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ABSTRACT: Using molecular dynamics simulations, we show semiflexible bead−
spring polymer glasses’ craze extension ratio N C( / )craze e

1/2, where Ne is
their entanglement length and C∞ is their Flory characteristic ratio, over the entire
range of chain stiffnesses for which their parent melts remain isotropic (1 ≤ Ne/C∞

≲ 28). Kramer’s classic prediction = N C/craze e qualitatively captures trends
for flexible chains with small C∞, but quantitatively fails badly over the entire range
of Ne/C∞ studied here because it incorrectly treats Kuhn segments as rigid and
inextensible. As a consequence, polymer glasses with Ne/C∞ all the way down to
the lower bound set by the onset of nematic order (Ne/C∞ = 1) can exhibit a
stable craze drawing and a ductile mechanical response.

1. INTRODUCTION
Ductile glassy polymers’ exceptional fracture toughness owes
primarily to their ability to form mechanically stable crazes and
shear bands. The geometrical structure of crazes in
commodity-polymer glasses, which are composed of rather
flexible chains whose entanglement length Ne is at least 4 times
their Flory characteristic ratio C∞,

1 was theoretically explained
by Donald and Kramer over 40 years ago.2,3 In their theory, the
craze extension ratio λcraze, which is experimentally defined as
the ratio ρu/ρfd of the densities of undeformed glass and fully
developed crazes (i.e., crazes away from the interfacial
region),3,4 is determined by the extent to which chains can
stretch between cross-link-like entanglements without break-
ing. Entangled strands are treated as (Ne/C∞)-link freely
jointed chains that are Gaussian coils in the undeformed glass
and perfectly straight in the fully developed craze. Since the
links are treated as rigid rods of length K (the Kuhn length),
the mean-squared end-end distances of the entangled strands
in the undeformed glass and fully developed craze are

=R N C( / )2
u e K

2 and =R N C( / )2
t e

2
K
2 , respectively.

The theory predicts that
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(1)

A modified version of the same theoretical argument, which
accounts for strands’ projections along the directions parallel
and perpendicular to the direction along which tensile stress is
applied, predicts glasses’ fracture stretch

=
N

C
3

2frac
e

(2)

Remarkably, Ne values obtained from measurements of the
melt plateau modulus (GN

0 = 4ρkBT/5Ne) were found to

successfully predict trends in λcraze and λfrac for a wide range of
flexible polymer glasses (FPGs) in both experiments and
simulations.3,5 As a consequence, Kramer’s theoretical picture
has been widely accepted as correct for these systems for
decades.6,7

In both real and simulated polymer melts, Ne/C∞ is
bounded from below by the onset of nematic order at Ne/
C∞ ≃ 1.8−10 Kramer’s theory predicts that glassy polymers will
become brittle in this limit. Specifically, it predicts that systems
with Ne = C∞ will have λfrac = λcraze = 1 and thus will be unable
to form stable crazes or shear bands. This prediction casts
doubt on the ability of semiflexible conjugated polymers
(SCPs), which are currently attracting great interest owing to
their potentially unique combination of electronic and
mechanical properties,9−16 to form ductile glasses. On the
other hand, eqs 1 and 2 are based on three assumptions of
questionable validity: (i) entangled strands in the undeformed
glass can be accurately modeled as Gaussian coils; (ii)
entangled strands act like chemical cross-links and pull
completely taut prior to fracture; and (iii) Kuhn segments
act like rigid links during sample deformation. None of these
assumptions are very accurate for semiflexible polymer glasses
(SPGs).
As a first step toward resolving this issue, we recently

simulated crazing in a model SPG with Ne = C∞.
17 We showed

that this system can stably craze-draw and in fact exhibits a
mechanical response that is qualitatively the same as that of its
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flexible counterparts. We explained this result in terms of the
Kramer theory’s failure to account for chain stretching at the
Kuhn-segment scale [i.e., the failure of assumption (iii)]. Our
model also treats entangled strands as (Ne/C∞)-link freely
jointed chains that are random coils in the undeformed glass
and perfectly straight in the fully developed craze, but it
assumes that the chain links are extensible and pull taut as the
polymer is drawn into the craze. It postulates that�at least at
the level of a mean-field scaling theory prediction�they can be
captured by assuming that Kuhn segments stretch by a factor
of C∞

1/4 as chains are drawn into craze fibrils.1 As a
consequence, it predicts that

=
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These expressions quantitatively agreed with our simulation
results for λcraze and λfrac,17 but have yet to be tested for systems
with a wide range of Ne/C∞. More fundamentally, the question
of how formulas like eqs 1−4 can make accurate predictions
even when all of the assumptions (i−iii) are inaccurate remains
open. With the exception of our recent study,17 previous
experiments2−4,18−21 and simulations5,22−24 that measured
λcraze and λfrac only examined FPGs with Ne/C∞ ≳ 4. SCPs
with Ne ≲ 2C∞ are now available,10 but so far, they have only
been synthesized in small quantities, and their glassy-state
mechanical properties have yet to be investigated. Thus, there
is a great opportunity to obtain key insights into these systems’
mechanics using coarse-grained computer simulations.
In this article, using molecular dynamics (MD) simulations

of a standard coarse-grained model, we study crazing in
polymer glasses spanning the entire range of chain stiffnesses
for which their parent melts remain isotropic. We find that eq 3
quantitatively predicts λcraze for SPGs (glasses with Ne/C∞ ≲
4), provides a lower bound for λcraze in FPGs (glasses with Ne/
C∞ ≳ 4), and outperforms eq 1 over the entire range of Ne/C∞
studied here (1 ≤ Ne/C∞ ≲ 28). We also find that eq 4
semiquantitatively predicts λfrac for SPGs and provides an
upper bound for λfrac in FPGs. We demonstrate that the
assumption17 giving rise to the differences between eqs 3 and 4
and eqs 1 and 2�that Kuhn segments stretch by a factor
∼C∞

1/4 as they are drawn into the craze�is, in fact, correct for
bead−spring SPGs. Finally, we explain why these quantitative
discrepancies have not been noticed in previous work and
show that the most essential novel result of ref 17 �that SPGs
can be far more ductile than previously expected�is not
specific to deformation protocols that produce strong triaxial
tensile stresses and induce craze formation, but instead is
robust against changing to drastically different deformation
modes like uniaxial-stress tensile deformation and constant-
volume simple shear.

2. MODELS AND METHODS
All MD simulations are performed using LAMMPS.25 We employ the
semiflexible, breakable-bond variant of the Kremer−Grest
model.26−28 Monomers have mass m and interact via the truncated
and shifted Lennard−Jones potential ULJ(r) = 4ε[(a/r)12 − (a/r)6 −
(a/rc)12 + (a/rc)6], where ε is the intermonomer binding energy, a is

the monomer diameter, and rc = 27/6a is the cutoff radius. The
Lennard−Jones time unit is = ma /2 , and the MD time step
employed in this study is δt = τ/200. Covalent bonds are modeled
using a quartic potential commonly employed in studies of glassy-
polymeric fracture28

=U k R R B( ) ( ) ( )bond q b
3

b 2 (5)

As in ref 17, we set B2 = −0.4668a and kq = 4431ε/a4. The latter
choice sets the ratio of the forces at which covalent and van der Waals
bonds break to 50; this choice makes bond scission slightly easier than
in many previous studies.5,29 Variable chain stiffness is modeled using
the standard potential Uang(θ) = κε[1 − cos(θ)], where θ is the angle
between consecutive covalent-backbone bond vectors and is zero for
straight trimers.

Polymer melts composed of Nch = 250−1000 linear chains of N =
400−1600 monomers were thoroughly equilibrated at T = ε/kB as
described in ref 30. Numerical values of Ne/C∞ for all systems are
given in Table 1. The simulated systems spanned nearly the entire

range of positive κ (0.5 ≤ κ ≤ 5.5) for which melts remain isotropic at
this temperature,27 and a range of Ne/C∞ values (1 ≤ Ne/C∞ ≲ 28)
which is wider than the range spanned by real flexible and semiflexible
polymer melts.1,10 In contrast to the κ ≤ 2 systems employed in most
previous bead−spring crazing studies,5,22−24 systems with 2.5 ≤ κ ≤
5.5 span the range 1 ≤ Ne/C∞ ≤ 4, i.e., the range of Ne/C∞ values
corresponding to SPGs.10 All systems contained NchN = 4 × 105
monomers and had N ≳ 20Ne, so finite-system-size and finite-N
corrections to λcraze and λfrac should be minimal.5

Here, we focus on crazing at a single temperature (T = 0) and
deformation protocol (uniaxial-strain extension) that both favor
brittle deformation.5−7 After slowly cooling the equilibrated melts to
T = 0 as described in ref, 29, we extended systems along their z-axis at
a constant true strain rate ϵ ̇ = 10−5/τ that is small enough to be near
the quasistatic limit. Systems were deformed until they had extended
well beyond fracture. Results for higher T will be discussed in an
upcoming publication, and results for other deformation protocols are
discussed in Appendix.

3. RESULTS
Figure 1 summarizes the mechanical and structural responses
of selected systems to the applied deformation. Panel (a)
shows the longitudinal stresses as a function of the true strain ϵ
≡ ln(λ), where λ is the applied uniaxial stretch. All systems’
initial elastic responses are followed by sharp yielding and
massive strain softening, then by stress plateaus corresponding
to stable craze drawing, then strain hardening, and finally
fracture at stretches λfrac(κ) that we identify with the post-yield
stress maxima.2 Low-κ systems’ strain softening is stronger and
strain hardening is weaker than in previous comprehensive
simulations of FPG crazing,5,24 respectively because we
prepared systems using a slower thermal quench than was
employed in those studies and because our chains’ backbone
bonds break somewhat more easily. Critically, however, all

Table 1. Values of Ne/C∞ for the Systems Employed in This
Studya

κ Ne/C∞ κ Ne/C∞

0.5 28 3.5 1.9
1.0 17 4.0 1.5
1.5 9.5 4.5 1.3
2.0 5.7 5.0 1.1
2.5 3.6 5.5 1.0
3.0 2.5

aNe and C∞ were obtained as described in ref 31.
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systems’ stress−strain curves are qualitatively the same as those
reported in refs. 5,24.
As mentioned above, experimental values of λcraze are

identified using the relation λcraze = ρu/ρfd, where ρu and ρfd
are, respectively, the densities of the undeformed glass and
fully developed crazes.2−4 Here, we mimic this procedure by
dividing our systems into 100 slices along their z-axis and
defining ρlow as the average monomer number density of the
least-dense 25% of these slices. As shown in panel (b), for all
systems, ρlow ∼ 1/λ in the initial elastic regime where systems
deform homogeneously. Next, it drops sharply as crazes are
nucleated when the systems yield.32,33 Then it plateaus over a
range of ϵ that closely corresponds to the stress plateau [panel
(a)]. Finally, it drops again, slowly during strain hardening and
rapidly upon fracture. We define λonset(κ) as the stretches
corresponding to the beginnings of the plateaus in ρlow, i.e., as
the macroscopic longitudinal stretches at the onset of stable
craze drawing. Panel (c) shows systems’ monomer number
density profiles ρ(z) at λ = λonset(κ). All systems exhibit the
coexisting high- and low-density regions typical of systems with
mechanically stable crazes. We define ρfd(κ) as the average
densities of the latter regions, as indicated by the horizontal
dotted lines. Note that this definition leads to estimates
λcraze(κ) = ρu(κ)/ρfd(κ) that are slightly higher than24 those
obtained by identifying λcraze with the onset of strain hardening
as was done in ref. 5.
Figure 2 shows all systems’ λcraze and λfrac, as a function of

both κ [panel (a)] and Ne/C∞ [panel (b)]. The measured
λcraze(κ) values are within 10% of eq 3’s prediction for all κ ≥ 3,
i.e., for all our model SPGs except the most flexible (κ = 2.5;
see Table 1). For smaller-Ne/C∞ glasses, eq 3 consistently
underpredicts the measured λcraze, but by no more than ∼20%.
As we will discuss in more detail below, this underprediction
may be associated with a failure of eq 3’s assumptions that
entangled strands start off as Gaussian coils and pull fully taut
during crazing, that the strands orient independently of one
another, that Kuhn segments stretch by a factor of C∞

1/4 as they
are drawn into the craze, or with some combination of these
factors. The measured λfrac(κ) values are within 10% of eq 4’s
prediction for all κ ≥ 1.5, i.e., for all SPGs and also for all FPGs
with Ne/C∞ < 10. For larger-Ne/C∞ glasses, eq 4 more
substantially overpredicts the measured λcraze, perhaps because
it ignores cooperative chain scission events wherein scission of
a weaker (or unusually highly stretched) entangled strand
triggers further scission of the surrounding chains; see Section
4.
In contrast, eq 1 drastically underpredicts λcraze for all

systems, but since its predictions differ from those of eq 3 by a

factor of only C∞
1/4, it correctly predicts the trends in λcraze for

small-C∞ FPGs, partially explaining why it became so well
accepted.6,7 Equation 2 similarly underpredicts λfrac for SPGs,
but it overpredicts it for FPGs. While it does a rather poor job
of capturing the variation of λfrac with chain stiffness, its
agreement with the measured values for κ ≤ 1 is better than
that of eq 4. Note that while multiplying the right-hand side of
eq 1 by 3 (as was suggested in refs 3,24) makes its
predictions more accurate, making the prediction

= N C3 /craze e seems to preclude developing a separate
prediction for a larger λfrac that could agree with the trends
shown in Figure 2.
There is a simple explanation for why Kramer’s classic

expression for λcraze fails even for FPGs. The original definition
of the Kuhn length is34

Figure 1. Stress−strain curves [panel (a)], average density of the lowest−ρ 25% transverse slice [panel (b)], and longitudinal density distributions
at λ = λonset(κ) [panel (c)] for bead−spring polymer glasses at T = 0. Vertical dotted lines in panel (b) indicate λ = λonset(κ), while horizontal dotted
lines in panel (c) indicate ρfd(κ).

Figure 2. Measured vs predicted values of λcraze and λfrac for bead−
spring polymer glasses at T = 0. Panel (a) shows results as a function
of the chain stiffness parameter κ, while panel (b) shows the same
results as a function of Ne/C∞. Symbols show simulation results, solid
curves show eqs 3 and 4, and dotted curves show eqs 1 and 2.
Statistical errors in the simulation results (i.e., sample-to-sample
variations of λcraze and λfrac for our employed NchN) are estimated to
be less than 5%.
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where θ and ψ are, respectively, the bond and dihedral angles
formed by three and four consecutive monomers along chain
backbones. Kramer’s model (and indeed, all of the above
discussion of quantities involving C∞), however, defines the
Kuhn length as

= +
C

1 cos( )
1 cos( )K 0 0

(7)

Equation 7 is the definition more commonly employed in
theories of polymer melt rheology and glassy polymer
mechanics.6,7,35 Since it treats C∞ as fixed, it implicitly
assumes both that ⟨cos(θ)⟩ remains constant and that
⟨cos(ψ)⟩ = 0 throughout the deformation process.
As shown in Figure 3, both of these assumptions fail badly

for bead−spring glasses: ⟨cos(θ)⟩ and ⟨cos(ψ)⟩ increase
sharply in the elastic regime, and although they drop upon
yielding, their values remain substantially higher than they
were in the undeformed glass. As a consequence, the effective
characteristic ratios

= + +i
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1 cos( )
1 cos( )

1 cos( )
1 cos( )eff

(8)

increase substantially as chains are drawn into craze fibrils.
Panel (c) shows that in the limit Ne/C∞ → 1, the fractional
increases in Ceff over the range 1 ≤ λ ≤ λcraze are quantitatively
consistent with Kuhn segments stretching by a factor C∞

1/4, as
predicted by our model.17 In this limit, the coexistence of
crazed and unyielded regions at equal longitudinal stress (a
criterion that must ultimately set the actual value of λcraze3,24)
appears to correspond to the coexistence of these regions at

equal C*(λyield) = C*(λcraze) = C∞
1/4(κ). The assumption of

constant Ceff should also fail in real polymer glasses, where it is
known that tensile plastic deformation occurs largely through
irreversible dihedral transitions that tend to increase ⟨cos(ψ)⟩.6
Our observation that C*(λcraze) > C∞

1/4 for FPGs is consistent
with eq 3’s underprediction of these systems’ λcraze values.
Strictly speaking, our model’s treatment of Kuhn segments as
being composed of C statistical segments, each of which
contains C monomers, only makes physical sense for C∞ ≫
1, and thus it must be expected to break down for FPGs with
C∞ ∼ 1, e.g., for bead−spring glasses with κ ≲ 2.5. Thus it is
intriguing that all systems have C*(λyield) values that are within
less than 10% of their C∞

1/4(κ).
To provide a better sense of how the results presented above

connect to the craze microstructure, Figure 4 shows λ =
λcraze(κ) snapshots of the same systems highlighted in Figure 1.
All snapshots show orthorhombic regions of the same length
(70a) along the longitudinal (z) direction and one transverse
(x) direction; their lengths along the other transverse (y)
direction are adjusted to make all snapshots show the same
number of monomers. The leftmost panel (κ = 1) shows the
characteristic FPG-craze-fibril structure, which was studied in
great detail in refs 5,24. Chains in the primary fibrils are highly
aligned along the z-axis, while the much smaller cross-tie fibrils
appear to be randomly oriented. The rightmost three panels (κ
= 3, 4, and 5) show that the SPG crazes’ microstructure differs
from the FPG-craze microstructure in two key respects: First,
as expected from their lower λcraze values, the chains in SPG
craze fibrils are much less aligned along the longitudinal
direction. Second, the distinction between primary and cross-
tie fibrils, in terms of both their characteristic diameters and
their characteristic orientations, is much less clear. Comparing
Figures 2 and 4 suggests that eqs 3 and 4 accurately predict
λcraze and λfrac for polymer glasses whose craze microstructure

Figure 3. Effect of deformation on bead−spring polymer glasses’ average bond and dihedral angles. Panel (c) shows the ratio [C*(λ)] of the strain-
dependent Ceff values (eq 8) to their values in the undeformed glass. Vertical dashed and horizontal dotted lines, respectively, indicate λ = λcraze(κ)
and C* = C∞

1/4(κ), where the C∞ values are taken from the parent melts.31 Averages are taken over all of the bond and dihedral angles in each
system. Colors are the same as in Figure 1.

Figure 4. Snapshots of the craze structure in systems at λ = λcraze(κ). Images from left to right show results for κ = 1, 2, 3, 4, and 5. All images show
regions of size 70a × ly × 70a, where the thickness ly is chosen to make them all show the same number of monomers (30,000). Different colors
indicate monomers belonging to different chains.
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resembles those shown in the rightmost three (but not the
leftmost) snapshots. Note, however, that κ-dependent differ-
ences in bead−spring crazes’ structure are strongly T-
dependent;5,17 this issue will be explored in more detail in
an upcoming publication.

4. DISCUSSION AND CONCLUSIONS
In this paper, we supplied extensive simulation evidence that
SPGs with Ne/C∞ all the way down to the lower bound set by
the onset of nematic order (Ne/C∞ = 1) are capable of
exhibiting stable craze drawing and a ductile mechanical
response. We showed that accounting for Kuhn segments’
ability to stretch during sample deformation yields an
expression for the craze extension ratio λcraze (eq 3) that
outperforms Kramer’s classic expression (eq 1) for polymer
glasses spanning the entire range of chain stiffnesses for which
their parent melts remain isotropic. As shown in Figure 2, the
predictions of eq 3 are nearly quantitatively accurate for SPGs
and provide a lower bound on λcraze for FPGs that is well above
eq 1’s prediction.
Given the ubiquity of the widely accepted eqs 1 and 2, it is

important to explain why the incorrect assumption leading to
their failure was not noticed decades ago. One reason is the
large uncertainties on both simulated and experimental values
of λcraze, Ne, and C∞. Here, we showed that eq 1 underpredicts
bead−spring FPGs’ λcraze by 25−45%. Reference 24 found that
eq 1 undepredicted λcraze for κ = 0, 0.75, and 1.5 by amounts
similar to those reported here (i.e., 15−25%), but since results
were obtained only for these three κ values and these
discrepancies are comparable to the scatter of λcraze values in
the most comprehensive experimental studies performed to
date,2,3 they did not appear to require further investigation.
Reference 5, a very careful study of the relation of craze
structure to chain structure, examined the same range of κ as
ref 24, but since this study used a less accurate method of
estimating λcraze (i.e., identifying it with the onset of strain
hardening) and employed both flawed Ne-estimators36 and
parent melts that were poorly equilibrated, the systematic
errors on its predicted and measured λcraze were also
comparable to the scatter of the experimental data.
Another reason the failure of eqs 1 and 2 was not noticed

much earlier is that no previous studies of crazing examined a
set of systems with closely spaced Ne/C∞ values extending over
a sufficiently wide range. Experiments did not demonstrate the
qualitative failure of eq 1 for SPGs because (as mentioned
above) polymers with Ne/C∞ < 4 have been synthesized only
recently10,14 and their glassy-state mechanical properties
remain largely unexplored. On the simulation side, since
even the most comprehensive bead−spring studies of crazing
to date5,24 employed only a few κ ≤ 1.5, no studies prior to the
present one obtained a data set that could illustrate the
breakdown of eqs 1 and 2 as we did in Figure 2.
Rudimentary chain-geometry-based predictions like eqs 1−4

necessarily miss much of the physics that controls craze
structure. They ignore the fact that entangled strands are not
Gaussian coils in undeformed glasses and are not perfectly
straight in fully developed crazes. They ignore the fact that
entangled stands cannot orient/stretch independently of their
neighbors and that they are (apparently) constrained by their
rheological tubes rather than by individual entanglements that
act like chemical cross-links.24 They ignore all considerations
of mechanical force balance; λcraze must in fact be determined
by the requirement that unyielded and crazed regions coexist

at equal longitudinal stress, and this coexistence occurs well
before entangled strands pull taut.3,24

The ability of eqs 3 and 4 to accurately predict SPGs’ λcraze
and λfrac despite all of the above-mentioned oversimplifications
likely results from a fortuitous cancellation of errors. For
example, eq 4’s faulty assumption that entangled strands pull
fully taut before breaking should lead to an overestimation of
λfrac, but its faulty assumption that entanglements act like
chemical cross-links should lead to an underestimation. The
physical validity of expressions like eqs 3 and 4 should
therefore be taken with more than a grain of salt. Nevertheless,
since developing a microscopic theory of the craze structure
that corrects all of the above-mentioned errors has proven to
be an elusive goal, they remain useful for predicting the
outcomes of simulations and, one may hope, future experi-
ments on ductile SPGs. The extensive track record of bead−
spring models in successfully explaining previously-poorly-
understood aspects of glassy polymer mechanics7 suggests that
these expressions should predict the response of real SPGs, at
least for simply structured (chemically homogeneous linear-
polymeric) SPGs like the ones considered here.
Whether they will prove useful for predicting the mechanical

response of suitably engineered SCPs is an open question.
Solid SCPs that are sufficiently good conductors to be well-
suited for electronics applications are usually quite brittle.14,15

There are many potential reasons for the discrepancy between
this experimental fact and the ductile mechanical responses
reported above. One trivial reason is that the chains in many of
the good-conducting SCP solids studied in the past have been
weakly entangled (with a contour length that is not much
larger than their persistence length) and hence unable to
support stable craze drawing.14 Another is that real SCPs could
fail via shear banding rather than crazing, as expected for
densely entangled polymer glasses.6,18,19 This cannot be ruled
out, but we show in the Appendix that the highly ductile
response of the bead−spring SPGs considered in this paper is
robust against changing the applied deformation protocol to
uniaxial-stress extension or constant-volume simple shear.
Other potential reasons for the discrepancy are more directly

related to our modeling approach. Employing much larger
system sizes and/or much lower thermal quench rates might
make Kremer−Grest bead−spring SPGs substantially more
brittle,37,38 but this will remain untestable for at least the next
few years due to limited computer power. Semicrystalline
bead−spring SPGs might be substantially more brittle than
their amorphous counterparts; this hypothesis could be tested
using currently available crystallizable coarse-grained mod-
els3.41,42 Alternatively, the discrepancy might arise from
various factors specific to SCP solids’ local intrachain and
interchain structures, e.g., their degree of regioregularity and
side chain architecture.14−16 These effects of such factors on
the ability of SCPs to form ductile solids could potentially be
tested using (very computationally expensive) simulations of
recently developed finer-grained SCP models.43,44

■ APPENDIX. DEFORMATION-PROTOCOL
INDEPENDENCE OF KREMER−GREST SPGS’
DUCTILITY

In the main text, we focused on results for a single deformation
protocol (uniaxial-strain extension) that, because it is highly
dilatative and produces strongly triaxial tensile stresses, is
guaranteed to produce either stable craze growth or brittle
fracture.3,6 Here, we demonstrate that the most essential result
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of both ref 17 and the present work�that SPGs can be far
more ductile than previously expected�is robust against
changing to a drastically different deformation mode.
Figure 5a,b, respectively, shows the stress−strain curves for

uniaxial-stress tensile deformation and constant-volume simple
shear,25,33 for the same systems highlighted in Figure 1. These
simulations employed the same applied strain rate used in the
uniaxial-strain runs, i.e., ϵ ̇ = 10−5/τ. All trends are the same; as
κ increases and Ne/C∞ decreases, the degree of strain
hardening and the fracture stress increase, and while the
fracture strains decrease, systems remain ductile all the way to
the Ne/C∞ → 1 nematic limit.
Figure 5(c) shows the toughnesses of these systems, i.e., the

work per monomer performed by the applied deformation
prior to fracture at λ = λfrac or γ = γfrac. These are not the
systems’ fracture toughnesses, which are defined by the energy
release rate or J integral rather than the area under stress−
strain curves,45 but are nonetheless a first-order measure of
systems’ ability to resist fracture. Results for all three
deformation protocols show the same trends; toughness
gradually decreases with increasing κ and decreasing Ne/C∞,
but it decreases by no more than a factor of ∼2.5 over the
entire range of chain stiffnesses considered here. Thus, our
results indicate that SPGs (or at least bead−spring SPGs with
our employed system size and thermal quench rate) can be
robustly tough.
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■ ADDITIONAL NOTES
1Kuhn segments are able to stretch by this factor because they
are composed of C statistical segments, each of which
contains C monomers. Note that while experimental
studies often define Ne as the number of statistical segments
per entangled strand1 rather than the number of monomers per
entangled strand as we have done here, this alternative
definition does not affect the above arguments; it reduces the
Ne in eqs 1−4 by a factor of C and then sets C∞ = 1.
2In other words, λfrac is the stretch at which the longitudinal
stress σzz has either its global or its post-yield maximum.
3Since stress tends to concentrate at (and cracks to propagate
along) the boundaries between crystalline and amorphous
regions,39 and maximal stress concentrations scale approx-
imately as L ,40 making these tests conclusive might require
simulating very large systems.
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