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The chicken gastrointestinal tract has a diverse microbial community. There is
increasing evidence for how this gut microbiome affects specific molecular
pathways and the overall physiology, nervous system and behavior of the
chicken host organism due to a growing number of studies investigating
conditions such as host diet, antibiotics, probiotics, and germ-free and
germ-reduced models. Systems-level investigations have revealed a network
of microbiome-related interactions between the gut and state of health and
behavior in chickens and other animals. While some microbial symbionts are
crucial for maintaining stability and normal host physiology, there can also be
dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and
disease. Likewise, alteration of the gut microbiome is found for chickens
exhibiting differences in feather pecking (FP) behavior and this alteration is
suspected to be responsible for behavioral change. In chickens and other
organisms, serotonin is a chief neuromodulator that links gut microbes to
the host brain as microbes modulate the serotonin secreted by the host's
own intestinal enterochromaffin cells which can stimulate the central nervous
system via the vagus nerve. A substantial part of the serotonergic network is
conserved across birds and mammals. Broader investigations of multiple
species and subsequent cross-comparisons may help to explore general
functionality of this ancient system and its increasingly apparent central role
in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from
the serotonergic system moreover occur in both birds and mammals with, for
example, FP in chickens and depression in humans. Recent studies of the
intestine as a major site of serotonin synthesis have been identifying routes by
which gut microbial metabolites regulate the chicken serotonergic system. This
review in particular highlights the influence of gut microbial metabolite short
chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in
physiological and brain disorders may be considerable because of their ability to
cross intestinal as well as the blood-brain barriers, leading to influences on the
serotonergic system via binding to receptors and epigenetic modulations.
Examinations of these mechanisms may translate into a more general
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understanding of serotonergic system development within chickens and other

avians.
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Introduction to the chicken gut-
microbiome-brain axis

Chickens are an important source of food in the human diet
worldwide, and the poultry industry is one of the fastest-growing
fields in agriculture (Nkukwana, 2019). Ongoing studies
surrounding  chicken husbandry and physiology have
generated substantial amounts of knowledge regarding the
chicken gut-microbiome-brain axis. The diverse chicken gut
microbiome, for instance, is now known to have strong effects
on the feed conversion ratio impacting growth and health
(Stanley et al, 2012), early stages of immune system
development (Schokker et al, 2017), resistance to enteric
pathogens (Feng et al., 2010), and behavior (Kraimi et al., 2019a).

There are multiple routes to how host physiology and
molecular processes interact with different gut microbial
varieties and associated microbial metabolites. Management
practices like overcrowding in cages, high temperature, and
rough transportation all of which exert stress on chickens
(Virden and Kidd, 2009; Sanchez-Casanova et al., 2019).
These stressors in chicken affect gut microbial community
composition. This is evident by studies involving external
environmental  stressors and  studies  administering
corticosterone (Calefi et al, 2016; Noguera et al, 2018;
Zaytsoff et al., 2020). The changes in the gut microbiome
induced by the CNS via the
sympathoadrenal system and the hypothalamic-pituitary-
adrenal (HPA) axis (Villageli and Lyte, 2017). Decades of
research have shown the effect of these stressors on host
(Chaouloff et 1999).  Other

neurochemicals along with serotonin have been documented

composition may be

serotonin  synthesis al.,
in the broiler chicken intestinal track with their levels being
altered during a stressed condition (Dennis, 2009; Lyte et al,,
2022). The systemic circulation of neurochemicals in chickens
has been found to affect general physiology (Denbow et al., 1983;
Chapman et al,, 2008) and the immune system (Borsoi et al.,
2015), as well as the gut and growth of different bacterial species
including pathogens (Lyte and Ernst, 1992; Bailey et al., 1999;
Freestone et al., 2008; Truccollo et al., 2020; Lyte et al., 2021a).
Gut microbiota are furthermore known to produce and stimulate
host neurotransmitter synthesis, with these effects found to
ultimately influence host physiology and behavior (Beaver and
Wostmann, 1962; Reigstad et al., 2015; Van Staaveren et al.,
2021). Such a bidirectional relationship between microbiomes
and neurochemistry was recently demonstrated in a Japanese
quail model where management stress response led to changes in
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microbial composition, with the effect of gut microbes on tissue
serotonin concentration outside the gut being also observed (Lyte
et al.,, 2021b).

Serotonin levels in the gut are influenced by gut microbes as
has been demonstrated by pioneering studies comparing
conventional and germ-free chick models (Phillips et al., 1961;
1962).
neurotransmitter regulating aggression in chicken (Dennis,
2009). Chickens may cope with stress by exhibiting aggressive

Beaver and Wostmann, Serotonin is a major

behavior such as, for example, aggressive FP (Cheng and Muir,
2007; Van Staaveren and Harlander, 2020). FP birds harm not
only themselves but also other birds by pecking and pulling their
feathers leads to decreased performance of birds and loss to the
poultry industry (Jensen et al., 2005). Several studies also indicate
a regulatory role of gut microbes in the gut-brain axis that
includes probiotic modulations that mitigate aggressive
behavior in birds (Abdel-Azeem, 2013; Cheng et al, 2019;
Mindus et al., 2021). Dietary modulations of gut microbiota
have been found to overall improve chicken behavior and overall
health (Dixon and Nicol, 2008; Pan and Yu, 2014). The gut
microbial modulation could therefore have considerable value
with respect to common challenges with chicken health and
husbandry. Beyond discovering effects of microbiomes on
chickens, a translational objective is to evaluate whether
advantages of chickens as a model organism and underlying
mechanisms of the chicken gut-microbiome-brain axis would
help to inform understanding and investigation of the gut-
microbiome-brain axis in humans. For instance, with humans,
stress and diet substantially alter gut microbial ecosystems with
varying impacts on human health (Singh et al., 2017; Gubert
et al,, 2020). Common mechanisms surrounding the gut-brain
axis in humans and chickens involve the serotonergic system
being modulated by conditions of stress (Leonard, 2005). The
impact of gut microbes on the serotonergic system and behavior
have been closely linked with phenotypes of FP in chicken and
depression in humans (Cheng et al., 2019; Huang and Wu, 2021).

For various animals, including chickens and humans,
serotonin is mainly synthesized by serotonergic neurons in
brain and intestinal enterochromaffin cells (Parent, 1981). The
large portion of serotonin in the body is produced by intestinal
enterochromaffin cells and production is stimulated by gut
microbial metabolites like SCFAs (Gershon, 2013; Reigstad
et al, 2015). Some of the more abundant microbial SCFAs,
butyrate and acetate, induce dramatic shifts of expression for
the rate-limiting enzyme, Tryptophan hydroxylase 1 (Tphl),
which is associated with mucosal serotonin synthesis by
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intestinal enterochromaffin cells (Coté et al., 2003; Reigstad et al.,
2015). This review provides a report and synthesis of current
molecular and physiological findings surrounding how the
serotonergic system and behavior relate to gut microbiota and
SCFAs in chickens. This review, in addition, critically evaluates
the use of chicken as an animal model that may help influence
and guide the study of the gut-microbiome-brain axis in humans
as would relate to SCFAs and the serotonergic system.

Chicken gut microbiota and potential
function

The gastrointestinal (GI) tract of chicken is inhabited by a
complex and dynamic microbial community that is
established during hatching and initial period of exposure
to the environment, stabilizing later in life. Chickens hatched
within hatcheries receive microbes from environmental flora
(Stanley et al., 2013; Volf et al., 2021). This microbiome
undergoes dramatic changes, overall expanding throughout
the life of a chicken, leading to an adult chicken GI tract
having than
600 bacterial species (Apajalahti et al., 2004; Apajalahti &
Kettunen, 2006; Borda-Molina et al., 2018). Similar to what
has been found for human gut microbiota, analyses of broiler
identified
Proteobacteria, Bacteroidetes, and Firmicutes as the more

trillions of bacteria, representing more

and layer chicken gut microbiota have
abundant phyla. Other phyla, such as Actinobacteria, while
less abundant, are consistently found as well (Qin et al., 2010;
Li et al., 2014; Tong et al., 2017; Mandal et al., 2020).

In the chicken GI tract, the cecum is a major anatomical
location with higher microbial diversity and metabolism
2014; Polansky et al, 2016).

metagenomic analysis of the chicken cecum has identified

(Sergeant et al, Recent
42 novel genera, 40 of which are of the taxonomic class
Clostridia which is observed in high abundance in the ceca.
More prevalent taxonomic orders within the Clostridia class are
Oscillospirales and Lachnospirales (Glendinning et al., 2020). At
the family level, the cecum encompasses Clostridiaceae,
SCFA
producing Lachnospiraceae families (Witzig et al, 2015).

Bacteroidaceae,  Lactobacillaceae, and butyrate
Analyses of the chicken microbiome found in the cecum have
helped to identify new gut microbes and unravel their
functionality. For instance, it has revealed those microbes
having genetic material that encodes polysaccharide and
numerous oligosaccharide-degrading enzymes. The degrading
of polysaccharides occurs in large part due to lineages belonging
to the taxonomic classes Actinobacteria, Clostridia,
Bacteroidia. Genes involved in SCFA (acetate and butyrate)

production have furthermore been identified, with most of

and

these genes and their associated functions occurring for
lineages that belong to the Firmicutes and Bacteroidetes phyla
(Sergeant et al., 2014).
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The metabolic capacity and overall colonization pattern of
gut microbes lead to various health benefits and behavioral
outcomes for chicken and other avian species. The main
source of carbon and energy for the microbes in the lower
intestine comes from wundigested complex dietary
carbohydrates and starch (Cummings and Macfarlane,
1991). Moreover, plant-based poultry diets have a large
amount of non-starch polysaccharides (NSP) (Jozefiak
et al., 2004; Raza et al., 2019). Fermentation of undigested
food by gut microbes in the cecum and colon produces SCFAs
(van der Wielen et al., 2000), which benefit the host by
providing a source of energy, stimulating gut epithelial cell
proliferation, and by lowering the colon pH to help prevent
secondary bile production (Sakata, 1997). Some beneficial gut
microbes are known to protect the intestine against
colonization by pathogenic bacteria such as Salmonella
spp. (Nurmi and Rantala, 1973). In addition, gut bacteria
produce and sometimes metabolize various neurochemicals
like serotonin, essential amino acids like tryptophan,
vitamins, and antimicrobial compounds (Jeurissen et al.,
2002; Yanofsky, 2007; Lyte, 2011; Kogut, 2019). Much of
the same has been generally found for humans (Rowland
et al., 2018). Gut bacteria have an overall regulatory impact
on the gut-brain axis leading to behavioral changes as well
(Cryan and Dinan, 2012; Arneth, 2018). A dietary study of
great tits, being provided an insect diet versus a seed diet,
showed compositional change in the gut microbiome
occurring in parallel to reduced problem-solving skills for

birds fed the insect diet (Davidson et al., 2020).

Effect of gut microbiota on cognition
and behavior

Domestic chickens are the most common and widely used
species of poultry in agriculture and are a domesticated breed
of red junglefowl (G. gallus) (Siegel et al., 1992; Yamashita
et al., 1994). Despite many effects of selective breeding,
domestic chickens retain cognitive and behavioral similarity
to their ancestors. Both wild and domestic chickens follow a
similar social structure and behavior of interaction within
their populations and have complex cognitive ability, along
with emotional and communicative behavior (Appleby et al,,
2004). Hens and chicks are in the center of a domestic chicken
community whereas roosters live independently and protect
hen and chicks in the group. Chickens communicate
information regarding territory, mating, nesting, distress,
danger or fear, contentment, and food discovery with the
help of 30 distinct vocalizations (Appleby et al., 2004).
Findings regarding fear response show complex emotional
behavior which is accompanied by physiological reactions like
fever that can also be found with humans (Cabanac and
Aizawa, 2000).
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TABLE 1 Studies investigating effects of gut microbiota interventions on bird behavior.

Study details

Ingesion of L. rhamnosus

FMT during early life from
aged donor

Early life FMT from HFP or
LFP adults

FM transfer from 13 weeks
old adult female quails in GF
Chicks

GF quails compared to quails
with FM from adult female
quails

Effect of heat stress and or
Clostridium perfringens
infection

Administration of probiotic
spores of Bacillus
amyloliquefaciens

Bird species

‘White Leghorn, laying hens;
Selected HFP, LFP lines

Healthy commercial broilers

White Leghorn birds Selected
HEFP, LFP lines

Japanese quails from quail line
selected for high (E+) and low
(E-) emotional reactivity

Japanese quails

Broiler chickens

Turkey poults

Behavioral outcome

Reduced stress induced FP

FM from adult chickens improves
fearfulness in chicks

FMT influenced FP behavior; Homologous
FMT resulted in reduced fearfulness

GM from (E-) quails in GF chicks reduced
emotional reactivity in early life

GF quails showed reduced emotional
reactivity compared to quails with gut
microbiota

C. perfringens infection decreased the
frequency of feeding, walking, FP and
standing; Increased the frequency of SB
behavior

Probiotics administration increased the
feeding frequency and decreased distress
call and aggressive behaviors

10.3389/fphys.2022.1035538

Findings

Increased T cell population of spleen and
the cecal tonsils Limited cecal microbial
dysbiosis

FMT administration might improve the
physiology and behavior of chickens

FMT had immediate and long-term
effects on behavior and immune
characteristics and peripheral serotonin

Change in the GM composition in
treatment groups associated with
behavioral modification

Absence of gut microbiota reduces
emotional reactivity in Japanese quails
with no effect on growth

Showed links among degree of intestinal
lesions, behavioral outcomes, brain
activity, and serum levels of
corticosterone
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feather pecking; LFP, low feather pecking; SCFAs, short chain fatty acids.

For how gut microbiomes and their metabolic products
connect dynamics within the gut to the brain, resulting in
effects on behavior, this is being studied as an applied area of
research that may considerably improve our understanding of
human health and animal behavior and wellness. It has indeed
been possible to adjust the microbiome toward positive behavioral
outcomes with, for example, supplementation with Lactobacillus
rhamnosus between 19 and 26 weeks of age being found to reduce
FP in chickens (Mindus et al, 2021) (Table 1). Gut microbial
composition changes have shown the potential to aid mammals in
their adaptation to stress as well (Boonstra, 2005). Biomedical
findings arising mainly from studies on humans and mice have
found gut microbial-derived products like neurotransmitters,
SCFAs, indoles, bile acids, choline metabolites, lactate, and
vitamins to have general effects across animal host physiology
(Krautkramer et al, 2021). Broad-ranging impacts between
microbiomes and behavior have been found in chickens, quail,
and turkey (Table 1). A recent study of Japanese quail has
demonstrated how emotional reactivity can be influenced by
gut microbiota transfers that alter taxa of the Firmicutes
phylum (Kraimi et al., 2018; Kraimi et al., 2019b). Changes in
abundance for the Firmicutes phylum have also been associated
with stress, anxiety, or depression (Bailey et al., 2011; Jiang et al.,,
2015). In a similar study in turkey, probiotic administration has
been found to reduce distress calls and agonistic behavior in birds
(Abdel-Azeem, 2013). On the contrary, the prolonged deprivation
of natural bird behaviors like foraging, nesting, perching, and dust-
bathing is believed to affect brain function and lower gut microbial
diversity (Chen et al., 2019).
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There have been some initial studies on the association of gut
microbial metabolites with chicken behavior. A study conducted
by Meyer et al. (2013) investigated differences in gut microbial
metabolites in high and low FP chickens. The study analyzed gut
metabolites like biogenic amines, SCFAs, ammonia, and lactate.
Total SCFAs were elevated in high FP birds due to the utilization
of ingested feathers by cecal microbes (Meyer et al., 2013). While
chicken gut microbial composition is increasingly studied for
microbial diversity and microbial modulations that influence
poultry production (Grond et al., 2018), there remains a dearth of
metabolomic and functional studies illustrating the effect of
microbial metabolites on host physiology and behavior. As
shown in Table 1, not all studies evaluate for behavioral
outcomes along with both microbial and metabolite-related
outcomes. These studies also varied in terms of ages studied,
with some only lasting for a few weeks (Abdel-Azeem, 2013;
Calefi et al,, 2016; Kraimi et al., 2018) and others continuing for
two or more months (van der Eijk, et al.,, 2020; Mindus et al.,
2021; Yan et al,, 2021). Future studies are needed to evaluate
dynamics across potentially interconnected microbial and
metabolite-related outcomes.

The serotonergic system

Serotonin is an important neurotransmitter that connects the
gut-brain axis and exists ubiquitously across diverse biological
systems, including for vertebrates, invertebrates, and some plants
(phytoserotonin) (Smith, 1971). Central serotonin has been
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found to regulate temperature (Freeman, 1979), appetite, sleep,
and energy metabolism (Lv and Liu, 2017; Hillman et al., 1980).
Serotonin is also associated with cognition and behavior across
the animal kingdom (Bacqué -Cazenave et al., 2020), which
makes the serotonin system a potential target for treating
behavioral problems (Nishizawa et al., 1997).

Peripheral serotonin acts as hormone and improves nutrient
absorption, and regulates GI motility, pancreatic secretion and
peristaltic reflex (Martin et al., 1993; Li et al., 2001). It participates
in multiple physiological functions through the diverse receptors
it binds to, including vasoconstriction and dilation (Rapport
etal,, 1949), adipogenesis in white adipose tissue (WAT), muscle,
and liver glucose uptake (Namkung et al., 2015). Serotonin
modulates insulin secretion and the immune system (Cataldo
Bascunan et al., 2019). Within the intestine, serotonin acts as a
pro-inflammatory as well as anti-inflammatory signaling
molecule (Bischoff et al,, 2009). Pro-inflammatory signaling is
which
exacerbates experimental GI inflammatory disease through

studied in serotonin transporter-knockout mice
activating 5-HT7 receptors expressed by dendritic cells
(Bischoff et al., 2009; Kim et al., 2013). However, serotonin is
also involved in anti-inflammatory signaling via epithelial 5-HT4
receptor activation, reducing colon inflammation in mice (Spohn

et al., 2016).

Central and peripheral serotonin system

Central serotonergic neurons are located in dorsal raphe and
median raphe nuclei that are present in the midline of the brainstem
(Puelles et al,, 2018; Fujita et al., 2022). These neurons occupy most
central nervous system regions with their projections (Reiner, 2001;
Matragrano et al., 2012; Garcia-Gonzalez et al., 2017). As has been
found in humans, chickens and other animals, serotonin is
synthesized from its precursor tryptophan by the rate-limiting
enzyme tryptophan hydroxylase 2 (Tph2) in the serotonergic
neurons of the brain (Bohm et al., 1979; Fujita et al., 2022; Sako
et al,, 1986), while peripheral serotonin is synthesized by its isoform
Tphl (Walther et al., 2003). Cofactors (Fe**), co-substrates (O, and
BH,) and stress hormones are also activators of Tph (i.e., Tphl or
Tph2). Sustained tryptophan hydroxylase activity influences the
firing rate of serotonergic neurons (Maximino, 2012). Furthermore,
tryptophan is an essential amino acid derived from the diet. Tph
converts L-tryptophan into 5-hydroxytryptophan (5-HTP) which
transforms into serotonin, 5-hydroxytryptamine (5-HT), by the
action of aromatic L-amino acid decarboxylase (Leathwood,
1987). Serotonin has a very short half-life in the brain (Brodie
and Reid, 1968). Active serotonin gets transported to the synaptic
space while inactive serotonin is metabolized in and outside the cell.
The enzyme monoamine oxidase A (MAO-A), located in the outer
mitochondrial membrane of the neuron, deaminates or metabolizes
5-HT into 5-hydroxy-indol-acetaldehyde, which is then oxidized
into urinary metabolite 5-hydroxy-indole-acetic acid (5-HIAA), a
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urinary marker of serotonin synthesis (Kuhn and Hasegawa, 2020).
Disruptions to this 5-HT metabolism, mainly as regards 5-HIAA, is
associated with aggressive behavior in mammals as well as birds
(Coccaro etal,, 2010; Kops et al,, 2013). In the brain, high tryptophan
levels increase the production of serotonin (Fernstrom and
Wurtman, 1971). The brain receives peripheral tryptophan
through active transportation across the blood-brain barrier,
where tryptophan has to compete with tyrosine and other
branched-chain amino acids for transport (Fernstrom and
Fernstrom, 1995; Fernstrom and Fernstrom, 2007).

In the case of serotonergic transmission, synthesized
neuronal serotonin is released from presynaptic neurons into
the synaptic space through vesicle transport. Upon release, these
molecules bind to serotonin receptors in the postsynaptic
membrane and transmit signals to different brain projection
areas (Millan et al., 2008). The excess serotonin in the synaptic
space is bound to by the serotonin reuptake transport (SERT)
membrane protein of presynaptic neurons (Krause et al., 2017).
After reuptake in the raphe neuron, inactive serotonin is
degraded by monoamine oxidase (MAO) (Borue et al., 2007).
Binding of synaptic as well as peripheral serotonin to receptors
modulate the central and peripheral function of serotonergic
neurons and thus influence behavior. There are 14 serotonin
receptor proteins identified in mammals and in poultry birds
with varying distributions in the brain as well as peripheral
regions (Banerjee et al., 2007; Stepinska et al., 2015).

Presence of serotonin in chicken GI track has been known for
decades (Phillips et al, 1961), as has been known how
enterochromaffin cells are distributed throughout the avian
(Rawdon
peripheral serotonin is synthesized by serotonergic neurons

gut 1984). Apart from enterochromaffin cells,
from the enteric nervous system (ENS) (Neuhuber and Worl,
2018). Out of these sites, enterochromaffin cells in the gut
synthesize most of total body serotonin. A recent study
providing concentration of neurotransmitters in the GI track
of broiler chicken reported serotonin and 5-HIAA levels in tissue
as well as luminal content at varying bird ages (Lyte et al., 2022).
The tissue serotonin levels in jejunum, ileum, and cecum are
higher than the luminal content levels at varying ages. Moreover,
the luminal serotonin levels at jejunum, ileum, and cecum
regions are not age dependent. This may indicate increased
synthesis of serotonin in these regions.

Blood thrombocytes in birds store the serotonin produced
(Maurer-Spurej, 2005), and the level of serotonin in the blood is
strongly dependent upon its synthesis in the gut (Meyer et al.,
1973). Upon release into the gut wall, serotonin acts as a luminal
signal transducer to the central nervous system via intrinsic and
extrinsic primary afferent neurons (vagal afferent neurons) of
enteric nervous system (Li et al., 2000; Gershon and Tack, 2007).
These afferent neurons receive and transmit physical as well as
chemical stimuli to CNS initiated by enterochromaffin cells and
immune cells. The enteric nervous system is an intrinsic system
of the GI track. It is composed of neurons and glial cells that
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innervate the intestine and regulate GI motility, absorption, and
fluid secretion (Doyle et al., 2004). Non-neuronal serotonin
activates intrinsic primary afferent neurons of ENS through 5-
HTI1P receptor and mediates gut peristaltic and secretory
reflexes, while the activation of the 5-HT3 receptor of
extrinsic nerves communicates distress and other signals to
the CNS (Gershon and Tack, 2007).
outside the gut epithelium also activate the 5-HT4 receptor in

Serotonin released

the ENS and induce neuroprotective and neurogenerative effect
(Liu et al., 2009). Serotonin produced by serotonergic neurons in
the ENS influences gut motility and development of enteric
neurons, and serotonin furthermore modulates the immune
system (Neuhuber and Worl, 2018). However, there is less
knowledge about functioning of these receptors in avian
species (Stepinska et al., 2015).

Similarity between the avian and
mammalian serotonin system

Serotonin is an ancient and highly conserved biomolecule in
the vertebrate species found to be localized in the raphe system
and reticular nucleus (Challet et al., 1996; Hay-Schmidt, 2000).
The serotonin system, including serotonin, 5-HT receptor
structure and function, and serotonin transporter, is well-
conserved across diverse vertebrates (Bubak et al, 2020).
Distribution of serotonin in vertebrate brains has been studied
decades ago and is found to coincide with expectations of
of
catecholamines distribution by Bogdanski et al. (1963) found

phylogeny. A comparative study serotonin  and
occurrence of these amines in mammals and lower vertebrates,
including fish and birds. In vertebrates, serotonin exhibits
inhibitory action on aggressive behavior as has been observed
across diverse animals. Autoradiography of neurotransmitter
receptors in a brain basal ganglion in pigeon, rat and human
brain have shown similarity in distribution. This includes the 5-
HT1B receptor subtype in the globus pallidus (GP) region of
basal ganglia which regulates the release of neurotransmitters
including serotonin (Dietl and Palacios, 1988; Sari, 2004).
Anatomical structure of the serotonergic system is similar
across different vertebrates, but levels of molecular expression
and physiologic development do vary. A study reported the
serotonin to catecholamine ratio to be 1.1:1 in rats while a 2:
1 ratio has been reported in birds (Bogdanski et al., 1963). The
anatomical distribution of monoamine-producing neurons in the
avian brain has shown this cell population to occur in the
hypothalamus (located below the thalamus) and lateral
presence in tegmentum (the ventral part of the midbrain).
Similar lateralization is also observed in mammals (Fuxe and
Ljunggren, 1965; Dubé and Parent, 1981). Immunohistochemical
and immunohistofluorescence techniques have been used to
study distribution of serotonin fibers and terminals in pigeon
brains and have found similarity in pattern as compared to
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mammals. Similar to the mammals in birds, serotonergic
neurons in the midbrain tegmentum have shown descending
the
projections towards prosencephalon (the future forebrain/

projections towards spinal cord whereas ascending

cerebrum). The projection size is greater however in

mammals than in birds (Challet et al., 1996).

Gut microbes in serotonergic system
development in avians and mammals

Diverse gut microbes acquired since birth influence neural
pathways and CNS signaling, thus contributing to an organism’s
systems-level development. This specific influence has been
studied with various germ-free (GF) animal models (Smith,
2015). Developmental effect of gut microbiota on serotonergic
system has been studied in a GF mouse model where chronic
absence of microflora elevates striatal 5-HT turnover (Heijtz
etal., 2011). Similar results have confirmed this in another study
where, observed elevated hippocampal 5-HT and 5-HIAA levels
did not change after restoring microbiota in later life. GF animals
also exhibit abnormally reduced levels of anxiety which can be
restored on GI microbiota transfer. This suggests a crucial role of
intestinal microbes in influencing the central serotonin system
(Clarke et al., 2013).

Gut microbiota are also known to play an important role in
immune system and endocrine system development which are
essential elements of CNS signaling. A recent GF study of mice
has highlighted the impact of gut microbes on microglial cell
maturation and activation where absence of microbes leads to
microglial defects affecting innate immune response. This study
found, in particular, microbial SCFAs to be a regulator of
microglial homeostasis (Erny et al, 2015). Microglial cells
have been recently studied as well for their interaction with
serotonin and have had reported effects contributing to brain
maturation (D’Andrea et al.,, 2020; Kolodziejczak et al., 2015).
Another GF mouse study has shown gut microbes to influence
adult ENS maturation through release of serotonin which further
activates 5-HT4 receptor in ENS associated with adult
neurogenesis and neuroprotection. The study demonstrated
the difference in ENS anatomy in GF and with microbiota
transfer models influencing intestinal function (De Vadder
et al., 2018).

In the case of chickens, Beaver and Wostmann (1962) studied
the influence of gut microbes on intestinal serotonin synthesis
and observed reduced intestinal 5-HT levels in conventional
chicken compared to germ free model. The influence of gut
microbes on serotonin system development has been studied in
the context of FP behavior whereas the serotonergic pathway is
suspected to contribute to FP. The influence of gut microbiota on
the serotonergic system and bird behavior has been studied by
early life microbiota transplantation in hens selected for high and
low FP. The investigation after 15 weeks of treatment observed
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variation in peripheral serotonin levels in low FP lines (Van der
Eijk et al, 2020). There is another investigation on central
serotonin turnover in 28 days-old chicks. Lower serotonin
turnover was found for high FP chicks, but this study did not
observe an influence of gut microbes (Van Hierden et al., 2002).
The regulatory influence of gut microbes on peripheral serotonin
system has been established in birds, mice, rats, and humans as
well, including for instances specific to disease (Phillips et al.,
1962; Bohm et al., 1979; Uribe et al., 1994; Wikoff et al., 2009;
Yano et al., 2015; Kelly et al., 2016; Sampson et al., 2016).

Microbiota and microbial metabolites
affecting the serotonergic system

Food animals, along with humans, have diversity in their
intestinal microbiota that is mainly influenced by the
surrounding environment and diets and thus share common
microbes. These microbes and their hosts have a close

relationship  surrounding how metabolism occurs for
mutualistic or detrimental benefit, depending on the microbial
metabolic activity happening in which part of the host gut
(Apajalahti, 2005). Different studies have highlighted some
influence of gut microbes and their metabolites on the host’s
serotonergic system through tryptophan metabolism, serotonin
metabolism, and the kynurenine and indole pathway. Among
these metabolites, microbial degradation and fermentation
product SCFAs are major metabolites produced in the hind
gut of avian species (Jozefiak et al., 2004). SCFAs have been
considered for maintaining gut health of poultry (Liu et al., 2021).
The rapid absorption of SCFAs in the hind gut (Ruppin et al.,
1980), the association of SCFAs with the BBB (Gerhart et al.,
1997; Li et al,, 2016), the neuroimmunoendocrine regulatory
function of SCFAs (Wikoff et al., 2009; Clarke et al., 2013;
Matsumoto et al, 2013) and the neuroprotective effect of
SCFAs (Kim et al.,, 2007) indicate SCFAs to be metabolites

important to study for the serotonergic system and overall body.

Short chain fatty acids

SCFAs, also called volatile fatty acids, provide substantial
amounts of energy, commonly fulfilling about 10% of human
caloric needs and about 8% of the caloric needs of chicken
(Annison et al, 1968). SCFAs in addition modulate the
physiology and behavior of animals in various ways. Major
SCFAs include acetate (C2), propionate (C3), and butyrate
(C4) which are produced in animals through the fermentation
of various complex carbohydrates such as dietary fibers, resistant
starch, and endogenous substance-like mucins (Annison et al.,
1968; Langhout and Schutte, 1996; Jézefiak et al., 2004; Sun et al.,
2021). The proportion of acetate, propionate, butyrate in the
colons of herbivorous animal species ranges from 75:15:10 to 40:
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40:20 (Bergman, 1990). The cecum is the primary site of
microbial fermentation in chickens (Marounek et al., 1999).
This is evident by the germ free birds cecum having traces of
SCFAs compared to conventional bird however, similar
quantities of acetate were found in the peripheral blood of
birds  that
endogenous source of SCFAs, rather than microbial origin
(Annison et al.,, 1968; Hoverstad and Midtvedt, 1986). SCFAs
production is advantageous to the host as it is known to improve

conventional and  germ-free demonstrate

gut health via maintaining intestinal barrier integrity and
immune homeostasis (Furuse et al., 1991; Hu and Guo, 2007;
Sunkara et al., 2012; Liu et al., 2021). SCFAs also have been found
to inhibit growth of Salmonella (Van Immerseel et al., 2003),
promote the body weight of broiler chickens (Leeson et al., 2005),
and modulate inflammation and oxidative stress (Li et al., 2017).
A germ-free mice study highlighted the role of butyrate in
improving blood-brain barrier integrity which ensures
controlled exchange of biological substances essential for brain
activities (Braniste et al., 2014). SCFAs are produced by many
bacteria through the glycolytic pathway but there are some
varieties, such as Bifidobacterium spp., that can produce
SCFAs via the pentose phosphate pathway (Macfarlane and
Macfarlane, 2003; Cronin et al, 2011). Several bacterial
varieties from the Firmicutes phylum include butyrate
producing Ruminococcaceae, Lachnospiraceae, and clostridial
varieties. Bacteroides and Bifidobacterium spp. are involved in
acetate production. Table 2 shows some of the important studies

that have detailed SCFAs with chicken gut bacteria.

Short chain fatty acids and the
serotonergic system

SCFAs produced in the gut lumen (undissociated form)
diffuse through colonocytes or (dissociated form) transported
by monocarboxylated transporters such as monocarboxylated
transporter 1 (MCT1, a type of pH-dependent hydrogen-coupled
monocarboxylated  transporter)  and
monocarboxylate transport (SMCT1) (Ritzhaupt et al., 1998)

(Figure 1). These SCFAs are metabolized by colonocytes for

sodium-coupled

energy production while unutilized SCFAs undergo hepatic
portal circulation (Bloemen et al., 2009). From there, SCFAs
are taken up by hepatocytes where they are metabolized for
energy or utilized for biosynthesis. Thus, a small portion of
SCFAs enters peripheral circulation. In circulation SCFAs
interact with different host proteins that include G protein-
coupled receptors (GPR41, GPR43, GPRI109A) on different
tissues (Miller et al., 2019). SCFAs (mainly butyrate) in gut
lumen stimulate Tphl expression in enterochromaffin cells. This
then increased production of 5-HT by the
enterochromaffin cells (Reigstad et al., 2015). Butyrate elevates

leads to

Tphl expression through a butyrate inducible zinc finger
transcription factor ZBP-89 (Essien et al., 2013). SCFAs in

frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1035538

Jadhav et al. 10.3389/fphys.2022.1035538

TABLE 2 Selected studies of SCFA-producing gut microbes in chickens.

Bird sp. and region Type of SCFA  Gut microbes identified References
of isolation

Broiler chicken cecal- Butyrate Butyricicoccus pullicaecorum (a Firmicutes clostridial cluster IV) Eeckhaut et al. (2008)
4 weeks old

Broiler chicken cecal Butyrate Faecalibacterium prausnitzii Meimandipour et al.
6 weeks old (2010)

Broiler chicken cecal Butyrate Isolates of clostridial cluster IV related to Flavonifractor plautii, Pseudoflavonifractor ~ Eeckhaut et al. (2011)
4 weeks old capillosus, Subdoligranulum variabile, Eubacterium desmolans and Butyricicoccus

pullicaecorum, cluster XIVa isolates related to Anaerostipes caccae, Eubacterium hallii,
Clostridium populeti and Anaerostipes butyraticus, cluster XVI related Eubacterium
tortuosum, Eubacterium cylindroides, Streptococcus pleomorphus

Broiler chickens, ileal mucosa,  Butyrate propionate  Related to Enterococcus cecorum (butyrate) Butyrivibrio, Coprococcus (butyrate) Shang et al. (2018)

3 weeks old Paludibacter (propionate)

White leghorn chicken caeca Butyrate Megasphaerastantonii sp. Nov. from genus Megasphaera Maki & Looft (2018)
Cobb 500 broiler chicken, ileal, ~Butyrate Ruminococcus, Anaerostipes, and Lachnospiraceae Jacquier et al. (2019)
cecal, 6 weeks

Layer chickens, cecal, 8, 20, Butyrate Propionate  Genus Alistipes (Bacteroidetes) 8 weeks- Anaerostipes (butyrate), Bacteroides Sun et al. (2021)

50 weeks old Acetate thetaiotaomicron (acetate, propionate) 20 &50 weeks—Phascolarctobacterium

(propionate) 20 weeks—genus Bifidobacterium (acetate)

»

- . Tryptophan -7 .
Colon SCFAs = - -
= = - -

= -—
Dietary Gut
Fibers Microbiota

FIGURE 1

Microbial metabolite SCFAs transportation and role in gut serotonin production. Undissociated form of SCFAs in gut lumen diffuse through
enterocytes while dissociated is transported through MCT1 into the circulation. Intestinal enterochromaffin cells synthesize serotonin from
tryptophan using Tphlenzyme. SCFAs in gut lumen stimulate Tphl expression via zinc finger transcription factor. Secreted serotonin, before entering
circulation, is either utilized in the liver or metabolized by enterocytes to 5-HIAA. Part of luminal SCFAs is utilized for energy production by
enterocytes. Abbreviations: Enterochromaffin cells (ECC), serotonin (5-HT), zinc finger transcription factor (ZBP-89), tryptophan hydroxylase 1
(Tph1), 5-hydroxytryptophan (5-HTP), amino acid decarboxylase (AADC), monocarboxylated transporter 1 (MCT1), serotonin reuptake transporter
(SERT), monoamine oxidase (MAQ), hydroxyindoleacetic acid (5-HIAA), short Chain Fatty Acids (SCFAs) (Ritzhaupt et al., 1998; Bloemen et al., 2009;
Essien et al., 2013; Reigstad et al., 2015). Figure created with BioRender.com.
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FIGURE 2

Interaction of SCFAs and serotonergic system in the gut-brain axis. Part of the SCFAs produced in gut lumen interact with the central
serotonergic system directly (crossing intestinal and blood-brain barrier) by epigenetic modulation and via activating extrinsic primary afferent vagus
nerve (interaction of SCFAs through FFAR3). Serotonin is synthesized by both enterochromaffin cells of the gut epithelium and by gut microbiota.
SCFAs also stimulate intestinal serotonin synthesis whereas extracellular serotonin binds to 5-HT3 receptors on afferent vagus nerve and
communicates signals to the CNS. On the other hand, different external stressors affect gut microbial composition in birds through the HPA axis and
influences production of microbial metabolites like SCFAs. The blue arrows indicate established connection in birds while the violet arrows indicate
connections known to occur for some animals but not yet identified in birds (Liu et al., 2012; Sealy and Chalkley, 1978; Yamawaki et al., 2012;
Huuskonen et al,, 2004; Cook et al,, 2021; Gill et al,, 2013; Essien et al., 2013; Calefi et al, 2016; Noguera et al., 2018; Gershon and Tack, 2007; Meyer

et al,, 2012). Figure created with BioRender.com.

colonocytes, through varying signaling pathways, influences
inflammation by inhibiting NFkB transcription factor), cellular
differentiation and proliferation essential for maintaining
intestinal homeostasis (Venegas et al., 2019).

The mechanism through which circulatory SCFAs
influence the serotonergic system is not fully elucidated and
has mainly been investigated with respect to human and
mouse models. Considering the very short half-life of
SCFAs (such as has been found for butyrate in the
bloodstream due to uptake by peripheral tissues), there may
be only a minimal concentration of SCFAs that reach the brain
when crossing the blood-brain barrier (BBB) (Cummings
et al., 1987; Daniel et al., 1989; Mitchell et al., 2011).
Within the brain, SCFAs affect brain functioning through
direct interactions with G protein-coupled receptors
(GPCR) like FFAR2 and FFAR3 (varieties of free fatty acid
receptors) (Figure 2). These GPCRs are found in both CNS and
peripheral system and are most dense in peripheral organs
(Lagerstrom et al., 2006; Meslin et al., 2015). SCFAs also
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communicate with the brain via the afferent vagus nerve,
leading to the activation of neurons in the CNS area (De
Vadder et al., 2014). However, the type of interaction of SCFAs
with the vagus nerve, being direct or indirect, is unknown. A
study of the vagus nerve FFAR3 knockout mice model
showed that SCFAs receptor FFAR3 on the vagus nerve is
essential to regulate feeding behavior in animals (Cook et al.,
2021). The presence of FFAR3 in the vagus nerve and its
influence on feeding behavior may indicate the possibility of
SCFA mediated signaling to the central serotonergic

system. Additionally, FFAR3 plays an important role in

propionate-mediated signals to peripheral and CNS
areas for intestinal gluconeogenesis and enhanced
noradrenaline  secretion by  sympathetic = neurons

respectively (Kimura et al.,, 2011; De Vadder et al., 2014).
Synaptic levels of both neurotransmitters noradrenaline and
serotonin are responsible for depressive behavior (Thor et al.,
2007). More investigation is overall needed to reveal
interactions of SCFAs with the serotonergic system, and the
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degree to which these interactions may be present and
consistent across different varieties of animals, including
birds.

Another way by which SCFAs affect the serotonergic system
is in their regulation of tryptophan synthesis. As stated earlier,
tryptophan is the only precursor for serotonin biosynthesis and
its circulating levels depend on dietary intake and gut bacterial
tryptophan metabolism (Fernstrom and Wurtman, 1971). Most
of the free tryptophan in blood is utilized by the kynurenine
(KYN) pathway. Remaining tryptophan has to pass through the
BBB for central serotonin synthesis (Peters, 1991). The systemic
level of tryptophan is closely linked with inflammation. As
proinflammatory cytokines can induce metabolic enzymes like
indoleamine 2,3-dioxygenase (IDO) and Tryptophan-2,3-
(TDO) in KYN
tryptophan metabolism (Wirleitner et al., 2003; Hestad et al.,

dioxygenase involved synthesis  from
2017). Thus, systemic inflammation can limit availability of
tryptophan for serotonin synthesis. However, SCFAs in
systemic circulation are known to lower the proinflammatory
cytokines (TNF-a, IL-1f, IL-6) and elevate anti-inflammatory
and regulatory cytokines such as IL-10 which may indirectly
increase availability of tryptophan for serotonin synthesis by

balancing the cytokines (Liu et al., 2012; Piazzon et al., 2016).

Short chain fatty acids and histone
deacetylase-mediated epigenetic
modulation

SCFAs
interaction with histone deacetylases (HDACs) in the brain

contribute to epigenetic modulation through

(Figure 2), however this research has mainly been carried out
in mammals. HDAG:s are crucial in histone deacetylation, which
limits the accessibility of genetic material to transcription by
compacting chromatin and thus plays an essential role in gene
expression (Turner, 2000). HDACs and their regulation are
studied for
neuropsychiatric diseases (Volmar and Wahlestedt, 2015).
SCFAs such as butyrate can inhibit HDAC, leading to
hyperacetylation resulting in increased accessibility of genes
for transcription (Sealy and Chalkley, 1978; Chriett et al,
2019). Monoaminergic neurons, including serotonergic and

essential for brain development and are

neuropeptidergic neurons in the brain hypothalamus, express
HDACs that deacetylate nuclear as well as cytoplasmic proteins
(Takase et al., 2013). Inhibitory effects of butyrate on HDACs
have been investigated for serotonin receptor 5-HT2A which are
densely present in CNS and high in the cerebral cortex. A gene
expression study in sodium butyrate-administered rats has
shown downregulation of the 5-HT2A receptor potentially
due to inhibitory action of butyrate on HDAC leading to an
antidepressant outcome in rats (Yamawaki et al., 2012). Another
in vivo study on intestinal epithelial cells has further implicated
SCFAs with epigenetic change and has shown there to be an
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inhibitory role of butyrate on HDAC?2 that regulates SERT gene
expression. SERT is in maintaining
extracellular serotonin levels (Gill et al., 2013). SCFAs have in
addition been investigated for brain histone crotonylation as an

Intestinal essential

epigenetic modification that involves transfer of a crotonyl group
to lysine residues which influences the gene expression (Tweedie-
Cullen et al,, 2012), but the functional role of this crotonylation is
still unknown (Fellows et al., 2018).

Short chain fatty acids and
neuroinflammation

An understanding of neuroinflammation and the role of
short-chain fatty acids in chickens awaits further study. A
general understanding would for now involve dynamics as
reported for other types of organisms. Butyrate in particular
has been found to improve CNS neuroinflammation in mice
models induced by lipopolysaccharides (LPS) (Wang et al., 2018;
Yamawaki et al., 2018). Neuroinflammation is characterized by
activating microglial cells (immune cells of CNS) that follow the
elevation of proinflammatory cytokines like IL-6 and TNF-a. At
the same time, cytokines and their signaling pathways affect
serotonin synthesis and metabolism (Jeon and Kim, 2017).
Butyrate can improve circumstances of neuroinflammation
through suppression of NF-kB activation and through its
aforementioned role in HDAC inhibition, overall controlling
the number of microglia cells and astrocytes as has been found in
both in vitro and in vivo models (Huuskonen et al., 2004). These
neuroprotective effects of butyrate are observed to enhance
memory and restore cognitive functions in mice after systemic
or local administration of sodium butyrate (Ferrante et al., 2003;
Govindarajan et al., 2011). SCFAs also play a crucial role in
immune cell maturation and differentiation. In particular, it has
been proposed that SCFAs might regulate brain monocytes such
as Ly6Chi, which has been proposed to be essential for
hippocampal neurogenesis and memory retention. These
monocytes are important for maintaining brain homeostasis
(Mohle et al., 2016).

Discussion

Research on the gut-brain axis has been increasingly extensive
in the last decade, stemming from its importance in health and
disease, and in maintaining physiological homeostasis. This axis is
proving to be particularly important to neurodevelopment and
neuropsychiatric disorders. The advancement and availability of
sequencing technology has led to a plethora of studies investigating
how the gut microbiome plays a major role in the gut-brain axis.
The dynamic across this axis regarding the effect gut microbial
composition with conditions of the brain has been shown to be
influenced by multiple factors, including diet, age, and stress.
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Chicken microbiome studies include mostly 16S rRNA gene
amplicon sequencing-based studies, but there have been some
metagenomics approaches as well (Gilroy et al., 2021). Microbial
compositional results of similar chicken breeds have shown
varjation that can be attributed to experimental protocol or
differences between individual chickens (Borda-Molina et al.,
2018). Most chicken gut microbiome studies of the gut-brain axis
are limited to gut microbial modulations that do not identify
underlying mechanisms, such as those possibly involving
metabolites. Further research regarding chicken gut microbial
metabolites is needed to elevate our knowledge to a level
comparable to studies of humans and other common animal
models such as mice.

Both for agribusiness and translational objectives, further
investigations of the chicken gut-brain-microbiome axis would
be well-warranted. Previous studies in chicken have shown bird
behavior relating to broad-ranging differences in gut microbiota
(Meyer et al., 2013b; Ji et al., 2019). Current findings suggest that
some of this dynamic can be circular. Gut microbes potentially
influence the serotonergic system and FP behavior in chickens
(de Haas and van der Eijk, 2018). Conversely however, feather
ingestion also by itself alters gut composition and SCFAs
production (Meyer et al, 2012). For how FP continues to
pose economic and animal welfare problems, investigating gut
microbial metabolites’ effect on the serotonergic system and
chicken behavior such as FP and vice versa would be
essential for identifying exact mechanisms and associated
interventions.

In the case of the translational potential of gut-brain axis
research, animal models have helped to reveal the connection
between gut microbes and their metabolites with brain neural
processes and functioning. Microbiome, behavioral, serotonin
and other physiologic indicators implicate similar dynamics
across these two different organisms. Compared to chickens,
while some other animal models have helped illuminate
methodologies and general findings of gut-brain axis
dynamics, their translational value can be limited. The germ-
free mouse model has enriched gut-brain axis research, showing
for instance that cognitive deficits that can be restored on
microbiota transplantation (Luczynski et al., 2016). Current
clinical beneficial effects of microbiota transplantation have
been limited to treating irritable bowel syndrome (IBS). The
possible reasoning behind this limited translational impact thus
far may relate to the constrained range of animal models that
have been utilized. The detachment of laboratory mice from the
natural environment means that these models lack the
environmental exposure similar to humans and thus lack gut
microbial diversity (Masopust et al, 2017). By comparison,
chickens can be readily studied in outdoor and indoor
environments through commonly available agricultural
enclosures. Past research on avian cognitive neuroscience has
furthermore found that the avian brain can be used to

understand human cognition despite significant physiological
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and genetic differences (Rose, 2000; Clayton and Emery, 2015).
Domestication of chicken by humans and similarity in the
microbial community at higher taxonomic levels supports
logistics and relevance for how chickens as a model animal
can be used to investigate the gut-brain axis with the hope of
high translational efficiency (Kohl, 2012). The similarity in
further
development and calibration of underlying biotechnological

microbial community and complexity facilitates

and analytical methodologies needed for robust examinations
of microbiomes. Finally, as is the case with other vertebrates, the
chicken GI tract may be considered to enclose diverse microbiota
and their metabolites, with some of these metabolites being
modulators of birds’ behavior. Gut microbial metabolites
SCFAs

responsible for maintaining gut health. SCFAs affect brain

stimulate enteric serotonin synthesis and are
functioning through direct interaction via HDAC-mediated
epigenetic modulation and immune signaling. A challenge
remains however with most of these studies being from mice
models. Further mechanistic and longitudinal studies in chickens
would help validate the likely consistency by which these
mechanisms dynamics could be considered across animals in
general, including humans. There is overall joint benefit for how
further research into SCFAs within chickens helps to advance
chickens as a model animal to be considered further for
translational and applied gut-brain axis studies, as would both
help tackle complex, multifaceted neuropsychiatric disorders in
humans and investigate conditions of health and behavior of

chickens in agricultural contexts.

Conclusion

Previous research studies in avian species have shown that
experimental manipulation of gut microbiota has an impact
on bird behavior. There is a wide range of behaviors that are
influenced in birds that includes FP which is considered
important for poultry welfare. However, there are fewer
studies in birds investigating exact mechanisms that drive
the gut-microbiome-brain axis. Chicken gut microbiota have a
high abundance of Bacteroidetes and Firmicutes phyla which
includes most of those bacterial genera that produce SCFAs.
SCFAs and serotonin are important mediators of the gut-
microbiome-brain axis with, for an instance, the influence of
SCFAs on peripheral as well as central serotonergic systems
and the potential association of serotonin with FP behavior in
birds. Chicken gut microbial metabolites like SCFAs and their
effects on the serotonergic system remain an essential area for
further inquiry needed to understand behavioral outcomes in
birds. Considering the nature of SCFAs interactions and the
of the
serotonergic system, poultry chicken may be an emergent

conserved molecular and behavioral attributes

translational model for identifying underlying mechanisms
of change within the gut-microbiome-brain axis.
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