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Highlights:

* Over 60 y, the scope of phenological research published in AFM has evolved

» Agricultural applications were once dominant; climate change is now a recurring theme
* Review focuses on phenocam, or phenology camera, papers published in AFM

* Documents history and evolution of the PhenoCam Network, and lessons learned

* Opportunities for machine learning/computer vision to advance phenocam science
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Abstract

Over the last twenty years, phenology—the study of seasonal life cycle events—has emerged as
a key subfield of global change biology. Phenology provides an integrated measure of the
organismal response to climate change and is a key driver of the functional responses of
ecosystems to climate change. Since I established the PhenoCam Network in 2008, over 200
papers have been published using phenocam technology, and these papers have added to our
understanding of phenology as both an indicator of climate variability and change and a key
aspect of ecosystem function. This review examines: (1) the changing phenological research
landscape, as represented by phenology-themed papers in Agricultural and Forest Meteorology
(AFM), over the last 60 y; (2) the contributions of phenocams and the PhenoCam Network, as
reported in the pages of AFM, to the study of phenology: and (3) the lessons I have learned from
developing this grassroots effort, and how other researchers might benefit from the PhenoCam
Network’s successes and failures. Key conclusions to emerge from this review include: (1) the
enormous, value-added power of research networks; (2) the importance of both interpersonal
relationships and serendipity, in the metamorphosis of i1deas into results; and (3) the potential for
open, freely-available data to be transformative, in ways that cut across disciplinary,
socioeconomic, and demographic barriers. Finally, the development of the PhenoCam Network
has been a collaborative, multidisciplinary experiment in team science, and the commitment of
my team members and the enthusiasm of my collaborators have been critical to the success of

these efforts.

Keywords: Carbon cycle, ecohydrology, energy balance, FLUXNET, land-atmosphere

interactions, seasonality.
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1. Introduction

Phenology, the study of seasonal rhythms of plant and animal life cycle events, is a
fascinating subfield of both biology and ecology that bridges across disciplinary axes from
environmental biology to physiological ecology to biometeorology, and from natural history to
climatology to biosphere-atmosphere interactions (Richardson et al., 2013a). Phenology is
therefore inherently interdisciplinary; it is important not only for how individual organisms
respond to their growth environment, but also as a regulator of how individuals interact on both
intraspecific and interspecific levels, from reproduction to competition, and how organisms, by
mediating fluxes of carbon, water, and energy, directly influence the climate system (Pefiuelas et
al., 2009; Schwartz, 2013). Furthermore, phenology has obvious relevance to many branches of
resource management and conservation (Ettinger et al., 2022; Morisette et al., 2009; Richardson
etal., 2017). Humans are also innately connected to the rhythm of the seasons and how signals of
this thythm are manifest—making phenology a key avenue of outreach to the general public.

While naturalists and agriculturists have kept records of germination, flowering, and
other phenological events since at least the 18® century, the field of “phenology” as a distinct
branch of natural history did not receive its name until the middle of the 19 century (Demarée
and Rutishauser, 2009). Although sometimes confused with the Victorian pseudo-science of
phrenology, phenology has in recent decades proven to be a sensitive indicator of biological
responses to climate change. As such, the study of phenology has emerged as a key component
of contemporary global change biology, as demonstrated by numerous publications in the
highest-impact multidisciplinary journals in recent years (Meng et al., 2020; Wu et al., 2022; Yin
etal., 2023; Zani et al., 2020). This change in perception has, to some degree, been the result of

new approaches being brought to bear on decades-old questions such as “(1) how does
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vegetation phenology vary in time and space?” and “(2) what are the key drivers of vegetation
phenology?” In addition to molecular techniques (e.g., hormonal and omics studies on model
organisms, e.g. Populus and Arabidopsis) that provide insight into processes at the cellular and
sub-cellular level, other tools such as satellite remote sensing, eddy covariance, phenocams (see
Box 1 and Figure 1), Bayesian statistics, and clever manipulative experiments, are providing new
understanding of phenological patterns, and their relationship to environmental drivers and
ecosystem function, across a wide range of scales. These bottom-up and top-down approaches
are undoubtedly complementary, and together they can contribute to answering a two more
questions, namely “(3) how will vegetation phenology respond to future climate change, in
ecosystems around the world, and (4) what does this mean for how those ecosystems function?”
In my mind, these questions have been driving the field of phenology for more than a dozen
years and will continue to do so—until we have a predictive understanding of how ecosystems
will respond to multiple nonlinear drivers, and how these drivers interact with each other and
with climate change.

I was asked by the editors of Agricultural and Forest Meteorology (hereafter, AFM) to
contribute a review paper to the 60" Anniversary special issue, highlighting recent “work on
phenology and the lessons learned from the PhenoCam Network,” and including a “personal
perspective on what has been accomplished and where the field is heading.” This is not a
comprehensive review of the state of phenological research (instead, see Piao et al., 2019).
Rather, it 1s selective, focused on papers that have appeared in AFM, and indeed I have tried to
reference every AFM paper, through the summer of 2023, that has meaningfully referenced, in
some way or other, phenocam data or imagery. Keeping in mind the “personal perspectives”

directive, I have also endeavored to provide the “back story” behind the development of the



90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

108

110

111

PhenoCam network, and some of the key papers in the phenocam literature—where the ideas
originated, how they evolved, and who was involved (Baldocchi’s 2013 “history of eddy
covariance” essay served as a model). I use text boxes to distinguish descriptive (Box 1: What is
a phenocam?) or anecdotal (Box 2: The origins of the PhenoCam Network:; Box 3. PhenoCam vs
phenocam?) material from the main body of the manuscript. Some additional, more
autobiographical, text (e.g. Supplementary Material, Box S1: My introduction to phenology), is
contained in an online supplement.
This paper is organized around the following questions:
1) How has the focus of phenology-related papers published in AFM evolved over 60
years?;
2) How have papers published in AFM contributed to the development and evolution of
phenocam science and phenology more generally?; and
3) Why has the PhenoCam Network been successful, and what lessons have we learned

that might be of value to future collaborative, grassroots efforts in other fields?

2. The evolution of phenology research in Agricultural and Forest Meteorology

Phenology is an ideal area of study to be addressed by an inherently cross-disciplinary
journal such as AFM. But, while “phenology” has for some time been listed in the journal’s
“aims and scope”, as recently as 2007 the journal was publishing 10 or fewer papers per year on
phenology, and from 1991 to 2000, the journal published, on average, less than 2 papers per year
on phenology! With that caveat, I note that over the last 25 y as a whole, the number of AFM

papers with “phenology” in the title, keywords, or abstract has surged, increasing at about 13%
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per year (Figure 2), compared with 8% per year across all journals indexed in the Web of
Science.

Over six decades, the emphasis of phenological papers appearing in the pages of AFM
(and its predecessor, Agricultural Meteorology, which began publication in 1964), has shifted.
From the 1960s through the 1970s, relatively few papers on phenology were published, and
agricultural applications (Bridge, 1976; Carder and Hennig, 1966; da Mota, 1978 Jones and
Laing, 1978; Neild, 1982; Neild et al., 1978; Williams et al., 1980) tended to dominate; even
papers on the phenology of fungal parasites were presented in the context of agricultural
management (De Weille, 1965). I found only two papers from this period that addressed the
phenology of forest trees and their impact on the forest microenvironment (Hutchison and Matt,
1977, 1976). But, in an ahead-of-its-time paper, White (1979) tested a variety of temperature-
accumulation models to characterize the timing of flowering by 53 different plant species—
though the results were still framed in a management context. Related papers published in the
early 1980s (Doraiswamy and Thompson, 1982; Kobayashi and Fuchigami, 1983; Lomas and
Burd, 1983:; Neild, 1982; Neild et al., 1983) point to the emergence of more quantitative and
sophisticated approaches to phenological modeling. It is probably not a coincidence that this was
around the same time that personal computers started to appear in research labs and academic
offices, facilitating data analysis and modeling.

Phenological research has continued to evolve in recent decades (Table 1). Notably, by
the 1990s, about 20% of phenology papers in AFM referred to climate change; over the last
decade, that number has been about 75%. In AFM papers published 2013-2022, other themes
commonly associated with phenology include modeling (65% of papers), trees or forests (60%),

agriculture (35%), carbon and water fluxes (20%), and remote sensing (20%). Whereas much of
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the early phenology work in AFM was conducted in North America, research from Europe,
China, Japan, and Australia is now prominently featured. AFM now routinely publishes more
than 50 phenology papers a year, and it is one of the preeminent journals in which early-career
authors, in particular, aspire to publish their phenological research. In recent years, phenological
research in AFM has shown quite clearly that this field is much more than an obscure subfield of
natural history—instead, these papers represent some of the most vibrant and novel research

published in the pages of this journal.

3. The evolution of phenocam science, as as viewed through the AFM lens

Over the last dozen years, a small (7%) but increasing fraction of phenology papers in
AFM have made use of “phenocam” technology—time-lapse digital cameras used to track the
seasonality of vegetation activity and changes in vegetation structure (e.g., Box 1 and Figure 1;
see also Richardson, 2019). In fact, as much of the phenocam literature has been published in
AFM as in any other journal (Figure 3). The phenocam method, developed about 15 y ago
(Richardson et al., 2007), has emerged as a direct link between on-the-ground phenological
monitoring of individual organisms by an observer, and coarser-resolution satellite observations
at the global scale. The quantitative data extracted from phenocam imagery are high-quality (or
at least they can be—if appropriate precautions are taken with regard to camera make and model,
camera settings, and set-up in the field), with minimal noise and a strong seasonal signal in most
ecosystems (Richardson et al., 2018a; Seyednasrollah et al., 2019), even those with evergreen
vegetation (Seyednasrollah et al., 2020). Thus, phenocams can provide objective, automated,
phenological data at high temporal and spatial resolution—in many cases, in real-time. And, an

advantage of phenocams over radiometric approaches (broad- or narrow-band radiometric
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indices, including fapar [fraction of absorbed photosynthetically active radiation], NDVI
[normalized difference vegetation index], PRI [photochemical reflectance index], etc.;
Richardson et al., 2013) is that the phenocam images are a permanent visual record of what the
camera was looking at, at a specific place and time. In this way, the long-term value of installing
a phenocam at a research site can transcend phenology itself—over time, the accumulated
imagery provides a unique history of the site, with a record of development and change over
time: e.g., establishment, growth, and mortality; disturbance and recovery; responses to extreme
events; changes in species composition; and, in cold sites, the timing and duration of snowpack.

I maintain a list of papers published independently by other researchers using data from
the PhenoCam Network; as of July 2023, there were over 115 journal publications and 9 theses
on that list, with over 30 publications in 2022 alone. But many other researchers have also set up
phenocams at their own sites, and do not contribute the imagery to the PhenoCam Network (I
distinguish PhenoCam from phenocam in Box 3)—so the “phenocam” literature 1s much broader
than that of just “PhenoCam”. Based on a Web of Science search for “phenocam” in the title,
abstract, or keywords, the number of phenocam-related publications each year is growing by
about 30% annually since 2011 (Figure 2).

One of the objectives of this review is to examine how papers published in AFM have
contributed to the development and evolution of phenocam science. I conducted a search from
the journal’s home page to identify all AFM articles that included the word “phenocam™. I
quickly examined these to distinguish between the 50 articles that made use of phenocam
imagery or data as part of the analysis and the 20 articles that only mentioned phenocam in

passing in the Introduction or Discussion, or that cited a paper with phenocam in the title.

* https://www.sciencedirect.com/search?cid=271723&pub=Agricultural%20and%20F orest%20Meteorology&qs=phenocam



180 Phenocam publications in AFM over the last decade can be loosely grouped into five
181  categories, addressing: (1) methodological issues, including hardware and software advances: (2)
182 interpretation of carbon and water fluxes measured by eddy covariance; (3) assessment of

183  satellite remote sensing products; (4) development, calibration, or evaluation of phenological
184  models; and (5) applications in other fields of environmental science beyond phenology per se.
185 Below, I organize my review of the recent literature in AFM according to these categories.

186

187 3.1 Methodological issues

188 We started using the StarDot NetCam SC as the “preferred” camera for the PhenoCam
189  Network in early 2008 (Figure 5). As noted in Box 1, this choice was more the result of good
190  luck rather than exhaustively testing competing models to identify the best choice of camera. In
191  the summer of 2010, Oliver Sonnentag and Koen Hufkens started work on a project at Harvard
192  Forest to determine whether camera choice mattered. Sonnentag et al. (2012) compared about a
193  dozen readily-available cameras, most with internet connectivity (i.e., IOT [internet of things]
194  devices by StarDot, Axis, D-Link, and Vivotek) and some that were stand-alone models,

195 including both consumer-grade point-and-shoot digital cameras and what have come to be

196  known as “trail-cams.” Except for inexpensive webcams designed for indoor use, the other

197  cameras were all found to yield similar patterns of autumn senescence, leading to the conclusion
198  that “camera and image file format choice might be of secondary importance for phenological
199  research.”

200 Sonnentag et al. (2012) made several other important contributions, mostly regarding
201  questions about post-processing of the extracted data. For example, they showed that the green

202  chromatic coordinate (Gce) was generally better than the excess green (ExG) index at
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suppressing hour-to-hour or day-to-day variation due to changes in lighting conditions, weather,
clouds and aerosols, and illumination geometry. Secondly, based on work by coauthor Adam
Young, Sonnentag et al. proposed alternative statistics for combining Gee values from multiple
images recorded over the course of a day to a daily value with the lowest day-to-day variability.
Notably, the best statistic was often not the daily mean, median, or midday value of Gece, but
rather the 90™ percentile value—“Gcc90”, and this approach has become widely adopted.

Although Sonnentag et al. (2012) resolved a number of key methodological issues, tools
for region of interest (ROI) delineation, image processing, and phenological transition date
extraction had not been standardized and remained cumbersome. A few years later Gianluca
Filippa, Edoardo Cremonese, and Mirco Migliavacca led a team that developed the “Phenopix”
R package, which was described in AFM by Filippa et al. (2016a). The Phenopix code,
distributed through CRAN, simplified and made consistent all the data processing steps, while at
the same time allowing flexibility for the user to choose their preferred curve-fitting and date
extraction methods. A novel addition to this package was the introduction of a pixel-by-pixel
analysis, which enabled characterization of the variability across the canopy or the crown of an
individual tree.

In a 2014 paper developed from her undergraduate thesis at Harvard College, Anika
Petach showed how the infrared sensitivity of the StarDot camera (Figures Sc, d) could be used
to generate an NDVI-like index we called “camera NDVI” (Petach et al., 2014). Filippa et al.
(2018) conducted a broader test of this idea using data from PhenoCam sites across a range of
plant functional types (PFTs), in conjunction with in situ measurements of NDVI, and MODIS
NDVI. Their analysis demonstrated that systematic differences in the seasonality of Gee and

camera NDVI tended to be PFT-specific—thus the two indices could be seen as complementary,
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rather than redundant. Given the large number of in PhenoCams in deciduous broadleaf forests, a
highly relevant take-home message was that “[Gcc] 1s more sensitive to changes in leaf color and
[camera NDVI] is more sensitive to changes in leaf area.” The analysis by Filippa et al. (2018)
nicely built on previous work by Keenan et al. (2014) showing that, for deciduous broadleaf
forests, seasonal variation in Gee could be predicted from the Gee signature of the bare canopy,
the changing Gcce signature of individual leaves, and the changing leaf area index, using a simple
mixing model.

However, Brown et al. (2020) noted “previous work has demonstrated several features in
time-series of [Gcece] are unrelated to canopy structure, limiting [its] utility to track specific
biophysical properties such as leaf area index.” This motivated their study, which compared LAI
estimated from below-canopy hemispherical photos with Gee from an above-canopy phenocam
(see also Toda and Richardson, 2018). Brown et al. (2020) observed seasonal hysteresis in the
LAI-Gecc relationship, which resulted in differences between the two indices in the derived
seasonal transition dates, and the conclusion that “phenological transition dates derived from
[Gece] cannot easily be linked to any one biophysical property.” To further investigate the
interpretation of phenocam-derived transition dates, Nezval et al. (2020) compared ground
observations of three deciduous tree species with transition dates extracted, using the Phenopix
package, from the seasonal trajectory of Gee. Surprisingly, and in contrast to some previous
studies (e.g., Richardson et al., 2018), there were substantial and unresolved inconsistencies
between the ground observations and the Gcee-derived dates, with observed budburst occurring
15 days before estimated green-up in one species, but 7 or more days affer estimated green-up in
two other species. The authors concluded that “classical ground-based observations by a

phenologist are still crucial”. By comparison, ground observations of red oak budburst, leaf
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coloration, and leaf fall at Harvard Forest do show a high correlation with Gce-derived transition
dates in both spring and autumn (Dunn et al., 2022), pointing to the relevance of phenocam-
derived transition dates as indicators of biologically-relevant phenological transitions.

Alternative photographic methods for characterizing plant phenology have also been
described in AFM in recent years. For example, Chianucci et al. (2021) demonstrated the
potential for using inexpensive camera traps (“game cams”), mounted at ground level and
looking upward through the canopy, to estimate fractional cover and leaf area index. Smith and
Ramsay (2018) found that smartphones with hemispherical lens attachments could be used to
reliably estimate the timing of canopy closure. And Koen Hufkens used repeat smartphone
photography to track crop phenology and disturbance in India (Hufkens et al., 2019). Hufkens
and coauthors argued this method could be used to “[support] crop modeling, extension, and
insurance schemes to increase resilience to production risk and enhance food security in
smallholder agricultural systems,” showing how phenocam-type approaches could help advance
the welfare of human society.

An outstanding methodological challenge, yet to be addressed in the literature, is how to
fully automate the processing of phenocam imagery. There is certainly an opportunity to
leverage computer vision, deep learning, and image segmentation methods already used in other
fields including medical imaging and diagnostics (Esteva et al., 2021; Hesamian et al., 2019).
Automatic ROI detection, e.g., through segmentation, would also solve the ever-present problem
of field-of-view shifts, and (to a lesser degree) low-quality imagery that is recorded under foggy
or too-dark conditions, in that if there were images where relevant PFTs could not be identified,
the image in question could simply be ignored. The application of deep learning methods to the

PhenoCam Network image archive has been slow to develop, but there 1s huge potential here for
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remarkable advances in how phenocam imagery is processed and the datasets curated. A large,
annotated, training dataset derived from phenocam imagery could be invaluable for future deep-

learning applications.

3.2 Interpretation of carbon and water fluxes

Because of the key role that phenology plays in regulating the seasonality of ecosystem-
atmosphere carbon dioxide and water vapor fluxes, and the partitioning of the surface energy
budget, many studies have used phenocam data and tower-measured fluxes from co-located
sensors to link leaf phenology and canopy dynamics to the phenology of physiological processes
such as photosynthesis and transpiration (D’Odorico et al., 2015)—sometimes referred to as
“physiological phenology.” Phenocam data have also been used to estimate growing season
length as a basic site attribute (Pappas et al., 2020; see also Reed et al., 2018 in the context of
seasonal variation in energy balance closure). I am impressed by the breadth and creativity of
studies that have integrated phenocam data and tower fluxes; this section 1s grouped around the
following themes: (1) carbon dioxide fluxes and ecosystem productivity; (2) evapotranspiration
and water fluxes; (3) land-atmosphere interactions; (4) management applications; and (5)

extreme events and disturbance.

3.2.1 Carbon dioxide fluxes and ecosystem productivity

In a classic example of efforts to link phenology to forest productivity on interannual
time scales, Oishi et al. (2018) used spring and fall transition dates dertved from Gee to provide
context for deciduous forest carbon and water fluxes measured by eddy covariance. Intriguingly,

growing season length was unrelated to interannual variation in annual NEE. And, although
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warm temperatures tended to advance spring onset and increase seasonal carbon dioxide uptake,
warm temperatures also tended to increase ecosystem respiration. Indeed, contrary to many
studies concluding that future warming will potentially increase forest productivity through the
extension of the growing season, Oishi and coauthors concluded that the “increasing frequency
of high summer temperatures is expected to have a greater effect on respiration than growing
season length, reducing forest carbon storage.”

Phenocam-supported studies of physiological phenology have not been limited to
deciduous broadleaf forests; other examples include evergreen forests, grasslands, agricultural
lands, and even wetlands. Bowling et al. (2018) investigated the controls on the seasonal
variation in photosynthetic capacity of the high-elevation evergreen conifer forest at Niwot
Ridge, Colorado—home to a PhenoCam since 2009. They reported that both Gee (2 = 0.92) and
the Green-Red Vegetation Index (GRVI, »* = 0.76) were strongly correlated with the light-
saturated rate of canopy photosynthesis derived from eddy covariance measurements. Notably,
there was evidence of modest phase differences between both indices and the seasonal course of
photosynthesis, hinting at the physiological complexity of seasonal up- and down-regulation of
photosynthesis, and the mechanics of photoprotection.

Although their analysis maintained a focus on the Australian mountain grassland site,
Ninmo, Marchin et al. (2018) used PhenoCam data from sites around the world to synthesize
patterns of growing season length in relation to elevation. Despite the modest annual carbon sink
at Ninmo, the growing season was shown to be substantially longer than Northern Hemisphere
sites at a similar elevation. But, the annual GPP (gross primary productivity, g C m? y) at
Ninmo was unrelated to growing season length. Warm, dry conditions were found to advance

grass senescence and limit productivity at the end of the growing season; Marchin et al. proposed
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this was driven by a “VPD tipping point.” The unique combination of framing site-level results
in the context of a global synthesis makes this a compelling paper.

Grazing lands cover much of the United States and more than half of the Earth’s land
surface. They are important for agricultural production and for their carbon sequestration
potential, among other ecosystem services. Fire plays a critical role in maintaining these systems.
In a novel study of a native rangeland ecosystem in Florida, Bracho et al. (2021) observed good
coherence between GPP estimated from eddy covariance measurements and PhenoCam Gee.
Gecc also provided a sensitive and high-resolution characterization of recovery dynamics
following prescribed fire. Using conditional tree regression analysis to explore links between
ecosystem function and biological/environmental drivers, Bracho et al. demonstrated that Gee
informed simulations of the seasonal dynamics of carbon dioxide fluxes. This kind of data-driven
modeling 1s a promising alternative to the classic “process-oriented” approaches described below
(Sec. 3.4), and I expect that applying machine learning algorithms to phenocam, flux, and
meteorological datasets will be an exciting area of growth in the coming years.

A surprising number of studies linking PhenoCam data and co-located tower fluxes have
focused on wetlands. For example, Dronova et al. (2021) found that Gee seasonal trajectories
were different across three restored wetland sites in California; the lower maximum Gcc at one
site corresponded to earlier senescence and lower maximum carbon uptake and was proposed to
be the result of plant stress from salinity. And, several important studies have emerged from the
St. Jones Estuarine Research Reserve, a temperate tidal salt marsh, in Delaware. In one paper,
Hill et al. (2021) examined the degree to which a wide range of spectral indices, derived from
both phenocam imagery (7 indices), in situ spectral reflectance sensors (5 indices), and MODIS

(5 indices) tracked NEE of carbon dioxide, measured by eddy covariance. Visible-wavelength
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indices (e.g., Gee) from phenocam yielded start- and end-of-season transition dates that best
aligned with those calculated from NEE, while of all indices considered, Gece had the highest
linear correlation with daily NEE integrals (1> = 0.93). In another paper by Vazquez-Lule et al.
(2021), phenocam and flux data were used together, in what the authors refer to as a “plant-
phenological phase approach,” to investigate the relationships between salt marsh phenology and
ecosystem-scale fluxes. Fluxes of both carbon dioxide and methane showed strong seasonality,
with near-zero fluxes of both gases during the winter months, but net uptake of carbon dioxide
and net release of methane during the summer months. However, the coupling of fluxes to plant
phenology was weaker for methane than it was for carbon dioxide. While this result may not be
entirely surprising, it is notable that this Vazquez-Lule and coauthors thought “beyond the
[carbon dioxide] box™.

Geec 1s, of course, not the only index that can be calculated from phenocam imagery
(Richardson et al., 2013b). For example, in temperate deciduous forests with strong autumn
coloration, the red chromatic coordinate (Rcc) is a reliable indicator of the timing and intensity
of peak color (Richardson, 2019). But Rcc may have other applications as well. Using carbon
dioxide fluxes and phenocam data from deciduous and evergreen forest sites, Liu et al. (2020)
reported that local maxima and minima in Rcc could be used to identify the onset and cessation
of photosynthetic uptake in spring and fall. Surprisingly, they found that while the seasonal
dynamics of Rcc did not track those of canopy photosynthesis, transition dates derived from Ree
were a much better indicator of photosynthetic phenology than transition dates derived from Gee.
This was particularly true for evergreen forests. In contrast, a later study by Seyednasrollah et al.
(2020) reported that, for evergreen sites that went through a winter-dormant stage, Gee (and also

GRVI, the Green-Red Vegetation Index) was a good indicator of photosynthetic phenology,
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when the transition dates were calculated after phenocam images with snow on the canopy had
been filtered out. For accomplishing the latter task, Jason Jewik developed a Python package that
uses a trained deep learning algorithm to classify phenocam images

(https://github.com/jasonjewik/PhenoCamSnow), showing the potential for new methods and

algorithms to contribute to improving image processing workflows.

3.2.2 Evapotranspiration and water fluxes

A few papers have used PhenoCam 1magery to investigate relationships between
phenology and evapotranspiration, using either tower-measured latent heat flux (LE) or sapflow.
For example, Luo et al. (2022) analyzed relationships between Gee and canopy conductance in a
Mediterranean evergreen broadleaf savanna. Seasonal variation in Gec at the canopy level was
driven by leaf flushing, maturation, and senescence, and newly-flushed leaves had spectral
signatures that were distinct from those of mature and old leaves. Both canopy conductance and
sap flux density were shown to be well-explained by a generalized additive model that included
environmental factors as well as Gee and cameraNDVLL

Nehemy et al. (2023) developed a method, based on high-frequency measurements of
stem radius with automated dendrometers and the correlation of stem radius changes with
sapwood temperature, to identify four key transitions that were shown to be closely associated
with the phenology of transpiration. Intriguingly, across several evergreen boreal forest sites, the
transition associated with the end of stem freeze-thaw cycles coincided with spring green-up
transition dates derived from Gcc, as well as the onset of net carbon dioxide uptake, as estimated
from eddy covariance measurements. This study nicely shows the potential for phenology to

serve as an “integrative science” that cuts across fields and disciplines (Schwartz, 2013).
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3.2.3 Land-atmosphere interactions

This section has mostly focused on how phenocam imagery has contributed to the
interpretation of physiological phenology and/or seasonal-to-interannual variability in
ecosystem-atmosphere carbon dioxide and water vapor fluxes. A recent paper by Adam Young
and collaborators (Young et al., 2021) addresses the role of phenology as a regulator of
aerodynamic resistance to heat transfer (Rah) and implications for sensible heat flux (H). This
synthesis leveraged 190 site-years of data from across more than 20 AmeriFlux sites with
PhenoCams to show that seasonal changes in surface roughness are a key determinant of
variation in aerodynamic resistance to heat transfer. Specifically, in deciduous broadleaf forests,
grasslands, croplands, and shrublands, phenological green-up alters the surface roughness, which
in turn has a large influence over seasonal patterns in sensible heat flux. This analysis offers new
insight into the role of phenology in controlling feedbacks of the land surface to the atmosphere
and climate system through partitioning of the surface energy budget, i.e., to sensible and latent
heat flux.

In a similarly-themed study, Ziegler et al. (2023) examined how phenological transitions
in a desert shrubland drove changes in the shear stress ratio: before green-up, wind-shear
(friction) velocities at the soil surface were 20% of those above the canopy, whereas after green-
up, wind-shear velocities at the soil surface were only 5% of those above the canopy.
Phenological changes also drove seasonal variability in the aerodynamic roughness length,
resulting from increased drag and surface sheltering. The study links these findings to rangeland
management applications, specifically efforts to restore grazing lands and to reduce aeolian

sediment transport.
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3.2.4 Management applications

A number of papers described above, including those by Bracho et al. (2021), Hufkens et
al. (2019), and Ziegler et al. (2023) have discussed potential management applications of
phenocam-type data and imagery. With a more explicit emphasis on the management of an
agricultural pasture, Zhou et al. (2017) used phenocam imagery to document the timing and
impact of pasture management activities. They interpreted changes in Gece in the context of those
activities (burning, harvesting and baling, grazing) and the progression of phenological stages
(green-up, summer flowering, fall flowering, senescence), and in relation to tower-measured
carbon dioxide fluxes recorded at the site. Notably, the fine spatial and temporal resolution of the
phenocam imagery offered insights that could not be obtained from satellite remote sensing—
leading the authors to conclude that understanding the interactive effects of management
practices and climatic conditions could be greatly advanced through the integration of phenocam
and tower flux measurements. The large number of phenocams now deployed at sites in the
USDA Agricultural Research Service’s LTAR (Long-Term Agroecosystem Research) Network
(Browning et al., 2021) points to an opportunity for future cross-site analyses to quantitatively

address the impact of management practices on land-atmosphere carbon dioxide fluxes.

3.2.5 Extreme events and disturbance

With climate change, warming temperatures and altered precipitation regimes, extreme
weather events, particularly droughts and heat waves, are becoming increasingly frequent.
Several studies have shown how phenocam data can contribute to monitoring the ecosystem

impacts of extreme climate events and disturbance. For example, Cremonese et al. (2017)
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investigated how the summer 2015 European heat wave affected the phenology and function of a
mountain grassland in the Western Alps. Long-term data from the site indicated that in response
to the heat wave, there was a 39% reduction in maximum Gcc, and senescence was advanced by
a month, compared to previous years. There were parallel reductions in the light-saturated rate of
photosynthetic uptake, estimated from concurrent eddy covariance carbon dioxide flux
measurements. From the high-resolution PhenoCam data, it was also possible to see that forbs
were more severely impacted by the heatwave than grasses. This paper highlights the potential
for phenocam imagery to provide insights that may be undetectable with satellite remote sensing.
Phenocam imagery can also provide quantitative data on disturbance and recovery
dynamics, particularly in remote locations where site visits may be intermittent even during the
growing season. Established in 1996, the BERMS (Boreal Ecosystem Research and
Monitoring Sites) Old Aspen tower in Saskatchewan, Canada, was one of the first long-term
eddy covariance sites in the world.. In 2016, a forest tent caterpillar infestation erupted during
the leafing-out period, leading to virtually complete canopy defoliation. As demonstrated in the
paper by Stephens et al. (2018), PhenoCam imagery, Gee, and radiometric measurements
enabled quantification of the timing and magnitude of this disturbance, and the subsequent forest
recovery: remarkably, a second flush of foliage was produced and Gec returned to near-normal
summer values within 3 weeks. The defoliation reduced annual GPP to 800 g C m2 y!,
compared with a 20-year mean of 1060 = 75 g C m2 y!. Additionally, the site was a substantial
source of carbon dioxide to the atmosphere (annual NEE = +130 g C m? y!), compared with the
20 y mean annual NEE of -120 = 55 ¢ C m2 y!. Intriguingly, the tent caterpillar infestation had
little effect on annual evapotranspiration. By quantifying the impact of canopy defoliation on

site-level C balance, this paper gives a preview of the possible C-cycle consequences of
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increases in the frequency of insect outbreaks in response to climate change. These impacts
could be enormous, as a 1 g C m? y! flux from Canada’s boreal forest equates to a total change
in the boreal forest C balance of 2.7 Tg C y'..

In a similar vein, Matiu et al. (2017) integrated phenocam data and ecosystem carbon
dioxide fluxes to investigate successional dynamics over six years following windthrow
disturbance to a spruce forest in Germany. A clustering algorithm was used to separate the
camera imagery into spruce, grass, and a grass-to-spruce transition zone, which began as grass
but was overgrown by spruce at the end of the study. The increasing Gee over time of the grass-
to-spruce transition zone paralleled increasing trends in GPP, as estimated from the eddy
covariance measurements. The authors’ conclusion that digital imagery provides “a versatile tool
that helps to understand successional and phenological processes after a disturbance” is further
supported by the recent analysis by Spafford et al. (2023) of more than a dozen examples of
disturbance events that have been observed by the PhenoCam Network. A notable feature of
phenocam imagery is that it is possible to conduct retrospective “what happened?” analyses,
even if other concurrent field surveys were not carried out, precisely because the images can be

interpreted through visual inspection.

3.3 Assessment of satellite remote sensing products

Without a doubt, one of the areas in which the PhenoCam Network has made the greatest
contribution to environmental and ecological science is the assessment of satellite remote sensing
products from different platforms (Table 2). It is commonly recognized that the inherent
differences between Gcee and NDVI, as well as the oblique view of PhenoCams and the nadir

view of satellites, preclude true “validation,” but the overall quality of the PhenoCam data has
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proven to be invaluable for comparing spatial and interannual patterns and placing an upper
bound on the uncertainty in satellite products (Zhang et al., 2018). Furthermore, visual
interpretation of the PhenoCam imagery itself can provide environmental (e.g., presence/absence
of snow) and biological context for interpreting the seasonal changes that are manifest at the
pixel level. The AFM papers summarized below demonstrate that phenocam data—quantitative,
continuous, consistent, and spatially extensive—are extremely useful for these applications, and
an improvement over the hodgepodge of diverse data sets that have been used previously for
similar purposes (e.g., White et al., 2009).

Zhang et al. (2018) compared transition dates from more than 80 PhenoCam Network
sites against land surface phenology metrics derived from 500 m VIIRS imagery. Notably,
transition dates were “generally comparable for the vegetation greenup phase, but differed
considerably for the senescence phase.” Zhang et al. reported that agreement was weakest in
savanna sites where spatial heterogeneity is a persistent challenge. Agreement was good in
forested sites, and this can likely be at least partially attributed to the supposed greater
homogeneity of closed-canopy forests. However, sub-pixel heterogeneity of mixed-species
deciduous forests can still be substantial, as demonstrated by Klosterman et al. (2018), who
combined PhenoCam, Landsat and MODIS, and UAV (unmanned aerial vehicle) imagery to
investigate the scale-dependence of phenological patterns across scales from =10 m to =1 km.

Instead of evaluating transition dates, Brown et al. (2017) compared the overall seasonal
trajectory of PhenoCam Gecc with products derived from the MERIS (MEdium Resolution
Imaging Spectrometer; 300 m resolution) sensor on Envisat-1 (e.g. ,MGCI, MERIS Global
Vegetation Index; MTCI, MERIS Terrestrial Chlorophyll Index). Results from this analysis,

including poor agreement between phenocam data and MERIS at evergreen sites, suggested that
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atmospheric, shadowing, and BRDF (bidirectional reflectance distribution function) effects led to

“substantial variability within the growing season [in the indices derived from MERIS] that is

?

unrelated to vegetation dynamics”—pointing to the need for “more rigorous atmospheric and
BRDF correction schemes” for the satellite data. The authors speculated about the prospect of
using near-surface observations, including phenocam imagery, to develop improved cloud
screening algorithms; another obvious application of phenocam data is to test and improve
satellite snow cover products, e.g., MODIS products MOD10A1 and MYD10A1 (Kosmala et al.,
2018).

In addition to evaluating standard and established phenology products from different
satellite platforms, PhenoCam data have been used to evaluate new indices that can be derived
from existing satellite data. For example, Xie et al. (2022) introduced a hybrid “Background Free
Phenology Index” (BFPI), which was calculated by integrating a remotely-sensed vegetation
index with an environmentally-driven growing season index (GSI; after Jolly et al., 2005) model.
In both spring and fall, derived transition dates from PhenoCam Gcce were in better agreement
with transition dates from BFPI than they were with transition dates derived from classic
vegetation indices such as NDVI or EVL

The digital numbers (DN) that comprise a phenocam image are the product of viewing
and illumination geometry, surface reflectance, and image exposure time; as such, DNs are not
equivalent to reflectance values. Burke and Rundquist (2021) developed a method to standardize
phenocam indices across sites, facilitating cross-site analyses, using a Gaussian Process
machine-learning model and HLS (Harmonized Landsat-Sentinel) data. The approach scales the

phenocam indices so they are aligned with HLS imagery, enabling improved comparison of the
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seasonal trajectory and magnitude of vegetation indices derived from phenocam imagery. In the
future, this approach could further increase the rigor of satellite data product evaluation efforts.
Zhang et al. (2018) noted the challenge of remote detection of savanna phenology,
because of the heterogeneous mixture of trees/shrubs and grass. Where there are multiple plant
functional types within a PhenoCam image, it is typical to delineate separate ROIs for each.
Using cameraNDVI, Liu et al. (2017) demonstrated that in an oak/grass Mediterranean savanna,
the phenology of the deciduous oak was distinctly different from the mixed grasses, with the oak
having a much longer active season. Liu et al. then used fine-resolution aerial imaging to
determine the fractional cover of oak and grass, at the landscape scale, across a grid representing
satellite imagery at different resolutions, from Landsat at 30 m and MODIS/VIIRS at 500 m. Liu
et al. applied a simple mixing model to upscale the PhenoCam time series of oak and grass
endmembers, as a function of fractional cover, to this grid. In homogenous grassland,
phenological transition dates were shown to be consistent regardless of spatial resolution,
whereas in heterogeneous savanna this was not the case. This paper is important because of the
framework it establishes for investigating and resolving the fine-scale heterogeneity that can be

obscured in moderate-resolution satellite imagery.

3.4 Phenological modeling

In a 2013 review paper in AFM (Richardson et al., 2013a), I suggested a multi-tiered
strategy for testing and evaluating phenology models, using ground observations, phenocam
data, and satellite remote sensing at each of the different stages of model-data fusion (see Figure
1 in Williams et al., 2009). This approach has not been widely adopted, however, and

phenological modeling papers in AFM that used phenocam data have taken a diverse range of
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alternative approaches, ranging from efforts that leverage the rich seasonal trajectory that is
provided by continuous Gee data, to those that focus on modeling specific phenological
transition dates.

Mirco Migliavacca and coauthors (2011) used phenocam data from an alpine grassland to
estimate, using a variety of formulations of the GSI model by Jolly et al. (2005), the degree to
which different environmental factors (snow, daylength, air temperature, and soil water content)
were limiting to plant growth, and how these limiting factors changed over the course of the
year. This paper also demonstrated that a light-use efficiency (LUE) model that incorporated a
phenocam-derived canopy greenness metric could simulate the seasonal variation in GPP,
estimated from eddy covariance measurements, with good fidelity—providing a convenient and
elegant means for scaling up fluxes in time and space.

Members of the Berkeley Biomet Lab have been long-term PhenoCam collaborators, and
have repeatedly come up with creative ways to use digital camera data in conjunction with
tower-measured fluxes to improve process understanding. For example, the “Cow Cam Index”
described by Baldocchi et al. (2012) used object-oriented image analysis to identify methane-
producing bovines in the camera field of view. A similar technique was later used in work by
Laubach et al. (2023). Recent Berkeley work has focused on wetland greenhouse gas fluxes. For
example, Sarah Knox used a light-use-efficiency model, parameterized using tower-measured
carbon dioxide fluxes and PhenoCam Gecc, to estimate the productivity of temperate freshwater
marshes (Knox et al., 2017). An important finding was that model performance degraded as site
complexity increased, suggesting the need to explicitly incorporate metrics related to spatial
heterogeneity in the model. In this way, the study expands on the previous LUE modeling work

by Migliavacca et al. (2011).
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Wang et al. (2020) used the Excess Green (ExG) vegetation index, derived from
phenocam imagery, in conjunction with satellite-derived EVI (enhanced vegetation index) to
estimate daily fAPAR, which was then used again in a LUE model with temperature and water
availability scalars to estimate daily GPP for semi-arid grassland in central Northeast China.
While the parameterized model worked quite well, Wang et al. noted that improvements to LUE
modeling could take advantage of either a two-layer (sun-lit and shaded leaves) representation of
the canopy or information on direct-beam and diffuse solar radiation.

Grassland responses to soil moisture availability are commonly modeled as a linear
function, but Yang et al. (2023) introduced a simple, one-parameter, non-linear function that
would allow the response to soil moisture to be concave down, linear, or concave up. This
parameterization was implemented in the grassland model mitially developed by Choler et al.
(2010) and later revised and calibrated using PhenoCam data by Hufkens et al. (2016).Yang and
collaborators used phenocam imagery from several grassland experiments near Sydney,
Australia, to constrain model parameters; allowing for nonlinear responses to soil moisture
reduced model errors by 7%.

Migliavacca et al. (2011) highlighted the enormous value of continuous phenological
monitoring, as provided through vegetation indices such as Gece, compared with traditional
ground-based observational approaches, which focus on specific phenological events. They
suggested that continuous monitoring would be particularly valuable in ecosystems with high
intra-annual variability in phenological dynamics. The follow-on work by Knox et al. (2017),
Wang et al. (2020), and Yang et al. (2023) provides strong confirmation of this assertion.

However, for some applications, a model that predicts the start or end of the active season may
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be more useful. Two AFM papers, by Meng et al. (2021) and Post et al. (2022), have tackled this
kind of event-based modeling.

Lin Meng and Jiafu Mao recognized that phenocam data could be used to improve
phenology schemes in a global earth system model, where onset and offset triggers are needed.
In Meng et al. (2021) they used data from the Spruce and Peatland Responses Under Changing
Environments (SPRUCE) experiment in northern Minnesota to parameterize the seasonal-
deciduous phenology scheme in the land model of the US Department of Energy's (DOE) Energy
Exascale Earth System Model (ELM of E3SM). At SPRUCE, 10 open-topped enclosures are
used to apply warming treatments up to +9°C above ambient, as well as elevated carbon dioxide
to half of the plots. Phenocams installed in each SPRUCE enclosure have been monitoring the
experiment since 2015. The combination of experimental warming superimposed on natural
variation in weather occurring over the first three years of the experiment provided strong
constraints on phenology model parameters. Notably, changes to the ELM phenology scheme
had cascading effects on carbon and water fluxes—as noted by Meng et al., “highlight[ing] the
importance of phenological processes in affecting complex terrestrial-climate interactions.”

Alison Post used the extensive repository of PhenoCam data for grasslands (43 sites, 195
site-years), across a range of climate zones to test 53 phenological models to predict spring onset
(Post et al., 2022). New model structures were presented, which included either precipitation or
soil moisture, in conjunction with classic degree-day approaches. The best model, which
required sufficient accumulated precipitation to be followed by warm temperatures for spring
onset to be triggered, performed quite well, with a single set of parameters, across sites from
temperate to arid grasslands. But, model predictions were also substantially improved when

parameters were optimized for different climate zones. Post’s careful consideration of tradeoffs
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between generalizability vs. performance shows how the “best” model may depend on the
specific application. Forward model runs, using IPCC climate projections, found that in colder,
temperature-limited grasslands, spring onset is likely to advance in response to climate change.
In precipitation-limited sites, spring onset is highly variable but does not show a clear trend in
either direction when results from multiple regional and global climate models are considered
together. This paper nicely builds on past work modeling deciduous tree phenology (Chuine et
al., 1998; Melaas et al., 2016a), and leverages the open-source PhenoR modeling package
(Hufkens et al., 2017), to bring the state-of-the-art in grassland modeling up to a level
approaching that of deciduous forests.

There are still many avenues open to new and exciting advances in phenological
modeling. Migliavacca et al. (2012) noted the important distinction between different sources of
phenological modeling uncertainty—model structure, model parameterization, and model
drivers. Testing different model structures and parameterizing these structures using ground
observations remains an important area of research; this kind of work has its roots in some of the
phenology modeling papers published in AFM in the early 1980s. At a very basic level, we still
do not have good models to predict phenological transition dates for numerous plant functional
types, or different ecosystem types. These models remain urgently needed (to be calibrated,
validated, and adopted) for incorporation into earth system models so that these models can
accurately represent vegetation seasonality and feedbacks of vegetation to the climate system
(Richardson et al., 2012). A challenge remains that many ecosystem types remain poorly
represented in databases of phenological observations—for large swaths of the Earth’s surface,
“more data are needed” remains a valid assessment of the state of availability of phenological

data for model calibration and validation.
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The “process-oriented” phenological models described here are based on a highly
prescribed relationship between drivers and responses—this means that they inherently
encapsulate some prior knowledge or understanding of these relationships. At the same time, this
also means they are limited in their flexibility. I am curious to see how machine-learning
techniques will change the field of phenological modeling, and how these techniques may be
applied to phenocam data. Machine learning methods can accommodate diverse data streams
and, at the same time, adaptively “learn” the underlying relationships—which need not be
smooth or linear. Training and validation will, however, remain a challenge—models must have
a demonstrated ability to generalize well in time and space, and not be over-fit to a small set of

location-specific training data.

3.5 Other applications in environmental science

In a study on the use of long-term, continuous, and high-frequency thermal imaging to
understand canopy temperature dynamics over diurnal to seasonal time scales, Aubrecht et al.
(2016) used Gece data from a collocated phenocam to demarcate the growing season, providing
information about whether the thermal camera “sees” a green canopy or bare branches, and
context for interpretation of canopy-to-air temperature differences (see also Taborski et al.,
2022).

One area where phenocam data and imagery are being creatively analyzed and interpreted
1s for studies of snow cover dynamics. I distinguish these applications from other AFM studies
that have deployed time-lapse cameras for the express purpose of snow monitoring, e.g., Ge et al.
(2022). For example, Julitta et al. (2014) used imagery from the same Alpine grassland site

initially described by Migliavacca et al. (2011), and by subdividing the ROI using a fine-scale
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grid, they quantified spatial variation in snowmelt dates. They then examined how the timing of
snowmelt related to vegetation greenup dates. A surprising result was that earlier snowmelt was
associated with later greenup, and this was found to be explained by microtopography and
species composition of hollows vs. hummocks. In contrast to these results, Zheng et al. (2022)
used data from MODIS, AmeriFlux, and PhenoCam to investigate relationships between
snowmelt and a range of phenological metrics across Alaska. They found that earlier snowmelt
tends to drive earlier spring onset because earlier snowmelt leads to warmer, wetter soils.
Zheng’s results are important because across virtually all of the study domain there has been a
trend towards earlier snowmelt over the last two decades.

Phenocam images have also been used to determine when there is snow on an evergreen
forest canopy so that data from other sensors (e.g., solar-induced fluorescence, Yang et al., 2022;
thermal imaging, Bowling et al., 2018) can be filtered accordingly. And, in a study of wintertime
water and energy fluxes by MacDonald et al. (2018), phenocam imagery from Larry Flanagan’s
Lethbridge, Alberta, flux site was used in lieu of regular snow surveys to qualitatively describe
snow cover. Thus, potential applications of phenocam imagery extend far beyond merely

characterizing phenological events such as the start and end of the growing season.

4. Lessons learned over the first 15 y of PhenoCam Network

From one camera at Bartlett Experimental Forest (2005; Figure 5a), and then 12 sites
across the northeastern United States and adjacent Canada (2009; Supplementary Material,
Figure S2), the PhenoCam Network has grown to be a continental-scale phenological
observatory, with more than 500 active “Type I” cameras across North America configured and

deployed according to a common protocol (Figure 6). There are now Type I PhenoCam Network
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sites on every continent except Antarctica. In the middle of a typical day, over 2500 images are
uploaded to our FTP server every hour, or an average of one image every 1.5 s. The vast image
archive (Figure 4a) spans a wide range of plant functional types, and while deciduous broadleaf
forests are still the most common, even arctic tundra, wetlands, and deciduous needleleaf forests
have decent representation (Figure 4b). These data have enabled experimental and observational
studies, at site-level to continental scales, with all manner of applications. Undoubtedly there are
applications of these data that have not been envisioned—and may not be defined for many
years. But because the underlying imagery provides a permanent visual record, the value of the
archive will only increase over time as more sites are included, and each time series becomes
longer. At this point, I would like to reflect on what I think are some of the key factors that have
made this kind of growth possible.

1) Timing. The IPCC’s AR4 noted that “phenology... is perhaps the simplest process in
which to track changes in the ecology of species in response to climate change” (IPCC, 2007).
By chance, the development of the PhenoCam Network was perfectly timed to ride the surge of
interest in phenology that would build over the coming decade. The fact that interest in
ecosystem-scale fluxes of carbon and water also boomed during the same period—as witnessed
by the concurrent rapid growth of AmeriFlux—did not hurt. The relevance of phenology to
contemporary global change ecology, as well as ecosystem ecology and management, ensured
site collaborators could see the value in PhenoCam data and imagery.

2) Low barriers to entry. By adopting a single model of camera, providing a standardized
deployment protocol and a simple script to facilitate configuration, and offering archiving and
processing to network collaborators, as well as troubleshooting support, we made 1t easy for new

collaborators to join the network. While the camera was not inexpensive, it was affordable,
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compared to other instruments PIs were mounting on towers. For example, a phenocam generally
costs a little more than a temperature/relative humidity sensor, but much less than a net
radiometer.

3) Technology. Over the last 15 y, massive improvements in solar power, WiF1 and cellular
telemetry (Supplementary Material, Table S2), data storage and high-performance computing
(HPC) and data processing, and remote access software have all enabled the expansion of the
PhenoCam network. Many site PIs and their technicians have also become more adept at
working with this kind of technology, although as noted below, this kind of technical training for
ecologists 1s still relatively rare.

4) Accessibility and relevance for outreach. Imagery from phenocams, particularly from the
StarDot NetCam (Figure 5), can be visually stunning—and it is concrete and tangible, in that it
provides a visually interpretable record of how a site looked at a certain point in time. In this
way, it has numerous advantages over other near-surface remote sensing approaches, because
even elementary school children can understand the concept of “virtual travel in space and time”
that is enabled by browsing the PhenoCam Network gallery on our website
(https://phenocam.nau.edu/webcam/gallery/). This has led to exciting opportunities for outreach
and education in K-12 classrooms.

5) Real-time data delivery. Daily images from the original Bartlett and Howland cameras
were mirrored to my University of New Hampshire web page as early as 2006. By 2010, the
PhenoCam Network web page was displaying images within minutes of being recorded. Users
could also browse the full image archive (drilling down by site, year, month, and day). By about
2012, we were processing the camera imagery each night, and plotting Gee time series for each

site, updated through the previous day’s images. Our ability to deliver images and data products
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with low latency allowed almost real-time monitoring of site conditions and also ended up
enabling cutting-edge ecological forecasting efforts (Thomas et al., 2023).

6) Open data policy. Early AmeriFlux “Fair Use” data policies, were, for me, an
inspiration—sharing, rather than protecting, data was an ideal I aspired to. My PhenoCam team
realized, too, that more research questions could be investigated with PhenoCam Network data
than we could ever attempt to answer on our own. So, from the beginning, the imagery has all
been open-access and publicly available, and for at least a half-dozen years we have enabled
“provisional” processed data to be directly downloaded from our web page. We have also
released and documented curated data sets (Richardson et al., 2018a; Seyednasrollah et al., 2019)
under lenient CC-BY licenses that allow re-use, re-mixing, and re-distribution. These policies
have democratized data access, enabling the use of PhenoCam Network data by individuals and
teams around the world in theses, dissertations, presentations, and peer-reviewed publications.

7) A sense of place. One thing that has surprised me is how site collaborators regularly
engage with their phenocams—they like being able to check on their field sites in near-real time.
This is particularly valuable when research sites are a long drive, or a plane flight, from the home
institution. This engagement also means that ensuring continuity is a priority for the site
collaborators—a win-win, as this improves the quality of data we can derive.

8) Funding (at the right time). While all scientists have “side projects” that they conduct,
out of curiosity and without any funding, it is impossible to sustain an effort such as the
PhenoCam Network without funding to pay the salaries of the grad students, postdocs, and
technicians who are keeping the effort afloat. We were fortunate to obtain funding when we
needed it most. This funding allowed us to expand the network, develop and maintain our cyber-

infrastructure, and document and publicly release curated data sets.
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9) Serendipity and citizenship. One of the graduate-level classes I lead is a seminar on
“Ecoinformatics”™—or ecological informatics. When invited speakers present their work, a
student always does the speaker introduction and then engages in a short Q&A session that
includes an opportunity for the speaker to provide insights into their career path and the events
and decisions that led them to where they are now. Two themes have emerged over and over
again. First, serendipity—many careers have been built around fortuitous and unexpected
discoveries, and PhenoCam 1s no exception; I never would have imagined that our initial
“webcam” efforts at Bartlett Experimental Forest would lead to the development of an
automated, continental-scale, phenological observatory. Second, being a nice person and a good
citizen can go a long way: with PhenoCam, I have been fortunate to have had a dedicated and
hard-working team, and a fantastic and ever-growing group of site collaborators. Dennis
Baldocchi has noted that the success of FLUXNET, the global network of eddy covariance sites,
was “due to people from many different cultures willing to work together and share data for a

2t

common goal and product that is more than the sum of the individuals.”" Similarly, with
PhenoCam, synergies from teamwork, collaboration, and shared goals have led to the Network
evolving into something that i1s much more than the 70 million images that comprise our current
data archive (Figure 4A).
I think 1t 1s also worthwhile to acknowledge several ongoing and emerging challenges
that the PhenoCam Network faces. These include:
1) Technical knowledge. Facility with R and Python, and expertise in high-performance

computing, computer science basics, scripting, and data wrangling are important skills for

PhenoCam Network data consumers to have; fortunately, this is now common in many graduate

¥ https://nature. berkeley.edu/biometlab/pdf/Fluxnet%20Research%20Innovation%202012.pdf
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training programs. But, most ecosystem scientists have little training in computer networks and
network protocols (IPv4, FTP, WiFi 802.11, POE 820.3, Telnet, SSH, etc.), which is often
helpful for both setting up and troubleshooting inevitable camera issues (and other instruments,
many of which are network-enabled). In this day and age, graduate-level training in the basics of
computer networks is as important as basic electronics was for previous generations of scientists.

2) Dated workflow. Our current workflow is effective but more labor-intensive than it
might be, requiring human intervention at too many steps in our processing and data curation
workflow, such as defining ROI masks, identifying field of view shifts, and even visually
inspecting each Gee time series. I hope that deep learning and other advances in computing
technology can help us simplify our workflow in the future.

3) Obsolescence. The StarDot NetCam SC we have used since 2008 has provided hundreds
of sites with crisp and vibrantly-colored imagery. This camera has also been extremely robust
and durable; the camera I installed on the Harvard Forest EMS tower on April 3, 2008, is still
running and has recorded over 180,000 images in the last 15 years. In the spring of 2023, we
learned that because of supply chain issues, this model of camera would not be available in the
future. Going back to Sonnentag et al. (2012b), it is clear that other cameras can do the job
equally well—but finding the right camera, with customizable settings and exceptional
reliability, 1s non-trivial.

Overall, it 1s clear that in spite of these challenges, the PhenoCam Network has come a
long way over the last 15 y. I hope to be able to contribute an update when the AFM 75%

Anniversary special issue is in preparation.
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5. Conclusions

The field of phenological research has changed enormously over the 60 y history of
AFM. The pace of change has accelerated greatly in just the last two decades as climate change
research has exploded, and phenology has become a key area of research within the field of
global change ecology. The development of the PhenoCam Network over the last 15 y has
contributed greatly to our understanding of the controls on phenology and relationships between
phenology and ecosystem processes related to carbon and water. Much of the important
phenocam literature has been published in AFM, and in this review I have identified 5 key
themes of this research and highlighted the AFM papers that have contributed to new
understanding. I have also identified key areas where I think we can expect to see exciting new
advancements in phenocam-driven research. Given the size of the PhenoCam Network data
archive, and the standardized data formats that we have adopted (facilitating ingestion of data
from multiple sites), there is huge potential for leveraging cutting-edge deep learning and
machine learning approaches for both improved data processing but also modeling, upscaling,
and extrapolation. Finally, I think one reason the PhenoCam Network has been so successful 1s
that human connections have resulted in an organic, grassroots network that is rooted in shared
values of trust, respect, and collaboration. For me, it has been both remarkable and humbling to
see how these efforts have led to a collaborative, continental-scale phenological observatory
network that is so much more than the sum of the images and data products in our data archive—

and has enabled the amazing and diverse scientific research that I have reviewed here.
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1342  Table 1. Summary of keyword trends in AFM phenology papers, by total paper counts (left) and
1343  proportions (right), by decade. The “trend” column indicates whether the proportion increased
1344  (#), decreased (V), or stayed approximately the same (=) between the first and the second

1345  decade (first symbol), or between the second and third decade (second symbol). Since many
1346  phenology papers likely included more than one of the selected keywords, columns do not add to
1347  100%.

1348
Count by Publication decade Proportion by Publication decade
Title, abstract, or keywords  1993-2002  2003-2012  2013-2022 1993-2002 2003-2012  2013-2022 Trend
contains phenology and...
climate change 4 63 341 21% 58% 75% NN
model 15 71 293 79% 65% 65% >
iree or forest 9 69 272 47% 63% 60% ™
agriculture 8 22 154 42% 20% 34% N2
Slux 5 48 95 26% 44% 21% ™
remote sensing 2 15 93 11% 14% 20% >
Total papers 19 109 454
1349
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1350 Table 2. Phenological data products from a range of satellite platforms have been evaluated

1351  using PhenoCam data.

1352
Satellite Platform

References

Notes

GOES

Harmonized Landsat-Sentinel (HLS)

Landsat

MERIS
MODIS

PlanetScope and HLS

SPOT-VGT and PROBA-V

VIIRS

1353
1354

‘Wheeler and Dietze (2021)

Bolton et al. (2020)

Melaas et al. (2016b)

Brown et al. (2017)

Hufkens et al. (2012)
Klosterman et al. (2014)
Richardson et al. (2018)

Moon et al. (2021)

Bornez et al. (2020)

Zhang et al. (2018)

GOES-16 and -17 are geostationary
platforms with the radiometric ability to
measure NDVI at daily resolution.

Phenology products derived from HL.S
data at moderate-to-high spatial
resolution (30 m) and high temporal
resolution (1-4 d repeat)

PhenoCam Network data used in
conjunction with ground observations
and transition dates derived from
carbon dioxide fluxes measured at long-
term AmeriFlux sites to evaluate
transition dates

See Sec. 3.3

Hufkens et al. used data from just four
PhenoCam Network sites; Richardson
et al. used roughly 600 site-years of
data from 128 camera sites in V1 of the
PhenoCam Dataset. As satellite
products become longer, and new
products at higher resolution come
online, there are new opportunities for
product evaluation and benchmarking.

PlanetScope data enable
characterization of phenological
variability that occurs at spatial scales
smaller than an HLS pixel. Strong
coherence of Planet and PhenoCam
time series.

Used a range of different transition date
extraction methods applied to
PhenoCam and FLUXNET time series.

See Sec. 3.3
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Figure 1. Illustrative examples of typical phenocam set-ups in different ecosystem types, and
sample 1mages: (a) 30+ m tower above a forest canopy, e.g. Bartlett Experimental Forest, New
Hampshire; (b) 10+ m tower in a desert shrubland, e.g. Onaqi, Utah; (¢) 3+ m tripod in a
temperate grassland, e.g. Disney Wilderness Preserve, Forida. In addition to a phenocam, the
other instrument illustrated in each panel is a sonic anemometer, used for eddy covariance flux
measurements, as phenocam and flux data are often collected simultaneously. (d) shows 5 y of
green chromatic coordinate (Gcece) data from each of the cameras illustrated in (a)-(c). There are
clear differences in the timing, magnitude, and regularity of the annual green-up cycles across
ecosystem types. Imagery is from cameras deployed by the National Ecological Observatory
Network (NEON).
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Figure 2. Publication trends since 1997 for phenology-themed papers. Based on a Web of
Science search (June 10, 2023), I identified the number of papers published by year containing
the word “phenology” in the title, abstract, or keywords. Results are shown since 1997. Green
symbols show paper counts for all journals (increasing at 8.3% annually), yellow symbols show
paper counts for Agricultural and Forest Meteorology only (increasing at 13.1% per year). Blue
symbols show papers published (all journals) containing the word “phenocam” in the title,
abstract or keywords (increasing at 30.1% per year). Note logarithmic scale of the y-axis. For
clarity, data have been smoothed with a 3-y moving average.
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Figure 3. Of roughly 200 papers published containing the word “phenocam” in the title, abstract,
or keywords, 15% have been published in Agricultural and Forest Meteorology (AFM).
However, the overall diversity of publication outlets 1s also quite remarkable; note that the
“Other” category includes 60 different journals, which have each published an average of 1.5
phenocam-related papers. Abbreviations: RSE, Remote Sensing of Environment, ISPRS, ISPRS
Journal of Photogrammetry and Remote Sensing; Biogeosci., Biogeosciences, GCB, Global
Change Biology, JGR Biogeosci., Journal of Geophysical Research—Biogeosciences.
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Figure 4. (a) Cumulative number of images in the PhenoCam network archive, 2007-2023. The
current total of =70 million images includes 40 million visible-wavelength (RGB) images, and
30 million monochrome RGB+NIR images. Figure is a screen grab of the automatically updated

plot at: https://phenocam.nau.edu/webcam/archive/vearly/ (accessed 15 June 2023). (b)
Breakdown of 4600+ site-years of phenocam imagery, by vegetation type (derived from

https://phenocam.nau.eduw/webcam/roi/search/, 16 June 2023).
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Figure 5. PhenoCam 1magery, over the years, from Bartlett Experimental Forest, NH: (a) the
first image recorded from a camera on the Bartlett AmeriFlux tower (Axis 211 camera, installed
October 4, 2005); (b) Improvements in resolution and color reproduction (StarDot NetCam SC,
installed April 8, 2008); (¢ and d) Visible- (left) and visible+near-infrared imagery (from which
“camera NDVI” can be calculated; Petach et al., 2014) from the National Ecological Observatory
Network tower phenocam (StarDot NetCam SC IR, installed December 13, 2016). The Bartlett
AmeriFlux tower 1s visible on the left edge of the frame.
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Figure 6. Global distribution of PhenoCam sites, spring 2023. Although most cameras are
located in the conterminous United States, the network now includes sites on every continent.
The 646 cameras shown are currently designated as “active” sites, and all follow the standard
PhenoCam deployment protocol (StarDot NetCam SC, configured using the PhenoCam
Installation Tool). Retrieved 24 September 2023, from
https://phenocam.nau.edu/webcam/network/map/?type=I&active=true. Symbol color highlights
the number of cameras (<10, green, >10 but <100, yellow; >100, red).
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Box 1. What is a phenocam?

A phenocam, or phenology camera, is a digital camera used to record time-lapse pictures of
plant canopies or communities so that the seasonal rhythms—the phenology—of that vegetation can
be characterized using color-based image analysis. Images may be recorded at varying frequencies,
from once daily to as often as every 15 minutes. The higher-frequency imaging is not strictly
necessary from a phenological perspective, as few phenological events occur over such a short time
interval. However, it does typically lead to higher-quality data and a lower signal:noise ratio because
there is a greater likelihood of images being captured under ideal lighting conditions.

Most phenocams are mounted on towers, masts, tripods, or field station roofs, with an oblique
view across the vegetation of interest. Typically, some sky is included in the field of view. Examples
of installations in different vegetation types, from forests to shrublands to grasslands, are shown in
Figure 1. Options for local storage or long-distance telemetry of phenocam imagery are summarized in
Supplementary Material, Table S2.

Digital cameras use the red-green-blue (RGB) additive color model to represent colors as
perceived by the human eye. Basically, this means that digital images are comprised of three “layers”,
with each layer corresponding to one of the three color channels. For each color channel, there is a
two-dimensional array of pixels that represent the image in that color. The resulting color and
brightness of a given pixel is then characterized by the intensity of the pixel in each color layer, which
is stored as a digital number (DN) triplet: Rpn, Gpn, Bon. Notably, the imaging sensor in most digital
cameras is sensitive to near-infrared wavelengths, and some phenocams leverage this capability to
capture information about this fourth spectral band. For example, the StarDot NetCam SC, which has
in the past been the standard camera adopted by the PhenoCam network, has a sliding infrared cut
filter that enables back-to-back visible-wavelength and visiblet+near-infrared imagery to be recorded
(see Section 3.1).

There are several steps involved in processing phenocam imagery and extracting quantitative
data. First, a mask defining the vegetation of interest must be defined, e.g., “deciduous broadleaf
trees.” This mask is often referred to as the ROI, or region of interest. Note that if the field of view of
the camera shifts over time, the ROI mask must usually be updated. Second, images are read in by the
processing code, and statistics of the RGB DN values, across the ROI mask, are extracted and
summarized. In this way, phenocam images are treated analogously to satellite remote sensing images,
with each of the RGB channels corresponding to a distinct spectral band. The PhenoCam Network
conducts this processing automatically each night, and updated imagery, plots, and data summaries are
publicly available through the PhenoCam web page in near-real time.

Just as vegetation indices, such as the well-known Normalized Difference Vegetation Index
(NDVT) are calculated from satellite remote sensing, a similar approach has often been adopted with
phenocam imagery. By far the most common index applied to phenocam imagery is the Green
Chromatic Coordinate, or Gee. Gece is a measure of the intensity of the green channel relative to the
total intensity of the red, green, and blue channels:

Gpy
Gee =
Rpy + Gpy + Bpy

‘Whereas NDVI leverages the contrast between low reflectance by foliage in red wavelengths,
and high reflectance by foliage in near-infrared wavelengths, Gece is more an index of relative
“greenness”. Gece has proven to be a reliable vegetation index for many phenocam studies because
annual cycles of foliage development and senescence are often marked by increasing and decreasing
greenness, respectively. Sample time series of Gcee in different ecosystem types are illustrated in
Figure 1d.
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Box 2. The origins of the PhenoCam Network

In the first year of my postdoc at the University of New Hampshire (UNH), my advisor, David
Hollinger (USDA Forest Service; PI of the Howland Forest AmeriFlux site, and former lead of the
AmeriFlux network) was keen to set up a new tower in a 60-80 y old deciduous stand at Bartlett
Experimental Forest, NH. Scott Ollinger, at UNH, and Marie-Louise Smith, USDA FS, were also
involved; the idea was that the tower would contribute to UNH-USDA FS efforts in support of the
North American Carbon Program (https://www.nacarbon.org/nacp/), with the specific objectives of
“provid[ing] a scientific basis to implement carbon accounting on regional and continental scales™ and
“measur{ing] the carbon balance of North America.” Hollinger and I are now in our 20 year of
running that site (US-Bar), and the opportunity to be part of that effort has, without a doubt, had an
enormous influence on my professional career. The key papers from that site have all been published in
AFM (Jenkins et al., 2007; Lee et al., 2018; Ouimette et al., 2018).

In the fall of 2005, someone on our team suggested we put a “webcam” (as they were then
known) on our Bartlett tower. “Security monitoring” was how we presented it to Forest Service
purchasing department, but our real motivation was to have nice pictures that we could use to illustrate
talks and posters, and (if we were lucky) to identify major phenological events, such as when leaves
came out and fell off, which we thought would be useful for interpreting our flux measurements. This
was not a particularly novel idea; in a prescient paper published that same year, Dennis Baldocchi had
written “we encourage colleagues to install video cameras at all FLUXNET sites and record the state of
the canopy each day” (Baldocchi et al., 2005). Shin Nagai, and others in Japan, had by this time also
already started the Phenological Eyes Network (PEN) (Nagai et al., 2018, 2010; Nasahara and Nagai,
2015), while in Switzerland, Werner Eugster and his student Hella Ahrends were doing similar work at
the Ligeren FLUXNET/ CarboEuropelP site (Ahrends et al., 2008). And, Erik Graham’s visionary
efforts with the University of California’s James Reserve “MossCam,” deployed in 2003, had already
showed how digital camera imagery could be used to estimate photosynthetic activity of the bryophyte,
Tortula princeps (Graham et al., 2006).

Largely unaware of these parallel efforts, we installed an Axis 211 (Axis Communications,
Lund, Sweden) security camera on our tower on October 4, 2005 (Figure 4a). Our site ran on solar
power (which was in short supply during most of the winter, and even during cloudy periods in
summer) and from the top of the tower we had a shaky wireless connection back to the Forest Service
headquarters about 1 km to the north. We turned on our camera and WiFi link only for a few hours
around noon, and we had software running on an old Windows 95 PC at the headquarters that would
grab several images from the camera each day, and then send them via FTP to my account on the UNH
server. The image resolution, image quality, and color reproduction all left something to be desired; my
inability to get a level horizon didn’t make the imagery any more compelling. But, this was the start of
what would grow into PhenoCam.

We logged imagery through the fall of 2005 and into the spring and early summer of 2006. At
that point, I was working with one of Ollinger’s PhD students, Julian Jenkins, who was a whiz with
image processing and MATLAB coding, and who also understood what phenology was about (Jenkins
et al., 2002). One day that spring, we talked about the imagery we had accumulated so far, and he
agreed to see if he could extract anything useful or relevant from it. Jenkins quickly figured out how to
characterize the red, green, and blue color channel intensities (digital numbers) for a rectangular
canopy-level region-of-interest in the center of our images, and calculated time series of two indices
that had been previously used in the precision agriculture literature (Woebbecke et al., 1995), excess
green (ExG) and green chromatic coordinate (Gcec).

In retrospect, it seems so simple—of course it should have “worked,” if our camera was
faithfully recording information about the colors in the scene it was observing. Still, for me, at least, it
was a major “a-ha!”” moment, when Jenkins showed me the time series with such a clear and well-
defined “spring green-up,” at daily temporal resolution. These data nicely illustrated, at the site level,
Mark Schwartz’s “green wave” (Schwartz, 1998). I soon realized then that there was the potential for
this to be much greater than a single site.
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During the summer of 2006, in 5 days, from an off-grid cabin on a lake 3 h north of Toronto, I
wrote the first draft of the paper we would submit to and publish in Oecologia (Richardson et al.,
2007). This paper showed the strong green-up signals in both “greenness” indices, and the general
synchronicity of “webcam”-derived greenness indices and tower-based estimates of net and gross
ecosystem uptake of carbon dioxide. Our camera gave us high-resolution data on the state of the
canopy, which could then be related to ecosystem function. The advantage of the camera imagery, over
radiometric indices like broadband NDVI, fAPAR, or albedo (e.g., Jenkins et al., 2007), was that the
images could be visually inspected to see what was actually going on! I concluded the paper by
observing that “[g]iven the widespread popularity of webcams, and the fact that they are already
ubiquitous in our landscape ... our results suggest that images from such cameras could offer a novel
opportunity to provide data that would complement the efforts of the [USA-National Phenology
Network] NPN, at relatively low cost. This could easily be integrated into hands-on science education
programs for primary and secondary school students ... which would provide chances for public
outreach by the earth systems science community.” This vision ended up driving my career for the next
15+y.

A camera at Hollinger’s Howland Forest AmeriFlux site, where the canopy was dominated by
the conifers red spruce and balsam fir, followed in late 2006, and while seasonal variation in the
evergreen signal in canopy greenness was more subtle, it was still there—and it proved to be a good
indicator of photosynthetic activity in ENF forest types (Richardson et al. 2009, Seyednasrollah et al.
2022).

At the end of 2006, Hollinger and I began to work on a response to a “Request for Information”
from the nascent National Ecological Observatory Network (NEON), in which we argued for the
relevance of phenological monitoring to the “Grand Challenges” that NEON was designed to address.
Our response was submitted in early 2007, and using our initial results from Bartlett as a case study, we
argued that digital camera imagery could provide automated, high-frequency data on phenology at
relatively low cost, and a “decadal-scale record of canopy phenology, coupled with concurrent carbon
dioxide flux and meteorological data, would permit quantification of phenological and [carbon]-cycle
responses to climate change across a range of ecosystem types.” This idea was enthusiastically
embraced by NEON, but the first NEON cameras would not come online for almost a decade, in early
2016.

Around the same time as our Oecolgia paper was published, in the spring of 2007, I applied to
the Northeastern States Research Cooperative (NSRC; https://nsrcforest.org) for a small grant to
establish a “Northeast Webcam Phenology Network™. I lined up collaborators at established research
sites across New England and adjacent Canada; early adopters included a number of AmeriFlux and
FLUXNET-Canada site PIs, including Steve Wofsy and Bill Munger (US-Hal), Harry McCaughey
(Ca-Gro), Hank Margolis (Ca-Qfo), HaPe Schmid (US-MMS), and Christoph Vogel and Peter Curtis
(US-UMB).

By 2009, Bobby (“Rob™) Braswell, another UNH researcher, was an unfunded but enthusiastic
team member. Braswell’s presentation at the European Geosciences Union meeting in the Spring of
2009 (also coauthored by Mark Friedl, from Boston University, who would go on to be a long-term
collaborator), was, I believe, the first public announcement of the existence of an actual “PhenoCam
Network™ (Supplementary Material, Figure S2). At that time, we had 12 “core sites,” all of which were
equipped with the StarDot NetCam SC (Figure 5b), but we were also archiving imagery from a number
of USDA Forest Service and National Park Service cameras (all different makes and models), which
had been installed for air quality monitoring. For many of these cameras we were able to obtain
imagery back to the year 2000, and the long-term records from sites like the Mammoth Cave National
Park site were instrumental in many of our early analyses (e.g., Hufkens et al., 2012). Greater emphasis
on standardization and protocols would come in the following years, but in the first years, we worked
with what was available.

Our early success was followed by stumbles. I wanted to obtain funding to take PhenoCam
from a regional network to a continental-scale phenological observatory, as I had argued for in the
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2007 Oecologia paper. It turned out to be harder than I expected. Although we had proof-of-concept
across different ecosystems, and we could demonstrate that we had the initial cyberinfrastructure to
serve up real-time imagery, proposals to a variety of federal agencies were unsuccessful. Finally, in
2011, a proposal I had led and submitted to the new NSF program in “Macrosystems Biology” (MSB)
was successful—and thanks to the enthusiastic support of Program Officer Liz Blood, my career
trajectory was forever changed.

In our MSB proposal, we said we would expand PhenoCam to a continental-scale
“phenological observatory,” and we would tackle three main research questions:

1. How do photoperiod, temperature, and precipitation govern phenological transitions in

different plant functional types at local, regional and continental scales?

2. How will vegetation phenology respond to rising temperatures and changing precipitation

regimes, and what are the associated uncertainties?

3. What are the forecasted impacts on ecosystem services related to carbon and water, at

regional and continental scales, of these phenological shifts?

These were big questions, and even a dozen years later I feel we have only begun to scratch the
surface of answering any of them; the questions remain as relevant now as they were in 2011.

New collaborators brought into this MSB project included many AmeriFlux and FLUXNET-
Canada site PIs, from diverse ecosystems across North America, including Russ Monson, Bev Law,
Andy Black, Larry Flanagan, Alan Barr, Dennis Baldocchi, Shashi Verma, and Altaf Arain. Their
enthusiastic support was key to the future success of our evolving PhenoCam Network. Around this
time, Braswell took a job in the private sector, and Tom Milliman, a research scientist at UNH, took
over as our data manager—a position he would hold for the next dozen years. I would like to thank all
of my early collaborators for their faith and commitment; the quality of imagery, and data continuity,
that resulted from their efforts. The opportunities my students and postdocs had to interact directly with
these world-class scientists provided critical networking opportunities. It was a win-win situation, and
it set the stage for our future success.
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Box 3. PhenoCam vs. phenocam?

The short MATLAB script that Julian Jenkins wrote in 2006 to process our Bartlett imagery
had been fatefully named phenocam.m. When in 2008 Rob Braswell developed the first web page for
our unnamed “webcam network,” he adopted the PhenoCam name for the landing page and URL, and
the PhenoCam Network was born. Julian deserves credit for coming up with the name, and Rob for the
branding. Over time, “phenocam™ has come to be used generically (like Kleenex, Velcro and Lego; see
Gordon, 2019) in reference to any digital camera used to monitor plants and plant phenology. For me,
this is an affirmation of the value of what we have developed and created. For clarity, in this paper I
use “PhenoCam” (with capitalization, inspired by the capitalization of AmeriFlux) to refer specifically
to the PhenoCam Network, while I use “phenocam” (all lower-case) to denote more generic
applications.
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Supplementary Material, Box S1. My introduction to phenology

I was a graduate student at the Yale School of Forestry & Environmental Studies (renamed the
Yale School of the Environment in 2020) in the late 1990s and early 2000s. I completed my MF (Master
of Forestry) degree at Yale in 1998 and had been encouraged during my second year of that program to
apply for the PhD program. The encouragement came from two of my mentors, Graeme Berlyn, a tree
physiologist, and Xuhui Lee, a micrometeorologist.

There was a long and fascinating history of biometeorology research at Yale, and a
correspondingly long history of Yale involvement in AFM. Notably, Bill Reifsnyder, Lee’s predecessor
as a professor of forest meteorology and biometeorology (1955-1990), had been a founding editor of the
journal (initially titled Agricultural Meteorology) and served as editor-in-chief from 1984-1995. Kya Tha
Paw U, a student of Reifsnyder’s, and professor at UC Davis, served as editor-in-chief of AFM from
1998-2008, and Lee would later serve as editor-in-chief of AFM from 2008-2019.

Lee’s class on Biometeorology, which I had taken as a second-year MF student, was one of the
reasons I stayed on to do a PhD. I was fascinated to learn of emerging methods, such as “eddy
correlation,” as it was then commonly called. At the time I had almost no concept of how eddy covariance
would ultimately come to revolutionize our understanding of land-atmosphere interactions, carbon
cycling, or evapotranspiration, thanks to the work of pioneers like Steve Wofsy, Mike Goulden, Shashi
Verma, Dennis Baldocchi, Bev Law, and David Hollinger.

For my dissertation research, I ended up investigating the structure and function of conifer foliage
along the elevational and canopy light gradients. One of my projects involved quantifying the
microclimatology of my study sites, and how those varied along the elevational gradient, from deciduous
to conifer forest, and across treeline to tundra, and across different mountain ranges of the northeastern
USA (Richardson et al., 2004; this was my first paper in AFM). I assembled my environmental
monitoring stations for this project in Lee’s lab, which had previously been Reifsnyder’s lab.

Oftfhandedly, in one of our meetings, Lee suggested I put a quantum sensor not just above the
canopy but also below the canopy—so I could look at how much photosynthetically active radiation was
transmitted by the canopy, and how this changed with the seasons, i.e., with phenology. “Then you could
do some modeling,” he added. “Great idea!” I thought. But, I quickly came to realize that Murphy’s Law,
which basically states that “if anything can go wrong, it will,” might have priority over Hopkins’ (1920)
“Bioclimatic Law,” which describes phenological patterns in relation to latitude and elevation: at my
high-elevation site, the cable running from my CR10 data logger to a quantum sensor below the
deciduous dwarf birch canopy was chewed by a malicious rodent after a few months, whereas the
quantum sensor in the mid-elevation evergreen spruce-fir forest kept running for a few years. I had no
useful data on phenology in the high-elevation site, and in the mid-elevation site, changes in solar zenith
angle—not changes in leaf area—dominated the signal. Still, these unsuccessful efforts were a learning
experience, and I had also been introduced to phenology.
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Supplementary Material, Table S2. Options for local storage or long-distance telemetry of
phenocam imagery. Technological advancements over the last 15 y have not only opened up
new options for remote connectivity, but they have also greatly reduced the costs of both
hardware and data transfer fees. Verifying system uptime on a daily basis is ideal, but this is not

always possible.

Icon

Description

Most stand-alone cameras (e.g., trail cams or game cams) record images to
an SD card, which can store a year or more of 30-minute images. Field
technicians swap cards, download images, and conduct image processing in
an ad hoc, rather than automated, manner. A limitation of this approach is
that it is impossible to remotely verify system uptime.

LN ]
LE R ]
[ XX ]

At field sites without Internet connectivity, images can be stored on a local
computer connected to the same network as the camera. In most cases, the
computer will be running an FTP (file transfer protocol) server that accepts
incoming connections from the camera, but in other cases, software or
scripts running on the computer will pull images from the camera. Images
are then manually uploaded to an external FTP server, e.g., PhenoCam, for
automated processing, or processed locally in an ad hoc manner. As with
storing images on an SD card, a limitation of this approach is that it is
impossible to remotely verify system uptime.

At many sites, a local network is connected to an Internet node (e.g. at the
field station or site headquarters) via a wired Ethernet connection. Images
are then sent to an external FTP server in real-time for viewing, archiving,
and automated processing.

Alternatively, other sites use a wireless connection between devices (e.g.,
PhenoCam) and the Internet. Some phenocams are WiFi-enabled, but even
for those that are not, the phenocam can be connected via Ethernet to a WiFi
client or repeater, which then connects to a nearby WiFi access point (50-
100 m, maximum). In other cases, the camera might be just one of several
devices connected to a long-range, point-to-point wireless bridge, which
then connects to a distant (up to 20 km) wireless bridge, which is then
connected to the Internet. The latter solution is common at field sites where
Internet connectivity is desired across a large area (1-1000 km?, or more).
Either solution allows images to be sent to an external FTP server in real-
time for viewing, archiving, and automated processing.
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Wherever cellular phone service is reliably available, cell modems offer an
alternative route to Internet connectivity without the infrastructure
requirements of a pont-to-point long-distance wireless network. Over the
last decade, cell modems have become much more widely used as both the
hardware and the data transfer fees have become less expensive. When a
cell modem is used, the PhenoCam obtains an outgoing Internet connection
through the cell modem, and images are generally sent to an external FTP
server in real-time for archiving and automated processing. But, cellular
network connectivity may be poor in some rural and wilderness areas in
which ecological research is often conducted.

Satellite communications offer virtually global connectivity for cameras and
other scientific monitoring equipment, but at a cost that is much higher than
for cellular M2M (machine-to-machine) data connections. At sites where
topography, remoteness, or other factors may preclude wireless or celluar
connections, satellite may be the only option. At these sites, one way to
minimize data charges is to store sunrise-to-sunset phenocam images
locally, but to send a mid-day image out via the satellite connection. In this
way, system uptime can be verified on a daily basis.
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Supplementary Material, Figure S3. The 12 “core sites” in the PhenoCam network, spring
2009, as presented in a talk at the European Geosciences Union meeting in Vienna by Rob
Braswell. We focused the initial network on forested research sites in northeastern US and
adjacent Canada; sites spanned 10° latitude and 10°C mean annual temperature, and a range of
forest types from oak-hickory in the southernmost sites, to northern hardwoods (maple-beech-
birch), to boreal mixedwood (birch-poplar-fir), and boreal conifer (spruce-fir) in the north. Seven
of 12 sites were already measuring surface-atmosphere carbon dioxide and water vapor fluxes
with eddy covariance, and a number of sites had ongoing observer records of phenology (e.g.,
Richardson and O’Keefe, 2009).
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Core camera sites in
the U.S. and Canada

68





