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ARTICLE INFO ABSTRACT

Keywords: The atmospheric mixing layer height (MLH) is a critical variable for understanding and constraining ecosystem
Land-atmosphere interactions and climate dynamics. Past MLH estimation efforts have largely relied on data with low temporal (radiosondes)
Boundary layer height

or spatial (reanalysis) resolutions. This study is unique in that it utilized continuous point-based ceilometer- and
radiosonde-derived measurements of MLH at surface flux tower sites to identify the surface influence on MLH
dynamics. We found a strong correlation (R? = 0.73-0.91) between radiosonde MLH and ceilometer MLH at two
sites with co-located observations. Seasonally, mean MLH was the highest at all sites during the summer, while
the highest annual mean MLH was found at the warm and dry sites, dominated by high sensible heat fluxes. At
daily time scales, surface fluxes of sensible heat, latent heat, and vapor pressure deficit had the largest influence
on afternoon MLH. However, at best, the identified forcing variables and surface fluxes only accounted for ~38-
65% of the variability in MLH under all sky conditions, and ~53-76% of the variability under clear skies. These
results highlight the difficulty in using single-point observations to explain MLH dynamics but should encourage
the use of ceilometers or similar atmospheric measurements at surface flux sites in future studies.

Surface energy budget
Eddy-covariance
Phenology

AmeriFlux

1. Introduction

The atmospheric boundary layer (ABL) is the lowest layer of the
atmosphere that is in direct contact with the Earth’s surface. The ABL is
a critical component of the Earth’s climate system as processes within
the ABL control the exchange of energy, mass, momentum, and pollut-
ants between the land surface and the atmosphere (Seibert, 2000; Stull,
1988; Yi, 2004). The height and structure of the ABL can be highly
variable within a day and between seasons as it is influenced by diurnal
and seasonal variations in the surface energy budget, incoming solar
radiation, free atmospheric temperature and humidity profiles, and
synoptic weather systems (Helbig et al., 2021; Zilitinkevich et al., 2012).
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Gaseous or particulate substances emitted from the surface become well
mixed within the ABL due to turbulent mixing from buoyant convection
and/or wind shear (Schween et al., 2014). This well-mixed layer, also
known as the mixing layer, can grow up to several kilometers, bounded
by the land surface below and a capping temperature inversion or
statically stable layer of air above (Kotthaus and Grimmond, 2018;
Wouters et al., 2019). The resulting mixing layer height (MLH) is a
critical variable for understanding and constraining ecosystem and
climate dynamies as it directly affects the heat capacity of the ABL
(Panwar et al., 2019), CO, concentrations within the ABL (Vi et al.,
2001), the onset of convective precipitation events (Siqueira et al.,
2009), and air pollutant (aerosol) dispersion and deposition (Seibert,
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20005 Yin et al., 2019), among many other processes and interactions.

The most common methods to determine MLH examine deviations in
vertical profiles of temperature, humidity, or Richardson number (Pir-
inger et al., 2007; Seibert, 2000). These variables are often calculated
using radiosonde data, but are commonly only used as a reference value,
due to their limited (non-continuous) temporal resolution (Kotthaus and
Grimmond, 2018; Miinkel et al., 2007; Seidel et al., 2012). The lack of
high temporal resolution radiosonde measurements can be resolved by
incorporating continuous, ground-based proximal sensing techniques
such as sodar, radar, and LiDAR instrumentation (Schween et al., 2014).
These instruments are regarded as the most advanced methods for
observing MLH, as they operate at a high temporal resolution and
require minimal maintenance (Helbig et al., 2021). Aerosol backscatter
LiDARSs, also known as ceilometers, are single-lens and eye-safe LiDARs
that were originally designed to measure cloud ceilings, but also provide
a backscatter profile used for the determination of the MLH (Wiegner
et al., 2014). Ceilometers have been utilized in many studies to estimate
and evaluate the MLH (Caicedo et al., 2020; Emeis et al., 2008; Eresmaa
et al., 2006; Gierens et al., 2019; Haeffelin et al., 2012; Hicks et al.,
2019; Lotteraner and Piringer, 2016; Mues et al., 2017; Schween et al.,
2014) as they offer one of the best proximal sensing options for the
observation of atmospheric aerosols. However, when considering
ecosystem-level analyses of MLH, recent studies have exclusively used
modeled MLH outputs (e.g., Butterworth et al, 2021; Perkins, 2020;
Schmiedeler, 2019), while limited research has analyzed
ceilometer-derived MLH. Furthermore, diurnal and seasonal MLH dy-
namics are tightly coupled to surface fluxes of sensible and latent heat
(Baldocchi and Ma, 2013; Betts, 2004; Yi et al., 2001), yet despite the
close relation between surface fluxes and MLH, direct surface flux ob-
servations have rarely been analyzed together with MLH observations
from ceilometers.

Airports, weather services, and global research institutions use ceil-
ometers to examine cloud and MLH dynamics (e.g., heights and fre-
quencies), but these observations are rarely located near continuous
land-atmosphere (e.g., ecosystem meteorology and flux) monitoring
stations. The AmeriFlux and global FLUXNET networks are an extensive
system of eddy covariance (EC) flux tower sites that support continuous
monitoring of energy, carbon, water, and other land-atmosphere fluxes
(Baldocchi et al., 2001; Novick et al., 2018). The EC technique allows
continuous, high frequency measurements of the surface turbulent
fluxes of latent and sensible heat to be made, which among other
mechanisms, are shown to be a primary driver of the growth of the ABL
and MLH (Garratt, 1994; Stull, 1988). At present, MLH measurements
are only made at a small number of flux sites worldwide, and these data
are often not publicly available (Helbig et al., 2021). Consequently, this
study is the first of its kind to incorporate co-located EC flux and ceil-
ometer data for a range of sites across the United States, with the goal of
answering the questions: (1) how do the MLH and flux relationships vary
across season and ecosystem type, and (2) can we explain the day-to-day
variations in MLH as a function of site-level environmental variables and
fluxes?

In this study, we incorporate a range of neighboring (30 km) ob-
servations from radiosondes, ceilometers, flux towers, and reanalysis
data to examine the direct influence of surface fluxes and the indirect
influence of surface flux proxies on MLH dynamics at select US Ameri-
Flux sites. The specific goals of this research are to: (1) evaluate
ceilometer-derived MLH retrievals against radiosonde-derived MLH es-
timates, (2) characterize MLH across various ecosystems and climates,
(3) analyze the role of seasonal surface fluxes and phenology on MLH
dynamics, and (4) examine the relative influence of explanatory vari-
ables on MLH at each site.
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2. Methods and materials
2.1. Site selection and details

This study examined the relationships between ceilometer-derived
(LiDAR; see section 2.2.2 for additional details) cloud and MLH data
and EC flux and meteorological data for five AmeriFlux sites (Table 1,
see also ameriflux.Ibl.gov). These sites were included as they all had
ceilometer measurements in close proximity to an active AmeriFlux site.
Two of the sites (US-Wkg and US-Whs) shared a centrally located ceil-
ometer due to their distance between each other (8 km apart) and were
the only sites to not have co-located ceilometer and flux measurements
(Table 1). The five sites span a climatological gradient across the United
States and cover an area ranging from the cool and wet climate of Maine
to the hot and arid climate of Arizona (Fig. 1). Additionally, the sites are
composed of four main plant functional types (PFTs): evergreen nee-
dleleaf forests, grasslands, croplands, and open shrublands. The broad
range of climates and PFTs in this study (Table 1) allows us to compare
the seasonal patterns of MLH that may exist across different vegetation
types.

The Howland Forest (US-Ho1) in Howland, Maine is a mature, multi-
aged evergreen dominated forest (90% of trees) that has been unman-
aged for nearly a century (Hollinger et al., 2021). The climate at US-Hol
is hemiboreal (Dfb; Koppen climate classification), with long, cold
winters, and warm summers. The Kansas Field Station (US-KFS) in
Lawrence, Kansas is a heterogeneous grassland comprised of a mixture
of C3 and some native C4 grasses (Brunsell et al., 2011). Infrequent
(about every five years) prescribed burns occurred at the site prior to the
EC installation in 2007, helping to maintain the site as a grassland. The
Southern Great Plains (US-ARM) site located in Lamont, Oklahoma, part
of the Department of Energy (DOE) Atmospheric Radiation Measure-
ment (ARM) user facility (arm.gov) is covered by areas of winter wheat,
grassland pastures, and some row-crop agriculture (Bagley et al., 2017;
Fischer et al., 2007). The climate at US-KFS and US-ARM is warm
temperate (Cfa) with hot and humid summers and mild winters. The
remaining two sites, the Kendall Grassland (US-Wkg) and the Lucky Hills
Shrubland (US-Whs), are located within the US Department of Agricul-
ture Agricultural Research Service (USDA-ARS) Walnut Gulch Experi-
mental Watershed (WGEW) near Tombstone, Arizona. The desert
shrubland (US-Whs) is dominated by shrubs, with nearly no grass
presence at the site, while the grassland (US-Wkg) is largely perennial
bunchgrass (Scott et al., 2015, 2010). Both US-Wkg and US-Whs expe-
rience a cold semi-arid climate (Bsk) due to their elevation (1370 1530
m above sea level), with cold winters and hot summers, and the majority
of their rainfall falling from July to September. The geographic distri-
bution of sites is shown in Fig. 1, with additional information found at
their respective DOIs (Table 1).

2.2. Data descriptions

2.2.1. Theory and data selection

The complex process-level relationships and feedbacks between
surface fluxes and the MLH are an important topic of research (Santa-
nello et al., 2018). Therefore, we highlight these interactions to provide
an overview of the observations used throughout this study. The surface
energy balance describes the bi-directional exchange and partitioning of
energy fluxes toward and away from the surface and is inseparably
linked to the overlying mixing layer. Strong surface heating can posi-
tively influence MLH growth, especially over dry soils, while increases in
the amount of surface evaporation and a concurrent reduction in surface
sensible heat flux, often over wetter soils, may act to limit the growth of
the MLH (Santanello et al., 2018; Yi et al., 2004). This exchange of en-
ergy directly influences the air temperature and humidity profiles within
the ABL as well as the temperature of the surface (Jin and Dickinson,
2010; Konings et al., 2010). However, varying hydroclimatic regimes,
PFTs, and atmospheric stability conditions are shown to influence the
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Table 1
Metadata for the AmeriFlux sites used in this study. Site mean annual temperature (MAT; °C) and mean annual precipitation (MAP; mm) are the 30-year mean values
reported on the AmeriFlux site webpages. Additional site information can be found at the respective DOIs.

Site IGBP* Latitude Longitude MAT MAP Years Distance Ceilometer por*

US-Hol ENF 45.20 -68.74 5.3 1070 2013 - 2019 On-Site Vaisala CL31 1246061
US-KFs GRA 39.06 -95.19 12.0 1014 2016 - 2019 On-Site Vaisala CL51 1246132
US-ARM CRO 36.61 -97.49 14.8 843 2012 - 2020 On-Site Vaisala CL31 1246027
Us-Wkg GRA 31.74 -109.94 15.6 407 2017 - 2020 11 km Lufft CHM15k 1246112
US-Whs OSH 31.75 -110.05 17.6 320 2017 - 2020 3 km 1246113

* IGBP Vegetation Classifications: ENF, Evergreen Needleleaf Forest; CRO, Croplands; GRA, Grasslands; and OSH, Open Shrublands. *DOI: AmeriFlux DOIs are
preceded by '10.17190/AMF/".
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Fig. 1. The geographic distribution of the AmeriFlux sites including the 30-year (1991-2020) mean (a) annual temperature (MAT) and (b) annual precipitation
(MAP) for the United States (NOAA NCEI). Site-specific values and additional information are listed in Table 1.

strength of these relationships on influencing MLH (Baldocchi and Ma,
201 3; Findell and Eltahir, 2003; Koster et al., 2009), which also depends
in part on vegetation structure and function. Consequently, to capture
and characterize the role of surface processes in controlling MLH, this
study included measurements of: (1) sensible heat flux (H, W m~2) and
(2) latent heat flux (LE, W m~2) which act as direct drivers of MLH, and
indirect drivers such as (3) vapor pressure deficit (VPD, kPa), (4) 5-10
cm (near-surface) soil water content (01gcm, m® m_a), (5) the differ-
ence (Tgif, °C) between the air temperature (T,, °C) and radiometric

surface temperature (Tg, °C), (6) PhenoCam greenness chromatic co-
ordinate (Gee), and (7) the low-level humidity index (HIp gy, °C). All
site-level data were averaged to provide a singular daily daytime value
(here defined as 8 am to 6 pm local standard time).

2.2.2. Eddy covariance and phenology data

Half-hourly fluxes of LE, H, and meteorological data from each site
were downloaded directly from the open-access AmeriFlux website.
Missing data of all lengths (often due to instrument failure or
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malfunction) were gap-filled using REddyProc (Wutzler et al., 2018).
REddyProc relies on half-hourly measurements of the net ecosystem
exchange (NEE) of CO, T,, or soil temperature (Ts), incoming shortwave
radiation (Rg), and VPD, to fill the gaps in the half-hourly EC data. Many
sites do not report VPD, in which case VPD was calculated from
measured relative humidity (RH) and T, data (Campbell and Norman,
1998). REddyProc estimates a site-specific u* threshold (Papale et al.,
2006) before filtering out periods of low turbulent mixing (u* filtering).
After low-turbulence periods are removed, data gaps were filled using a
combination of look-up tables, mean diurnal course, or marginal dis-
tribution sampling methods (Wutzler et al., 2018).

Following the completion of the REddyProc processing, continuous
half-hourly gap-filled flux and meteorological data were available at
each of the sites. From here, we calculated the radiometric surface
temperature (Tgg) using the BigLeaf R package (Knauer et al., 2018):

(( )/ ) M

where LWy, and LWqown are the flux tower measured upward and
downward longwave radiation (W m 2), respectively, is the emissivity
of the surface (set to the commonly assumed value of 0.98), and is the
Stefan-Boltzmann constant (5.67 10 8Wm 2K “). The T, and T at
a given site are strongly coupled and also sensitive to vegetation struc-
ture (e.g., aerodynamic roughness), which may lead to different re-
sponses between the T, and T under varying evaporative conditions
(Panwar et al., 2019). Therefore, we used the difference (Tqifr  Ta Tste)
to better understand the relationships between the turbulent exchange
of surface energy fluxes (across different vegetation types) and the
atmosphere.

Canopy greenness data from the PhenoCam network (phenocam.
nau.edu/webcam) were also included at each site to consider daily es-
timates of vegetation activity (phenology). The PhenoCam data were
obtained from the PhenoCam V2 public data release (Seyednasrollah
et al., 2019), and provide site-level estimates of canopy greenness from
digital camera imagery. We quantified canopy greenness using Gcc, a
commonly-used vegetation index (Richardson, 2019) which has been
shown to be robust to changes in weather and illumination geometry.
Gcec is calculated from the mean digital number (DN) of each of the red,
green, blue (Rpn, Gpn, Bpn) colors across a masked region within each
image, with the mask delineating the vegetation of interest:

(2)

Further details about the PhenoCam network and related data can be
found in Richardson (2019).

2.2.3. Ceilometer data

Three of the five sites utilized a Vaisala (CL31 or CL51) ceilometer,
while a Lufft CHM15k was used at the Arizona sites (US-Wkg and US-
Whs) (Table 1). The Vaisala CL31 (CL51) records clouds and back-
scatter profiles up to a height of 7.5 km (15 km) at a temporal resolution
of 2's (6 s) and a vertical resolution of 10 m (10 m). The CL51 is listed to
have an increased (up to 6 times greater) signal-to-noise ratio as
compared to the CL31 (Morris and Winston, 2016). The Lufft CHM15k
measures clouds and backscatter profiles up to 15 km, (like the Vaisala
CL51) and has temporal and vertical resolutions of 15 s and 15 m,
respectively.

All ceilometers retrieve MLH using the negative gradient of the
aerosol backscatter profile and provide up to three levels of MLH attri-
butions at each time step. For this analysis, we used the lowest detect-
able MLH returned by each ceilometer. For the Vaisala ceilometers, high
resolution data were processed using the Vaisala BL-VIEW software,
providing half-hourly estimates of MLH from the backscatter profiles
(Miinkel et al.,, 2011). For the Lufft CHMI15k, no additional
post-processing steps (e.g., BL-VIEW) were necessary to create the
netCDF output files. The CHM15k at US-Wkg/Whs often failed to
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produce reasonable MLH outputs during the day, possibly due to low
signal-to-noise ratios (Eresmaa et al., 2006; Kotthaus and Grimmond,
2018; Wiegner et al., 2014) or other factors, so the STRATfinder algo-
rithm was also incorporated at those two sites (Kotthaus et al., 2020).
The STRATfinder algorithm (written in MATLAB) combines STRAT-2-
D/STRAT (Haeffelin et al., 2012) and pathfinderTURB (Poltera et al.,
2017) to examine and trace daytime ceilometer-derived backscatter
profiles for regions of significant vertical gradients, indicative of layer
boundaries (e.g., mixing layer vs free atmosphere), in order to provide
an optimized/idealized path of MLH at 1 min resolutions (Kotthaus
et al., 2020).

Additionally, under conditions with significant clouds, precipitation,
or adverse weather conditions, the estimate of MLH is highly uncertain
or often poorly constrained. Therefore, the quality index and sky con-
dition of the data were also evaluated and MLH data were removed if
they did not meet the highest quality standards. For the Vaisala ceil-
ometers, this study included MLH data with a ‘blindex.1 or quality
index of 3, and for the Lufft ceilometer, a ‘Q-Index equal to 1 or 2. From
these high quality half-hourly data, a late-afternoon (3 pm 7 pm local
standard time) median MLH was calculated in order to produce
maximum daily MLH (growth) estimates. Lastly, in the final part of this
study, we considered only clear sky or ‘cloud free data to analyze the
highest quality MLH data at each site. Following the guidance of Oli-
phant et al. (2011), the half-hourly ceilometer cloud fractions were used
to distinguish ‘cloud free (  20% of samples detecting clouds) condi-
tions from cloudy or mixed sky conditions. When considering only
daytime data (to not incorrectly characterize days with clouds present
overnight), fewer than 6 daytime half-hours were required to be flagged
as cloudy or mixed sky conditions for the day to be considered clear or
‘cloud-free . All ceilometer data were recorded by default in UTC (co-
ordinated universal time) and were adjusted to local time for the anal-
ysis and Fig.s.

2.2.4. Radiosondes and reanalysis data

Atmospheric sounding data were obtained from the University of
Wyoming Department of Atmospheric Science (weather.uwyo.edu/upp
erair/sounding.html). The sounding data, measured at roughly 5-
millibar (mb) vertical resolutions, correspond to atmospheric data
from the National Weather Service (NWS) office nearest to the Ameri-
Flux tower (and location of each ceilometer). In some cases (US-Hol and
US-Wkg/Whs), the nearest NWS office (often at an airport) was more
than 80 km from the flux site, deemed to likely be unrepresentative of
the site measurements. In other cases (US-KFS and US-ARM), the NWS
radiosondes were launched within 30 km of the flux sites. At US-ARM,
high vertical resolution (1 mb or hPa) DOE radiosondes were
launched on-site and were used in this analysis. This study estimated
MLH once daily using 00 UTC sounding data. Since the maximum MLH
is estimated to occur in the mid-to-late afternoon (Seidel et al., 2010),
we make the assumption that the 00 UTC (5 7 pm local standard time)
sounding data most effectively estimates the maximum MLH for our
North American site locations. MLH were estimated using the gradient
method (Holzworth, 1967; Stull, 1988), which identifies vertical gra-
dients of virtual potential temperature ( v, K) and specific humidity (q, g
kg 1) profiles. In a well-mixed layer (below the MLH), , and q remain
constant with height (due to sufficient turbulent mixing). Consequently,
this method defines the MLH as the height where , and q deviate from
their near constant values, which is also where the gradient of  (q) is at
a maximum (minimum), typical of the shift from a less stable region (the
mixing layer) below the detected MLH to a more stable region (free
troposphere) above the MLH (Seidel et al., 2010). While the NWS ra-
diosondes effectively measure point-scale atmospheric profiles of wind,
temperature, and moisture, regional reanalysis products may also be
useful for locations where nearby in-situ measurements are limited
(such as US-Hol and US-Wkg/Whs). Therefore, this analysis also
included temperature, pressure, specific humidity, and PBL height
(PBLH) data from the National Centers for Environmental Prediction
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(NCEP) North American Regional Reanalysis (NARR) datasets at the grid
point nearest (~32 km resolution) to each site during the study period.
NCEP NARR data integrates national surface observations with model
simulations to generate 3-hourly gridded datasets at 29 pressure levels
ranging from the surface (~1000 hPa) up to 100 hPa (Mesinger et al.,
2006). We used NARR products to: (1) compare the PBLH data to ceil-
ometer MLH data for further confidence in the ceilometer data, and to
(2) calculate low-level vertical profiles of air and dewpoint temperatures
(T4, °C) to determine the low-level humidity index (HIp ), 2 measure of
the preexisting moisture content of the lower atmosphere:

Hlo = (Tagso — Tdsso) + (Tagso — Tdsso) (3)

which calculates the dewpoint depressions (T, — Tg) at 950 and 850 mb,
or more generally, the sum of the dewpoint depressions at 50 and 100
mb above the ground surface (Findell and Eltahir, 2003). For this
calculation, early morning (12 UTC) data were used, as suggested in the
original framework. Since the Hlpow values were derived from reanalysis
data, we then looked to quantify their accuracy and reliability. We
calculated the total 9-year (2012 — 2020) daily Hly oy using radiosonde
data, NARR data, and (a comparative reanalysis data product) the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMRWF) fifth
generation reanalysis data (ERA5) at the Southern Great Plains site
(US-ARM); the only site in this study that had co-located flux, ceilom-
eter, and radiosonde measurements. Fig. 2 shows how the HI} o, calcu-
lated using the ERA5 and NARR products are highly correlated across a
wide range of Hlpow R? = 0.88), but especially at the lowest HlLow
values (Fig. 2a). Similar results were found when comparing the radio-
sonde Hly 4y to the NARR HIyoy (R2 = 0.86; Fig. 2b). In both examples,
the largest anomalies were found at high HIj 4, values, indicative of a
very dry lower atmosphere (Findell and Eltahir, 2003). While these
findings helped us to trust the data at US-ARM and US-KFS (not shown
but similar R%), we acknowledge that using reanalysis data at other sites
(with sparse surface observations) may not be illustrative of the actual
HlLow-

&0 T T
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2.3. Boosted regression tree (BRT) analysis

The final portion of this analysis used boosted regression trees to
quantify the “relative influence” of the outlined explanatory variables on
ceilometer MLH at each site; implemented with the gbm package in the R
computing environment (Elith et al., 2008; Ridgeway et al., 2020). We
note that the relative influence, a metric estimated using the BRT
method, is only indicative of correlation or association between MLH
and the explanatory variables. Seasonal BRT models were constructed
(based on calendar season), comprised of 100 BRTs each, and allowed
for a direct comparison of the relationships between MLH and the
explanatory variables. Training datasets (2/3 of the data) were incor-
porated for the BRTs to ensure distinct training and testing datasets, and
to help assess each model’s predictive power in estimating MLH. Using
this methodology, the relative influence of the explanatory variables
was calculated by summing the number of times a variable was chosen
in a BRT, weighted by the BRT improvement of each partition. At each
stage of the sequence, each data case is modeled from the current
sequence of trees, and the prediction results are used as weights for
fitting the next tree of the sequence (De’ath, 2007). The mean and
standard deviation of the relative influence values from the 100 BRT
model runs were plotted for assessment. Additionally, bin-averaged and
partial dependence plots were used to capture the potential relation-
ships between the explanatory and response variables (Friedman, 2001).
This study presents the results found by calculating and comparing the
seasonal relative influence of explanatory variables on ceilometer af-
ternoon median MLH.

3. Results
3.1. Radiosonde MLH detection

The first objective of this research was to evaluate the quality of the
ceilometer MLH retrievals at each site by comparing those data to the
MLH derived from local radiosonde data. Since local surface properties
influence atmospheric profiles of both temperature and humidity, we
found poor relationships (R? < 0.20) between ceilometer MLH and

b) Southern Great Plains (US-ARM)  ©
(o]
y=1.03x-0.49 (R? = 0.86) 1 =2335

50 -

40+

30 ¢

20 -

Radiosonde Daily 12Z Low-Level Humidity Index

2012 - 2020
o Hliow (Taggg = Tdggg) + (Tagg, - Tdggg)

20 30 40 50 60
NARR Daily 12Z Low-Level Humidity Index

Fig. 2. Comparisons of the HI;,, calculations at the Southern Great Plains AmeriFlux site (US-ARM) from 2012 to 2020 between (a) the ERA5 and NARR data, and
(b) the on-site radiosonde balloon sounding and NARR data. Fit equations and correlations are also shown.
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radiosonde MLH at sites (e.g., US-Hol and US-Wkg/Whs) with large
distances separating the two measurements. On the other hand, the re-
lationships were substantially stronger for the two sites (US-KFS and US-
ARM) where the concurrent measurements were made less than 30 km
apart, shown in Fig. 3. At these sites, the data covering all seasons
highlights that there is a strong positive correlation (thick red line) that
is weakened by the lowest quality data (Index 1; orange line); where
MLH estimates are highly uncertain. Conversely, the correlations in-
crease at both sites with increasing data quality (derived from the ceil-
ometer; blue and green lines). When only considering the highest quality
data (Index 3; green line), there is a strong correlation at US-KFS @®R? =
0.73; Fig. 3a) and at US-ARM (R2 =0.91; Fig. 3b), as the measurements
at the latter are higher-resolution (vertically) and co-located. These re-
lationships (Fig. 3) gave us confidence that the highest quality ceilom-
eter MLH data, between 28% and 45% of all data measured at each site
(Table 2), are in good agreement with the radiosonde data.

3.2. Characteristics of clouds and MLH

The second objective was to analyze the seasonal patterns of clouds
and MLH across different ecosystems. Clouds were present year-round at
all the sites, but the frequency of cloud cover was dependent on the site
location (Table 2). US-Ho1 had the highest frequency of clouds (52.6%)
across all sites. When only considering the lowest 7600 m of the atmo-
sphere (a uniform height across all ceilometers), the sky conditions at
the remaining sites essentially followed the national aridity gradient
(Table 1). There was a decrease in cloud cover from US-Ho1 to US-KFS
(40.7%), a further decrease found at US-ARM (35.8%), and lastly Us-
Wkg/Whs (31.5%), a result of decreasing water supply to feed cloud
formation (Table 2).

The monthly mean MLH was then analyzed at each site (Fig. 4). At
Us-Hol, the monthly mean MLH was the most variable in spring,
coinciding with the timing of snowmelt and the start of the forest's
growing season, while the highest ceilometer heights were found in late
summer (Fig. 4a). At US-KFS (Fig. 4b), the highest monthly mean values
were shown to occur in late spring (April) before steadily decreasing for
the remainder of the year. The monthly mean MLH at US-ARM followed
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Table 2

(Top) The total percent of data contained within each quality index bin for the
Vaisala (BL-Index) and Lufft (Q-Index — in brackets) ceilometers, and the (bot-
tom) percent of clear skies (no clouds measured), cloudy skies (any number and/
or height of clouds measured), and missing data (e.g., instrument failure, ete.) at
each site. The values in parentheses indicate the percent of sky conditions below
7600 m in order to directly compare the ceilometers.

Ceilometer US-Hol US-KFs US-ARM US-Wkg/Whs
Data 2013-2019 2016 - 2019 2012-2020 2017 — 2020
BL Index 1 27.3% 13.5% 14.7% 2.2% [5-6]
BL Index 2 44.8% 41.2% 45.1% 59.6% [3-4]
BL Index 3 27.9% 45.3% 40.2% 38.2% [1-2]
Clear 47.4% 51.9% 64.2% 60.5%
(59.3%) (68.5%)
Cloudy 52.6% 48.1% 35.8% 39.5%
(40.7%) (31.5%)
Missing 24.0% 13.5% 1.2% 23.9%

a clear seasonal pattern, with the lowest values in the winter and the
highest mean values (1600 m) during the summer (Fig. 4c). There was
little year-to-year variation in the monthly mean ceilometer-derived
MLH at US-Wkg/Whs (Fiz. 4d) outside of the late-summer months
(August and September). However, there was a pronounced seasonal
pattern (similar to that of US-ARM) and summer maximum (2700 m)
when using the STRATfinder method. These monthly heights, the
highest of all the sites, peaked during the driest and hottest months, with
more variability during the summer rainy season.

US-Ho1l was the only site that had NARR monthly PBLH lower than
ceilometer MLH but was within the range of ceilometer values
measured. The spring and summer NARR data at US-KFS suggests an
overestimation of MLH when compared to ceilometer MLH but yields
similar values in other seasons. Lastly, there was good agreement be-
tween the datasets at US-ARM and US-Wkg/Whs (STRATfinder method
only), where the mean monthly ceilometer MLH were nearly identical in
shape, yet considerably lower in magnitude than the mean NARR PBLH.

With the site-specific cloud frequencies and monthly MLH identified,
we then assessed the variability in the diurnal growth and evolution of
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Fig. 3. Relationships between the gradient method derived radiosonde MLH and ceilometer MLH at (a) Kansas Field Station (US-KFS), and (b) Southern Great Plains
(US-ABRM). Points were sorted by ceilometer quality index, with solid lines illustrating the fit of each dataset.
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Fig. 4. Mean monthly ceilometer (Ceilo; green), NARR (red), and STRATfinder (STRAT; gray) afternoon median MLH at (a) Howland Forest (US-Hol), (b) Kansas
Field Station (US-KFS), (c) Southern Great Plains (US-ARM), and (d) the WGEW sites (US-Wkg & US-Whs). Color shading represents the min and max monthly MLH

during the period of measurements.

MLH that resulted from clear and cloudy sky conditions and therefore
different surface forcings (Fig. 5). Using data from all-seasons, half-
hourly ensemble averages were compiled. The largest difference was
found at US-Ho1, with MLH under clear sky conditions ~600 m higher
than the MLH during cloudy conditions. During these clear periods, the
MLH rapidly deepened after sunrise, before reaching an average height
close to 1600 m in the late afternoon. A slower developing and shallower
(~1000 m) MLH was measured when clouds were present at US-Hol.
The daily development of MLH at US-KFS and US-ARM followed
similar patterns when separated by sky condition, varying between 400
m and 600 m at each site in the late afternoon. These general charac-
teristics (growth after sunrise and higher MLH under clear skies) were
also found by the ceilometer at US-Wkg/Whs, but to a lesser extent when
using the STRATfinder method (Fig. 5d). Ultimately, the differences in
MLH as a result of varying sky conditions were likely attributable to the
differences in surface forcing variables under similar conditions (Fig. 6).
At each site, the magnitudes of clear and cloudy MLH closely resembled
the magnitudes of H. Moreover, under clear skies, Ty was more nega-
tive (warmer surface temperatures), and VPD, LE, and H were higher
when compared to cloudy skies, which served to promote increasing

growth in daytime ensemble MLH values.

In all cases, the ensemble mean MLH was found to be higher under
clear skies and followed a well-defined evolution of diurnal growth,
depicted by shallow stable conditions overnight and in the early
mornings, before rapidly deepening with increasing solar radiation
during the day. Next, the diurnal evolution of the ensemble mean MLH,
separated by season and for all sky conditions, was examined (Fig. 7). As
expected, the MLH at all locations was the lowest in winter, when lower
net radiation and shorter days act to suppress the growth of the mixing
layer. The mean MLH during shoulder seasons (spring and autumn) were
nearly identical to one another at every site (green and orange lines) and
were often similar in height to the mean annual MLH. There was sig-
nificant variability in the seasonal MLH at US-Hol, the site with the
lowest amount of high-quality data (Table 2). At US-KFS, as suggested in
Fig. 4, MLH in the spring were some of the highest all year, even rivaling
MLH at that site during summer (Fig. 7b). The MLH reached their
maximum values at all sites during the summer months due to increased
net radiation, warmer temperatures, and a likely increase in the sensible
heat flux. The largest winter to summer seasonal difference in ensemble
MLH was measured at US-ARM (~900 m) and at US-Wkg/Whs (> 1000
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m) when using the STRATfinder method.

These data were then compared against the ensemble mean NARR
PBLH data in order to estimate if the heights found at each site were
within the range one might expect. At US-Hol, the mean ensemble
NARR data essentially traced the mean ceilometer MLH data (dashed
line). The NARR PBLH were also similar to the ceilometer MLH at US-
KFS and US-ARM, albeit slightly higher than the mean ceilometer
values. However, the NARR PBLH data was able to effectively capture
the timing and general growth of the ensemble MLH at both of those
sites. Lastly, at US-Wkg/Whs, the NARR PBLH data were comparable in
magnitude to the estimated MLH from the STRATfinder method,
although the STRATfinder method produced peak ensemble values later
in the day, which may be an artifact of the method calculations (possibly
capturing the residual layer). Lastly, NARR PBLH data at those sites were
nearly double the height of the ceilometer MLH (thick dashed line),
highlighting the issues previously outlined.

3.3. Role of surface processes on MLH

Following the monthly mean and ensemble MLH patterns at each
site, we analyzed the role of seasonal surface fluxes, phenology, and
environmental factors on MLH dynamics. We examined the relation-
ships between the bin-averaged (or weighted moving average) responses
of explanatory variables and the median late-afternoon ceilometer MLH
(Fig. ). At all sites, an increase in H led to an increase in MLH. To

differing degrees, an increase in bin-averaged LE led to a slight increase
in MLH at each of the sites. At all the sites, VPD was the most strongly
correlated with increasing MLH. While the levels of VPD varied between
sites, being much lower at US-Hol compared to US-ARM and US-Wkg/
Whs, all sites illustrated a nearly 1000 m average increase in MLH with a
2 kPa increase in VPD. The MLH decreased with an increase (positive
values) in Tyg. This effect was the most pronounced at US-Wkg/Whs and
was effectively nonexistent at US-Hol. At US-ARM and US-Wkg/Whs,
warmer surface temperatures and increasing differential surface heat-
ing (negative Ty;f) acted to promote the growth of the MLH, but if T, was
warmer than Tsf., typical of a stable inversion layer or wet periods (or
during periods of negative H), very shallow MLH were observed at those
sites. Apart from increasing MLH with increasing greenness (PhenoCam
Gece) at US-KFS and slightly at US-Ho1, bin-averaged volumetric soil
water content (01pcm), Gee, and HIp g, had little impact on modifying
MLH at all sites. For these variables, the bin-averaged MLH was rela-
tively constant across their measured ranges for all years of
measurements.

3.4. Relative influence of explanatory variables

The final objective of the study was to examine the relative influence
of explanatory variables on MLH at each site. We ran seasonal and
annual boosted regression trees (BRT) to further determine the relative
strength or association of those same seven sub-surface (0;pcy), surface
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(LE, H, VPD, and Gece), and atmospheric stability (Tar and Hlpow)
explanatory variables on afternoon median ceilometer MLH (Fig. 9).
During the winter, when MLH was the lowest of any season, the relative
influence of explanatory variables on MLH was revealed to be sporadic,
with slight associations due to heat fluxes at US-Ho1 and US-ARM, Gece
at US-KFS, and Taie at US-Wkg/Whs. In spring, H and LE had the most
impact on MLH at US-Hol and US-KFS, VPD at US-ARM, 0gcy, at US-
Wkg, and Gee at US-Whs. The winter and spring data at each site had
the lowest BRT model performance (R?) and fewer total data points than
the other seasons (Fig. 10; Table 3). At US-Hol and US-KFS, similar
erratic associations were evident in all remaining seasons and when
considering all of the data, with an overall slight relative strength in
determining annual MLH resulting from H at US-Ho1 and LE at US-KFS.
However, these sites had the lowest BRT model performance (Fig. 9;
Table 3).

At US-ARM, the seasonal results were much more consistent, with
MLH associated with VPD at all times (—~40% of influence), with sec-
ondary forcings as a result of heat fluxes (LE and H). Autumn was the
season with the highest BRT performance at US-ARM (R? = 0.54).
During this season, there was a significant positive relationship between
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ceilometer MLH and BRT MLH, even able to explain large deviations
(from 500 m to 2500 m) in ceilometer MLH (Fig. 10). Ultimately, the
impacts of VPD on MLH shaped the entire dataset (‘annual’), with the
relative strength of the remaining explanatory variables providing a
trivial (< 10%) impact on ceilometer MLH.

The MLH data using the STRATfinder method at US-Wkg/Whs pro-
duced some of the highest seasonal BRT relationships (R? > 0.50). In
summer, surface temperature and humidity appeared to have the largest
impact on the sites, with Tys (VPD) most largely impacting MLH at US-
Wkg (US-Whs). In the autumn, the seasonal grassland at US-Wkg was
most associated with changes in Gee, while the US-Whs surface data was
most associated with Ty;. At both sites, Ty was the dominant influence
across all seasons (when considering all the data) with secondary asso-
ciations from VPD. This relative strength due to differential surface
heating (and thus H) was highlighted previously, as these two sites saw
the largest difference between Tse and Ta and the highest H (Fig. 6).
Lastly, the flux data at US-Wkg/Whs produced the highest annual BRT
R2? (0.65), effectively capturing the deviations in STRATfinder MLH
(Fig. 10).

The analysis up to this point included data from all sky conditions,
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Fig. 9. Bar plots of the seasonal and annual boosted regression tree (BRT) relative influences of explanatory variables on ceilometer (or STRATfinder) median MLH
for the five sites with error bars and model performance (R?). The explanatory variables and sites are the same as those listed in Fig. 8.

but in order to be relevant to basic ABL models and attempt to capture
unobstructed MLH growth (without the present of clouds, fog, rain,
etc.), we also evaluated the same ceilometer MLH using only data under
clear-sky conditions (Fig. S2). Increases in model performance were
found at each site for all seasons except for summer when convective
processes often dominate. While only few clear-sky days were detected
at US-Hol (Table 2), the BRT MLH output improved significantly,
resulting in an increased ability to model ceilometer MLH. US-KFS and
US-ARM were similar to before, with slight improvements when
considering all data. Lastly, the US-Wkg/Whs ‘annual’ relationships
were the highest of any of the sites (R% = 0.70-0.76), suggesting that the
surface flux data were able to accurately capture changes in the
STRATfinder data at those sites.

4. Discussion

This study examined long-term co-located surface flux and ceilom-
eter data from five AmeriFlux sites that spanned extensive climatolog-
ical (temperature and precipitation) and ecosystem (plant functional
type) gradients to better understand the seasonal roles of surface fluxes
on the height of the mixing layer (MLH). We used monthly, seasonal,
ensemble, and bin averages of half-hourly and daily datasets to examine
the variability and evolution of MLH under various meteorological
forcings, and we incorporated a boosted regression tree (BRT) analysis
into this study to model the relative influences of explanatory variables
on seasonal changes in MLH. We found evidence that eddy covariance
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flux tower-based measurements of sensible (H) and latent (LE) heat
fluxes, vapor pressure deficit (VPD), and the difference (Ty) between
the surface temperature (Te) and air temperature (T,) were most
strongly associated with daily MLH. These influences varied among the
ecosystems but were relatively consistent for the sites with the highest
seasonal correlations between observed and predicted MLH, namely US-
ARM and US-Wkg/Whs. This discussion highlights the causes for the
overall variability in MLH observed at each site and considers the
continued importance of incorporating surface flux measurements into

future MLH studies.

4.1. Ancillary atmospheric observations

We began the analysis by examining the relationships between
radiosonde MLH and ceilometer MLH at two sites: US-KFS and US-ARM.
Previous studies have shown significant agreement between the MLH
estimated using both of these data sources (Martucci et al., 2007;
Miinkel et al., 2007). We therefore included the radiosonde MLH as a
reference to determine the general credibility of the ceilometer MLH
used throughout this analysis, as suggested in previous studies (I{ot-
thaus and Grimmond, 2018; Tang et al., 2016). We found a positive
correlation between the two datasets at US-KFS, although it is possible
that the distance between the two measurements (roughly 30 km)
impacted this relationship. While we expect the MLH to be relatively
stable over large areas, spatial differences in H due to changes in soil
moisture, land-use, or complex terrain influence MLH (Bianco et al.,



E.R. Beamesderfer et al.

Agricultural and Forest Meteorology 342 (2023) 109687

7000 —— BRT Training Data (Ceilometer) —— BRT Predicted Data (Modeled)
a) US-Ho1 Summer All Data
§ 6000 R® 0.65 3 ﬂ&ex—s'
o 3000 = 136, = 50005 =
§5m0 Emngoo §2000¢
g 1000 = 1000
= 4000 f ) 1
o
o
= 3000 -
=
3 2000 ]
g 1000
0 A L L
7000 T T T T T
b) US-KFS Winter Spring Summer Autumn All Data
§ 6000 R* 0.43 ] I 2016 - 2019
3000 = 125 =
[
2000 B
s
=
@
0 0 0 a
0 1000 2000 3000 o 10do 2000 3000 0 1000 2000 3000
AT, diboud o
i '\ A I L4 ot 4 LS
\ WY TN
c) US-ARM Winter Spring Summer Autumn
§ 6000 RZ: 0.50
1 3000 1 = 371 3000
= o
= 5000 | 2000/ - 2000
FA4000F o Y — 0 0
B 01000 2000 3000 0 1000|2000 3000 0 10po 2000 Acpo 0 1000 2000 3000
= 3000
>
& 2000
5 .
g 1000 f{ I
0
7000 T r T T T T
_ d) US-Wkg  Winter All Data
EBOUD R%0.40 ; 2017 - 2020
2 3000/ = 105 3000 =
I 5000 2000} 2000/
= 1000 W 1000 g
T4000[ o 0 0 0 &
o
2 0 1000 2000 3000 0 1000 2600 3000 [ % 2000 Jo0oy | [ 0 1000 2000 3000
2 o0 WA | 5, L
3 b T | o .
2 2000 1 | i A
P ' r | |
£ 1000 [\AUYR L LALLM W
0
7000 -
— e) US-Whs Winter Spring
Emﬂo R%:0.49 |
2 30001 = 105
T 5000
=
© 4000
o
=
' 3000
5
E 2000
E 1000

Fig. 10. Seasonal and total line plots of the relationships between the ceilometer (training) and STRATfinder MLH data (both blue) and the BRT model output MLH
(orange) for each site. Scatter plots of the data are shown in each Fig. inset with R? and number of data points (n) included.

2011; Lee et al., 2013; Lee and De Wekker, 2016). For that reason, most
studies often consider co-located measurements, which were available
at US-ARM. The most significant and strongest positive relationships
were found at US-ARM when using the highest quality ceilometer data,
likely representative of when a clear aerosol boundary and well-defined
MLH were present (Miinkel et al., 2007). We realize that ambiguous
MLH estimations may occur under non-ideal conditions (Collaud Coen
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et al., 2014; Salcido et al., 2020) or due to varying surface or spatial
differences (like at US-KFS), and since we did not separate the data
based on meteorological conditions or atmospheric stability, we were
satisfied with the results, especially since they were comparable to that
of similar studies (e.g., Chandra et al., 2010).

We also examined the frequency and impact of clouds on regulating
the land-atmosphere exchange of energy. Our findings on cloud
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Table 3
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The seasonal and total linear relationships (R?in bold) between ceilometer median MLH (input) and modeled boosted regression tree (BRT) MLH (output), and the total
number of daily data points used for each BRT model run (in parentheses) at the five AmeriFlux sites.

All Skies Winter Spring Summer Autumn All Data
US-Hol 0.65(n 136) 0.47 (n 127) 0.51 (n 140) 0.54 (n 125) 0.42 (n 527)
US-KFS 0.43 (n 125) 0.56 (n 117) 052 (n 192) 044 (n 172) 0.38 (n  606)
US-ARM 0.50 (n 371) 0.47 (n 362) 0.47 (n 373) 0.54 (n 379) 0.47 (n  1485)
US-Wkg 0.40 (n 105) 055 (n 123) 0.63 (n 180) 0.53 (n 243) 0.65 (n  744)
US-Whs 0.49 (n 105) 0.68 (n 123) 0.66 (n 180) 0.51 (n 243) 0.65 (n  744)
Clear Skies Winter Spring Summer Autumn All Data
US-Hol 0.71(n 29) 0.67 (n 22) 0.64 (n 34) 090 (n 39 0.67 (n 124)
US-KFS 0.62 (n 29) 0.75 (n 25) 0.55 (n 81) 0.58 (n 68) 0.54 (n 204)
US-ARM 0.52 (n 165) 0.65(n 117) 050 (n 176) 0.56 (n 188) 0.53 (n 646)
US-Wkg 0.46 (n 90) 0.55(n 68) 0.62 (n 70) 0.72(n 143) 0.70 (n 371)
US-Whs 0.62 (n 90) 0.57 (n 68) 0.66 (n 70) 071 (n 143) 0.76 (n 371)

frequencies were consistent with An et al., (2017) who found the highest
annual cloud cover to typically be in the northeastern US (45%), slightly
lower cloud cover in the central US (39%), and the lowest cloud cover in
the southwestern US (27%). Cloud amounts (and types) influence the
growth of the MLH (Kotthaus and Grimmond, 2018), so we assessed the
impacts of cloud coverage on MLH at each site. Pal et al., (2013) sug-
gested that separating MLH regimes by cloud cover identifies days
dominated by surface-driven buoyancy (clear) and those driven by
larger-scale effects (cloudy). By using this general method, we found the
daytime MLH at each site to be consistently higher under clear skies
(larger Tgifr and larger H) as opposed to cloudy skies, as suggested by
(Ramanathan et al., 1989).

4.2. Temporal patterns of MLH

Our analysis revealed that the evolution and magnitude of the mean
monthly MLH were substantially different across the sites. The highest
winter and spring mean monthly MLH across all sites was found at US-
Hol (Fig. 4). While US-Hol was the only forest examined within this
study, this finding was consistent with past studies that observed deeper
MLH over forests (when compared to shorter vegetation), due to higher
H and surface roughness (Baldocchi and Ma, 2013; Barr and Betts, 1997;
Li et al., 2021). Additionally, the relatively higher MLH in the winter at
US-Hol was likely due to the forest darkening the typically
snow-covered land surface (decreasing albedo), warming the sur-
rounding air, and effectively building the MLH (Lee et al., 2011; Sellers
et al., 1997). For shorter vegetation, like the croplands, grasslands, and
shrublands at the other sites, we saw lower mean monthly MLH during
this period, but higher MLH during the summer. US-KFS saw maximum
monthly MLH between April and June, likely due to the greenup
(phenology) of the native grasses at that site, where the maximum H
occurred prior to full leaf-out (Yi et al., 2001). The results from US-ARM
were consistent with past studies, where we saw the highest mean
monthly MLH in the early part of the summer (e.g., June) when soils at
each site were the driest, which resulted in decreased LE and increased H
relative to wetter soil conditions (Desai et al., 2006; Schmid and Niyogi,
2012). Lastly, there was not much variability in mean monthly MLH at
US-Wkg/Whs except during the summer months, which coincided with
the variable presence of the North American Monsoon (Higgins et al.,
1997). Even so, the summer mean ceilometer MLH at US-Wkg/Whs was
roughly 500 m 1000 m lower than similar studies (and NARR data) in
the area. Instead, the STRATfinder data followed the same seasonal
pattern with moderately higher mean MLH than outlined in previous
studies of the area (Perkins, 2020; Sanchez-Mejia and Papuga, 2014;
Sorooshian et al., 2011).

The MLH also depends on the season, time of day, and local condi-
tions (de Haij et al., 2007) so we examined the seasonal ensemble pat-
terns of MLH at each site. The MLH slowly decreased after midnight at
all sites, signifying the dissipation of a possible residual layer or other
more stable atmospheric conditions (Banta et al., 2007; Caicedo et al.,
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2020). Prior to sunrise, a minimum in MLH was present, before
increasing solar radiation helped build the MLH throughout the day (to a
seasonally varying extent). At all sites, the maximum ensemble MLH was
found between 3 7 pm local time, consistent with past studies (Seidel
et al., 2012). The key difference between the sites was the diurnal
evolution of MLH measured at US-Wkg/Whs. The ceilometer at that site
often failed to capture the evolution of daytime changes in MLH, which
was the reasoning for implementing the STRATfinder data. Often, there
was no MLH detected during the day by the Lufft CHM15k at that site,
while STRATfinder actively traced the backscatter profile to provide a
real estimate that was otherwise unaccounted for by the ceilometer
(Fig. S1). It is possible that the low aerosol loadings and typical clear
skies in the southernmost deserts of Arizona led to rather unreliable
MLH retrievals. A drawback with a variety of ceilometers has long been
their general inability to detect MLH under clean air (low molecular
scattering) or if the ceilometer signal-to-noise ratio is too low (Eresmaa
et al., 2006; Kotthaus and Grimmond, 2018; Wiegner et al., 2014). We
also had difficulty measuring the MLH with another co-located ceilom-
eter that was installed at that site, a Campbell Scientific CS135. Like the
Lufft CHM15k but worse, the CS135 was unable to resolve any patterns
in MLH (Fig. S1), pointing to the challenge of making such measure-
ments in the arid high-desert environment. However, this may be an
opportunity for extreme tests of ceilometer instrument performance in
locations such as this and may make it an appropriate area for future
studies.

4.3. Controls of surface fluxes on MLH

The MLH and its properties are driven by the bi-directional thermal
and dynamic effects of the atmosphere and the land surface (Bea-
mesderfer et al., 2022; Zilitinkevich et al., 2012). Recent studies have
identified the important linkages between local and regional land sur-
face and atmospheric variables on the growth and evolution of the MLH
(Baldocchi and Ma, 2013; Betts and Silva Dias, 2010; Santanello et al.,
2007; Yi et al., 2004). This study similarly looked to identify the key
surface controls that were associated with changes in daily MLH. We
found tower flux-based measurements of H, LE, VPD, and Tgj¢ to have
the largest impacts on MLH at our study sites. At all sites, a bin-averaged
increase (decrease) in H, LE, or VPD (Tgisf) resulted in an increase in
MLH. It is known that the primary driving factor of MLH is H, with
increased surface heating leading to increased MLH growth (Santanello
etal., 2005; Yi et al., 2001). We also saw slight increases in bin-averaged
MLH with increasing LE, a result of the buoyant effects of heat fluxes and
the surface impacts of net radiation (and effectively H), as evaporation
(LE) is strongly tied to net radiation (Baldocchi and Ma, 2013; Koster
etal., 2009; Vick et al., 2016). The bi-directional effects of humidity and
temperature on MLH within the mixing layer were emphasized by daily
fluctuations in VPD. Whether we consider changes in temperature
and/or humidity to result from the effects of dry-air entrainment feed-
back (Konings et al., 2010; Santanello et al., 2007) or from stomata
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closing (lowering LE) in response to high VPD (Lansu et al., 2020), all
sites saw a pronounced and consistent increase in MLH with increasing
VPD (and VPD increasing as a result of increasing MLH).

The remaining variables appeared to have a lesser importance in
terms of their association to MLH at all sites. To a varying degree
(excluding US-KFS), there was an increase (reduction) in MLH with
decreasing (increasing) Tgir. This difference between T, and T is
known to be driven by both land surface properties and atmospheric
interactions (e.g., clouds) (Jin and Dickinson, 2010). In this case, cooler
or more stable conditions suppress the MLH, while differential surface
heating and higher H (negative Tqif) would lead to higher MLH (Betts,
2000; Panwar et al., 2019). We saw little variation in bin-averaged MLH
as a result near-surface soil water content ( 10cm)- Such relationships
have been previously examined in great detail and reflect the broader
impacts of wet and dry soils on MLH that result from changes in H, LE, or
VPD (Konings et al., 2010; Koster et al., 2009; Sanchez-Mejia and Pap-
uga, 2014; Santanello et al., 2005). The PhenoCam Gcc was only shown
to have meaningful covariance on MLH at US-Hol and US- KFS, where
Gece parallels the seasonality of photosynthesis from the forests and
native grasses (and thus LE and H) and may act as a rough indicator to
predict changes in MLH resulting from land-surface phenology
(Freedman et al., 2001; Yi et al., 2004). The overall stability structure of
the lower atmosphere has been shown to be very important in influ-
encing MLH (Santanello et al., 2005), yet in this study the indirect effect
of the low-level humidity index (HIpoy,) failed to capture any identifiable
mean changes in MLH.

4.4. Modeling daily MLH with flux data

We used boosted regression trees (BRTs) to examine the interactive
relationships between the variables that act to influence the growth of
the MLH. This approach was chosen over others (e.g., univariate cor-
relation analysis) as BRTs are able to fit complex nonlinear relationships
and incorporate interaction effects between explanatory variables (Elith
et al., 2008). The total (‘annual ) associations of H, LE, VPD, and Tg;i¢ on
MLH were again largely apparent. At US-Hol, winter had the highest
BRT model performance (Rz) of any season, when seasonal (winter--
spring transition) increases in H rapidly warm the mixing layer
(Freedman et al., 2001). In summer at US-Hol and autumn at US-KFS,
the relative strength of LE on MLH was the highest, highlighting the
seasonal impacts due to LE (and Rn) during those times (Fig. 4; Bal-
docchi and Ma, 2013; Salvucci and Gentine, 2013). The association
between VPD and MLH at US-ARM and Tg;ss at US-Wkg/Whs stress the
continued importance (e.g., mixed layer model) and coupled behavior of
the air temperature and humidity relationships that exist between the
surface and the MLH (Betts, 2000; Santanello et al., 2007). We also
examined clear sky data to better understand the transition between
cloudy MLH and clear MLH. This has important implications on MLH
dynamics, as cloud development and precipitation will lead to de-
viations from the MLH behaviors previously addressed (Findell and
Eltahir, 2003; van Stratum et al., 2014). The annual clear sky BRT
correlations increased at all sites. For clear skies, large-scale evaporative
(LE) processes are negligible (sufficient vertical turbulent mixing)
within the MLH, and the apparent influences of H and VPD on modeling
MLH may increase (Panwar et al., 2019; Santanello et al., 2005). This is
likely why we saw such a significant positive relationship at US-ARM
and US-Wkg/Whs, where the strength of VPD on MLH was evident
across all seasons.

Overall, the use of daily flux measurements generally outlined the
seasonal patterns of our ceilometer-measured MLH at each site, but by
using these flux data alone, we were unable to accurately capture the
complex conditions driving MLH. Some studies have suggested that the
scales at which the changes in MLH occur and the scales at which
measurements of flux and meteorological data occur are so different
that a direct comparison between the two datasets may not be entirely
feasible (Gibert et al., 2007). Other studies have emphasized the
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importance of categorizing MLH by various soil moisture levels or at-
mospheric stability conditions. Wetter or drier soil regimes can have
profound impacts on the influence of surface fluxes on MLH (San-
chez-Mejia and Papuga, 2014). Likewise, if an area is dominated by high
pressure or larger-scale weather phenomena, it could negate the effects
of the surface conditions on MLH growth (Santanello et al., 2005). In
either such case, regardless of the amount of surface heating an area has,
land-atmosphere conditions during prior days and nights can act to
suppress the following days MLH growth. Subsidence and advection
processes have also been shown to influence the expected growth in
daily MLH (Pietersen et al., 2015; Rey-Sanchez et al., 2021; Sinclair
et al., 2010). Consequently, our empirical approach was unable to ac-
count for these larger-scale influences, but we anticipate a study with
data separated by soil or stability conditions may have better explana-
tory power on MLH than the data inputs that we used.

5. Conclusions

Our study used radiosonde, reanalysis, eddy covariance, and
phenological data from select AmeriFlux sites across the United States in
an attempt to identify the daily and seasonal trends in ceilometer cloud
frequencies and mixing layer heights (MLH) and examine the relative
strength of explanatory surface variables in determining MLH. We found
significant agreement between radiosonde MLH and the highest-quality
ceilometer MLH retrievals at two sites (US-KFS and US-ARM) with
nearby measurements. At another site (US-Wkg/Whs), the ceilometer
MLH retrievals were found to be unreliable, as they did not agree with
reanalysis data or other published studies. We utilized an algorithm
(STRATfinder) to estimate MLH from ceilometer data at that site to more
accurately estimate local MLH. The STRATfinder results provide insight
on the potential use of such an algorithm for more consistent MLH re-
trievals from ceilometers. Overall, cloud coverage was shown to impact
the growth and depth of MLH, which varied strongly across the climatic
gradient of the study. Eddy covariance (single-point) tower fluxes of
sensible heat flux (H), latent heat flux (LE), vapor pressure deficit (VPD),
and the difference (Tg4i) between air and surface temperatures were
shown to have the largest direct and indirect relative influences on daily
and seasonal MLH. However, when modeled with boosted regression
trees (BRTs), the near-surface data often failed to capture the variations
in MLH as captured by the ceilometers. Ultimately, the ceilometers at
each site were shown to provide useful estimates of MLH but healthy
skepticism and validation against independent MLH data is necessary for
future studies. A key advantage to ceilometers is that they provide
continuous MLH estimates unlike the labor-intensive radiosonde
launches. Paired with single-point observations, we present an example
on how to investigate the key land surface variables involved in the bi-
directional land-atmosphere interactions, and how those complicated
interactions vary across ecosystems.
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