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ABSTRACT: Using molecular dynamics simulations, we show semiflexible bead—
spring polymer glasses’ craze extension ratio A, 2 (N.//C.)"*
their entanglement length and C,, is their Flory characteristic ratio, over the entire

range of chain stiffnesses for which their parent melts remain isotropic (1 < N,/Cq,

< 28). Kramer’s classic prediction 4

Craze

for flexible chains with small C, but quantitatively fails badly over the entire range
of N,/C,, studied here because it incorrectly treats Kuhn segments as rigid and
inextensible. As a consequence, polymer glasses with N/C,, all the way down to x v

= /N,/C,, qualitatively captures trends

, where N, is

Kuhn segments in undeformed
glass and fully-developed craze

the lower bound set by the onset of nematic order (N,/C,, = 1) can exhibit a

stable craze drawing and a ductile mechanical response.

1. INTRODUCTION

Ductile glassy polymers’ exceptional fracture toughness owes
primarily to their ability to form mechanically stable crazes and
shear bands. The geometrical structure of crazes in
commodity-polymer glasses, which are composed of rather
flexible chains whose entanglement length N is at least 4 times
their Flory characteristic ratio C," was theoretically explained
by Donald and Kramer over 40 years ago.” In their theory, the
craze extension ratio A, which is experimentally defined as
the ratio p,/pg of the densities of undeformed glass and fully
developed crazes (i.e, crazes away from the interfacial
region),”" is determined by the extent to which chains can
stretch between cross-link-like entanglements without break-
ing. Entangled strands are treated as (N,./C,)-link freely
jointed chains that are Gaussian coils in the undeformed glass
and perfectly straight in the fully developed craze. Since the
links are treated as rigid rods of length /; (the Kuhn length),
the mean-squared end-end distances of the entangled strands
in the undeformed glass and fully developed craze are
(RY, = (N,/JC )y and (R*), = (N./C,)*Ix, respectively.
The theory predicts that

(R, _ [N
A = =
craze \/ <R2 >u \/ Coo ( 1)

A modified version of the same theoretical argument, which
accounts for strands’ projections along the directions parallel
and perpendicular to the direction along which tensile stress is
applied, predicts glasses’ fracture stretch

3N,
/Ifrac = <=2
Coo @)

Remarkably, N, values obtained from measurements of the
melt plateau modulus (GY = 4pksT/5N,) were found to
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successfully predict trends in A, and Ag, for a wide range of
flexible polymer glasses (FPGs) in both experiments and
simulations.” As a consequence, Kramer’s theoretical picture
has been widely accepted as correct for these systems for
decades.”’

In both real and simulated polymer melts, N./C,, is
bounded from below by the onset of nematic order at N,/
Co =~ 157" Kramer’s theory predicts that glassy polymers will
become brittle in this limit. Specifically, it predicts that systems
with N, = C, will have A¢,. = ..., = 1 and thus will be unable
to form stable crazes or shear bands. This prediction casts
doubt on the ability of semiflexible conjugated polymers
(SCPs), which are currently attracting great interest owing to
their potentially unique combination of electronic and
mechanical properties,”'® to form ductile glasses. On the
other hand, eqs 1 and 2 are based on three assumptions of
questionable validity: (i) entangled strands in the undeformed
glass can be accurately modeled as Gaussian coils; (ii)
entangled strands act like chemical cross-links and pull
completely taut prior to fracture; and (jii) Kuhn segments
act like rigid links during sample deformation. None of these
assumptions are very accurate for semiflexible polymer glasses
(SPGs).

As a first step toward resolving this issue, we recently
simulated crazing in a model SPG with N, = C,."” We showed
that this system can stably craze-draw and in fact exhibits a
mechanical response that is qualitatively the same as that of its
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flexible counterparts. We explained this result in terms of the
Kramer theory’s failure to account for chain stretching at the
Kuhn-segment scale [i.e., the failure of assumption (iii)]. Our
model also treats entangled strands as (N,./C,)-link freely
jointed chains that are random coils in the undeformed glass
and perfectly straight in the fully developed craze, but it
assumes that the chain links are extensible and pull taut as the
polymer is drawn into the craze. It postulates that—at least at
the level of a mean-field scaling theory prediction—they can be
captured by assuming that Kuhn segments stretch by a factor
of CY* as chains are drawn into craze fibrils." As a
consequence, it predicts that

1/2
Ne
/Icraze =
V& 3)
and
N 1/2
j’frac =13 — -2
v Coo )

These expressions quantitatively agreed with our simulation
results for A.,,,. and Ag,," but have yet to be tested for systems
with a wide range of N/C,. More fundamentally, the question
of how formulas like eqs 1—4 can make accurate predictions
even when all of the assumptions (i—iii) are inaccurate remains
open. With the exception of our recent study,’” previous
experiments”~ '*™>' and simulations®**~** that measured
Acraze and Ag,. only examined FPGs with N./C,, 2 4. SCPs
with N, S 2C,, are now available,'® but so far, they have only
been synthesized in small quantities, and their glassy-state
mechanical properties have yet to be investigated. Thus, there
is a great opportunity to obtain key insights into these systems’
mechanics using coarse-grained computer simulations.

In this article, using molecular dynamics (MD) simulations
of a standard coarse-grained model, we study crazing in
polymer glasses spanning the entire range of chain stiffnesses
for which their parent melts remain isotropic. We find that eq 3
quantitatively predicts A ., for SPGs (glasses with N./C,, <
4), provides a lower bound for A,,. in FPGs (glasses with N,/
Co 2 4), and outperforms eq 1 over the entire range of N./C,,
studied here (1 < N,/C,, < 28). We also find that eq 4
semiquantitatively predicts Ag,. for SPGs and provides an
upper bound for Ag, in FPGs. We demonstrate that the
assumption'’ giving rise to the differences between eqs 3 and 4
and eqs 1 and 2—that Kuhn segments stretch by a factor
~CL/* as they are drawn into the craze—is, in fact, correct for
bead—spring SPGs. Finally, we explain why these quantitative
discrepancies have not been noticed in previous work and
show that the most essential novel result of ref 17 —that SPGs
can be far more ductile than previously expected—is not
specific to deformation protocols that produce strong triaxial
tensile stresses and induce craze formation, but instead is
robust against changing to drastically different deformation
modes like uniaxial-stress tensile deformation and constant-
volume simple shear.

2. MODELS AND METHODS

All MD simulations are performed using LAMMPS.>® We employ the
semiflexible, breakable-bond variant of the Kremer—Grest
model.**~** Monomers have mass m and interact via the truncated
and shifted Lennard—Jones potential Uy(r) = 4&[(a/ )2 = (a/r)® -
(a/r)"™ + (a/r.)%], where ¢ is the intermonomer binding energy, a is
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the monomer diameter, and r, = 2”/% is the cutoff radius. The

Lennard—Jones time unit is 7 = \/maz/e , and the MD time step
employed in this study is 6t = 7/200. Covalent bonds are modeled
using a quartic potential commonly employed in studies of glassy-
polymeric fracture*®

Upona(!) = k(I = Ry)*(I = R, — B,) (s)
As in ref 17, we set B, = —0.4668a and kq = 4431e/a*. The latter
choice sets the ratio of the forces at which covalent and van der Waals
bonds break to 50; this choice makes bond scission slightly easier than
in many previous studies.”*’ Variable chain stiffness is modeled using
the standard potential U,,,(6) = xe[1 — cos(0)], where @ is the angle
between consecutive covalent-backbone bond vectors and is zero for
straight trimers.

Polymer melts composed of N, = 250—1000 linear chains of N =
400—1600 monomers were thoroughly equilibrated at T = e/kg as
described in ref 30. Numerical values of N,/C,, for all systems are
given in Table 1. The simulated systems spanned nearly the entire

Table 1. Values of N,/C,, for the Systems Employed in This
Study”

K N,./Cy K N./Cs
0.5 28 3.5 1.9
1.0 17 4.0 1.5
1S 9.5 4.5 13
2.0 S.7 S.0 1.1
2.5 3.6 S.5 1.0
3.0 2.5

“N, and C,, were obtained as described in ref 31.

range of positive k (0.5 < k < S.5) for which melts remain isotropic at
this temperature,”’” and a range of N,/C,, values (1 < N,/C,, < 28)
which is wider than the range spanned by real flexible and semiflexible
polymer melts."”'® In contrast to the x < 2 systems employed in most
previous bead—spring crazing studies,”**~** systems with 2.5 < k <
5.5 span the range 1 < N,/C,, < 4, ie, the range of N./C,, values
corresponding to SPGs.'® All systems contained NN = 4 X 10°
monomers and had N 2 20N,, so finite-system-size and finite-N
corrections to A, and g, should be minimal.®

Here, we focus on crazing at a single temperature (T = 0) and
deformation protocol (uniaxial-strain extension) that both favor
brittle deformation.””” After slowly cooling the equilibrated melts to
T = 0 as described in ref, 29, we extended systems along their z-axis at
a constant true strain rate € = 107°/7 that is small enough to be near
the quasistatic limit. Systems were deformed until they had extended
well beyond fracture. Results for higher T will be discussed in an
upcoming publication, and results for other deformation protocols are
discussed in Appendix.

3. RESULTS

Figure 1 summarizes the mechanical and structural responses
of selected systems to the applied deformation. Panel (a)
shows the longitudinal stresses as a function of the true strain €
= In(4), where A is the applied uniaxial stretch. All systems’
initial elastic responses are followed by sharp yielding and
massive strain softening, then by stress plateaus corresponding
to stable craze drawing, then strain hardening, and finally
fracture at stretches Ag, (x) that we identify with the post-yield
stress maxima.” Low-k systems’ strain softening is stronger and
strain hardening is weaker than in previous comprehensive
simulations of FPG crazing,”* respectively because we
prepared systems using a slower thermal quench than was
employed in those studies and because our chains’ backbone
bonds break somewhat more easily. Critically, however, all
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Figure 1. Stress—strain curves [panel (a)], average density of the lowest—p 25% transverse slice [panel (b)], and longitudinal density distributions
at 1 = Agpeet(k) [panel (c)] for bead—spring polymer glasses at T = 0. Vertical dotted lines in panel (b) indicate 4 = A,(x), while horizontal dotted

lines in panel (c) indicate pg(«).

systems’ stress—strain curves are qualitatively the same as those
reported in refs. 5,24.

As mentioned above, experimental values of A.,,. are
identified using the relation A.,,. = p./pg, where p, and pgy
are, respectively, the densities of the undeformed glass and
fully developed crazes.”~* Here, we mimic this procedure by
dividing our systems into 100 slices along their z-axis and
defining py,,, as the average monomer number density of the
least-dense 25% of these slices. As shown in panel (b), for all
systems, pjo,, ~ 1/A in the initial elastic regime where systems
deform homogeneously. Next, it drops sharply as crazes are
nucleated when the systems yield.*>*” Then it plateaus over a
range of € that closely corresponds to the stress plateau [panel
(a)]. Finally, it drops again, slowly during strain hardening and
rapidly upon fracture. We define A, (k) as the stretches
corresponding to the beginnings of the plateaus in py,,, i.e., as
the macroscopic longitudinal stretches at the onset of stable
craze drawing. Panel (c) shows systems’ monomer number
density profiles p(z) at 1 = Ay, (x). All systems exhibit the
coexisting high- and low-density regions typical of systems with
mechanically stable crazes. We define pg(k) as the average
densities of the latter regions, as indicated by the horizontal
dotted lines. Note that this definition leads to estimates
Arare(®) = po(K)/pa(x) that are slightly higher than®* those
obtained by identifying A,,,. with the onset of strain hardening
as was done in ref. S.

Figure 2 shows all systems’ 4,. and g, as a function of
both k [panel (a)] and N,/C,, [panel (b)]. The measured
Acraze(K) values are within 10% of eq 3’s prediction for all k > 3,
i.e., for all our model SPGs except the most flexible (x = 2.5;
see Table 1). For smaller-N,/C,, glasses, eq 3 consistently
underpredicts the measured 4,,., but by no more than ~20%.
As we will discuss in more detail below, this underprediction
may be associated with a failure of eq 3’s assumptions that
entangled strands start off as Gaussian coils and pull fully taut
during crazing, that the strands orient independently of one
another, that Kuhn segments stretch by a factor of C1.* as they
are drawn into the craze, or with some combination of these
factors. The measured g, (k) values are within 10% of eq 4’s
prediction for all x > 1.5, i.e., for all SPGs and also for all FPGs
with N./C, < 10. For larger-N,/C,, glasses, eq 4 more
substantially overpredicts the measured A,,,., perhaps because
it ignores cooperative chain scission events wherein scission of
a weaker (or unusually highly stretched) entangled strand
triggers further scission of the surrounding chains; see Section
4.

In contrast, eq 1 drastically underpredicts A, for all
systems, but since its predictions differ from those of eq 3 by a
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Figure 2. Measured vs predicted values of 4,,. and Ag, for bead—
spring polymer glasses at T = 0. Panel (a) shows results as a function
of the chain stiffness parameter «, while panel (b) shows the same
results as a function of N/C,,. Symbols show simulation results, solid
curves show eqs 3 and 4, and dotted curves show eqs 1 and 2.
Statistical errors in the simulation results (i.e., sample-to-sample
variations of A,,,. and Ag,. for our employed N, N) are estimated to
be less than 5%.

factor of only C/* it correctly predicts the trends in A, for
small-C,, FPGs, partially explaining why it became so well
accepted.”” Equation 2 similarly underpredicts 1;,. for SPGs,
but it overpredicts it for FPGs. While it does a rather poor job
of capturing the variation of Ag,. with chain stiffness, its
agreement with the measured values for k < 1 is better than
that of eq 4. Note that while multiplying the right-hand side of

eq 1 by /3 (as was suggested in refs 3,24) makes its
predictions more accurate, making the prediction

Aaaze = J3N./C,, seems to preclude developing a separate
prediction for a larger Ag, that could agree with the trends

shown in Figure 2.

There is a simple explanation for why Kramer’s classic
expression for A, fails even for FPGs. The original definition
of the Kuhn length is**

https://doi.org/10.1021/acs.macromol.3c01608
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Figure 3. Effect of deformation on bead—spring polymer glasses’ average bond and dihedral angles. Panel (c) shows the ratio [C*(4)] of the strain-
dependent C,q values (eq 8) to their values in the undeformed glass. Vertical dashed and horizontal dotted lines, respectively, indicate A = A (k)
and C* = C/*(x), where the C_, values are taken from the parent melts.”’ Averages are taken over all of the bond and dihedral angles in each
system. Colors are the same as in Figure 1.

Figure 4. Snapshots of the craze structure in systems at 4 = A,,.(k). Images from left to right show results for k = 1, 2, 3, 4, and 5. All images show
regions of size 70a X I, X 70a, where the thickness I, is chosen to make them all show the same number of monomers (30,000). Different colors
indicate monomers belonging to different chains.

I = 10(1 + {cos(9)) )[1 + {cos(y))

equal C*(Aygq) = C*(Aeae) = CL*(k). The assumption of
constant Cg should also fail in real polymer glasses, where it is

1= (cos(@)) N1 = (cos(w) (6) known that tensile plastic deformation occurs largely through
where 6 and  are, respectively, the bond and dihedral angles irreversible dihedral transitions that te?/(i to increase (cos(y)).°
formed by three and four consecutive monomers along chain Our observation that C*(4gy,e) > Ceo' for FPGs is consistent
backbones. Kramer’s model (and indeed, all of the above with eq 3’s underpredictior’l of these systems’ A, values.
discussion of quantities involving C,,), however, defines the Strictly speaking, our model’s treatment of Kuhn segments as
Kuhn length as being composed of \/@ statistical segments, each of which
1 + (cos(8)) contains \/@ monomers, only makes physical sense for C,, >
K= m 0 = Colo @) 1, and thus it must be expected to break down for FPGs with
Ce ~ 1, e.g., for bead—spring glasses with ¥ < 2.5. Thus it is
Equation 7 is the definition more commonly employed in intriguing that all systems have C*(4,;q) values that are within
theories of polymer melt rheology and glassy polymer less than 10% of their C*(k).
mechanics.”””° Since it treats C as fixed, it implicitly To provide a better sense of how the results presented above
assumes both that (cos(f)) remains constant and that connect to the craze microstructure, Figure 4 shows A =
(cos(y)) = 0 throughout the deformation process. Actaze(K) snapshots of the same systems highlighted in Figure 1.
As shown in Figure 3, both of these assumptions fail badly All snapshots show orthorhombic regions of the same length
for bead—spring glasses: (cos(f)) and (cos(y)) increase (70a) along the longitudinal (z) direction and one transverse
sharply in the elastic regime, and although they drop upon (x) direction; their lengths along the other transverse (y)
yielding, their values remain substantially higher than they direction are adjusted to make all snapshots show the same
were in the undeformed glass. As a consequence, the effective number of monomers. The leftmost panel (k = 1) shows the
characteristic ratios characteristic FPG-craze-fibril structure, which was studied in
great detail in refs 5,24. Chains in the primary fibrils are highly
{1+ {cos(0)) | 1 + (cos(y)) aligned along the z-axis, while the much smaller cross-tie fibrils
efft — | _ (cos(0)) \ 1 = (cos(y)) (8) appear to be randomly oriented. The rightmost three panels (k
=3, 4, and S) show that the SPG crazes’ microstructure differs
increase substantially as chains are drawn into craze fibrils. from the FPG-craze microstructure in two key respects: First,
Panel (c) shows that in the limit N,/C, — 1, the fractional as expected from their lower A, values, the chains in SPG
increases in C.g over the range 1 < 4 < A, are quantitatively craze fibrils are much less aligned along the longitudinal
consistent with Kuhn segments stretching by a factor CL/*, as direction. Second, the distinction between primary and cross-
predicted by our model.'” In this limit, the coexistence of tie fibrils, in terms of both their characteristic diameters and
crazed and unyielded regions at equal longitudinal stress (a their characteristic orientations, is much less clear. Comparing
criterion that must ultimately set the actual value of Acy.”>") Figures 2 and 4 suggests that eqs 3 and 4 accurately predict

appears to correspond to the coexistence of these regions at Acraze and Ag,. for polymer glasses whose craze microstructure

craze
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resembles those shown in the rightmost three (but not the
leftmost) snapshots. Note, however, that k-dependent differ-
ences in bead—spring crazes’ structure are strongly T-
dependent;>"” this issue will be explored in more detail in
an upcoming publication.

4. DISCUSSION AND CONCLUSIONS

In this paper, we supplied extensive simulation evidence that
SPGs with N./C,, all the way down to the lower bound set by
the onset of nematic order (N,/C,, = 1) are capable of
exhibiting stable craze drawing and a ductile mechanical
response. We showed that accounting for Kuhn segments’
ability to stretch during sample deformation yields an
expression for the craze extension ratio A.,. (eq 3) that
outperforms Kramer’s classic expression (eq 1) for polymer
glasses spanning the entire range of chain stiffnesses for which
their parent melts remain isotropic. As shown in Figure 2, the
predictions of eq 3 are nearly quantitatively accurate for SPGs
and provide a lower bound on 4, for FPGs that is well above
eq 1’s prediction.

Given the ubiquity of the widely accepted eqs 1 and 2, it is
important to explain why the incorrect assumption leading to
their failure was not noticed decades ago. One reason is the
large uncertainties on both simulated and experimental values
of ez Ny and C,.. Here, we showed that eq 1 underpredicts
bead—spring FPGs’ A,,. by 25—45%. Reference 24 found that
eq 1 undepredicted 4, for k = 0, 0.75, and 1.5 by amounts
similar to those reported here (ie., 15—25%), but since results
were obtained only for these three k values and these
discrepancies are comparable to the scatter of A..,. values in
the most comprehensive experimental studies performed to
date,”” they did not appear to require further investigation.
Reference S, a very careful study of the relation of craze
structure to chain structure, examined the same range of x as
ref 24, but since this study used a less accurate method of
estimating A, (ie, identifying it with the onset of strain
hardening) and employed both flawed N,-estimators®® and
parent melts that were poorly equilibrated, the systematic
errors on its predicted and measured A, were also
comparable to the scatter of the experimental data.

Another reason the failure of eqs 1 and 2 was not noticed
much earlier is that no previous studies of crazing examined a
set of systems with closely spaced N,/ C,, values extending over
a sufliciently wide range. Experiments did not demonstrate the
qualitative failure of eq 1 for SPGs because (as mentioned
above) polymers with N,/C,, < 4 have been synthesized only
recently'”'* and their glassy-state mechanical properties
remain largely unexplored. On the simulation side, since
even the most comprehensive bead—spring studies of crazing
to date®** employed only a few k < 1.5, no studies prior to the
present one obtained a data set that could illustrate the
breakdown of eqs 1 and 2 as we did in Figure 2.

Rudimentary chain-geometry-based predictions like eqs 1—4
necessarily miss much of the physics that controls craze
structure. They ignore the fact that entangled strands are not
Gaussian coils in undeformed glasses and are not perfectly
straight in fully developed crazes. They ignore the fact that
entangled stands cannot orient/stretch independently of their
neighbors and that they are (apparently) constrained by their
rheological tubes rather than by individual entanglements that
act like chemical cross-links.”* They ignore all considerations
of mechanical force balance; A.,,,. must in fact be determined
by the requirement that unyielded and crazed regions coexist
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at equal longitudinal stress, and this coexistence occurs well
before entangled strands pull taut.”**

The ability of eqs 3 and 4 to accurately predict SPGs” Ay,
and Ag,,. despite all of the above-mentioned oversimplifications
likely results from a fortuitous cancellation of errors. For
example, eq 4’s faulty assumption that entangled strands pull
fully taut before breaking should lead to an overestimation of
Agao but its faulty assumption that entanglements act like
chemical cross-links should lead to an underestimation. The
physical validity of expressions like eqs 3 and 4 should
therefore be taken with more than a grain of salt. Nevertheless,
since developing a microscopic theory of the craze structure
that corrects all of the above-mentioned errors has proven to
be an elusive goal, they remain useful for predicting the
outcomes of simulations and, one may hope, future experi-
ments on ductile SPGs. The extensive track record of bead—
spring models in successfully explaining previously-poorly-
understood aspects of glassy polymer mechanics’ suggests that
these expressions should predict the response of real SPGs, at
least for simply structured (chemically homogeneous linear-
polymeric) SPGs like the ones considered here.

Whether they will prove useful for predicting the mechanical
response of suitably engineered SCPs is an open question.
Solid SCPs that are sufficiently good conductors to be well-
suited for electronics applications are usually quite brittle.' ™"
There are many potential reasons for the discrepancy between
this experimental fact and the ductile mechanical responses
reported above. One trivial reason is that the chains in many of
the good-conducting SCP solids studied in the past have been
weakly entangled (with a contour length that is not much
larger than their persistence length) and hence unable to
support stable craze drawing.'* Another is that real SCPs could
fail via shear banding rather than crazing, as expected for
densely entangled polymer glasses.”'®'® This cannot be ruled
out, but we show in the Appendix that the highly ductile
response of the bead—spring SPGs considered in this paper is
robust against changing the applied deformation protocol to
uniaxial-stress extension or constant-volume simple shear.

Other potential reasons for the discrepancy are more directly
related to our modeling approach. Employing much larger
system sizes and/or much lower thermal quench rates might
make Kremer—Grest bead—spring SPGs substantially more
brittle,>”*® but this will remain untestable for at least the next
few years due to limited computer power. Semicrystalline
bead—spring SPGs might be substantially more brittle than
their amorphous counterparts; this hypothesis could be tested
using currently available crystallizable coarse-grained mod-
els”. " Alternatively, the discrepancy might arise from
various factors specific to SCP solids’ local intrachain and
interchain structures, e.g, their degree of regioregularity and
side chain architecture."* ™' These effects of such factors on
the ability of SCPs to form ductile solids could potentially be
tested using (very computationally expensive) simulations of
recently developed finer-grained SCP models.****

B APPENDIX. DEFORMATION-PROTOCOL
INDEPENDENCE OF KREMER—GREST SPGS’
DUCTILITY

In the main text, we focused on results for a single deformation
protocol (uniaxial-strain extension) that, because it is highly
dilatative and produces strongly triaxial tensile stresses, is
guaranteed to produce either stable craze growth or brittle
fracture.>® Here, we demonstrate that the most essential result
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Figure S. Mechanical response of SPGs under different deformation protocols. Panels (a, b), respectively, show the stress—strain curves for
uniaxial-stress extension (extension along the z-direction with the transverse components of the stress maintained at zero) and constant-volume
simple shear. In panel (b), o is the shear stress and ¥ is the engineering shear strain. Panel (c) shows the tensile/shear toughnesses for all three
protocols, here defined as the work per particle over the range 1 < A < A, or 0 < ¥ < ¥, results for uniaxial strain correspond to those

highlighted in Figures 1 and 2.

of both ref 17 and the present work—that SPGs can be far
more ductile than previously expected—is robust against
changing to a drastically different deformation mode.

Figure Sa,b, respectively, shows the stress—strain curves for
uniaxial-stress tensile deformation and constant-volume simple
shear,”>* for the same systems highlighted in Figure 1. These
simulations employed the same applied strain rate used in the
uniaxial-strain runs, i.e., € = 1073/7. All trends are the same; as
k increases and N,/C, decreases, the degree of strain
hardening and the fracture stress increase, and while the
fracture strains decrease, systems remain ductile all the way to
the N,./C,, — 1 nematic limit.

Figure S(c) shows the toughnesses of these systems, i.e., the
work per monomer performed by the applied deformation
prior to fracture at 4 = Ag,. or ¥ = yg,. These are not the
systems’ fracture toughnesses, which are defined by the energy
release rate or J integral rather than the area under stress—
strain curves,” but are nonetheless a first-order measure of
systems’ ability to resist fracture. Results for all three
deformation protocols show the same trends; toughness
gradually decreases with increasing x and decreasing N./C,,
but it decreases by no more than a factor of ~2.5 over the
entire range of chain stiffnesses considered here. Thus, our
results indicate that SPGs (or at least bead—spring SPGs with
our employed system size and thermal quench rate) can be
robustly tough.
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B ADDITIONAL NOTES

"Kuhn segments are able to stretch by this factor because they
are composed of /C, statistical segments, each of which

0

contains ,/C, monomers. Note that while experimental

studies often define N, as the number of statistical segments
per entangled strand’ rather than the number of monomers per
entangled strand as we have done here, this alternative
definition does not affect the above arguments; it reduces the

N, in eqs 1—4 by a factor of \/C, and then sets C,, = 1.

(&)
*In other words, g, is the stretch at which the longitudinal
stress o, has either its global or its post-yield maximum.
FSince stress tends to concentrate at (and cracks to propagate
along) the boundaries between crystalline and amorphous
regions,” and maximal stress concentrations scale approx-

imately as v/L,"" making these tests conclusive might require
simulating very large systems.
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