
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Trang H. Tran 1 Katya Scheinberg 1 Lam M. Nguyen 2

Abstract

In this paper, we propose Nesterov Accelerated
Shuffling Gradient (NASG), a new algorithm
for the convex finite-sum minimization problems.
Our method integrates the traditional Nesterov’s
acceleration momentum with different shuffling
sampling schemes. We show that our algorithm
has an improved rate of O(1/T) using unified
shuffling schemes, where T is the number of
epochs. This rate is better than that of any other
shuffling gradient methods in convex regime. Our
convergence analysis does not require an assump-
tion on bounded domain or a bounded gradient
condition. For randomized shuffling schemes, we
improve the convergence bound further. When
employing some initial condition, we show that
our method converges faster near the small neigh-
borhood of the solution. Numerical simulations
demonstrate the efficiency of our algorithm.

1. Introduction
We consider the finite-sum optimization problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)

}
, (1)

where the objective function F : Rd → R is smooth and
convex, and each individual functions fi is smooth. This
standard problem arises in most machine learning tasks, in-
cluding logistic regression, multi-kernel learning, and some
neural networks. The major challenge in solving (1) often
comes from the high dimension space and a large number
of components n. Therefore, deterministic methods relying
on full gradients are usually inefficient to solve this problem
(Sra et al., 2012; Bottou et al., 2018).

1School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY, USA. 2IBM Research, Thomas J.
Watson Research Center, Yorktown Heights, NY, USA. Correspon-
dence to: Lam M. Nguyen <LamNguyen.MLTD@ibm.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

SGD and Shuffling SGD. Stochastic Gradient Descent
(SGD) (Robbins & Monro, 1951) and its stochastic first-
order variants have been widely used to solve (1) thanks
to its scalability and efficiency in dealing with large-scale
problems (Duchi et al., 2011; Kingma & Ba, 2014; Bottou
et al., 2018; Nguyen et al., 2018).

At each iteration SGD samples an index i uniformly from
the set {1, . . . , n}, and uses the stochastic gradient ∇fi
to update the weight. While the uniformly independent
sampling of i plays an important role in our theoretical un-
derstanding of SGD, practical heuristics often use without-
replacement sampling schemes (also known as shuffling
sampling schemes). These methods depend on some random
or deterministic permutations of the index set {1, 2, . . . , n}
and apply incremental gradient updates using these permu-
tation order. A collection of such n individual updates is
called an epoch, or a pass over all the data. The most popular
method in this class is Random Reshuffling, which creates
a new random permutation at the beginning of each epoch.
Other important methods include Single Shuffling (which
uses the same (random) permutation for each epoch) and
Incremental Gradient (which uses a deterministic order of
indices). In this paper, the term Shuffling SGD refers to
SGD method using any data permutations, which includes
the three special schemes described above.

Empirical studies show that shuffling sampling schemes
usually provide a faster convergence than SGD (Bottou,
2009). However, due to the lack of statistical independence,
analyzing these shuffling variants is often more challeng-
ing than the identically distributed version. Recent works
have shown theoretical improvement for shuffling schemes
over SGD in terms of the number of epochs needed to con-
verge to an ϵ-accurate solution1 (Gürbüzbalaban et al., 2019;
Haochen & Sra, 2019; Safran & Shamir, 2020; Nagaraj et al.,
2019; Rajput et al., 2020; Nguyen et al., 2021; Mishchenko
et al., 2020; Ahn et al., 2020). In particular, in a general
convex setting, shuffling sampling schemes improve the
convergence rate of SGD from O(1/

√
T) to O(1/T 2/3) in

terms of the number of effective data passes T (Nguyen
et al., 2021; Mishchenko et al., 2020). Thanks to their

1We define an ϵ-accurate solution as a point x ∈ Rd that
satisfies F (x) − F (x∗) ≤ ϵ for convex settings (where x∗ is a
minimizer of F and the statement may hold in expectation).

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

theoretical and empirical advantage, Random Reshuffling
and its variants are becoming the methods of choice for
practical implementation of machine learning optimization
algorithms.

Nesterov’s Accelerated Gradient (NAG). On the other hand,
one of the most beautiful idea in convex optimization is the
Nesterov’s accelerated momentum technique, which was
originally proposed in (Nesterov, 1983). The method, shown
in Algorithm 1 for deterministic setting, achieves a much
better convergence rate of O(1/T 2) than the convergence
rate of Gradient Descent O(1/T) in convex regimes, where
T is the total number of iterations. Note that the application
of deterministic NAG requires a full gradient computation,
i.e n component gradients in each iteration, this T is the
same as the number of epochs.

Algorithm 1 Nesterov’s Accelerated Gradient (NAG)

1: Initialization: Choose an initial point x0, y0 ∈ Rd.
2: for t = 1, 2, · · · , T do
3: Let x(t) := y(t−1) − α(t)∇F (y(t−1))
4: Compute y(t) := x(t) + t−1

t+2 (x
(t) − x(t−1))

5: end for

In the last two decades, researchers have made efforts to
leverage this acceleration technique to the stochastic set-
tings. It is well known that Stochastic Gradient Descent has
the convergence rate of O(1/

√
K) where K is the number

of iterations2. Vaswani et al. (2019) proposes to use a new
assumption called the Strong Growth Condition for which
they can prove an accelerated rate of SGD with Nesterov’s
momentum. This condition implies that the stochastic gra-
dients (and, hence, its variance) converge to zero at the
optimum (Schmidt & Roux, 2013; Vaswani et al., 2019).
However, without a strong assumption on the gradient ora-
cle (i.e. without assuming that the variance goes to zero),
no work has been able to prove a better convergence rate for
SGD with Nesterov’s momentum over the ordinary results
of SGD (Hu et al., 2009; Lan, 2012). This background along
with the theoretical advances of Shuffling SGD motivates
the central question of our paper:

Can we use Nesterov’s momentum technique for Shuffling
SGD to improve the convergence rate using only standard
assumptions (e.g. without assuming vanishing variance)?

We answer this question positively in this paper; our results
are summarized below.

Summary of our contributions.

• We propose Nesterov Accelerated Shuffling Gradient

2To make fair comparisons, we use K for the iteration of SGD.
Note that K is the number of individual gradient evaluations, and
it is equivalent to nT in other methods that use T data passes.

(NASG) method, a new algorithm to approximate the
solution of the convex minimization problem (1). Our
method integrates the well-known Nesterov’s acceler-
ation technique with shuffling sampling strategies. In
stead of the traditional practice that add momentum
term in each iteration, we adopt a new approach that
integrates the momentum for each training epoch.

• We establish the convergence analysis for our algo-
rithm in the convex setting using standard assumptions,
i.e. generalized bounded variance or convex compo-
nent functions. Our method achieves an improved
rate of O(1/T) in terms of the number of epochs for
the unified shuffling schemes. We also investigate the
randomized schemes (including Random Reshuffling
and Single Shuffling) and improve a factor of n in the
convergence bound. Moreover, our convergence re-
sults work for the last iterate returned by the algorithm,
which is more practical than previous works for the
average iterate.

• We test our algorithms via numerical simulations on
various machine learning tasks and compare them
with other stochastic first order methods. Our tests
have shown good overall performance of the new algo-
rithms.

Related work. Let us briefly review the most related works
to our methods studied in this paper.

Shuffling SGD schemes. In the big data machine learn-
ing setting, Random Reshuffling and Single Shuffling are
more favorable than plain SGD thanks to their better practi-
cal performance and simple implementation (Bottou, 2009;
2012; Recht & Ré, 2011). While the convergence properties
of SGD are well-understood in literature, the theoretical
analysis for the randomized shuffling schemes remained
challenging for a long period of time. A natural reason
behind this problem is the lack of conditionally unbiased
gradients: E

[
∇f(y

(t)
i ;π

(t)
i)
]
̸= ∇F (y

(t)
i), where t is the

current epoch. Recently, researchers have made progress in
the analysis of convergence rates of randomized shuffling
techniques (Gürbüzbalaban et al., 2019; Haochen & Sra,
2019; Safran & Shamir, 2020; Nagaraj et al., 2019; Ahn
et al., 2020). with the majority of these works devoted to the
strongly convex case (with a bounded gradient or bounded
domain assumption). The best known convergence rate in
this case is O(1/(nT)2 + 1/(nT 3)) where T is the num-
ber of epochs. This result matches the lower bound rate in
(Safran & Shamir, 2020) up to some constant factor.

In the convex regime, most dominant results are originally
derived for the deterministic Incremental Gradient scheme
(Nedic & Bertsekas, 2001a;b). More recent works inves-
tigate convergence theory for various shuffling schemes

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Table 1. Number of individual gradient evaluations needed by SGD-type algorithms to reach an ϵ-accurate solution x that satisfies
F (x)− F (x∗) ≤ ϵ. In this table, L is the Lipschitz constant in Assumption 3.1, σ2

∗ is the variance at the minimizer x∗ defined in (4).
Finally, ∆ := ∥x̃0 − x∗∥2 is the squared distance from the initial point x̃0 to the minimizer x∗.

Algorithms Complexity References

Standard SGD(1) O
(

∆2
0+G2

ϵ2

)
(1) (Nemirovski et al., 2009; Shamir & Zhang, 2013)

SGD - Unified Schemes(2) O
(

nL∆
ϵ + n

√
Lσ∗∆
ϵ3/2

)
(Mishchenko et al., 2020; Nguyen et al., 2021)

SGD - Randomized Schemes(3) O
(

nL∆
ϵ +

√
nLσ∗∆
ϵ3/2

)
(Mishchenko et al., 2020)

NASG - Unified Schemes O
(

nL∆
ϵ +

nσ2
∗

Lϵ

)
(This work, Theorem 4.1 and Corollary B.2)

NASG - Randomized Schemes(3) O
(

nL∆
ϵ +

σ2
∗

Lϵ

)
(This work, Theorem 4.5 and Corollary D.3)

(1) Standard results for SGD in literature often use a different set of assumptions from the one in this paper (e.g. bounded domain that
∥x− x∗∥2 ≤ ∆0 for each iterate x and/or bounded gradient that E[∥∇f(x; i)∥] ≤ G2). We report the corresponding complexity for a
rough comparison. (2) (Mishchenko et al., 2020) shows a bound for Incremental Gradient while (Nguyen et al., 2021) has a unified setting.
We translate these results for Unified Schemes from these references to our convex setting. (3) While using the same set of assumptions,
the convergence criteria for randomized schemes is in expectation form: E[F (x)− F (x∗)] ≤ ϵ.

(Shamir, 2016; Mishchenko et al., 2020; Nguyen et al.,
2021), where Nguyen et al. (2021) provides a unified ap-
proach to different shuffling schemes and proves the con-
vergence rate of O(1/T 2/3). When a randomized scheme
is applied (Random Reshuffling or Single Shuffling), the
bound in expectation improves to O(1/T + 1/(n1/3T 2/3)).
For a comparison, our Algorithm 2 developed in this paper
achieves a deterministic convergence rate of O(1/T) for
the same setting under standard assumptions. The computa-
tional complexity for these methods are in Table 1.

In the meantime, a popular line of research involves variance
reduction technique, which have shown encouraging per-
formance for machine learning (e.g., SAG (Le Roux et al.,
2012), SAGA (Defazio et al., 2014), SVRG (Johnson &
Zhang, 2013) and SARAH (Nguyen et al., 2017)). These
methods need to either compute or store a full gradient or a
large batch of gradient. This plays an important role in re-
ducing the variance and therefore, is the key factor for these
methods. However, the update of SGD, Shuffling SGD and
our Algorithm 2 does not require full gradient evaluation at
any stage. Thus, our new Algorithm 2 belongs to the class
of Shuffling SGD which deviates from variance reduction
methods.

Momentum Techniques. The most popular and success-
ful momentum techniques include the classical Heavy-ball
method (Polyak, 1964) and Nesterov’s acceleration gradi-
ent (NAG) (Nesterov, 1983; 2004). Although these two
methods are different, they both receive great attention in
the optimization community (Hu et al., 2009; Lan, 2012;
Sutskever et al., 2013; Yuan et al., 2016; Dozat, 2016). Nes-
terov’s acceleration method is well-known for its improved
convergence rate of O(1/T 2) (versus the O(1/T) of Gra-
dient Descent) for general smooth convex functions in the

deterministic setting, where T is the number of iterations.

On the other hand, Devolder et al. (2014) and Lessard et al.
(2016) suggest that Nesterov’s acceleration is not robust to
the errors in gradient and its performance may be worse than
gradient descent due to error accumulation. A more recent
work (Liu & Belkin, 2018) argues that stochastic NAG does
not provide acceleration over ordinary SGD in general, and
may diverge for step sizes that guarantee convergence of
SGD. These observations further motivate our algorithmic
design for the Shuffling SGD with Nesterov’s momentum
in Section 2.

2. Nesterov Accelerated Shuffling Gradient
Method

In this section, we describe our new shuffling gradient algo-
rithm with Nesterov’s momentum in Algorithm 2.

Before we start, it should be noted that the classical ap-
proach in stochastic NAG literature is applying the momen-
tum term for each iteration (Hu et al., 2009; Lan, 2012;
Zhong & Kwok, 2014; Vaswani et al., 2019). However,
empirical evidence have shown that Nesterov’s acceleration
may not be superior when inexact gradients are used, and
the reason might be error accumulation (Devolder et al.,
2014; Liu & Belkin, 2018). In addition, while SGD has
access to an unbiased estimator for the full gradient, shuf-
fling gradient schemes generally do not have this property.
In consequence, updating the momentum at each inner it-
eration is less preferable since it could make the estimator
deviate from the true gradient and further accumulate errors.

Based on these observations, we adopt a different approach
to update the Nesterov’s momentum after each epoch which

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

consists of n gradients. This practice allows our method
to approximate the full gradient more accurately while still
maintains the effectiveness of the momentum technique. It
is also consistent with the application of Heavy-ball method
and proximal operator for shuffling schemes in recent lit-
erature (Tran et al., 2021; Mishchenko et al., 2021). Our
algorithm is presented below.

Algorithm 2 Nesterov Accelerated Shuffling Gradient
(NASG) Method

1: Initialization: Choose an initial point x̃0, ỹ0 ∈ Rd.
2: for t = 1, 2, · · · , T do
3: Set y(t)0 := ỹt−1;
4: Generate any permutation π(t) of [n] (either deter-

ministic or random);
5: for i = 1, · · · , n do
6: Update y

(t)
i := y

(t)
i−1 − η

(t)
i ∇f(y

(t)
i−1;π

(t)(i));
7: end for
8: Set x̃t := y

(t)
n ;

9: Update ỹt := x̃t + γt(x̃t − x̃t−1);
10: end for

Algorithm Description. In each epoch t, our method first
performs n consecutive individual gradient updates in vari-
able y

(t)
i following a permutation π(t) of the index set

{1, . . . , n}. At the end of each epoch, it applied the Nes-
terov’s momentum update using an auxiliary variable x̃t.
The choice of learning rate η

(t)
i is further specified in our

theoretical analysis.

The per-iteration complexity of Algorithm 2 is the same
as standard shuffling gradient schemes (Shamir, 2016). In
addition, our algorithm only requires a storage cost of O(d),
which is similar to that of standard SGD. Note that the
implementation of our method requires neither full gradient
computation nor a large batch of gradient computation at
any point. Our convergence guarantee in Theorem 4.1 and
Theorem 4.3 for unified shuffling scheme holds for any
permutation of {1, 2, · · · , n}, including deterministic and
random ones. Therefore, our method works for any shuffling
strategy, including Incremental Gradient, Single Shuffling,
and Random Reshuffling.

Comparison with Nesterov’s Accelerated Gradient. Let us
recall that deterministic NAG has an update of full gradient
computation from y(t−1) to x(t). We can write this update
in a different way, where y(t−1) = y

(t)
0 and each component

gradient at y(t)0 is gradually computed and subtracted from
the starting point:

5: for i = 1, · · · , n do
6: Update y

(t)
i := y

(t)
i−1 − η

(t)
i ∇f(y

(t)
0 ;π(t)(i));

7: end for

With an appropriate choice of learning rates, at the end of
an epoch, the output y(t)n in this representation is identical
to the output x(t) of deterministic NAG algorithm. This
illustrates the comparison between traditional NAG and our
method. While NAG only update the weights after a full
gradient computation, our method gradually updates and
makes movement after each component evaluations.

In order to motivate our Algorithm 2, we conduct a small
binary classification experiment and demonstrate the be-
haviour of NAG and the stochastic momentum methods.
The details of the settings are delayed to Section 5.1. Fig-
ure 1 shows that applying Nesterov’s momentum term for
each iteration may accumulate errors and lead to a poor
result. While the deterministic NAG converges and slowly
decreases the loss, our stochastic version works faster and
achieves an overall better performance, when the number of
data n is large.

Figure 1. Comparisons of the training loss for w8a and ijcnn1
datasets. NAG denotes the deterministic Nesterov’s Accelerated
Gradient. NASG is our method, while NASG-PI is the stochastic
shuffling version that applies Nesterov’s momentum each inner
iteration. We apply random reshuffling schemes for the stochastic
algorithms.

3. Technical Settings
3.1. Theoretical Assumptions

We analyze the convergence of Algorithm 2 under standard
assumptions, which are presented below. Our first assump-
tion is that all component functions are L-smooth.
Assumption 3.1. We assume that f(·; i) is L-smooth for
every i ∈ [n], i.e., there exists a constant L > 0 such that,
∀x, y ∈ Rd,

∥∇f(x; i)−∇f(y; i)∥ ≤ L∥x− y∥, i ∈ [n]. (2)

Assumption 3.1 implies that F is also L-smooth. This as-
sumption is widely used in literature for gradient-type meth-
ods in both stochastic and deterministic settings. Then, by a
well-known property of L-smooth functions in (Nesterov,
2004), we have, ∀x, y ∈ Rd,

F (x) ≤ F (y) + ⟨∇F (y), (x− y)⟩+ L

2
∥x− y∥2. (3)

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Our main results for Algorithm 2 is in convex setting which
requires the following assumption.

Assumption 3.2. f(·; i) is convex for every i ∈ [n], i.e.,
∀x, y ∈ Rd,

f(x; i)− f(y; i) ≥ ⟨∇f(y; i), (x− y)⟩, i ∈ [n].

When F is convex, we also assume that the existence of
a minimizer for F . Note that F could have more than
one minimizer. Therefore, in this paper, we let x∗ be any
minimizer of F and consider the corresponding variance of
F at x∗:

σ2
∗ :=

1

n

n∑
i=1

∥∇f(x∗; i)∥2 ∈ [0,+∞). (4)

Alternatively, when each individual function f(·; i) is not
necessary convex and F is convex, we consider the follow-
ing assumption:

Assumption 3.3. (Generalized bounded variance) There
exist two non-negative and finite constants Θ and σ such
that for any x ∈ Rd we have

1

n

n∑
i=1

∥∇f(x; i)−∇F (x)∥2 ≤ Θ∥∇F (x)∥2 + σ2. (5)

Assumption 3.3 reduces to the standard bounded variance
condition if Θ = 0. Therefore, it is more general than
the bounded variance assumption, which is often used in
stochastic optimization (Bottou et al., 2018).

3.2. Basic Derivations

In this section, we provide some key derivations for Algo-
rithm 2. From the update of our algorithm and the choice
γt =

t−1
t+2 , we have for t ≥ 1

ỹt := x̃t +
t− 1

t+ 2
(x̃t − x̃t−1). (6)

Similar to the original Nesterov’s momentum technique, we
use two following auxiliary variables in our analysis:

θ(t) =
2

t+ 2
∈ (0, 1), and v(t) =

t+ 1

2
x̃t −

t− 1

2
x̃t−1,

for t ≥ 1. We also use the convention that θ(0) = 1 and
v(0) = x̃0. This is equivalent to

x̃t =
2

t+ 1
v(t) +

t− 1

t+ 1
x̃t−1

= θ(t−1)v(t) + (1− θ(t−1))x̃t−1. (7)

This property shows that x̃t is a convex combination of v(t)

and x̃t−1 for every iteration t ≥ 1. Using equation (6), we
further have

ỹt = x̃t +
t− 1

t+ 2
(x̃t − x̃t−1)

=
t+ 1

t+ 2
x̃t −

t− 1

t+ 2
x̃t−1 +

t

t+ 2
x̃t

=
2

t+ 2

(
t+ 1

2
x̃t −

t− 1

2
x̃t−1

)
+

(
1− 2

t+ 2

)
x̃t

= θ(t)v(t) + (1− θ(t))x̃t. (8)

Again, ỹt is a convex combination of v(t) and x̃t, however
with a slightly different parameter θ(t) instead of θ(t−1).

These key derivations play an important role in the theo-
retical analysis of Algorithm 2. They help explain why
Nesterov’s momentum can achieve a better convergence
rate when the objective function F is convex. Indeed, using
convexity of F we have the following property:

F (y) + ⟨∇F (y), (1− θ)x+ θx∗ − y⟩
≤ F ((1− θ)x+ θx∗) ≤ (1− θ)F (x) + θF (x∗)

for any x ∈ Rd, y ∈ Rd, and θ ∈ [0, 1]. The application
of this inquality is the central idea behind our theoretical
results, which are presented in the next section.

4. Theoretical Analysis
4.1. Convergence Rate for Unified Shuffling Scheme

In this section, we investigate the theoretical performance of
Algorithm 2 using unified shuffling strategy, i.e. using an ar-
bitrary permutation π(t) in any of the epoch t = 1, 2, . . . , T .
These permutations can be random or deterministic, how-
ever our results hold deterministically regardless of the
choice of permutation. We first establish the convergence
for Algorithm 2 under the condition that all the component
functions are convex.
Theorem 4.1 (Convex component functions). Suppose that
Assumption 3.1 and 3.2 hold for (1). Let {x(t)

i } be generated
by Algorithm 2 with parameter γt = t−1

t+2 , the learning rate

η
(t)
i := ηt

n > 0 for ηt = kαt

LT ≤ 1
L where k = 1

eα 3√12
> 0

and α = 1 + 1
T > 0. Then for T ≥ 2 we have

F (x̃T)− F (x∗) ≤
4σ2

∗
9LT

+
2Le 3

√
12

T
∥x̃0 − x∗∥2. (9)

Remark 4.2. The convergence rate of Algorithm 2 is exactly
expressed as

O
(
σ2
∗/L+ L∥x̃0 − x∗∥2

T

)
,

which is better than the state-of-the-art rate in the literature
(Mishchenko et al., 2020; Nguyen et al., 2021) in term of T

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

for convex problems with general shuffling-type strategies.
Translating this convergence rate to computational complex-
ity, we get the results in Table 1. We provide the proof of
Theorem 4.1 and its complexity in the Appendix.

When the component functions are not necessarily convex,
we establish the convergence for Algorithm 2 under the
convexity of F and the generalized bounded variance as-
sumption.

Theorem 4.3 (Generalized Bounded Variance). Suppose
that Assumption 3.1 and 3.3 hold for (1). In addition, we
assume that F is convex. Let {x(t)

i } be generated by Algo-
rithm 2 with parameter γt = t−1

t+2 , the learning rate η
(t)
i :=

ηt

n > 0 for ηt = kαt

LT ≤ 1
L where k = 1

eα 3
√

2(6Θ+7)
> 0

and α = 1 + 1
T > 0. Then for T ≥ 2, F (x̃T) − F (x∗) is

upper bounded by

8σ2

3(6Θ + 7)LT
+

2Le 3
√
2(6Θ + 7)

T
∥x̃0 − x∗∥2.

The convergence rate of Theorem 4.3 is expressed as

O
(
σ2/(ΘL) + LΘ1/3∥x̃0 − x∗∥2

T

)
,

which is similar to the convergence rate O (1/T) of Theo-
rem 4.1. We defer the proof of Theorem 4.5 to Appendix.
Remark 4.4 (Convergence guarantee). Our convergence
bounds in Theorem 4.1 and 4.3 hold in a deterministic sense.
This convergence criteria for Algorithm 2 is significantly
stronger than the standard criteria in expectation for other
SGD-type algorithm in literature recently (Ghadimi & Lan,
2013; Shamir & Zhang, 2013). This improvement is made
thanks to the unique structure of the Nesterov’s acceleration
applied to Shuffling schemes in our Algorithm 2. In addition,
our results hold for the last iterate xT , which matches the
practical heuristics more than previous results that hold
for an average x̃ of training weights x1, . . . , xT (Polyak &
Juditsky, 1992; Ghadimi & Lan, 2013).

4.2. Convergence Rate for Randomized Schemes

We continue to present the theoretical result of Algorithm
2 specifically for Randomized Schemes, namely Random
Reshuffling and Single Shuffling schemes where random
permutation(s) are generated for the update of Algorithm
2. Our next Theorem 4.5 uses the assumption that all the
component functions are convex.

Theorem 4.5 (Randomized Schemes). Suppose that As-
sumption 3.1 and 3.2 hold for (1). Let {x(t)

i } be gener-
ated by Algorithm 2 under a randomized scheme with pa-
rameter γt = t−1

t+2 , the learning rate η
(t)
i := ηt

n > 0 for

ηt =
kαt

LT ≤ 1
L where k = 1

eα 3√12
> 0 and α = 1 + 1

T > 0.

Then for T ≥ 2, we have

E[F (x̃T)− F (x∗)] ≤
8σ2

∗
27nLT

+
2Le 3

√
12

T
∥x̃0 − x∗∥2.

(10)

Remark 4.6 (Randomized Schemes). The convergence rate
of Theorem 4.5 is expressed as

O
(
σ2
∗/L

nT
+

L∥x̃0 − x∗∥2

T

)
,

which is better than the state-of-the-art rate for randomized
schemes in the literature (Mishchenko et al., 2020; Nguyen
et al., 2021) for convex problems.

Comparing to the unified case, our result allows a reduction
in the first term of the bound by a factor of n. This fact is
essentially helpful in machine learning applications where
the number of data n is large. Furthermore, in practice
randomized schemes offer a lot of improvements when the
variance at the optimizer σ2

∗ can be large. Similar to the
previous theorems, our result in Theorem 4.5 holds for the
last iterate xT , which matches the practical heuristics. We
defer the proof of this theorem to the Appendix.

4.3. Improved Convergence Rate with Initial Condition

In this section, we consider an initial condition where the
iterate of our algorithm is in a small neighborhood of the
optimal point. Let us note that the minimizer of F may not
be unique, hence we only requires this assumption for some
minimizer x∗.
Remark 4.7. Let us assume that ∥x̃0 − x∗∥ ≤ E√

n
where x̃0

be the initial point and E > 0 be a constant. For the same
conditions as in Theorem 4.1, i.e. component convexity, we
have

F (x̃T)− F (x∗) ≤ O
(
σ2
∗/L+ LE2

n3/4T

)
, (11)

which has an improvement of n3/4 over the plain setting
of Theorem 4.1. This fact suggests that the algorithm may
converge faster when it reaches a small neighborhood of the
solution set. The proof of this Remark requires some modi-
fications from Theorem 4.1, and is presented in Appendix.

Remark 4.8. Let us assume that ∥x̃0 − x∗∥ ≤ E√
n

where x̃0

be the initial point and E > 0 be a constant. For the same
conditions as in Theorem 4.5, i.e. component convexity
with a randomized scheme, we have

E [F (x̃T)− F (x∗)] ≤ O
(
σ2
∗/L+ LE2

nT

)
, (12)

which shows a further improvement of n over the standard
setting thanks to the application of randomized schemes and
initial assumption.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

5. Numerical Experiments
To support our theoretical analysis, we present three sets of
numerical experiments, comparing our algorithm with the
state-of-the-art SGD-type and shuffling gradient methods.

5.1. Binary Classification

In this section, we describe the setting of Figure 1 and other
experiments. Let us consider the following convex binary
classification problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

log(1+exp(−yix
⊤
i w))

}
,

where {(xi, yi)}ni=1 is a set of training samples with xi ∈
Rd and yi ∈ {−1, 1}. We have conducted the experi-
ments on three classification datasets w8a (49, 749 sam-
ples), ijcnn1 (91, 701 samples) and covtype (406709
samples) from LIBSVM (Chang & Lin, 2011). The stochas-
tic experiments are repeated with random seeds 10 times
and we report the average results with confidence intervals.

In Figure 1, we compare our algorithm with NAG and the
stochastic shuffling version that update Nesterov’s momen-
tum per iteration. Note that NAG is a deterministic algo-
rithm, hence it does not have confidence intervals. In order
to make fair comparisons, we report the results of three
methods in Figure 1 after every effective data passes, (i.e.
comparing them with the same computational cost). In ad-
dition, since NAG converges slowly when n is large, in our

futher experiments, we choose to compare our algorithm
with other stochastic first-order methods.

In Figure 2, we compare our method with Stochastic Gradi-
ent Descent (SGD) and two stochastic algorithms: SGD with
Momentum (SGD-M) (Polyak, 1964) and Adam (Kingma
& Ba, 2014). For the latter two algorithms, we use the
hyper-parameter settings recommended and widely used in
practice (i.e. momentum: 0.9 for SGD-M, and two hyper-
parameters β1 := 0.9, β2 := 0.999 for Adam).

To have a fair comparison, we apply the randomized reshuf-
fling scheme to all methods. Note that shuffling strategies
are favorable in practice and have been implemented in Ten-
sorFlow, PyTorch, and Keras (Abadi et al., 2015; Paszke
et al., 2019; Chollet et al., 2015). We tune each algorithm
using constant learning rate and report the best final results.

For w8a and covtype datasets, our algorithm shows bet-
ter performance than the other methods in the training pro-
cess. For ijcnn1, NASG is somewhat worse than the
other methods at the beginning, however, it surpasses all
other methods after a few epochs and maintains a better
decrease toward the end of training stage. In terms of test
accuracy, our method shows comparable performance for
covtype dataset, and achieves good generalization for
w8a and ijcnn1 datasets.

In the next subsection, we perform another set of experi-
ments in convex setting. Our Appendix describes all the
experimental details and implementation.

Figure 2. (Convex binary setting). Comparisons of loss residual F (x)− F (x∗) (top) and test accuracy (bottom) produced by first-order
methods for w8a, ijcnn1 and covtype datasets, respectively. The number of effective passes is the number of epochs (i.e. number of
data passes) in the progress.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Figure 3. (Convex image setting). Comparisons of loss residual F (x)− F (x∗) (top) and test accuracy (bottom) produced by first-order
methods for MNIST, Fashion-MNIST and CIFAR-10, respectively. The number of effective passes is the number of epochs (i.e.
number of data passes) throughout the progress.

5.2. Convex Image Classification

For the second experiment, we test our algorithm using
linear neural networks on three well-known image clas-
sification datasets: MNIST dataset (LeCun et al., 1998)
and Fashion-MNIST dataset (Xiao et al., 2017) both
with 60, 000 samples, and finally CIFAR-10 dataset
(Krizhevsky & Hinton, 2009) with 50, 000 images. We
experiment with the following minimization problem:

min
w∈Rd

{
F (w) := − 1

n

n∑
i=1

y⊤i log(softmax(h(w; i)))
}
,

where h(w; i) = Wxi + b is a simple neural network with
parameter w = {W, b}, W ∈ Rc×d and b ∈ Rc. The input
data {xi}ni=1 are in Rd and the output labels {yi}ni=1 are
one-hot vectors in Rc, where c is the number of classes. The
softmax function is defined as

softmax(z) =
(

ez1∑c
k=1 e

zk
; . . . ;

ezc∑c
k=1 e

zk

)⊤

.

Similar to the previous experiment, we compare our algo-
rithm with other stochastic first-order methods with random-
ized reshuffling scheme. The minibatch size is 256. All
the algorithms are implemented in Python using PyTorch
package (Paszke et al., 2019). They are tested using 10 dif-
ferent random seeds and we report the average results with
confidence intervals. We tune each algorithm using constant
learning rate and report the best final results in Figure 3.

Our algorithm achieves a better decrease than other meth-
ods on MNIST and CIFAR-10 datasets very early in the
training process. On Fashion-MNIST dataset, NASG
starts slower than other methods at the beginning. In the
next stage, it suggests a better performance with a little
oscillations in the end.

In terms of generalization, our method shows comparable
performance to all other stochastic algorithms. Note that our
main focus is the training task, that is, solving the optimiza-
tion problem (1) and there may be over-fitting that leads
to test accuracy decrease in the later part of the training
progress.

5.3. Non-convex Image Classification

We further test our algorithm with a simple non-convex
model to demonstrate the efficiency and flexibility of
our method beyond the convex setting. For this experi-
ment, we use a similar problem as in the previous sec-
tion (i.e. training neural networks on three image classi-
fication datasets: MNIST, Fashion-MNIST dataset and
CIFAR-10 dataset). The minimization problem is:

min
w∈Rd

{
F (w) := − 1

n

n∑
i=1

y⊤i log(softmax(h(w; i)))
}
,

where h(w; i) = W2(W1xi + b1) + b2 is a neural network
with one hidden layer containing m neurons and no activa-
tion. The input data {xi}ni=1 are in Rd and the output labels

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Figure 4. (Non-convex image setting). Comparisons of train loss F (x) (top) and the squared norm of gradient ∥∇F (x)∥2 produced
by first-order methods for MNIST, Fashion-MNIST and CIFAR-10, respectively. The number of effective passes is the number of
epochs (i.e number of data passes) throughout the progress.

{yi}ni=1 are one-hot vectors in Rc, where c is the number
of classes. The parameter is w = {W1, b1,W2, b2} with
W1 ∈ Rm×d, b1 ∈ Rm and W2 ∈ Rc×m, b2 ∈ Rc.

For MNIST and Fashion-MNIST datasets, we run a small
network with m = 300 hidden neurons. For CIFAR-10
dataset, we experiment with m = 900 neurons in the hidden
layer. Similar to the previous experiments, we compare our
algorithm with other stochastic first-order methods (SGD,
SGD-M and ADAM) and we apply randomized reshuffling
scheme to all these algorithms. We implement all the meth-
ods in Python using PyTorch package (Paszke et al., 2019),
then tune each algorithm using constant learning rate. Fig-
ure 4 report the train loss and the squared norm of gradient
returned by our experiments. We delay other experimental
setting details to the Appendix3.

In this simple non-convex setting, our algorithm also
achieves a better decrease than other methods on MNIST
and CIFAR-10 datasets. On Fashion-MNIST dataset,
NASG starts slower than other methods at the beginning
and surpasses other method later in the training process.
In terms of gradient norm, our method shows competitive
performance for MNIST and Fashion-MNIST datasets,
while performs comparably good in CIFAR-10 dataset.
We further note that all our experiments are tuned to the best
value of the training loss for every algorithm.

3Our code can be found at the repository https://github.
com/htt-trangtran/nasg.

6. Conclusions and Future Work
We propose Nesterov Accelerated Shuffling Gradient
(NASG), a new gradient method that combines the update
of SGD using shuffling sampling schemes with Nesterov’s
momentum. Our method achieves a convergence rate of
O(1/T) for smooth convex functions, where T is the num-
ber of effective data passes. This rate is better than the
state-of-the-art result of SGD using shuffling schemes, in
terms of T .

Although we have made progresses in understanding the-
oretical properties of shuffling methods in general (and
NASG in particular), an interesting research question re-
mains: whether our method can achieve a better theoretical
rate in terms of the number of data points n. Our work
answers this question partially by different approaches, in-
cluding the application of randomized sampling schemes
and the investigation of an initial condition. In addition,
investigating our algorithm in non-convex settings is also a
promising direction.

Acknowledgements
The authors would like to thank the reviewers for their use-
ful comments and suggestions which helped to improve
the exposition of this paper. The work of Trang H. Tran
and Katya Scheinberg have partly been supported by the
ONR Grant N00014-22-1-2154 and the NSF Grant CCF
21-40057.

https://github.com/htt-trangtran/nasg
https://github.com/htt-trangtran/nasg

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Ahn, K., Yun, C., and Sra, S. Sgd with shuffling: opti-
mal rates without component convexity and large epoch
requirements. arXiv preprint arXiv:2006.06946, 2020.

Bottou, L. Curiously fast convergence of some stochastic
gradient descent algorithms. In Proceedings of the sym-
posium on learning and data science, Paris, volume 8,
pp. 2624–2633, 2009.

Bottou, L. Stochastic gradient descent tricks. In Neural
networks: Tricks of the trade, pp. 421–436. Springer,
2012.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
Methods for Large-Scale Machine Learning. SIAM Rev.,
60(2):223–311, 2018.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for
support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

Chollet, F. et al. Keras. GitHub, 2015. URL https:
//github.com/fchollet/keras.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
Neural Information Processing Systems, pp. 1646–1654,
2014.

Devolder, O., Glineur, F., and Nesterov, Y. First-order
methods of smooth convex optimization with inexact
oracle. Springer-Verlag, 146(1–2), 2014. ISSN 0025-
5610. doi: 10.1007/s10107-013-0677-5. URL https:
//doi.org/10.1007/s10107-013-0677-5.

Dozat, T. Incorporating nesterov momentum into ADAM.
ICLR Workshop, 1:2013—-2016, 2016.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12:2121–2159,
2011.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM J.
Optim., 23(4):2341–2368, 2013.

Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P. A. Why
random reshuffling beats stochastic gradient descent.
Mathematical Programming, Oct 2019. ISSN 1436-4646.
doi: 10.1007/s10107-019-01440-w.

Haochen, J. and Sra, S. Random shuffling beats sgd after
finite epochs. In International Conference on Machine
Learning, pp. 2624–2633. PMLR, 2019.

Hu, C., Pan, W., and Kwok, J. Accelerated gradient
methods for stochastic optimization and online learn-
ing. In Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C., and Culotta, A. (eds.), Advances in Neural
Information Processing Systems, volume 22. Curran As-
sociates, Inc., 2009. URL https://proceedings.
neurips.cc/paper/2009/file/
ec5aa0b7846082a2415f0902f0da88f2-Paper.
pdf.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In NIPS, pp.
315–323, 2013.

Kingma, D. P. and Ba, J. ADAM: A Method for Stochas-
tic Optimization. Proceedings of the 3rd Interna-
tional Conference on Learning Representations (ICLR),
abs/1412.6980, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Lan, G. An optimal method for stochastic composite op-
timization. Mathematical Programming, 133:365–397,
2012.

Le Roux, N., Schmidt, M., and Bach, F. A stochastic gra-
dient method with an exponential convergence rate for
finite training sets. In NIPS, pp. 2663–2671, 2012.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lessard, L., Recht, B., and Packard, A. Analysis and de-
sign of optimization algorithms via integral quadratic
constraints. SIAM Journal on Optimization, 26(1):57–
95, 2016. doi: 10.1137/15M1009597. URL https:
//doi.org/10.1137/15M1009597.

https://www.tensorflow.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1007/s10107-013-0677-5
https://doi.org/10.1007/s10107-013-0677-5
https://proceedings.neurips.cc/paper/2009/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://doi.org/10.1137/15M1009597
https://doi.org/10.1137/15M1009597

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Liu, C. and Belkin, M. Mass: an accelerated stochas-
tic method for over-parametrized learning. CoRR,
abs/1810.13395, 2018. URL http://arxiv.org/
abs/1810.13395.

Mishchenko, K., Khaled Ragab Bayoumi, A., and Richtárik,
P. Random reshuffling: Simple analysis with vast im-
provements. Advances in Neural Information Processing
Systems, 33, 2020.

Mishchenko, K., Khaled, A., and Richtárik, P. Proximal and
federated random reshuffling, 2021.

Nagaraj, D., Jain, P., and Netrapalli, P. Sgd without replace-
ment: Sharper rates for general smooth convex functions.
In International Conference on Machine Learning, pp.
4703–4711, 2019.

Nedic, A. and Bertsekas, D. Convergence rate of incre-
mental subgradient algorithms. In Stochastic optimiza-
tion: algorithms and applications, pp. 223–264. Springer,
2001a.

Nedic, A. and Bertsekas, D. P. Incremental subgradient
methods for nondifferentiable optimization. SIAM J. on
Optim., 12(1):109–138, 2001b.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Ro-
bust stochastic approximation approach to stochastic pro-
gramming. SIAM J. on Optimization, 19(4):1574–1609,
2009.

Nesterov, Y. A method for unconstrained convex mini-
mization problem with the rate of convergence O(1/k2).
Doklady AN SSSR, 269:543–547, 1983. Translated as
Soviet Math. Dokl.

Nesterov, Y. Introductory lectures on convex optimization: A
basic course, volume 87 of Applied Optimization. Kluwer
Academic Publishers, 2004.

Nguyen, L., Nguyen, P. H., van Dijk, M., Richtarik, P.,
Scheinberg, K., and Takac, M. SGD and Hogwild! con-
vergence without the bounded gradients assumption. In
Proceedings of the 35th International Conference on Ma-
chine Learning-Volume 80, pp. 3747–3755, 2018.

Nguyen, L. M., Liu, J., Scheinberg, K., and Takáč, M.
SARAH: A novel method for machine learning problems
using stochastic recursive gradient. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 2613–2621. JMLR. org, 2017.

Nguyen, L. M., Tran-Dinh, Q., Phan, D. T., Nguyen, P. H.,
and van Dijk, M. A unified convergence analysis for
shuffling-type gradient methods. Journal of Machine
Learning Research, 22(207):1–44, 2021.

Nguyen, L. M., Tran, T. H., and van Dijk, M. Finite-sum
optimization: A new perspective for convergence to a
global solution. arXiv preprint arXiv:2202.03524, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Polyak, B. and Juditsky, A. Acceleration of stochastic ap-
proximation by averaging. SIAM J. Control Optim., 30
(4):838–855, 1992.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

Rajput, S., Gupta, A., and Papailiopoulos, D. Closing the
convergence gap of sgd without replacement. In Interna-
tional Conference on Machine Learning, pp. 7964–7973.
PMLR, 2020.

Recht, B. and Ré, C. Parallel stochastic gradient al-
gorithms for large-scale matrix completion. Mathe-
matical Programming Computation, 5, 04 2011. doi:
10.1007/s12532-013-0053-8.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):
400–407, 1951.

Safran, I. and Shamir, O. How good is sgd with random
shuffling? In Conference on Learning Theory, pp. 3250–
3284. PMLR, 2020.

Schmidt, M. and Roux, N. L. Fast convergence of stochastic
gradient descent under a strong growth condition, 2013.

Shamir, O. Without-replacement sampling for stochastic
gradient methods. In Advances in neural information
processing systems, pp. 46–54, 2016.

Shamir, O. and Zhang, T. Stochastic gradient descent
for non-smooth optimization: Convergence results and
optimal averaging schemes. In Dasgupta, S. and
McAllester, D. (eds.), Proceedings of the 30th Inter-
national Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pp. 71–
79, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
URL https://proceedings.mlr.press/v28/
shamir13.html.

Sra, S., Nowozin, S., and Wright, S. J. Optimization for
Machine Learning. MIT Press, 2012.

http://arxiv.org/abs/1810.13395
http://arxiv.org/abs/1810.13395
https://proceedings.mlr.press/v28/shamir13.html
https://proceedings.mlr.press/v28/shamir13.html

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In Dasgupta, S. and McAllester, D. (eds.), Proceed-
ings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–
19 Jun 2013. PMLR. URL https://proceedings.
mlr.press/v28/sutskever13.html.

Tran, T. H., Nguyen, L. M., and Tran-Dinh, Q. SMG:
A shuffling gradient-based method with momentum.
In Meila, M. and Zhang, T. (eds.), Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learn-
ing Research, pp. 10379–10389. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/tran21b.html.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster
convergence of sgd for over-parameterized models and an
accelerated perceptron. In Chaudhuri, K. and Sugiyama,
M. (eds.), Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 89 of Proceedings of Machine Learning
Research, pp. 1195–1204. PMLR, 16–18 Apr 2019.
URL https://proceedings.mlr.press/v89/
vaswani19a.html.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yuan, K., Ying, B., and Sayed, A. H. On the influence
of momentum acceleration on online learning. Jour-
nal of Machine Learning Research, 17(192):1–66, 2016.
URL http://jmlr.org/papers/v17/16-157.
html.

Zhong, W. and Kwok, J. Accelerated Stochastic Gradi-
ent Method for Composite Regularization. In Kaski, S.
and Corander, J. (eds.), Proceedings of the Seventeenth
International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning
Research, pp. 1086–1094, Reykjavik, Iceland, 22–25 Apr
2014. PMLR. URL https://proceedings.mlr.
press/v33/zhong14.html.

https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v139/tran21b.html
https://proceedings.mlr.press/v139/tran21b.html
https://proceedings.mlr.press/v89/vaswani19a.html
https://proceedings.mlr.press/v89/vaswani19a.html
http://jmlr.org/papers/v17/16-157.html
http://jmlr.org/papers/v17/16-157.html
https://proceedings.mlr.press/v33/zhong14.html
https://proceedings.mlr.press/v33/zhong14.html

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
Appendix, ICML 2022

A. Technical Lemmas
A.1. Basic Derivations for Algorithm 2

Let us collect all the basic necessary expressions for Algorithm 2. From the update y
(t)
i := y

(t)
i−1 − η

(t)
i ∇f(y

(t)
i−1;π

(t)(i)),
we have the following for i = 1, . . . , n, t ≥ 1:

y
(t)
i = y

(t)
i−1 − η

(t)
i ∇f(y

(t)
i−1;π

(t)(i)) = y
(t)
0 −

i∑
j=1

η
(t)
j ∇f(y

(t)
j−1;π

(t)(j)). (13)

Note that y(t)0 = ỹt−1 and x̃t = y
(t)
n and η

(t)
i = ηt

n for i = 1, . . . , n, t ≥ 1, we have

x̃t = ỹt−1 −
ηt
n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)). (14)

From (7) and (8) we have the following for t ≥ 1:

x̃t+1 = ỹt + θ(t)(v(t+1) − v(t)). (15)

On the other hand, we consider the term v(t+1) = t+2
2 x̃t+1 − t

2 x̃t for t ≥ 0:

t+ 2

2
x̃t+1 −

t

2
x̃t

(14)
=

t+ 2

2

ỹt −
ηt+1

n

n∑
j=1

∇f(y
(t+1)
j−1 ;π(t+1)(j))

− t

2
x̃t

(6)
=

t+ 2

2

x̃t +
t− 1

t+ 2
(x̃t − x̃t−1)−

ηt+1

n

n∑
j=1

∇f(y
(t+1)
j−1 ;π(t+1)(j))

− t

2
x̃t

=

(
t+ 1

2
x̃t −

t− 1

2
x̃t−1

)
−
(
t+ 2

2

)
ηt+1

n

n∑
j=1

∇f(y
(t+1)
j−1 ;π(t+1)(j)).

Therefore by definitions of v(t) and θ(t) we have

v(t+1) = v(t) − ηt+1

θ(t)
· 1
n

n∑
j=1

∇f(y
(t+1)
j−1 ;π(t+1)(j)), t ≥ 0. (16)

Using convexity of F , for any x ∈ Rd, y ∈ Rd, and θ ∈ [0, 1], we have

(1− θ)F (x) + θF (x∗) ≥ F ((1− θ)x+ θx∗) ≥ F (y) + ⟨∇F (y), (1− θ)x+ θx∗ − y⟩,

where x∗ = argminx F (x) is an optimal solution of F . Hence,

F (y) ≤ (1− θ)F (x) + θF (x∗) + ⟨∇F (y), y − (1− θ)x− θx∗⟩. (17)

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

In addition, we define the following term:

Kt =
1

n

n∑
i=1

∥∥∥y(t)i − y
(t)
0

∥∥∥2 and It =
1

n

n∑
i=1

∥∥∥y(t)n − y
(t)
i

∥∥∥2 .
For each epoch t = 1, · · · , T , we denote Ft by σ(y

(1)
0 , · · · , y(t)0), the σ-algebra generated by the iterates of Algorithm 2 up

to the beginning of the epoch t.We also denote Et[·] by E[· | Ft], the conditional expectation on the σ-algebra Ft.

A.2. Key Lemmas and Proofs of Key Lemmas

Lemma A.1. Suppose that Assumption 3.1 holds for (1), and F is convex. Let {x̃t} be generated by Algorithm 2 with the
learning rate η

(t)
i := ηt

n > 0 for a given positive sequence {ηt} with ηt ≤ 1
L . Let ϵt be a positive sequence, t ≥ 1. Then we

have the following for t ≥ 1:

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

L2ηt(t+ 1)2

2ϵt
Kt −

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2. (18)

Proof of Lemma A.1: Key estimate for Algorithm 2

We start with the update (14) of Algorithm 2, for t ≥ 1:

F (x̃t)
(14)
= F

ỹt−1 −
ηt
n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j))


(3)
≤ F (ỹt−1)− ηt

〈
∇F (ỹt−1),

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j))

〉
+

Lη2t
2

∥∥∥∥∥∥ 1n
n∑

j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

(17),(8)
≤ (1− θ(t−1))F (x̃t−1) + θ(t−1)F (x∗) + ⟨∇F (ỹt−1), θ

(t−1)v(t−1) − θ(t−1)x∗⟩

− ηt

〈
∇F (ỹt−1),

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j))

〉
+

ηt
2

∥∥∥∥∥∥ 1n
n∑

j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

,

where the last line follows since ηt ≤ 1
L . We further have

F (x̃t) ≤ (1− θ(t−1))F (x̃t−1) + θ(t−1)F (x∗)

+

〈
∇F (ỹt−1)−

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t−1) − x∗)

〉

+

〈
1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t−1) − x∗)

〉

− ηt

〈
∇F (ỹt−1)−

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)),
1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j))

〉

− ηt

∥∥∥∥∥∥ 1n
n∑

j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

+
ηt
2

∥∥∥∥∥∥ 1n
n∑

j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

(16)
= (1− θ(t−1))F (x̃t−1) + θ(t−1)F (x∗)

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

+

〈
∇F (ỹt−1)−

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t) − x∗)

〉

+

〈
1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t−1) − x∗)

〉

− ηt
2

∥∥∥∥∥∥ 1n
n∑

j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

= (1− θ(t−1))F (x̃t−1) + θ(t−1)F (x∗)

+

〈
∇F (ỹt−1)−

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t) − x∗)

〉

+
(θ(t−1))2

2ηt

[2ηt
θ(t−1)

〈
1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), (v(t−1) − x∗)

〉

−
(ηt
θ(t−1)

)2 ∥∥∥∥∥∥ 1n
n∑

j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

+ ∥v(t−1) − x∗∥2 − ∥v(t−1) − x∗∥2
]

(16)
= (1− θ(t−1))F (x̃t−1) + θ(t−1)F (x∗)

+

〈
∇F (ỹt−1)−

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t) − x∗)

〉

+
(θ(t−1))2

2ηt

[
∥v(t−1) − x∗∥2 − ∥v(t) − x∗∥2

]
, (19)

where we apply equation (16).

By the definition Kt =
1
n

∑n
i=1

∥∥∥y(t)i − y
(t)
0

∥∥∥2, we get that∥∥∥∥∥∥∇F (ỹt−1)−
1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇f(ỹt−1;π

(t)(j))−∇f(y
(t)
j−1;π

(t)(j))
)∥∥∥∥∥∥

2

≤ 1

n

n∑
j=1

∥∥∥∇f(ỹt−1;π
(t)(j))−∇f(y

(t)
j−1;π

(t)(j))
∥∥∥2

(3)
≤ L2 1

n

n∑
j=1

∥∥∥y(t)0 − y
(t)
j−1

∥∥∥2
≤ L2

n

n∑
i=1

∥∥∥y(t)i − y
(t)
0

∥∥∥2 = L2Kt. (20)

From (19) and using the inequality ⟨a, b⟩ ≤ ∥a∥2

2ϵt
+ ϵt∥b∥2

2 for any ϵt > 0, we have

F (x̃t)− F (x∗) ≤ (1− θ(t−1))[F (x̃t−1)− F (x∗)]

+

〈
∇F (ỹt−1)−

1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j)), θ(t−1)(v(t) − x∗)

〉

+
(θ(t−1))2

2ηt

[
∥v(t−1) − x∗∥2 − ∥v(t) − x∗∥2

]
≤ (1− θ(t−1))[F (x̃t−1)− F (x∗)]

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

+
ηt
2ϵt

∥∥∥∥∥∥∇F (ỹt−1)−
1

n

n∑
j=1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

+
ϵt(θ

(t−1))2

2ηt

∥∥∥v(t) − x∗

∥∥∥2
+

(θ(t−1))2

2ηt

[
∥v(t−1) − x∗∥2 − ∥v(t) − x∗∥2

]
(20)
≤ (1− θ(t−1))[F (x̃t−1)− F (x∗)] +

L2ηt
2ϵt

Kt

+
(θ(t−1))2

2ηt
∥v(t−1) − x∗∥2 −

(θ(t−1))2

2ηt
(1− ϵt)∥v(t) − x∗∥2.

Now substituting θ(t) = 2
t+2 , θ(t−1) = 2

t+1 we get

F (x̃t)− F (x∗) ≤
t− 1

t+ 1
[F (x̃t−1)− F (x∗)] +

L2ηt
2ϵt

Kt

+
2

ηt(t+ 1)2
∥v(t−1) − x∗∥2 −

2

ηt(t+ 1)2
(1− ϵt)∥v(t) − x∗∥2. (21)

Multiplying two sides by (t+ 1)2 we have

(t+ 1)2[F (x̃t)− F (x∗)] ≤ (t− 1)(t+ 1)[F (x̃t−1)− F (x∗)] +
L2ηt(t+ 1)2

2ϵt
Kt

+
2

ηt
∥v(t−1) − x∗∥2 −

2

ηt
(1− ϵt)∥v(t) − x∗∥2.

Summing the previous expression from t = 1 to t = T we get that
T∑

t=1

(t+ 1)2[F (x̃t)− F (x∗)] ≤
T∑

t=1

(t2 − 1)[F (x̃t−1)− F (x∗)] +
T∑

t=1

L2ηt(t+ 1)2

2ϵt
Kt

+
T∑

t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2,

which is equivalent to
T∑

t=1

[(t+ 1)2 − 1][F (x̃t)− F (x∗)] ≤
T∑

t=1

(t2 − 1)[F (x̃t−1)− F (x∗)] +
T∑

t=1

L2ηt(t+ 1)2

2ϵt
Kt

+

T∑
t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2 −

T∑
t=1

[F (x̃t)− F (x∗)].

Hence we get the desired estimate of Lemma A.1:

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

L2ηt(t+ 1)2

2ϵt
Kt −

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2. (22)

□

Lemma A.2. Suppose that Assumption 3.1 holds for (1). Let {x̃t} be generated by Algorithm 2 with the learning rate
η
(t)
i := ηt

n > 0 for a given positive sequence {ηt} with ηt ≤ 1
2L . Then we have the following for t ≥ 1:

Kt ≤
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x̃t;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2 . (23)

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Proof of Lemma A.2: Bound the term Kt

Let us recall the definition of Kt and It:

Kt =
1

n

n∑
i=1

∥∥∥y(t)i − y
(t)
0

∥∥∥2 , and It =
1

n

n∑
i=1

∥∥∥y(t)n − y
(t)
i

∥∥∥2 .
We consider the individual squared term of It:

∥∥∥y(t)n − y
(t)
i

∥∥∥2 =
η2t
n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y
(t)
j−1;π

(t)(j))

∥∥∥∥∥∥
2

=
η2t
n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y
(t)
j−1;π

(t)(j))−
n∑

j=i+1

∇f(y(t)n ;π(t)(j)) +
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

≤ 2η2t
n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y
(t)
j−1;π

(t)(j))−
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

+
2η2t
n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

≤ 2η2t
n2

(n− i)

n∑
j=i+1

∥∥∥∇f(y
(t)
j−1;π

(t)(j))−∇f(y(t)n ;π(t)(j))
∥∥∥2 + 2η2t

n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

,

where in the last two lines we use the inequality (u+ v)2 ≤ 2u2 + 2v2 and Cauchy-Schwartz inequality. From Assumption
3.1 we have

∥∥∥y(t)n − y
(t)
i

∥∥∥2 ≤ 2η2t
n2

(n− i)
n∑

j=i+1

∥∥∥∇f(y
(t)
j−1;π

(t)(j))−∇f(y(t)n ;π(t)(j))
∥∥∥2 + 2η2t

n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

(3)
≤ 2L2η2t

n2
(n− i)

n∑
j=i+1

∥∥∥y(t)j−1 − y(t)n

∥∥∥2 + 2η2t
n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

≤ 2L2η2t
n2

(n− i)nIt +
2η2t
n2

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

,

where last inequality follows from definition of It. Summing up the previous expression from i = 1 to i = n− 1 we get

nIt =
n−1∑
i=1

∥∥∥y(t)n − y
(t)
i

∥∥∥2 ≤ 2L2η2t
n2

n−1∑
i=1

(n− i)nIt +
2η2t
n2

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

≤ 2L2η2t
n2

n2

2
nIt +

2η2t
n2

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

≤ L2η2t nIt +
2η2t
n2

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

,

where we use the fact that
∑n−1

i=1 (n− i) ≤ n2

2 . Since ηt ≤ 1
2L , we have η2tL

2 ≤ 1
4 . Hence

3

4
nIt ≤

2η2t
n2

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

,

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

and equivalently

It ≤
8η2t
3n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

. (24)

For i = 0 we have

∥∥∥y(t)n − y
(t)
0

∥∥∥2 ≤ 2L2η2t
n2

n2It +
2η2t
n2

∥∥∥∥∥∥
n∑

j=1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

(24)
≤ 2L2η2t It +

2η2t
n2

∥∥∥∥∥∥
n∑

j=1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

≤ 1

2
It + 2η2t

∥∥∥∇F (y(t)n)
∥∥∥2 . (25)

Now we are ready to investigate Kt. By inequality (u+ v)2 ≤ 2u2 + 2v2 we get

Kt =
1

n

n∑
i=1

∥∥∥y(t)i − y
(t)
0

∥∥∥2 ≤ 1

n

n∑
i=1

2
∥∥∥y(t)n − y

(t)
i

∥∥∥2 + 2
∥∥∥y(t)n − y

(t)
0

∥∥∥2
= 2It + 2

∥∥∥y(t)n − y
(t)
0

∥∥∥2
(25)
≤ 2It + It + 4η2t

∥∥∥∇F (y(t)n)
∥∥∥2

(24)
≤ 8η2t

n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(y(t)n ;π(t)(j))

∥∥∥∥∥∥
2

+ 4η2t

∥∥∥∇F (y(t)n)
∥∥∥2 .

Finally, substituting y
(t)
n by x̃t we get the desired results. □

B. Proof of Theorem 4.1: Convex components - Unified schemes
Before proving Theorem 4.1, we need the following supplemental Lemma for convex component functions.
Lemma B.1 (Convex component functions). Suppose that Assumption 3.1 holds for (1) and f(·; i) is convex for every
i ∈ [n]. Let {y(t)i } be generated by Algorithm 2 with the learning rate η

(t)
i := ηt

n > 0 for a given positive sequence {ηt}
with ηt ≤ 1

2L . Then

Kt ≤ 8η2t
(
3L (F (x̃t)− F (x∗)) + σ2

∗
)
. (26)

Proof of Lemma B.1: Bound Kt in terms of the variance σ2
∗

From Lemma A.2 we have

Kt ≤
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x̃t;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

=
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x̃t;π
(t)(j))−

n∑
j=i+1

∇f(x∗;π
(t)(j)) +

n∑
j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

≤ 16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

(
∇f(x̃t;π

(t)(j))−∇f(x∗;π
(t)(j))

)∥∥∥∥∥∥
2

+
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

≤ 16η2t
n3

n−1∑
i=1

(n− i)
n∑

j=i+1

∥∥∥∇f(x̃t;π
(t)(j))−∇f(x∗;π

(t)(j))
∥∥∥2

+
16η2t
n3

n−1∑
i=1

(n− i)
n∑

j=i+1

∥∥∥∇f(x∗;π
(t)(j))

∥∥∥2 + 4η2t ∥∇F (x̃t)∥2 ,

where in the last two lines we use the inequality (u+ v)2 ≤ 2u2 + 2v2 and Cauchy-Schwartz inequality. By the definition
of Dt we have

Kt ≤
16η2t
n3

n−1∑
i=1

(n− i)Dt +
16η2t
n3

n−1∑
i=1

(n− i)
n∑

j=1

∥∥∥∇f(x∗;π
(t)(j))

∥∥∥2 + 4η2t ∥∇F (x̃t)∥2

≤ 8η2t
n

Dt +
8η2t
n

nσ2
∗ + 4η2t ∥∇F (x̃t)∥2 ,

where we use the fact that
∑n−1

i=1 (n− i) ≤ n2

2 .

Let us consider the term Dt. Since fi is convex, we have the following for every t ≥ 1

Dt =

n∑
j=1

∥∥∥∇f(x̃t;π
(t)(j))−∇f(x∗;π

(t)(j)))
∥∥∥2

≤ 2L

n∑
j=1

(
f(x̃t;π

(t)(j))− f(x∗;π
(t)(j))− ⟨∇f(x∗;π

(t)(j)), x̃t − x∗⟩
)

≤ 2nL (F (x̃t)− F (x∗)− ⟨∇F (x∗), x̃t − x∗⟩)
= 2nL (F (x̃t)− F (x∗)) .

Substitute this to the previous equation we get:

Kt ≤
8η2t
n

Dt +
8η2t
n

nσ2
∗ + 4η2t ∥∇F (x̃t)∥2

≤ 16Lη2t (F (x̃t)− F (x∗)) + 8η2t σ
2
∗ + 4η2t ∥∇F (x̃t)∥2 .

Since F is L-smoooth and convex, we have ∥∇F (x̃t)∥2 ≤ 2L (F (x̃t)− F (x∗)) (Nesterov, 2004). Hence

Kt ≤ 16Lη2t (F (x̃t)− F (x∗)) + 8η2t σ
2
∗ + 4η2t · 2L (F (x̃t)− F (x∗))

≤ 24Lη2t (F (x̃t)− F (x∗)) + 8η2t σ
2
∗.

Thus we have the estimate of Lemma B.1. □

Proof of Theorem 4.1

Let us start with inequality (18) from Lemma A.1. Applying Lemma B.1 we have

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

L2ηt(t+ 1)2

2ϵt
Kt −

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2

(26)
≤

T∑
t=1

4L2η3t (t+ 1)2

ϵt

(
3L (F (x̃t)− F (x∗)) + σ2

∗
)
−

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

From the choice ηt =
kαt

LT we have 2
ηt

= 2LT
kαt and

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3α3t

L3T 3

4L2(t+ 1)2

ϵt

(
3L (F (x̃t)− F (x∗)) + σ2

∗
)
−

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2LT

kαt
∥v(t−1) − x∗∥2 −

T∑
t=1

2LT

kαt
(1− ϵt)∥v(t) − x∗∥2.

In addition, we choose ϵt =
α−1
α and (1− ϵt) =

1
α . The last two terms cancel out that

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3α3t

L3T 3

4αL2(t+ 1)2

α− 1

(
3L (F (x̃t)− F (x∗)) + σ2

∗
)
−

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2LT

kαt
∥v(t−1) − x∗∥2 −

T∑
t=1

2LT

kαt+1
∥v(t) − x∗∥2.

≤
T∑

t=1

k3α3t+1

LT 3

4(t+ 1)2

α− 1

(
3L (F (x̃t)− F (x∗)) + σ2

∗
)
−

T∑
t=1

[F (x̃t)− F (x∗)]

+
2LT

kα
∥v0 − x∗∥2.

Note that α = 1 + 1
T (1 ≤ α ≤ 3

2 for T ≥ 2). Hence α− 1 = 1
T , αt ≤ αT =

(
1 + 1

T

)T ≤ e and

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3e3α

LT 2
4(t+ 1)2

(
3L (F (x̃t)− F (x∗)) + σ2

∗
)
−

T∑
t=1

[F (x̃t)− F (x∗)] +
2LT

kα
∥v0 − x∗∥2

≤
T∑

t=1

[
12k3e3α(t+ 1)2

T 2
− 1

]
[F (x̃t)− F (x∗)] +

T∑
t=1

4k3e3α(t+ 1)2σ2
∗

LT 2
+

2LT

kα
∥v0 − x∗∥2.

From the choice k = 1
eα 3√12

, we have 12k3e3α3 = 1. Hence for every t ≥ 1 we have

12k3e3α(t+ 1)2

T 2
− 1 ≤ 12k3e3α(T + 1)2

T 2
− 1 ≤ 12k3e3α3 − 1 = 0,

where we use the fact that α = 1 + 1
T = T+1

T .

We further have

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

4k3e3α(t+ 1)2σ2
∗

LT 2
+

2LT

kα
∥v0 − x∗∥2

≤ 4k3e3α(T + 2)3σ2
∗

3LT 2
+

2LT

kα
∥v0 − x∗∥2,

where we use the fact that
∑T

t=1(t + 1)2 ≤ (T+2)3

3 . Dividing both sides by T (T + 2) and substituting k = 1
eα 3√12

and
12k3e3α3 = 1 we have

F (x̃T)− F (x∗) ≤
4k3e3α(T + 2)2σ2

∗
3LT 3

+
2L

kα(T + 2)
∥v0 − x∗∥2

≤ (T + 2)2σ2
∗

9α2LT 3
+

2Le 3
√
12

T + 2
∥v0 − x∗∥2

≤ 4σ2
∗

9LT
+

2Le 3
√
12

T
∥v0 − x∗∥2,

where (T + 2)2 ≤ 4T 2 for T ≥ 2. Note that v0 = x̃0, we get the desired results. □

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Proof of Corollary B.2: Computational complexity of Theorem 4.1

Corollary B.2. Assume the same conditions as in Theorem 4.1, i.e. Assumption 3.1 and 3.2 holds for (1). The computational
complexity needed by Algorithm 2 to reach an ϵ-accurate solution x that satisfies F (x)− F (x∗) ≤ ϵ is

nT = O
(
nσ2

∗
Lϵ

+
nL∥x̃0 − x∗∥2

ϵ

)
. (27)

By Theorem 4.1 we have

F (x̃T)− F (x∗) ≤
4σ2

∗
9LT

+
2Le 3

√
12

T
∥x̃0 − x∗∥2.

In order to reach an ϵ-accurate solution x = x̃T that satisfies F (x)− F (x∗) ≤ ϵ, we need

4σ2
∗

9LT
≤ ϵ

2
and

2Le 3
√
12

T
∥x̃0 − x∗∥2 ≤ ϵ

2
,

which is equivalent to

T ≥ 8σ2
∗

9Lϵ
and T ≥ 4Le 3

√
12∥x̃0 − x∗∥2

ϵ
.

Hence the number of individual gradient evaluations needed is

nT = max

(
8nσ2

∗
9Lϵ

,
4nLe 3

√
12∥x̃0 − x∗∥2

ϵ

)
≤ 8nσ2

∗
9Lϵ

+
4nLe 3

√
12∥x̃0 − x∗∥2

ϵ
= O

(
nσ2

∗
Lϵ

+
nL∥x̃0 − x∗∥2

ϵ

)
.

□

C. Proof of Theorem 4.3: Bounded variance - Unified schemes
Before proving Theorem 4.3, we need the following supplemental Lemma for generalized bounded variance assumption.

Lemma C.1 (Bounded variance). Suppose that Assumption 3.1 and 3.3 holds for (1). Let {x̃t} be generated by Algorithm 2
with the learning rate η

(t)
i := ηt

n > 0 for a given positive sequence {ηt} with ηt ≤ 1
2L . Then

Kt ≤
4η2t
3

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
. (28)

Proof of Lemma C.1: Bound Kt in terms of the variance σ2

From Lemma A.2 we have

Kt ≤
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x̃t;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

=
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

(
∇f(x̃t;π

(t)(j))−∇F (x̃t) +∇F (x̃t)
)∥∥∥∥∥∥

2

+ 4η2t ∥∇F (x̃t)∥2

≤ 16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

(
∇f(x̃t;π

(t)(j))−∇F (x̃t)
)∥∥∥∥∥∥

2

+
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇F (x̃t)

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

≤ 16η2t
n3

n−1∑
i=1

(n− i)
n∑

j=i+1

∥∥∥∇f(x̃t;π
(t)(j))−∇F (x̃t)

∥∥∥2 + 16η2t
n3

n−1∑
i=1

(n− i)2 ∥∇F (x̃t)∥2 + 4η2t ∥∇F (x̃t)∥2 ,

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

where in the last two lines we use the inequality (u+ v)2 ≤ 2u2 + 2v2 and Cauchy-Schwartz inequality. By Assumption
3.3 we have

Kt ≤
16η2t
n3

n−1∑
i=1

(n− i)n
(
Θ∥∇F (x̃t)∥2 + σ2

)
+

16η2t
n3

n−1∑
i=1

(n− i)2 ∥∇F (x̃t)∥2 + 4η2t ∥∇F (x̃t)∥2

≤ 8η2t
(
Θ∥∇F (x̃t)∥2 + σ2

)
+

16η2t
3

∥∇F (x̃t)∥2 + 4η2t ∥∇F (x̃t)∥2

≤ 4η2t
3

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
,

where we use the inequalities
∑n−1

i=1 (n− i) ≤ n2

2 and
∑n−1

i=1 (n− i)2 ≤ n3

3 .

Proof of Theorem 4.3

Let us start with inequality (18) from Lemma A.1. Applying Lemma C.1 we have

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

L2ηt(t+ 1)2

2ϵt
Kt −

T∑
t=1

[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2

≤
T∑

t=1

L2ηt(t+ 1)2

2ϵt

4η2t
3

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
−

T∑
t=1

[F (x̃t)− F (x∗)]

+

T∑
t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2

≤
T∑

t=1

2L2η3t (t+ 1)2

3ϵt

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
− 1

2L

T∑
t=1

∥∇F (x̃t)∥2

+

T∑
t=1

2

ηt
∥v(t−1) − x∗∥2 −

T∑
t=1

2

ηt
(1− ϵt)∥v(t) − x∗∥2,

where we use the inequality F (x̃t)− F (x∗) ≥ 1
2L∥∇F (x̃t)∥2 since F is L-smoooth and convex (Nesterov, 2004).

From the choice ηt =
kαt

LT we have 2
ηt

= 2LT
kαt and

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3α3t

L3T 3

2L2(t+ 1)2

3ϵt

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
− 1

2L

T∑
t=1

∥∇F (x̃t)∥2

+
T∑

t=1

2LT

kαt
∥v(t−1) − x∗∥2 −

T∑
t=1

2LT

kαt
(1− ϵt)∥v(t) − x∗∥2.

In addition, we choose ϵt =
α−1
α and (1− ϵt) =

1
α . The last two terms cancel out that

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3α3t

L3T 3

2αL2(t+ 1)2

3(α− 1)

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
− 1

2L

T∑
t=1

∥∇F (x̃t)∥2

+
T∑

t=1

2LT

kαt
∥v(t−1) − x∗∥2 −

T∑
t=1

2LT

kαt+1
∥v(t) − x∗∥2

≤
T∑

t=1

k3α3t+1

LT 3

2(t+ 1)2

3(α− 1)

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
− 1

2L

T∑
t=1

∥∇F (x̃t)∥2

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

+
2LT

kα
∥v0 − x∗∥2.

Note that α = 1 + 1
T (1 ≤ α ≤ 3

2 for T ≥ 2). Hence α− 1 = 1
T , αt ≤ αT =

(
1 + 1

T

)T ≤ e and

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

2k3e3α(t+ 1)2

3LT 2

(
(6Θ + 7)∥∇F (x̃t)∥2 + 6σ2

)
− 1

2L

T∑
t=1

∥∇F (x̃t)∥2

+
2LT

kα
∥v0 − x∗∥2

≤
T∑

t=1

[
2k3e3α(t+ 1)2(6Θ + 7)

3LT 2
− 1

2L

]
∥∇F (x̃t)∥2

+
T∑

t=1

4k3e3α(t+ 1)2

LT 2
σ2 +

2LT

kα
∥v0 − x∗∥2.

From the choice k = 1

eα 3
√

2(6Θ+7)
, we have 2k3e3α3(6Θ + 7) = 1. Hence for every t ≥ 1 we have

2k3e3α(t+ 1)2(6Θ + 7)

3LT 2
− 1

2L
≤ 2k3e3α(T + 1)2(6Θ + 7)

3LT 2
− 1

2L
≤ 2k3e3α3(6Θ + 7)

3L
− 1

2L
≤ 1

3L
− 1

2L
≤ 0.

where we use the fact that α = 1 + 1
T = T+1

T .

We further have

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

4k3e3α(t+ 1)2

LT 2
σ2 +

2LT

kα
∥v0 − x∗∥2

≤ 4k3e3α(T + 2)3

3LT 2
σ2 +

2LT

kα
∥v0 − x∗∥2,

where we use the fact that
∑T

t=1(t+ 1)2 ≤ (T+2)3

3 . Dividing both sides by T (T + 2) and substituting k = 1

eα 3
√

2(6Θ+7)

and 2k3e3α3(6Θ + 7) = 1 we have

F (x̃T)− F (x∗) ≤
4k3e3α(T + 2)2

3LT 3
σ2 +

2L

kα(T + 2)
∥v0 − x∗∥2

≤ 2(T + 2)2σ2

3α2(6Θ + 7)LT 3
+

2Le 3
√

2(6Θ + 7)

T + 2
∥v0 − x∗∥2

≤ 8σ2

3(6Θ + 7)LT
+

2Le 3
√

2(6Θ + 7)

T
∥v0 − x∗∥2,

where (T + 2)2 ≤ 4T 2 for T ≥ 2. Note that v0 = x̃0, we get the desired results. □

D. Proof of Theorem 4.5: Convex components - Randomized schemes
Before proving Theorem 4.5, we need two supplemental Lemmas for Randomized sampling schemes. The first Lemma is
(Mishchenko et al., 2020)[Lemma 1] for sampling without replacement.

Lemma D.1 (Lemma 1 in (Mishchenko et al., 2020)). Let X1, · · · , Xn ∈ Rd be fixed vectors, X̄ := 1
n

∑n
i=1 Xi be their

average and σ2 := 1
n

∑n
i=1 ∥Xi − X̄∥2 be the population variance. Fix any k ∈ {1, · · · , n}, let Xπ1

, · · · , Xπk
be sampled

uniformly without replacement from {X1, · · · , Xn} and X̄π be their average. Then, the sample average and the variance
are given, respectively by

E[X̄π] = X̄ and E
[
∥X̄π − X̄∥2

]
=

n− k

k(n− 1)
σ2.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Using this result we are able to prove the next Lemma D.2 as follows.
Lemma D.2 (Randomized Sampling). Suppose that Assumption 3.1 holds for (1) and f(·; i) is convex for every i ∈ [n]. Let
{y(t)i } be generated by Algorithm 2 with the learning rate η

(t)
i := ηt

n > 0 for a given positive sequence {ηt} with ηt ≤ 1
2L .

Then

E[Kt] ≤ 8η2t

(
3LE [F (x̃t)− F (x∗)] +

2σ2
∗

3n

)
. (29)

Proof of Lemma B.1: Bound Kt in terms of the variance σ2
∗

From Lemma A.2 we have

Kt ≤
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x̃t;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

=
8η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x̃t;π
(t)(j))−

n∑
j=i+1

∇f(x∗;π
(t)(j)) +

n∑
j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

≤ 16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

(
∇f(x̃t;π

(t)(j))−∇f(x∗;π
(t)(j))

)∥∥∥∥∥∥
2

+
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

≤ 16η2t
n3

n−1∑
i=1

(n− i)

n∑
j=i+1

∥∥∥∇f(x̃t;π
(t)(j))−∇f(x∗;π

(t)(j))
∥∥∥2

+
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2 ,

where in the last two lines we use the inequality (u+ v)2 ≤ 2u2 + 2v2 and Cauchy-Schwartz inequality. By the definition
of Dt we have

Kt ≤
16η2t
n3

n−1∑
i=1

(n− i)Dt +
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

≤ 8η2t
n

Dt +
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2 ,

where we use the fact that
∑n−1

i=1 (n− i) ≤ n2

2 .

Let us consider the term Dt. Since fi is convex, we have the following for every t ≥ 1

Dt =

n∑
j=1

∥∥∥∇f(x̃t;π
(t)(j))−∇f(x∗;π

(t)(j)))
∥∥∥2

≤ 2L
n∑

j=1

(
f(x̃t;π

(t)(j))− f(x∗;π
(t)(j))− ⟨∇f(x∗;π

(t)(j)), x̃t − x∗⟩
)

≤ 2nL (F (x̃t)− F (x∗)− ⟨∇F (x∗), x̃t − x∗⟩)
= 2nL (F (x̃t)− F (x∗)) .

Substitute this to the previous equation we get:

Kt ≤
8η2t
n

Dt +
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

≤ 16Lη2t (F (x̃t)− F (x∗)) +
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t ∥∇F (x̃t)∥2 .

Since F is L-smoooth and convex, we have ∥∇F (x̃t)∥2 ≤ 2L (F (x̃t)− F (x∗)) (Nesterov, 2004). Hence

Kt ≤ 16Lη2t (F (x̃t)− F (x∗)) +
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

+ 4η2t · 2L (F (x̃t)− F (x∗))

≤ 24Lη2t (F (x̃t)− F (x∗)) +
16η2t
n3

n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2

.

Now taking expectation conditioned on Ft, we get

Et[Kt] ≤ 24Lη2tEt [F (x̃t)− F (x∗)] +
16η2t
n3

n−1∑
i=1

Et


∥∥∥∥∥∥

n∑
j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2
 .

Applying the sample variance Lemma from (Mishchenko et al., 2020) we have

Et


∥∥∥∥∥∥

n∑
j=i+1

∇f(x∗;π
(t)(j))

∥∥∥∥∥∥
2
 = Et


∥∥∥∥∥∥

n∑
j=i+1

∇f(x∗;π
(t)(j))−∇F (x∗)

∥∥∥∥∥∥
2
 ≤ (n− i)i

n− 1
σ2
∗.

Substituting this into the previous expression, we get

Et[Kt] ≤ 24Lη2tEt [F (x̃t)− F (x∗)] +
16η2t
n3

n−1∑
i=1

(n− i)i

n− 1
σ2
∗

≤ 24Lη2tEt [F (x̃t)− F (x∗)] +
16η2t σ

2
∗

3n
,

where we use the facts that
∑n−1

i=1
i(n−i)
(n−1) ≤ n(n+1)

6 ≤ n2

3 . Taking total expectation, we have the estimate of Lemma D.2. □

Proof of Theorem 4.5

Let us start with inequality (18) from Lemma A.1. Taking total expectation and applying Lemma D.2 we have

T (T + 2)E[F (x̃T)− F (x∗)] ≤
T∑

t=1

L2ηt(t+ 1)2

2ϵt
E[Kt]−

T∑
t=1

E[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
E
[
∥v(t−1) − x∗∥2

]
−

T∑
t=1

2

ηt
(1− ϵt)E

[
∥v(t) − x∗∥2

]
(26)
≤

T∑
t=1

4L2η3t (t+ 1)2

ϵt

(
3LE [F (x̃t)− F (x∗)] +

2σ2
∗

3n

)
−

T∑
t=1

E[F (x̃t)− F (x∗)]

+
T∑

t=1

2

ηt
E
[
∥v(t−1) − x∗∥2

]
−

T∑
t=1

2

ηt
(1− ϵt)E

[
∥v(t) − x∗∥2

]
.

From the choice ηt =
kαt

LT we have 2
ηt

= 2LT
kαt and

T (T + 2)E[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3α3t

L3T 3

4L2(t+ 1)2

ϵt

(
3LE [F (x̃t)− F (x∗)] +

2σ2
∗

3n

)
−

T∑
t=1

E[F (x̃t)− F (x∗)]

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

+
T∑

t=1

2LT

kαt
E
[
∥v(t−1) − x∗∥2

]
−

T∑
t=1

2LT

kαt
(1− ϵt)E

[
∥v(t) − x∗∥2

]
.

In addition, we choose ϵt =
α−1
α and (1− ϵt) =

1
α . The last two terms cancel out that

T (T + 2)E[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3α3t

L3T 3

4αL2(t+ 1)2

α− 1

(
3LE [F (x̃t)− F (x∗)] +

2σ2
∗

3n

)
−

T∑
t=1

E[F (x̃t)− F (x∗)]

+
T∑

t=1

2LT

kαt
E
[
∥v(t−1) − x∗∥2

]
−

T∑
t=1

2LT

kαt+1
E
[
∥v(t) − x∗∥2

]
.

≤
T∑

t=1

k3α3t+1

LT 3

4(t+ 1)2

α− 1

(
3LE [F (x̃t)− F (x∗)] +

2σ2
∗

3n

)
−

T∑
t=1

E[F (x̃t)− F (x∗)]

+
2LT

kα
∥v0 − x∗∥2.

Note that α = 1 + 1
T (1 ≤ α ≤ 3

2 for T ≥ 2). Hence α− 1 = 1
T , αt ≤ αT =

(
1 + 1

T

)T ≤ e and

T (T + 2)E[F (x̃T)− F (x∗)] ≤
T∑

t=1

k3e3α

LT 2
4(t+ 1)2

(
3LE [F (x̃t)− F (x∗)] +

2σ2
∗

3n

)
−

T∑
t=1

E[F (x̃t)− F (x∗)]

+
2LT

kα
∥v0 − x∗∥2

≤
T∑

t=1

[
12k3e3α(t+ 1)2

T 2
− 1

]
E[F (x̃t)− F (x∗)] +

T∑
t=1

8k3e3α(t+ 1)2σ2
∗

3nLT 2

+
2LT

kα
∥v0 − x∗∥2.

From the choice k = 1
eα 3√12

, we have 12k3e3α3 = 1. Hence for every t ≥ 1 we have

12k3e3α(t+ 1)2

T 2
− 1 ≤ 12k3e3α(T + 1)2

T 2
− 1 ≤ 12k3e3α3 − 1 = 0,

where we use the fact that α = 1 + 1
T = T+1

T .

We further have

T (T + 2)E[F (x̃T)− F (x∗)] ≤
T∑

t=1

8k3e3α(t+ 1)2σ2
∗

3nLT 2
+

2LT

kα
∥v0 − x∗∥2

≤ 8k3e3α(T + 2)3σ2
∗

9nLT 2
+

2LT

kα
∥v0 − x∗∥2,

where we use the fact that
∑T

t=1(t + 1)2 ≤ (T+2)3

3 . Dividing both sides by T (T + 2) and substituting k = 1
eα 3√12

and
12k3e3α3 = 1 we have

E[F (x̃T)− F (x∗)] ≤
8k3e3α(T + 2)2σ2

∗
9nLT 3

+
2L

kα(T + 2)
∥v0 − x∗∥2

≤ 2(T + 2)2σ2
∗

27nα2LT 3
+

2Le 3
√
12

T + 2
∥v0 − x∗∥2

≤ 8σ2
∗

27nLT
+

2Le 3
√
12

T
∥v0 − x∗∥2,

where (T + 2)2 ≤ 4T 2 for T ≥ 2. Note that v0 = x̃0, we get the desired results. □

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Proof of Corollary D.3: Computational complexity of Theorem 4.5

Corollary D.3. Assume the same conditions as in Theorem 4.5, i.e. Assumption 3.1 and 3.2 holds for (1) and a randomized
schemes is applied. The computational complexity needed by Algorithm 2 to reach an ϵ-accurate solution x that satisfies
E[F (x)− F (x∗)] ≤ ϵ is

nT = O
(
σ2
∗

Lϵ
+

nL∥x̃0 − x∗∥2

ϵ

)
. (30)

By Theorem 4.5 we have

E[F (x̃T)− F (x∗)] ≤
8σ2

∗
27nLT

+
2Le 3

√
12

T
∥x̃0 − x∗∥2.

In order to reach an ϵ-accurate solution x = x̃T that satisfies E[F (x)− F (x∗)] ≤ ϵ, we need

8σ2
∗

27nLT
≤ ϵ

2
and

2Le 3
√
12

T
∥x̃0 − x∗∥2 ≤ ϵ

2
,

which is equivalent to

T ≥ 16σ2
∗

27nLϵ
and T ≥ 4Le 3

√
12∥x̃0 − x∗∥2

ϵ
.

Hence the number of individual gradient evaluations needed is

nT = max

(
16σ2

∗
27Lϵ

,
4nLe 3

√
12∥x̃0 − x∗∥2

ϵ

)
≤ 16σ2

∗
27Lϵ

+
4nLe 3

√
12∥x̃0 − x∗∥2

ϵ
= O

(
σ2
∗

Lϵ
+

nL∥x̃0 − x∗∥2

ϵ

)
.

□

E. Improved Convergence Rate with Initial Condition
In this section, we propose an initial condition which requires the iterate of our algorithm to be in a small neighborhood of
the optimal point. Let us note that the minimizer of F may not be unique, hence the condition holds for some minimizer x∗.

Assumption E.1. Let x̃0 the initial point and E > 0 be a constant. There exists a minimizer x∗ of F which satisfies

∥x̃0 − x∗∥ ≤ E√
n
.

Although in practice this assumption can be strong, we believe it provides some theoretical insights to investigate the
behaviour of SGD Shuffling-type algorithms when they reach a small neighborhood of the minimizer. Our next two
Corollaries demonstrates this fact for unified shuffling and randomized schemes respectively.

Corollary E.2. Assume the same conditions as in Theorem 4.1, i.e. Assumption 3.1 and 3.2 hold for (1). In addition,
we assume Assumption E.1 holds for the initial point x̃0 of in Algorithm 2. Let {x(t)

i } be generated by Algorithm 2 with
parameter γt = t−1

t+2 , the learning rate η
(t)
i := ηt

n > 0 for ηt = kαt

LT ≤ 1
L where k = 1

eαn1/4 3√12
> 0 and α = 1 + 1

T > 0.
Then for T ≥ 2 we have

F (x̃T)− F (x∗) ≤
4σ2

∗
9Ln3/4T

+
2LE2e 3

√
12

n3/4T
. (31)

The convergence rate of Corollary E.2 is expressed as

O
(
σ2
∗/L+ LE2

n3/4T

)
,

which has an improvement of n3/4 over the plain setting of Theorem 4.1.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

Proof of Corollary E.2

We start with the derivation from Theorem 4.1

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

[
12k3e3α(t+ 1)2

T 2
− 1

]
[F (x̃t)− F (x∗)] +

T∑
t=1

4k3e3α(t+ 1)2σ2
∗

LT 2
+

2LT

kα
∥v0 − x∗∥2.

Note that v0 = x̃0, by Assumption E.1 we have

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

[
12k3e3α(t+ 1)2

T 2
− 1

]
[F (x̃t)− F (x∗)] +

T∑
t=1

4k3e3α(t+ 1)2σ2
∗

LT 2
+

2LTE2

knα
.

From the choice k = 1
eαn1/4 3√12

, we have 12k3e3α3 = 1
n3/4 ≤ 1. Hence for every t ≥ 1 we have

12k3e3α(t+ 1)2

T 2
− 1 ≤ 12k3e3α(T + 1)2

T 2
− 1 ≤ 12k3e3α3 − 1 = 0,

where we use the fact that α = 1 + 1
T = T+1

T .

We further have

T (T + 2)[F (x̃T)− F (x∗)] ≤
T∑

t=1

4k3e3α(t+ 1)2σ2
∗

LT 2
+

2LTE2

knα

≤ 4k3e3α(T + 2)3σ2
∗

3LT 2
+

2LTE2

knα
,

where we use the fact that
∑T

t=1(t+ 1)2 ≤ (T+2)3

3 . Dividing both sides by T (T + 2) and substituting k = 1
eαn1/4 3√12

and
12k3e3α3 = 1

n3/4 we have

F (x̃T)− F (x∗) ≤
4k3e3α(T + 2)2σ2

∗
3LT 3

+
2LTE2

knα

≤ (T + 2)2σ2
∗

9α2Ln3/4T 3
+

2LE2e 3
√
12

n3/4(T + 2)

≤ 4σ2
∗

9Ln3/4T
+

2LE2e 3
√
12

n3/4T
,

where (T + 2)2 ≤ 4T 2 for T ≥ 2. Thus we get the desired results. □

Corollary E.3. Assume the same conditions and parameter setting as in Theorem 4.5, i.e. Assumption 3.1 and 3.2 hold
for (1). In addition, we assume Assumption E.1 holds for the initial point x̃0 of Algorithm 2. Let {x(t)

i } be generated by
Algorithm 2 under a randomized scheme with parameter γt = t−1

t+2 , the learning rate η
(t)
i := ηt

n > 0 for ηt = kαt

LT ≤ 1
L

where k = 1
eα 3√12

> 0 and α = 1 + 1
T > 0. Then for T ≥ 2 we have

E[F (x̃T)− F (x∗)] ≤
8σ2

∗
27nLT

+
2LE2e 3

√
12

nT
. (32)

The convergence rate of Corollary E.3 is expressed as

O
(
σ2
∗/L+ LE2

nT

)
,

which shows an improvement of n over the standard setting thanks to the application of Randomized schemes and
Assumption E.1. The proof of Corollary E.3 follows straightforwardly from Theorem 4.3 and as a result, this bound is in
expectation form, which is weaker than the deterministic criteria in Corollary E.2.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

F. Detailed Implementation and Additional Experiments
In this section, we explain the detailed hyper-parameter tuning in Section 5.

F.1. Experiment Settings

For the binary classification experiment, we consider the following convex problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

log(1+exp(−yix
⊤
i w))

}
,

where {(xi, yi)}ni=1 is a set of training samples with xi ∈ Rd and yi ∈ {−1, 1}. For the image classification, we experiment
with the following minimization problem:

min
w∈Rd

{
F (w) := − 1

n

n∑
i=1

y⊤i log(softmax(h(w; i)))
}
,

where h(·; i) can be convex or non-convex. The input data {xi}ni=1 are in Rd and the output labels {yi}ni=1 are one-hot
vectors in Rc, where c is the number of classes. Note that this problem can be written as f(w; i) = ϕi(h(w; i)) where ϕi is
the convex softmax function (Nguyen et al., 2022).

F.2. Comparing NASG with Other Methods

For the motivational experiment in Section 2, we use the same setting as the binary classification in Section 5.1.

At the tuning stage, we test each method for 20 epochs. We run every algorithm with a constant learning rate where the
learning rates follows a grid search and select the ones that perform best according to their results. These hyperparameters
are choosen for the main training stage that lasts 100 and 200 epochs (for binary experiment and image classification,
respectively). The hyper-parameters tuning strategy for our main experiments is given below:

• For NASG the searching grid is {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.
• For deterministic NAG, the searching grid is {50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.
• For NASG-PI (applying the Nesterov momentum term for each iteration), the searching grid is
{10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. We describe this method in Algorithm 3.

Algorithm 3 Nesterov Accelerated Shuffling Gradient - Per Iteration (NASG - PI)

1: Initialization: Choose an initial point x̃0, ỹ0 ∈ Rd.
2: for t = 1, 2, · · · , T do
3: Set x(t)

0 := x̃t−1 and y
(t)
0 := ỹt−1;

4: Generate any permutation π(t) of [n] (either deterministic or random);
5: for i = 1, · · · , n do
6: Update x

(t)
i := y

(t)
i−1 − η

(t)
i ∇f(y

(t)
i−1;π

(t)(i));

7: Update y
(t)
i := x

(t)
i + t−1

t+2 (x
(t)
i − x

(t)
i−1);

8: end for
9: Set x̃t := x

(t)
n and ỹt := y

(t)
n ;

10: end for

In the two main sets of algorithm, we compare our algorithm with Stochastic Gradient Descent (SGD) and two other
methods: SGD with Momentum (SGD-M) (Polyak, 1964) and Adam (Kingma & Ba, 2014). To have a fair comparison, a
random reshuffling strategy is applied to all methods.

At the tuning stage, we test each method for 20 epochs. We run every algorithm with a constant learning rate where the
learning rates follows a grid search and select the ones that perform best according to their results. These hyperparameters
are choosen for the main training stage that lasts 100 and 200 epochs (for binary experiment and image classification,
respectively). The hyper-parameters tuning strategy for our main experiments is given below:

• For SGD and NASG the searching grid is {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.

Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

• For SGD-M, we update the weights using the following rule:

m
(t)
i+1 := βm

(t)
i + g

(t)
i

w
(t)
i+1 := w

(t)
i − η

(t)
i m

(t)
i+1,

where g
(t)
i is the (i+ 1)-th gradient at epoch t. Note that this momentum update is implemented in PyTorch with the

default value β = 0.9. Hence, we choose this setting for SGD-M, and we tune the learning rate using the grid search as
in the SGD algorithm.

• For Adam, we fixed two hyper-parameters β1 := 0.9, β2 := 0.999 as in the original paper. Since the default learning
rate for Adam is 0.001, we let our searching grid be {0.005, 0.001, 0.0005}. We note that since the best learning
rate for Adam is usually 0.001, its hyper-parameter tuning process requires little effort than other algorithms in our
experiments.

