫ =
�DU

2
fd

1�2DUfd
< 0 is obtained.

Experimentally, the negative compressibility within this region relative to that associated with the adjacent dispersive
bands is evident at base temperature in Fig. 4A as well as in Fig. S4(a,b). The charge-ordered states within this
reentrant region consist of states originating from both flat and dispersive bands. The degree to which these distinct
states hybridize is an interesting open question to be explored. If the bands do not hybridize, the charge-ordered
states would involve simultaneous localization of carriers from both flat and dispersive bands. Alternatively, it is
possible that the bands hybridize and produce composite low-energy states with large e↵ective mass, i.e. heavy
fermions. Finally, we comment on the di↵erent behavior we observe while filling the same band at high field between
�2 < ⌫ < �1 and at low field between �3 < ⌫ < �2 (Fig. 1b). This di↵erence may be caused by screening from the
underlying filled bands. As noted above, this broadens the dispersion due to Hartree screening. It may also enhance
e↵ective Coulomb screening and therefore weaken electronic interactions.

8. HUBBARD MODEL

We analyze a Hubbard model description for the experimental system in the hole density range �2  ⌫  �1 in
a magnetic field. In this region, we assume the the spin-up s-orbital flat band is fully filled due to the spin Zeeman
e↵ect, and the relevant degrees of freedom are the spin-down s-orbital band and dispersive p-orbital bands, whose
competition is tuned by the magnetic field. The presence of an insulating state at ⌫ = �2 suggests that only a single
p band (the one derived from the spin-up p state with orbital angular momentum quantum number `z = +1) is being
filled.

We model this system as a two-orbital tight binding model on a triangular lattice, where the two orbitals correspond
to the flat and dispersive bands, respectively. To obtain a tractable model with interactions, we further take the limit
where the flat band is perfectly flat and the interaction is only on-site via a Hubbard term. The resulting Hamiltonian
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FIG. S8. Phenomenological Stoner model. dµ/dn calculated from the phenomenological Stoner model.

is

H = �t
X

hi,ji
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dj + (�+ 3|t|� gB)
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where d†
i
, di are the fermionic creation and annihilation operators for the dispersive band on site i, nd

i
= d†

i
di, and

the sum hi, ji is over nearest neighbor sites on the triangular lattice. Finally, nf

i
= 0, 1 is the density of the upper

flat band fermions on site i which, due to the absence of a kinetic term, is a good quantum number. The hopping
parameter t represents the kinetic energy of the dispersive band, and is negative for the p orbital band in question.
The magnetic field is modeled as a Zeeman term gB. We have chosen the constant potential o↵set (�+3|t|� gB) so
that the band bottom is at �� gB in order to make a direct comparison with the phenomenological Stoner model.

The on-site repulsion U is estimated to be much larger than t. Taking a harmonic approximation for the moiré
potential with a moiré period of ⇡ 14 nm and e↵ective mass m⇤ = 0.5me, leads to an e↵ective harmonic oscillator
lengthscale � ⇡ 2 nm, and corresponding Hubbard energy scale U ⇡ e

2

4⇡✏✏0�
⇡ (700/✏) meV, where ✏ is the relative

dielectric constant. Meanwhile, the non-interacting bandwidth of the p band from the continuum model is estimated
to be only W = 9|t| ⇡ 2 meV. Although the bandwidth will be renormalized due to Coulomb interaction with the
filled s band, it is unlikely to change the fact that the local Hubbard interaction is much larger than t. Thus, we
take the limit U/t � 1, in which there remains only a single energy scale |t| for total density nf + nd  1, where
nf,d = |⌫f,d|. In this limit, double occupancy is forbidden. As there is no double occupancy, the interaction energy

between the heavy and light bands is purely kinetic: the sites on which nf

i
= 1 act as ‘defects’ for which the dispersive

fermions must avoid, thus paying the cost in kinetic energy.
The exact ground state(s) of the above model at a fixed nf and nd correspond to states with a particular con-

figuration of nf

i
which minimizes the kinetic energy of the dispersive band. In reality, however, this e↵ect will be

overshadowed by long range Coulomb interactions, which will play a significant role in determining the final charge
configuration leading, among other things, to the formation of incompressible generalized Wigner crystal states at
commensurate fillings. For our current analysis, we take a middle ground and simply average over many configurations
of nf

i
with equal probability.

We numerically simulate this Hamiltonian on a L⇥L triangular lattice torus. To do this, we first fix particle numbers
Nf , Nd = 1 . . . L2, with Nf + Nd  L2. We then solve for the ground state energy of H with (� + 3|t| � gB) = 0
for Nsamp random configurations of nf

i
2 {0, 1}, such that

P
i
nf

i
= Nf . The ground state energy for each sample is

obtained by diagonalizing the quadratic Hamiltonian for d fermions and filling Nd lowest energy bands. To decrease
finite size e↵ects, we also average over fluxes threaded through the torus. The final result is the configuration-averaged
energy per unit cell E0(nd, nf ), where n(f,d) = N (f,d)/L2. Note that there is a single energy scale set by W = 9|t| in
the large U/t limit. For a given total density ntot = nd + nf and magnetic field B, the optimal density distribution
can then be obtained by minimizing E(ntot, B) = minnd2[0,ntot]

�
E0(nd, ntot � nd) + (�+ 3|t|� gB)nd

 
. Choosing

� = W and g = 0.22W/Tesla as in the Stoner model results in the phase diagram shown in Fig. 2F of the main text.
The final result is a relatively sharp transition at a critical field Bc ⇡ 6 T between filling of the flat and dispersive
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bands. The critical field varies little with filling, except for a small upturn near ⌫ = �1�ntot = �2. Near this upturn,
compressibility becomes very negative, as shown in Fig S9a, in excellent qualitative agreement with the experimental
compressibility measurements in this range.

Finally, we can obtain the e↵ective interaction Ufd as a function of nf and nd in our e↵ective model. The energy
function E0 can be decomposed as E0(nd, nf ) = E0(nd, 0) + E0(0, nf ) + Ue↵(nd, nf )ndnf . The numerically obtained
Ue↵(nd, nf )/W as a function of the dispersive and flat band density is shown in Fig S9b. The value of Ue↵/W ⇡ 0.3
in a large part of the diagram, which is consistent with the Ufd = W/3 suggested by the Stoner model in combination
with the experimental width �⌫ = 1/2 of the reentrant region (despite this model not being directly applicable for
⌫ < �2).

FIG. S9. Filling-dependent interaction strength and compressibility in the Hubbard model. a, E↵ective interaction
strength Ueff calculated as a function of flat and dispersive band filling nf,d. b, Numerically evaluated compressibility within
the Hubbard model.

9. SINGLET-TRIPLET QUANTUM DOT TRANSITION

By expanding the moiré potential near its maxima to leading (quadratic) order, we approximate the e↵ective
Hamiltonian for a hole isolated to a single moiré potential maximum, as that of a circular harmonic oscillator. The
e↵ective Hamiltonian for two Coulomb-interacting holes isolated to the same potential well in a magnetic field is then

HQD = ~⌦+(a
†
1+a1+ + a†2+a2+ + 1) + ~⌦�(a

†
1�a1� + a†2�a2� + 1) +

e2

4⇡✏✏0|r1 � r2|
� gµBBSz. (4)

Here a↵± ⌘ (a↵x ⌥ ia↵y)/
p
2 lowers the energy of particle ↵ by ⌦± and changes its Lz eigenvalue by ±~. ⌦± =

p
!2 + (!c

2 )2 ± !c
2 , !c ⌘ eB/m⇤ is the e↵ective cyclotron frequency, and ! ⌘

q
16⇡2V cos�

a
2
Mm⇤ is the natural harmonic

oscillator frequency determined the moiré potential. g is the e↵ective spin g-factor. From the continuum model
parameters (V = 12.3 meV, m⇤ = 0.5me, � = �125.1�, aM = 13.5 nm) we find ~! = 40.3 meV and l = 1.95 nm.

The singlet ground state has spin and orbital angular momentum quantum numbers (S,L) = (0, 0) and the triplet
(S,L) = (1, 1). The magnetic field couples to the two particle state through linear and quadratic terms in ~!c

appearing in ⌦+� and through Zeeman coupling. In the relevant parameter regime, !c ⌧ !0. For this reason, the
spin singlet state is decoupled from the magnetic field [with leading corrections of O(!c/!)2] and the triplet state is
coupled linearly to the magnetic field through its orbital and spin angular momentum. In the absence of the Coulomb
interaction, the singlet-triplet gap is �st(B) ⌘ E0(S = 1) � E0(S = 0) = ~⌦� � gµBB. The singlet-triplet ground
state transition occurs at Bc such that �st(Bc) = 0. As the strength of the Coulomb interaction increases, �st(B)
monotonically decreases for all B and thus so too does Bc.

To determine Bc in the presence of a finite Coulomb interaction, we solve this two-body problem using exact
diagonalization following the approach of [25], to which we refer the reader for a technical discussion of the calculation.
We plot the critical magnetic field for the singlet-triplet transition Bc(✏�1) as a function of Coulomb interaction
strength for several values of g. In the absence of the Coulomb interaction, Bc � 6 T where 6 T is the approximate
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value of the observed phase transition in the filling range �2 > ⌫ > �1. In the presence of a finite Coulomb
interaction, however, Bc monotonically decreases, approaching values comparable to 6 T. We note that this singlet-
triplet transition has been studied theoretically and observed experimentally in GaAs quantum dots [26, 27].

Finally, we comment on our observation that Bc is smaller in regions of smaller twist angle. This is consistent with
the predicted scaling of Bc with twist angle in our quantum dot model. Since, as noted above, !c ⌧ !0, �st(B) is a
linear function of B. In the absence of Coulomb interactions, �st(B = 0) = ~! / a�1

M
/ ✓. The interaction strength

is characterized by the dimensionless ratio of energy scales e
2
/(4⇡✏✏0l)

~! / a1/2
M

/ ✓�1/2. As a function of interaction
strength, �st decreases monotonically. Since the non-interacting gap decreases with decreasing ✓ and the coupling
constant, which decreases the gap, increases with decreasing ✓, �st(B = 0) and therefore also Bc monotonically
decrease with decreasing ✓.
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FIG. S10. Critical magnetic field for singlet-triplet transition of the two-hole quantum dot. Value of the applied
magnetic field at which the two-hole ground state within a moiré potential well undergoes a singlet-triplet transition as a
function of Coulomb interaction strength ✏�1 determined by exact diagonalization of two Coulomb-interacting holes in a
circular harmonic potential.

10. SINGLE-PARTICLE HOFSTADTER SPECTRUM

In Fig. S11, we show the single-particle Hofstadter spectrum for the first three bands of a single spin species,
computed from the continuum model. We work with the continuum model,

H(k) = � k2

2m
+ V (r) (5)

where V (r) = 2v
P

i=1,3,5 cos(gi · r + �). A magnetic field is introduced via minimal coupling by substituting k !
⇡ ⌘ k�A, where A = (B/2)(xŷ�yx̂) is the vector potential in the symmetric gauge. The gauge-invariant operators
⇡x and ⇡y satisfy the commutation relation [⇡x,⇡y] = iB. From these, we define Landau level raising operator
a† = (⇡x � i⇡y)/

p
2B. We also define the operators K = k+A, which are gauge-dependent and satisfy [⇡i,Ki] = 0

and [Kx,Ky] = �iB. We work in the eigenbasis of n = a†a and Kx, spanned by the states |n,Kxi where n = 0, 1, 2, . . .
and Kx 2 R.

The kinetic energy is diagonal in this basis is independent of Kx

� ⇡2

2m
|n,Kxi = �B

m

✓
n+

1

2

◆
|n,Kxi (6)

The potential term can be decomposed into terms of the form eiQ·r, which act in this basis as

eiQ·r |n,Kxi =
X

n0

Dn0n(
Qx + iQyp

2B
)e�i

Qy
B (Kx+

Qx
2 ) |n0,Kx +Qxi (7)
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FIG. S11. Single-particle Hofstadter spectrum. a,b, Single-particle and spinless Hofstadter spectrum calculated from the
continuum model for the flat s (a) and dispersive p (b) bands.

where

Dn0n(z) =

8
<

:
zn

0�ne�
|z|2
2

q
n!
n0!L

(n0�n)
n (|z|2) n0 � n

(�z⇤)n�n
0
e�

|z|2
2

q
n0!
n! L

(n�n
0)

n0 (|z|2) n0 < n
(8)

The reciprocal lattice vectors can be expressed as

g1 = (0, 2�y); g3 = (��x,��y); g5 = (�x,��y) (9)

where �x =
p
3g/2,�y = g/2, and g = 4⇡/(

p
3aM ). In terms of �x,y, it becomes clear that the potential term only

mixes Kx with Kx ±�x, and is periodic under Kx ! Kx + p�x if B = p�y�x/(2⇡q), for integers p, q. We therefore
introduce a new basis

|n, j;x0, k0i = N
X

`2Z
e

2⇡ik0
p (x0+j+`p)|n,Kx = �x(x0 + j + `p)i (10)

up to a normalization factor, where x0 2 [0, 1] and k0 2 [0, 1], and j = 1, . . . , p with j ⌘ j + p. Each term in the
potential eiQ·r can be characterized by two integers qx = Qx/�x and qy = Qy/�y, which act in this basis as

eiQ·r|n, j;x0, k0i =
X

n0

Dn0n(
Qx + iQyp

2B
)e�

2⇡iq
p qy(x0+j+ qx

2 )�2⇡ik0
qx
p |n, j + qx;x0, k0i (11)

In practice, we truncate the Landau level basis to some large but finite number n = 0, . . . , Nmax, which must
be chosen to not a↵ect the low energy eigenvalues of interest. For each fixed x0, k0, the resulting Hamiltonian is
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pNmax ⇥ pNmax dimensional and can be exactly diagonalized to obtain a set of eigenvalues Ex0k0
i

. The density of
states is obtained by averaging over x0 and k0 with a factor of 1/(2q),

DOS(E) =
1

2qAuc

*
X

i

�(E � Ex0k0
i

)

+

x0k0

(12)

where Auc =
p
3a2

M
/2 is the moiré unit cell area.

The results are shown in Fig. S11 for the first three moiré bands (of a single spin species) with a moiré period of
aM = 13.5 nm, e↵ective mass m = 0.5me, potential strength v = 12.3 meV and phase factor � = �125.1�. For a
given p, q, we keep Nmax = b100q/pc states which is su�ciently large to avoid cuto↵ e↵ects in the first three bands,
and average over randomly chosen x0, k0 2 [0, 1] until a su�ciently smooth DOS is achieved.

The Hofstadter spectra reveals many features which are consistent with experimental observations at low density.
The first band is derived from the s orbital of the moiré site and is exceptionally flat. The energy gaps between
Landau levels (Hofstadter subbands) within the first band is on the order of 0.01 meV, much too small to be detected
experimentally. Indeed, in the density range �2  ⌫  0 for B < 6 T where the flat band is being filled, no Hofstadter
gaps are observed.

The second and third bands are derived from the p orbitals with orbital angular momentum `z = ±1. The magnetic
field couples to the orbital angular momentum leading to a linear splitting of the two bands with B. The lowest energy
state after the s orbital bands have been filled is the state with orbital angular momentum `z = +1 and spin aligned
with B. In the experimental phase diagram, we expect this state to be filled in the region �3  ⌫  �2 for B < 6 T,
and �2  ⌫  �1 for B > 6 T due to the interaction induced band reordering. In both these regions, only electron-like
Hofstadter gaps with positive slope are observed, i.e. (t, s) with positive t. This is consistent with the Hofstadter
spectrum in Fig. S11 which shows that only electron-like Landau level gaps in the second band are appreciable. This
can be understood as arising to an asymmetry in the dispersion of the band: the band features a flat band top but
dispersive band bottom. Thus, only Landau levels emanating from the band bottom, i.e. electron-like Landau levels,
are observable.

For filling beyond this, we expect the bands to be strongly renormalized by interactions with filled states and no
longer resemble that of the single particle band structure. The order in which the bands fill will also sensitively
depend on interactions and spin g-factor. The closing and reopening of gaps at fixed filling ⌫ = �3 and 2.5 are likely
also related to changes in the underlying band occupation. A comprehensive theoretical study of the interaction-
renormalized band structure at higher filling, and the corresponding Hofstadter spectrum is beyond the scope of this
work.

11. GAPS OF THE HOFSTADTER STATES

We extract the Hofstadter gaps from measurements in two di↵erent locations (Fig. S12a,c) and plot them as Wannier
diagrams in Fig. S12b,d. Both plots show similar quantitative and qualitative trends with magnetic field. The
Hofstadter gaps first increase with field after emerging but then decrease rapidly, both near the region of reentrant
charge order and also when approaching �/�0 = 1/2. Additionally, the Wannier plot further demonstrates the
asymmetry in the second moiré band dispersion. In particular, above the reentrant charge order for �3 < ⌫ < �2,
we observe larger electron-like than hole-like Hofstadter gaps in agreement with the di↵erent e↵ective masses for top
and bottom band edges (this is also evident from the size of the Hofstadter gaps for �2 < ⌫ < �1 at high fields).

We also comment further on additional states with t = 0 and s < �2 observed in regions where only dispersive
bands are changing occupation. An incompressible state at integer filling, (0, 3), appears at intermediate fields in
the vicinity of a Landau fan emanating from ⌫ = �3 (Fig. 4a). It closes and reopens several times as a function of
magnetic field. Qualitatively similar behavior also occurs at ⌫ = �4. The exact nature of these states is not known.
However, one natural explanation is that they could arise from populating Hofstadter subbands of the dispersive
bands with equal and opposite Chern numbers. These subbands could originate from di↵erent spin-valley flavors of
the dispersive bands, which would imply a flavor-ordered ⌫ = �3 insulator. Other possible candidates include charge
order or excitonic insulators, and further experimental and/or theoretical input is required to conclusively distinguish
these possibilities. Finally, we note that a (0,�5/2) state also appears both below and above the region of reentrant
charge order, where the dispersive bands are populated. This is consistent with the prominent charge-ordered state
at ⌫ = �3/2 for B > Bc, where the same manifold of dispersive bands is also populated. The absence of other charge-
ordered states and the decreased strength of ⌫ = �5/2 relative to ⌫ = �3/2 likely reflects changes in screening and
Hartree e↵ects from the underlying filled states, as discussed in the Phenomenological Stoner Model section above,
and possible hybridization between flat and dispersive bands.
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FIG. S12. Hofstadter gaps for �4 < ⌫ < �2. a,c, Zoom-ins from Figs. 1b and 4a in the main text, which were measured at
two independent locations. b,d, Gaps extracted from (a) and (c), respectively. (a) was taken at temperature T = 1.6 K while
(c) at T = 330 mK and with a smaller tip-sample separation.

12. DISPLACEMENT FIELD EFFECTS

In systems where electronic states from both layers are involved, such as homobilayers, the displacement field can
play an important role acting as a layer-dependent potential. In most heterobilayer systems, including ours, only the
valence band states from one layer are involved, so the primary e↵ect of a displacement field is an unimportant overall
energy shift. The next leading order e↵ect of the displacement field is to couple to the spatially varying z-coordinate
within a layer resulting from out-of-plane lattice relaxation, which has the e↵ect of slightly tuning the depth of the
e↵ective moiré potential.
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For the single gate geometry of our experiment, the e↵ective displacement field is significantly smaller than is
typically explored in dual-gated devices. Neglecting stray electric fields, the displacement field can be approximated
as D = (1/✏0)(Ctip�sampleVtip�sample � CGVG), with Ctip�sample << CG and Vtip ⇡ 0 in all our measurements [28].
This yields an estimated displacement field |D| ⇡ CG|VG| = 0.09 V/nm for every 1 V (⇡ 5 ⇥ 1011 cm�2) applied
to the back gate. For the low-density regime, ⌫ > �2, where the underlying moiré potential plays a crucial role,
we expect |D| < 0.25 V/nm. Our DFT results (see Section “Density function theory (DFT) and Hartree-Fock (HF)
calculations”) show that the relaxed interlayer distances vary by up to 0.05 nm between high symmetry stacking
regions. Assuming then that each layer corrugates with an amplitude of d = 0.025 nm, a displacement field of |D| =
0.25 V/nm leads to a correction to the moire potential of D ⇤ d/✏ ⇡ 6 meV (✏ is the out-of-plane relative dielectric
constant), which is a small correction compared to the overall strength of the moire potential variation (⇠100 meV,
Fig. 2a), which will therefore not have a major influence on the electronic properties. In the high hole-doping regime,
the displacement field may have a more pronounced e↵ect on the energetics of the dispersive bands. However, our
theoretical model does not rely on detailed calculation of moiré band structure, and therefore such changes do not
alter the qualitative understanding.
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