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challenge, which is presented here, we forecasted canopy greenness throughout the spring at eight deciduous
broadleaf sites to investigate when, where, and for what model type phenology forecast skill is highest. A total of

192,536 predictions were submitted, representing eighteen models, including a persistence and a day of year
mean null models. We found that overall forecast skill was highest when forecasting earlier in the greenup curve
compared to the end, for shorter lead times, for sites that greened up earlier, and when submitting forecasts
during times other than near budburst. The models based on day of year historical mean had the highest pre-
dictive skill across the challenge period. In this first round of the challenge, by synthesizing across forecasts, we
started to elucidate what factors affect the predictive skill of near-term phenology forecasts.

1. Introduction

Plant phenology is a primary ecological indicator of climate change
(Parmesan and Yohe, 2003) and impacts a variety of ecosystem pro-
cesses including surface roughness, albedo, canopy conductance, and
carbon dioxide and water fluxes (Richardson et al., 2013). Realistic
representations of plant phenology are crucial for reliable global carbon
and water cycle predictions in climate models (Stockli et al., 2008). In
particular, the timing of spring phenology is advancing earlier (Piao
et al,, 2019) and influences other phenological transitions, such as
senescence (Keenan and Richardson, 2015). Given this, we want to be
able to anticipate future changes in phenology by assessing how well
models perform in the near-term.

One important plant functional type that is changing is cold-
deciduous plants (Piao et al., 2019), which enter dormancy through
shedding leaves in cold conditions. In the spring, they experience bud-
burst to break dormancy and then increases in total leaf area through
expansion and unfolding (Chuine and Regniere, 2017). Budburst re-
quires both chilling during the first stage of dormancy (endodormancy)
and warming during the second stage (ecodormancy; Chuine and
Regniere, 2017). Since monitoring the switch from endodormancy to
ecodormancy is challenging, we might expect that predicting canopy
greenness around budburst is harder than other parts of the spring, but it
is unclear if this is true. Even though we understand spring physiological
mechanisms, there exists a large variation in the types of phenology
models (Chuine and Regniere, 2017; Piao et al., 2019). Additionally,
since the drivers differ between warm and cold regions (Moon et al.,
2021; Zohner et al., 2016) and warmer regions tend to budburst earlier
than colder regions, site predictability likely differs based on greenup
timing, but it is unclear how. One way to improve our ability to model
phenology is through ecological forecasting.

Near-term ecological forecasting has societal and scientific benefits.
By creating an iterative feedback loop on learning and model
improvement, it accelerates our scientific understanding, and by with-
holding yet-to-be-collected future data for validation (Dietze, 2017;
Dietze et al., 2018), it makes models more robust by reducing the pos-
sibility of overfitting. Therefore, making and evaluating forecasts can
help reveal phenology predictability and elucidate which types of
models have the highest skill in the near-term. Additionally, unlike
studies that predict changes to phenology in 2100 under climate change
scenarios (e.g., Archetti et al., 2013; Delpierre et al., 2009; Keenan and
Richardson, 2015; Lebourgeois et al., 2010; Xie et al., 2018), near-term
forecasting allows for the rapid and iterative testing of models and hy-
potheses against new observations. Improving near-term phenology
forecasts has benefits ranging from informing scientists of data collec-
tion times, optimizing land management activities, and improving
weather forecasts (Morisette et al., 2009; Xue et al., 1996). Furthermore,
since canopy greenness data can have a low latency (e.g, less than a
day), phenology forecasts are not subject to data reporting delays, which
are common in other forecasted ecological systems (Johansson et al.,
2019). Thus, phenology is an ideal system for executing ecological
forecasting and testing forecasting theory.

Previous efforts to forecast phenology have spanned spatial and
temporal scales from the greenup of individual species made based on
in situ observations (Gerst et al., 2021) to predictions of land surface

phenology using vegetation indices derived from satellite imagery (e.g,
Neupane et al., 2022; Xu et al., 2021). Additional examples include the
large-scale forecasting efforts by the United States National Phenology
Network (Crimmins, 2020) and the automated species-level forecast
system of Taylor and White (2020). Existing forecasts typically focus on
forecasting the timing of specific phenological transition dates instead of
daily phenological conditions. However, the underlying seasonal pro-
cesses of phenological development are typically continuous and dy-
namic, meaning that the phenological condition tomorrow is based on
that of today.

In addition to improving the representation of the physiological
process, representing phenology as continuous also allows for iterative
data assimilation approaches that update predictions continuously with
new phenological observations (Viskari et al., 2015). By providing the
potential to assimilate more data that is closer temporally to when is
being forecasted, this likely cause forecasts to become more accurate as
lead time (i.e., difference between the date forecasted and the date the
forecast was submitted) decreases. Additionally, forecast skill should be
higher for shorter lead times because of the influence of lead time on
meteorological forecasts accuracy. Thus, there is an unmet opportunity
to improve our understanding of phenological processes and how dy-
namic models compare to other model classifications by forecasting
spring green-up as a continuous process.

Unlike previous phenology forecasting efforts that occurred without
a common community framework, an open community challenge with a
clear set of guidelines and shared cyberinfrastructure and data allows for
comparisons across forecast models and provides insight into the pre-
dictability of phenology outside of one specific model or team of people.
Through providing a common pipeline to increase the ease of running
forecasts, it also encourages more people to try forecasting, bringing
with them different and creative perspectives. This community frame-
work should help speed up the process of model development and
forecasting phenology in the near-term.

In response to this need, the Ecological Forecasting Initiative s (EFI)
Research Coordination Network is hosting the NEON (National
Ecological Observatory Network) Ecological Forecasting Challenge, an
open community forecasting challenge where a design team provides
infrastructure and guidance and teams in the ecological and related
communities can submit forecasts of NEON data (Thomas et al., 2023a).
In Round 1 of the Phenology Forecast Challenge in 2021, teams were
asked to forecast daily canopy greenness at eight cold-deciduous
broadleaf sites within NEON. We hypothesized that (H1) forecasts
would improve as lead time decreases; (H2) the start of greenup (ie.,
budburst) would be the hardest part of the curve to forecast; (H3)
similarly, forecasts submitted right before budburst would have the
lowest predictive power as they are forecasting the greenup curve; (H4)
dynamic models that assimilate new phenology data would perform
better than those that do not; and (H5) differences in predictability
between sites would be explained by differences in the timing of
greenup. The answers to these hypotheses have important ramifications
for understanding what impacts phenology forecast skill and the matu-
rity of our community s modeling efforts.
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2. Methods
2.1. NEON phenology forecasting challenge description

The NEON Phenology Forecasting Challenge is an open challenge
that teams can submit to and join at any time, using multiple models if
desired (Thomas et al., 2023a). For Round 1, teams were tasked with
forecasting daily PhenoCam Ggc at eight NEON sites throughout spring
for 35 days into the future for each submission day. All models had at
least one team member who participated as a co-author. The design
team provided a target file of previous PhenoCam data for each site that
was updated daily with new PhenoCam data. Forecasts were to be
submitted by 6 pm ET each day with the first day of the forecast being
the submission day (e.g, a submission on 1 February 2021 included
forecasts for 1 February 2021-7 March 2021). A small number of teams
from university courses were permitted to submit late forecasts provided
no data beyond the forecast start date was used. Forecasts longer than 35
days were filtered out in this initial analysis. Submissions had to include
uncertainty estimates and be submitted in the Ecological Forecasting
Initiative forecast standard (Dietze et al., 2023).

2.2. Site selection and description

We selected eight temperate sites within NEON (Table 1 and Fig. 1)
that represented seven different ecoclimatic domains and that included
deciduous broadleaf plants within view of a PhenoCam. Sites had two to
four years of PhenoCam data prior to the start of the Challenge, but
many sites had longer-term PhenoCams located nearby (e.g, Harvard
Forest) that could be used in calibration. Additionally, some sites (e.g,
Bartlett) were selected for overlap with other forecasting challenges
(terrestrial fluxes, aquatic temperature and dissolved oxygen, tick pop-
ulations, and beetle fluxes) within the EFI NEON Ecological Forecasting
Challenge in Round 1 (Thomas et al., 2023a).

2.3. Phenology data: PhenoCam

To monitor canopy greenness, we used NEON PhenoCams, which are
digital cameras that take regular repeated images of plant canopies as
part of the PhenoCam Network (Seyednasrollah et al., 2019). The low
latency of PhenoCam data (less than one day), provides an opportunity
to evaluate forecasts in real-time. NEON’s PhenoCams were installed
following the standard PhenoCam Network deployment protocol
(Richardson et al., 2018). Each camera (NetCam SC IR, StarDot Tech-
nologies, Buena Park, CA, USA) was configured using automated scripts
(the PhenoCam Installation Tool) to ensure consistency in settings such

Table 1
Summary of site characteristics.
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Fig. 1. Locations of selected sites and the National Phenology Network's His-
torical Annual Spring Indices Anomaly for First Leaf product during the study
year of 2021 compared to the 1991-2020 average (USA National Phenology
MNetwork, 2017). For full site descriptions and names see Table 1. Bartlett
(BART), Harvard Forest (HARV), Steigerwaldt (STEI), Dead Lake (DELA), and
University of Kansas (UKFS) likely experienced earlier than site-average
greenup and Lyndon B. Johnson (CLBJ), Great Smokies (GRSM), and Smith-
sonian (SCBI) likely experienced later than average greenup.

as exposure and white (color) balance, as well as image and metadata
acquisition and transmission. Multiple cameras are deployed at each
NEON site; for this Challenge, the data were derived from the
top-of-tower cameras.

Each NEON camera is set to record an image every 15 min. Quan-
titative image analysis consists of several steps. First, an appropriate
“region of interest” (ROI) is defined for the camera, corresponding to the
area within each digital image for which color information will be
extracted. Second, images are sequentially read in, and the frequency
distribution of the pixel values (pixel value is an 8-bit digital number, or
DN) for each color channel (red, green, and blue) is characterized for the
ROI in each image. Third, a normalized vegetation index, the green
chromatic coordinate (Ggc), is calculated:

Gee = Gpn/ (Rpn + Gpn + Bpn), m

Gec has been shown to be highly effective at suppressing variation due to
external factors, such as scene illumination (weather and atmospheric
effect), and maximizing the underlying phenological signal. Gec is

Site Name Site (and PhenoCam) ID Latitude  Longitude  MAT Number of Reported Dominant DB Species
(*C) Years
Harvard Forest, MA (HARV) NEON.DO1.HARV. 42.537 —72.173 7.15 4 Quercus rubra
DP1.00033
Bartlett Experimental Forest, NH (BART) NEON.DO1.BART. 44.0639 —71.287 6.1 4 Fagus grandifolia, Acer rubrum, Betula
DP1.00033 papyrifera
Smithsonian Conservation Biology Institute, = NEON.DO02.SCBL 38.893 —78.140 11.8 4 Liriodendron tulipifera, Juglans nigra
VA (SCBI) DP1.00033
Steigerwaldt Land Services, WI (STEI) NEON.DO05.5TEL 45.509 —89.586 4.95 3 Populus tremuloides, Acer rubrum
DP1.00033
The University of Kansas Field Station, KS NEON.D06,UKFS. 39.040 —95.192 12.65 2 Symphoricarpos orbiculatus, Celfis id i
(UKF5) DP1.00033 Carya ovata
Great Smoky Mountains National Park, TN NEON.DO07.GRSM. 35.689 —83.502 12.65 3 Liriodendron tulipifera, Acer rubrum, Acer
(GRSM) DP1.00033 pensylvanicum
Dead Lake, AL (DELA) NEON.DO08,DELA. 32.542 —87.804 17.9 4 Celtis laevig Lig i Liquidamb,
DP1.00033 styracifiua
Lyndon B. Johnson National Grassland, TX NEON.D11.CLBJ. 33.401 —97.570 17.65 3 Quercus marilandica, Schi TLIM SCoparium
(CLBJ) DP1.00033

Note: MAT refers to Mean Annual Temperature and comes from the Daymet (Thornton et al., 2017) estimation provided by PhenoCam at https://phenocam.nau.edu/.
DB refers to deciduous broadleaf. The number of years indicates how many years before 2021 each camera started regularly collecting data.
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calculated for each image, but images obtained when the solar elevation
was less than 5 , or images that are too bright or too dark (Klosterman
et al., 2014; Toomey et al., 2015) are excluded. Finally, a daily value of
Gcc is calculated using the 90th quantile approach described by Son-
nentag et al. (2012) and, for the challenge, the standard deviation of the
90th quantile value of G¢c was estimated through bootstrapping. Data
are processed and posted daily. More information about data processing
is available in Seyednasrollah et al. (2019).

2.4. Forecasted meteorological data: global ensemble forecast system

While use was not required, the design team provided teams with
site-specific meteorological forecasts extracted from National Oceanic
and Atmospheric Administration s Global Ensemble Forecast System
(GEFS; Li et al., 2019; https://www.nco.ncep.noaa.gov/pmb/produ
cts/gens/). The midnight UTC forecast was selected because it con-
tained 30 ensemble members that extended 35 days into the future; each
ensemble member was temporally downscaled to one hour temporal
resolution. GEFS variables include air temperature, air pressure, wind
speed, precipitation, downwelling longwave (thermal) radiation,
downwelling shortwave (solar) radiation, and relative humidity. Teams
could access an S3 bucket with the GEFS forecasts online via the Amazon
Web Services Application Programming Interface, or via the ‘neon4cast
R package (Boettiger and Thomas, 2022) as part of the Challenge
cyberinfrastructure.
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2.5. Null models

Submitted forecasts were compared to two null models. The first is
the persistence, or random walk, model, which assimilates new Pheno-
Cam data daily and predicts the next day s G¢c value as the current day s
plus normally distributed error. The second is the day of year (DOY)
historical mean of all previous years that were available for each Phe-
noCam, which consists of the mean and standard deviation averaged
over that PhenoCam s previous years Ggc values for each DOY.

2.6. Modeling teams

Thirteen distinct teams submitted forecasts from eighteen models,
including the two null models (Table 2). More detailed model de-
scriptions are given in the Supplementary Materials. To assess H4, we
classified models into distinct types, focusing specifically on two high-
level factors: (1) whether the approach made use of time-varying
covariates (e.g, weather forecast) and (2) whether the model was dy-
namic (prediction of G¢c tomorrow is a function of G¢c today). For the
analyses, the eighteen models were thus grouped into five different
types: DOY Mean, persistence, static (does not use covariates or the
previous Gcc state), covariate (uses covariates but not the previous
state), and dynamic (includes previous state). While the persistence
model is technically a dynamic model, we excluded it from the dynamic
class for this analysis to evaluate it separately as a null model. Further
assessing differences in model types was limited due to the large variety
of modeling approaches employed.

Table 2
Summary of models.
Team ID Approach  Model Type: DOY Mean, Covariates (not including previous G¢c Uncertainties included (Driver, References
Persistence, Covariate, values) Initial condition, parameter,
Dynamic, or Static process, and observational)
CSP_Gwave Statistical ~ Covariate Site level summaries of precipitation, Parameter, process, and None
temperature, and their interaction, latitude, observational
and long-run greenness (from MODIS)
CU_Pheno Process Dynamic GDD, maximum G¢¢ Driver and initial condition None
DALEC_SIP Process Dynamic GDD None (Bloom and Williams, 2015;
Chen et al., 2016; Wu et al.,
2021; Yang et al., 2016; Zeng
et al., 2018)
EFI.U_P Process Covariate DOY Parameter, and observational None
Fourier Statistical ~ Static DOY Observational None
greenbears_gams  Statistical  Static DOY Parameter (Wood, 2017)
greenbears_par Statistical ~ Covariate DOY, historical photosynthetically active Parameter (Wood, 2017)
radiation
greenbears_stl Statistical Static DOY Parameter (Wood, 2017)
PEG Statistical ~ Dynamic DOY Parameter (Hyndman and Khandakar,
2008)
PEG_RFR ML Dynamic DOY Observational (Breiman, 2001; Pedregosa et al.,
2011)
PEG_RFRO ML Dynamic DOY Observational (Breiman, 2001; Pedregosa et al.,
2011)
PEG_RFR2 ML Covariate Maximum and minimum temperature, Driver and observational (Breiman, 2001; Pedregosa et al.,
radiation, and precipitation 2011)
PhenoPhriends Process Dynamic Temperature Driver, initial condition, None
parameter, and process
Team_MODIS Statistical ~ Covariate Growing degree days, Driver, initial condition, (Neupane et al., 2022)
MODIS greenness onset observational
GPEDM Statistical Dynamic Daily mean temperature, daily total Driver, initial condition, (Munch et al., 2017)
precipitation parameter, process, and
observational
VT_Ph_GDD Process Covariate GDD Driver, parameter, process, and None
observational
DOY Mean Statistical ~DOY Mean None Initial condition
Persistence Statistical ~ Persistence None Initial condition and process

Note: DOY refers to day of year, ML refers to machine learning, G¢¢ refers to the green chromatic coordinate, GDD refers to Growing Degree Day, and MODIS refers to
Moderate Resolution Imaging Spectroradiometer. Driver is uncertainty in model drivers, covariates, and exogenous scenarios; initial condition refers to the uncertainty
in the initialization of state variables (G¢¢ at time 0); parameter is uncertainty in model parameters and coefficients; process is the dynamic uncertainty in the process
model attributable to both model misspecification and stochasticity; and observational is the uncertainty in the observations of the output variables (G¢c).
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2.7. Statistical analyses

Analyses were limited to the period of February June 2021 to cap-
ture the entire transition from dormant to full canopy states across all
eight sites. We assessed each forecast s skill based on the Continuous
Ranked Probability Score (CRPS), which was calculated using the
crps_sample function in the ‘scoringRules R package (Jordan et al.,
2019). CRPS is a model assessment metric that scores based on both
accuracy (mean absolute error) and precision (ensemble spread), and
thus, has the same units as the variable being scored (in this case, G¢c,
which is unitless as a ratio). Forecasts CRPS values and how they
compared to the null models were available in real-time on the Chal-
lenge s public dashboard. Forecasts were accepted every day during this
period, though not all teams submitted forecasts each day.

Since two of our hypotheses (H2 and H3) involved the skill of fore-
casts relative to when greenup occurred at each site, we calculated the
start, middle, and end of spring (defined as 15 %, 50 %, and 85 %
greenup, respectively) for each PhenoCam site using the function
ElmoreFit in the R package ‘phenopix (Elmore et al., 2012; Filippa et al.,
2020). Additionally at each site and for each model, we calculated how
many total days before each transition date the forecasted G¢c values
had a lower (i.e., better) CRPS than the DOY Mean null. To investigate
the forecasted year greenup anomalies, we computed the average timing
of transition dates (15 %, 50 %, and 85 %) for each site. It is important to
note, though, that this average was done over a small sample size (two to
four years depending on the site) and does not necessarily represent a
robust estimate of historical greenup. Therefore, we also assessed the
forecasted year deviations using the National Phenology Network s
Historical Annual Spring Indices Anomaly for First Leaf product for 2021
(USA National Phenology Network, 2017).

Statistical analyses focused on understanding the impacts of factors
on forecast predictability: site, model, model type, lead time, and phe-
nodate (either of submission date or forecasted date). Lead time was
defined as the difference between the date forecasted and the date the
forecast was submitted. Phenodate was defined here as days relative to
the date of 15 % greenup for each site, with the sign convention of
negative phenodates being days before this threshold.

Since we expect the relationship between CRPS and either lead time
or phenodate to be nonlinear we analyzed the full set of predictions
using Generalized Additive Models (GAMs) using the R ‘mcgv package
(Wood, 2022; R Core Team, 2022; Version 4.2.2). Specifically, lead time
and phenodate were modeled using thin plate regression splines using
the default number of knots (n  10). In addition to providing statistical
tests and high-level summaries of each factor, GAMs also help to account
for differences in model submission dates across teams by correcting
CRPS for phenodate and lead time.

Analyses started with an overall model that included linear terms
for site and team and additive spline terms for lead time and either
phenodatefrecasted (H2) or phenodateg pmitted (H3). To assess H4, we
used the model class effects (reference class DOY Mean) in the overall
model created with phenodategypmitteq- TO assess if there was a signifi-
cant relationship between when models started submitting forecasts and
their overall skill, we performed a linear regression of the model effect in
the overall model created from phenodategpmitted versus the day of the
Challenge the model first submitted a forecast. Additionally for models
that had higher predictive skill (lower CRPS) than the DOY Mean, we
assessed if the CRPS values were lower because of lower uncertainties in
the forecasts through a Welch Two-Sample t-Test. Similarly to assess
differences in predictability between sites (H5), we used the site effects
(reference site  Bartlett (BART)) in the overall GAM. Bartlett was used
as the reference site because the ‘mcgv R package uses the first alpha-
betically as a default. To assess H5 and how overall seasonality affected
skill, these site effects were also regressed against the dates of 15 %, 50
%, and 85 % greenup and the forecasted year timing anomalies.
Furthermore, to assess whether models performed better at some sites
than others we also refit the GAM with a site-by-model interaction term,
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which was visualized as a barplot.

In addition to the overall GAMs, to answer H1 H3 we also assessed
the impact of model and model type on lead time and phenodate re-
sponses by fitting a series of independent GAMs for each model and
model type. Two models forecasts, EFI U_P and greenbears_stl, were
excluded from the model-specific analyses because there were not
enough submissions to fit the GAMs independently (Fig. S1). Attempts to
include separate spline responses by model or model type within the
overall GAM failed to converge so we do not provide an overall statis-
tical test on these interaction terms, but instead, focus on visualizing
responses.

We visualized the responses through GAM response surfaces of pre-
dicted CRPS over lead times (0 35 days) and phenodates (80 days before
15 % greenup 40 days after) for different sites, models, and model
classes. When we varied phenodates, the GAM response surface repre-
sents predicted CRPS across all lead times. Similarly when we varied
lead times, the response represents the predicted CRPS across all phe-
nodates. Using response surfaces allowed us to predict CRPS for each
site, model, and model class across different lead times and phenodates
even if each combination did not occur in the actual forecasts (i.e., not
all models forecasted all dates, but we could use the fitted GAMs to
predict what CRPS would have been). Additionally to further assess
differences in site predictability, we regressed the maximum of the GAM
response surface of varied phenodatesforecasted fOr each site against
greenup length.

3. Results
3.1. Forecast submissions

Overall, 192,536 individual predictions (forecast of G¢c by one
model on one submission date for one site and one forecasted day) were
submitted for eighteen models from thirteen teams, including the two
null models provided (DOY Mean and persistence). All models submitted
a forecast for at least one day that fell within the spring greenup period
(i.e., between 15 % and 85 % greenup) for at least one site, but the date
of first submission and frequency varied greatly (Fig. 2), ranging from
submitting on all days of the challenge to only submitting on one day
(Supplementary Fig. S1). Additionally as the challenge period pro-
gressed, the average number of submissions each day increased until
around mid-May 2021 (Fig. S2). Classifications of models varied and we
had three, six, and seven models that were static, covariate, and dy-
namic, respectively, in addition to the null DOY Mean and persistence
models (Table 2).

3.2. Example set of forecasts

To give an example of forecasts during the greenup period and how
they differed between models, we provide an example of submitted
forecasts for one site, Harvard Forest, submitted on one reference
datetime, 11 May 2021, for the 35-day horizon the challenge requested
(Fig. 3). We highlight Harvard Forest because it is well-known in the
ecology community and finished greening up last, allowing more teams
to forecast it. We chose 11 May 2021 as an example because it was right
before greenup started and had the largest number of forecasts sub-
mitted. All models that submitted forecasts on this day, other than the
persistence null model, predicted greenup would occur during the next
35 days (Fig. 3). Forecasted greenup timing, rate, and uncertainty all
varied between teams (Fig. 3). For example, the start of greenbear_par s
forecasted greenup curve was close to the observed start, but their
forecasted greenup occurred slower than the actual greenup. Addition-
ally, DALEC_SIP forecasted too early of a start and too low post-greenup
Gcc. Furthermore, PEG_RFR forecasted post-greenup G¢c correctly, but
predicted greenup later than it occurred. Additional examples at other
sites are available in Fig. S3.
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Fig. 2. The specific days that each model forecasted (a) and the days that each team submitted forecasts on (b). The period where at least one site was between 15 %

and 85 % greenup is indicated with shading.
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Fig. 3. a) An example of forecasted greenness values (G¢c) submitted by teams on 11 May 2021 for Harvard Forest. Observed G values are given in black points
with standard deviations indicated with bars. Of the teams that submitted on this date (including DOY Mean), most predicted a greenup curve during this time period.
b) PhenoCam image on 15 May 2021 (date of 15 % greenup; Milliman et al., 2019). ¢) PhenoCam image on 21 May 2021 (date of 85 % greenup; Milliman

et al., 2019).

3.3. HI: changes in forecasts with lead time

When considering the effect of lead time on forecast skill, the
persistence, dynamie, overall, and static model types all show the ex-
pected pattern of error increasing with lead time (H1), but form a
gradient, from fastest to slowest, in the rate at which error increased
(Fig. 4). The DOY Mean forecast error does not vary with lead time,
which is expected as this forecast is based solely on previous years data
and does not change with lead time. Finally, the covariate model class
exhibits a decrease in error as lead time increases.

In the GAMs fit to individual models CRPS values (Fiz. 4¢), most
models also followed the expected pattern of increasing error with lead
time (H1), while Team MODIS, greenbears par, and PEG RFR2 show a
similar pattern to the covariate group of a slight decrease in error with
lead time. Fourier, PEG RFR, and PEG RFRO all showed a pattern of
error increasing to a maximum around day 20-25 before declining

slightly, while in VT Ph_.GDD error declined slightly as lead time
increased over the first week (similar to Team MODIS, greenbears par,
and the covariate group), before switching to the expected pattern of an
increase in error with lead time. On average, ervor increased fastest with
lead time for the persistence (random walk) null model, which was also
the worst overall performing model, suggesting that all models were
consistently more skillful than a persistence null. That said, CU Pheno
and VT_Ph_GDD both had specific periods where the rate at which their
error increased was more rapid than the persistence null. Specifically,
CU Pheno exhibited a rapid increase in error over the first five days
before asymptoting over the remainder of the 35-day forecast, while
error in VT_Ph_GDD increased more rapidly than persistence over days
13-24. Examples of how forecasted Ggc and skill of transition dates
change with lead time are shown in Fig. S4 and S5.
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Fig. 4. a) Generalized Additive Model response surfaces of Continuous Ranked Probability Score (CRPS) as a function of lead time (i.e., difference between the date
forecasted and the date the forecast was submitted) across models and forecast start dates (black line) or separated by model type. b) Same as top but focusing on the
change in CRPS relative to the shortest lead time (time=0)), which emphasizes changes in predictability with lead time rather than absolute skill. ¢) Change in CRPS

with lead time for individual models.
3.4. H2: changes in forecasts with phenodate forecasted

Contradicting H2, forecast skill on average across all models, lead
times, and sites was highest (CRPS lowest) when forecasting Gee on days
prior to greenup and lowest around 85 % greenup. Specifically, forecast
skill was at a minimum on average 14 days after 15 % of greenup (black
line in Fig. 5) and 0.75 days before 85 % greenup. The number of days
after 15 % greenup that predictability was the worst varied between
sites with Steigerwaldt, Harvard, and Bartlett reaching worst predict-
ability first and Great Smokies and Lyndon B. Johnson last (Fig. 5). The
peak magnitude of CRPS GAM response surfaces over varying pheno-
dategyrecaseq for each site correlated with how quick greenup occurred
(R? = 0.87, p-value = 0.0007; F-statistic = 40.16; degrees of freedom =
7), with the sites that greened up fastest having worse predictability.
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3.5. H3: predictability based on phenodate submitted

In addition to the predictability being lowest when the forecasted day
(phenodateforecasted) Was around 85 % greenup (Section 3.4) and sup-
porting H3, the overall GAM showed that the predictive power was
lowest for days when the forecasts were submitted (phenodateypmired)
right before budburst (15 % greenup). The GAM response surface starts
from a constant low CRPS during the dormant season, begins to rise
starting about a month before greenup, peaks four days prior to 15 %
greenup (ie., phenodatesybmittea = 0), and declines to a new, higher,
summer asymptote approximately three weeks after greenup (Fig. 6a).
Across all model classes, the pattern in CRPS versus phenodate; pmired
follow the same qualitative pattern, with the largest difference being the
amplitude of the peak error, which largely reflect the overall differences
in forecast skill by model class (Fig. 6a). The timing of peak error varies
slightly by model class with covariate peaking first (—9 days), followed
by static (—6), DOY Mean (—5), persistence (—4) and dynamic (—3

b)

Site Max CRPS
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0.015 0.020

=20 =10 o 10 20

Days After 15% Greenup of Forecasted Date
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Fig. 5. a) Generalized Additive Model (GAM) response surfaces of Continuous Ranked Probability Score (CRPS) as a function of the predicted day relative to the date
of 15 % greenup for each site based on GAM analyses shown in solid lines. The dotted vertical lines indicate the number of days after 15 % greenup that 85 % greenup
occurred. Predictive power increased during the greenup period and for most sites peaked at or right after 85 % greenup. b) Site maximum CRPS versus greenup
length (85 % greenup - 15 % greenup dates). Sites that greened up faster had worse predictability during greenup than sites that greened up slower.
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Fig. 6. a) Change in Continuous Ranked Probability Score (CRPS) in the
Generalized Additive Model (GAM) response surfaces compared to the first day
in the predicted time series (i.e., phenodate;yhmittea = —80) as a function of
phenodate.ypmittea, defined as the submission date relative to the 15 % greenup
date at each site. b) GAM predicted CRPS by model as a function of phenoda-
te ubmittea- 10 the overall GAM created from all forecasts, predictive error
(CRPS), peaked four days before 15 % greenup.

days). Patterns by model are similar but with greater noise due to the
variability in when teams first submitted forecasts and how often fore-
casts were submitted (Fig. 6b).

3.6. H4: predictability by model and model class

Contradicting H4, we found that the DOY Mean model class, not the
dynamic models, overall had the highest predictive skill. Relative to the
DOY Mean CRPS (ACRPS = 0), error was lowest for the covariate class
(ACRPS=0.00168 + 0.00012) followed by static (ACRPS=0.00245 +
0.00011), dynamic (ACRPS=0.00697 =+ 0.00009), and finally the
persistence null (ACRPS=0.01176 + 0.00010). Additionally in the
overall GAM, only the model greenbears_par performed better than the
DOY Mean null model (g = —0.0005434, 6 = 0.0001457, t= —3.729p =
0.000192), while Fourier and EFI U_P were not significantly different
from the DOY Mean and all other models were significantly worse
(Fig. 7). The mean standard deviation of submitted forecasts across the
challenge period was significantly higher for the DOY Mean model than
greenbears_par (0.00736 versus 0.00261; t = 102.9, degrees of free-
dom=35,303, p-value<2.2e—16). We also did not find a significant
relationship between model effect in the overall GAM and the date of
first submission (intercept: 6.042e—3; slope: —1.628e—5; R% = 0.01; F-
statistic: 1.1693 on 1 and 15° of freedom; p-value: 0.6865). When
grouped by model class instead of model, no model class significantly
outperformed the DOY Mean null.

While only one of the models had higher predictive skill than DOY
Mean across the entire Challenge period (greenbears par), many models
predicted Ggc on the transition dates better than the DOY Mean,
sometimes 35 days out (Fig. S6). On average, for the 15 %, 50 %, and 85
% greenup transition dates, PEG, GPEDM, and greenbears_gams beat the
DOY Mean model furthest out, respectively.
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Fig. 7. Generalized Additive Model fixed effects expressing mean skill by
model relative to the day of year (DOY) Mean null model. Models are ordered
from highest error (top) to lowest error (bottom) and colored by model class.
Negative values indicate the model outperformed the null across all forecasts.
Vertical lines represent the effects for model class (red vertical line at 0 in-
dicates DOY Mean). No model class significantly outperformed the DOY Mean
null and greenbears par was the only team to.

3.7. Hb5: predictability by site

Supporting H5, site effects (Fig. 8) exhibited a positive relationship
with 50 % greenup DOY (slope = 8.847e—05, standard error = 3.063e-
05, t = 2.888, p-value = 0.0278) with an R? of 0.58, indicating that on
average models were better at predicting sites that leafed out earlier
than those that leafed out later. In terms of site-to-site differences in
model performance, within the overall GAM all sites had significantly
lower CRPS than the reference class (Bartlett) except Steigerwaldt.

In the GAM model that considered site X model interactions, 91 out
of 144 interaction terms (67 %) were significant (Fig. S7). Interactions
were least common for the models greenbears stl (0), Fourier (0),
greenbears (1), greenbears gams (1), EFI. U P (1), and PhenoPhriends
(2). At the other extreme, all site interactions were significant for the
models Team MODIS, PEG RFRO, PEG RFR, persistence null, and
DALEC SIP, and seven out of eight sites were significant for PEG and
greenbears par.

4, Discussion
4.1. HI: skill and lead time

We observed that in general, and as expected, predictive skill of
forecasts, as defined using CRPS that evaluates forecast distribution
(rather than only the mean or median), increased as lead time decreased,
which has been found with previous phenology forecasts (Taylor and
White, 2020). That said, this overall pattern did not hold true for a
couple specific cases. First, the DOY Mean null model showed no pattern
with lead time, which is to be expected as this forecast is not updated
based on new information and stays constant for each date regardless of
when the forecast is created. For similar reasons teams using static
models had, on average, the least increase in CRPS with lead time. The
covariate model PEG RFR2 showed the unexpected pattern of
decreasing error with increased lead time, which was likely because the
model’s forecasts were only submitted at the end of the forecast period
after most sites had already completed greenup. The covariate class’s
unexpected pattern of decreasing error with increased lead time likely
occurred due to the models becoming overconfident at shorter lead
times (e.g,, spread decreases more rapidly than bias with short lead
times). This would also explain the initial behavior of the VT_Ph GDD
model of error declining as lead time increased only for the first week. At
longer lead times (greater than approximately a week), the model either
reduces bias or ensemble spread with decreasing lead times. Increases in
CRPS, and thus decreased predictive skill, with shorter lead times has
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Fig. 8. a) Site effects on Continuous Ranked Probability Scores (CRPS) from the overall Generalized Additive Model ordered by date of leaf out from latest (top) to
earliest (bottom). b) Linear regression of the site effects on CRPS from panel a versus the site’s day of year (DOY) of 50 % greenup. Overall, sites that leafed out earlier

had higher predictability.

been found elsewhere such as with forecasting streamflow totals
(Schepen et al., 2016) and decadal hindcasts of global mean temperature
(Smith et al., 2015). Our results emphasize that forecasters need to be
wary of becoming overly confident with time.

4.2. H2: predictability of different parts of greenup

We hypothesized that the start of greenup would be the hardest part
of the curve to forecast, but instead observed that in general, predict-
ability decreased through the greenup period. This could be due to a
variety of reasons. Firstly, the representation of budburst in the models
could be better than the representation of leaf expansion. Budburst is
typically more controlled by temperature and photoperiod in cold-
deciduous plants (Chuine et al., 2013; Zohner et al., 2016), which was
commonly used in the forecast models. In contrast, leaf and cell elon-
gation is primarily controlled by water availability and turgor (Taiz and
Zeiger, 2006), which was less common to include. Secondly, since the
difference in greenness at 15 % greenup from dormancy is smaller than
at later parts of greenup, if models are predicting greenup late the error
on this date would be smaller but would grow over time until the
forecast catches up with observations. Thirdly, the meteorological
forecasts used could have been more inaccurate during later greenup
instead of at budburst because of the impacts of vegetation properties
leading to biases in meteorological forecasts (}ue et al., 1996). Focusing
on model fits instead of near-term forecasts, Richardson et al. (2006)
also found that later phenological stages are harder than budburst to
predict. In contradiction, Klosterman et al. (2018) found that they were
easier. Our results indicate that evaluating forecast and predictive skill
at the end of the greenup period is as important as evaluating at
budburst.

4.3. H3: predictability based on when submitted

The results support our hypothesis that in this focal year, selected
sites, and submitted models, forecasts across all lead times submitted
right before budburst have the lowest predictive power based on the
selected metric of CRPS. This was expected because the 35-day fore-
casted period is long enough to typically include the full greenup curve
in most deciduous broadleaf forests (ilosterman et al., 2018), and thus is
harder to predict than the greenness during dormancy and peak green-
ness. Additionally, the error post-greenup was consistently higher than
pre-greenup, which seems to be associated more with persistent biases
across models in predicting peak summer greenness, than the potentially
greater day-to-day variability in observations. During the summer, Gee
gradually decreases (Elmore et al., 2012; Klosterman et al., 2014),

resulting in a less stable target compared to winter dormancy.

4.4. H4: skill of different model classes

We were surprised at how challenging it was to have higher skill than
the DOY Mean model across the Challenge period because the DOY
Mean model did not incorporate any covariates or current conditions.
This difficulty could be partly attributed to the used Gg¢ index not being
a perfect expression of phenology. Even with the PhenoCam Network
processing (e.g., fixing the white balance; Seyednasrollah et al., 2019),
Gec can still be affected by illumination and atmospheric conditions.
Perhaps the DOY Mean model better accounted for these observation
errors. The only model to have greater predictive skill, greenbears_par,
relied on historical averages of the covariate data (DOY and photosyn-
thetically active radiation), thus mimicking the historical average nature
of the DOY Mean model. One reason it out-performed the DOY Mean
model could be because the forecasts had lower uncertainties (mean
standard deviation of 0.0026 versus 0.0074). This result reinforces just
how important a historical means null model is for near-term forecasting
in general, and for phenological forecasting in particular. While his-
torical average models performed the best, they are likely less useful for
predicting long-term changes to phenology as the climate warms, as they
make the same prediction for every future year. It is also unclear, given
one study year, how well the high performance of DOY Mean and
greenbears par would hold up across years that might be less “average.”
Furthermore while most models had lower predictive skill than the DOY
Mean model across the Challenge period, we did observe that some
models forecasted Gg¢ on the transition dates better than the DOY Mean
model (Fig. $6), which is likely more important than across the entire
Challenge period.

Historical means are often used as a null model in predicting specific
transition dates, such as spring budburst, with mixed results of it out-
performing other models. When comparing predictions of human-
collected budburst timings in four species in Belgium, Fu et al. (2012)
found that most models outperformed the historical null. However,
many modeling studies, including those introducing a new model (e.g.,
Elmendorf et al., 2019; Garcia et al., 2019) and model comparison
studies (e.g.,, Asse et al., 2020; Melaas et al., 2016; Moon et al., 2021), do
not include this as a null model. The difficulty in out-performing his-
torical means predictions was also found by another theme of the EFI
Ecological Forecasting Challenge (water temperature in lakes; Thomas
et al., 2023b).

In contrast to H4, we found that other than the persistence model, the
dynamic models (i.e., ones that use the previous day’s Gee to make a
forecast) performed in general worse than the other models, indicating
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that while dynamic phenology models still have potential to serve as
mechanistic models and improve forecasts, the dynamic models used
here for forecasts have likely not matured enough yet. We had expected
that the low latency of the PhenoCam G¢¢ Data (overnight) would allow
dynamic models to perform well because they could quickly incorporate
the current state of the system before forecasting the next state. The
conclusions here, however, are dependent on the specific models used in
the forecasts as some dynamic models performed well, such as
CU_Pheno. Furthermore, many common traditional phenology models
(Chuine et al., 2013) could not be included because they forecast the
timing of transition dates and not a timeseries of G¢¢ values. These
commonly used models, though, are rarely dynamic models so including
them would not have improved the performance of the dynamic model
class.

4.5. H5: predictability differences between sites

In support of H5, we observed that the date of 50 % greenup and
anomalies in the dates of 50 % and 85 % greenup each explained sub-
stantial variation in site predictability with sites that greened up later
having lower predictability. Since we found no significant relationship
between the date of starting to submit and model skill, this is likely not
due to a non-random influx of late submitting models being worse than
models that started submitting forecasts earlier. It is more likely a
combination of ecological reasons. First, previous findings suggest that
photoperiod is more of a dominant control of spring greenup in warmer
climates in North America where temperature is more of a dominant
control in colder climates (Moon et al., 2021) and in tree species found
in lower latitudes (Zohner et al., 2016), which would explain why the
DOY Mean performs better at sites in warmer climates that experience
greenups earlier than the colder climates. Second, we found that the
sites that had higher peak error (Steigerwaldt, Harvard, and Bartlett;
Fig. 5) also greened up faster and occurred later than the other sites. This
is similar to Klosterman et al. (2018) s finding that later springs
greened-up faster, so it is possible that the models performed worse for
these sites because of the faster than average greenup rates. Third, the
National Phenology Network s published spring anomaly indices
(Fig. S8) also suggest that the sites we found to be the hardest to forecast
(Bartlett, Harvard, and Steigerwaldt) all had early springs in 2021.
Including more years and a larger number of sites in future phenology
forecasting challenges would help in assessing across-site patterns, as it
is likely the small sample size (eight sites) limits the statistical power of
such analyses. Similarly, with only one year of data it is hard to
deconvolve across-site gradients in predictability from interannual
variability, but these results generated hypotheses that we will use to
approach future rounds.

4.6. Challenge evaluation

In addition to the scientific findings of the Challenge, we also
observed numerous social aspects of the Challenge that were successful.
We were successful at recruiting teams to submit forecasts for this first
round despite a lack of a prize (e.g, the 16,000 USD offered in
Humphries et al., 2018) and limited prior experience across the
phenology community in multi-team model intercomparisons. This is
particularly noteworthy given that one of the decisions the design team
made was for the NEON Phenology Forecasting Challenge to be based on
forecasting greenness values at different days and not just the timing of
transitions, which is typically emphasized in many classical phenolog-
ical modeling approaches such as growing degree day thresholds. While
this decision led to an underrepresentation of some of these classical
modeling approaches, it led to innovative techniques, such as machine
learning, and facilitated collaboration between computer science/-
machine learning experts and ecologists (e.g., the PEG team models).
Similarly, we had good participation by academic classes, which
advanced training in ecological modeling and forecasting through
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hands-on experience. Finally, the infrastructure platform (Thomas et al.,
2023a) that provided the data files of G¢c targets and GEFS meteoro-
logical forecasts, and received and displayed the forecasts, supported
this real-time NEON Phenology Forecasting Challenge well and can
support future challenges. Importantly, we succeeded in empowering
many different teams of ecologists and data scientists to make genuine,
probabilistic forecasts (i.e., forecasts before data are collected)

While many aspects went well, there were some shortcomings to be
improved upon in future rounds, especially aspects that would decon-
volve the results. Firstly, not all teams submitted at all dates so there was
a lack of consistency in the submissions presented challenges for inter-
comparison. Future rounds of the Challenge are set up to accept forecast
submissions all year long (Thomas et al., 2023a). This is particularly
important to encourage teams to consistently submit forecasts around
the specific phenological events of greenup and senescence. Addition-
ally, the small number of initial sites presented a challenge to under-
standing across-site patterns of predictability. To address this limitation,
additional NEON sites have been added to the current and future rounds
of the NEON Phenology Forecasting Challenge (increasing from eight to
47 sites and including other plant functional types). While these short-
comings will continue to be improved, intercomparison projects like this
one lead to more creativity and ideas, which is exciting motivation as we
continue the Challenge.

5. Conclusions

Here we presented the findings from the first round of a community
spring greenup phenology forecast challenge. We found that in general
predictability increases as lead time decreases (in support of H1); in this
specific year and set of sites, predictive skill decreases at the later part of
greenup (in contradiction to H2); forecasts submitted right before bud-
burst had the lowest predictive skill (in support of H3); the DOY Mean
null model is difficult to outperform across the entire greenup period (in
contradiction to H4); and that sites that greened up later tended to be
harder to predict (in support of H5). Our study emphasizes the impor-
tance of the historical means (or climatology) model as an important
null model for ecological forecasting and improves our understanding of
what affects the predictability of phenology. These findings should
inform the focus of future forecasting and modeling efforts as we
continue to investigate this important process as a broader community.
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