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Abstract— More than 6 billion smartphones available worldwide can enable governments and 
public health organizations to develop apps to manage global pandemics. However, hackers can 
take advantage of this opportunity to target the public in nefarious ways through malware disguised 
as pandemics-related apps. A recent analysis conducted during the COVID-19 pandemic showed 
that several variants of COVID-19-related malware was installed by the public from non-trusted 
sources. We propose the use of app permissions and an extra feature (the total number of 
permissions) to develop a static detector using Machine Learning (ML) models to enable the fast-
detection of pandemics-related Android malware at installation time. Using a dataset of more than 
2000 COVID-19 related apps and by evaluating ML models created using decision trees and Naive 
Bayes, our results show that pandemics-related malware apps can be detected with an accuracy 
above 90% using decision tree models with app permissions and the proposed feature.  

Introduction 

The advent of global, real-time telecommunications along with the growth of mobile cellular 
technology in the last 25 years have helped to develop new alternatives to prepare for emergent 
diseases and their epidemics (and possibly pandemics). Various types of wearable/portable sensors 
that can be connected via Bluetooth to a smartphone provide an alternative to inform, diagnose, 
track, treat and manage epidemics and global pandemics [1]. With the emergence of the COVID-
19 pandemic, more than 2,000 COVID-themed mobile apps (not including malware) were 
developed for different purposes around the world as of December of 2020 [2].  

The COVID-19 pandemic has been exploited by cybercriminals using different threats, attacks and 
channels including Distributed Denial of Services Attacks (DDoS), malicious domains and 
websites, malware, ransomware, spam emails, malicious social media messaging, business email 
compromise, mobile apps, and browsing apps [3], impacting healthcare systems, financial 
services, government and media outlets, and the public. Cybercrime increased dramatically during 
the COVID-19 pandemic, with an estimated impact of more than 6 trillion US dollars worldwide 
in 2021 [4].  This major increase in cybercrime activity during 2021 was due to the massive online 
activity caused by worldwide lockdowns and restrictions in movement to mitigate the COVID-19 
pandemic disease [4], and was performed by not only solitaire hackers and hacking groups, but 
also by major state-sponsored cybercriminals.  

The availability of more than 6 billion smartphones during the COVID-19 pandemic [1] and their 
use in future pandemics (and other public health emergencies) make them an attractive target for 
hackers to release malware disguised as pandemics-related apps through non-trusted channels 
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(e.g., via social media, SMS/MMS, websites) fueled by disinformation. Moreover, pandemic-
related malware installed during emergencies could be used to enable DDoS attacks on other 
systems. Thus, to prepare for future pandemics we must develop systems to help mitigate the 
effects of emergent diseases and protect the global cyberinfrastructure during the containment and 
mitigation of pandemics. 

In this study, we seek to answer the following research question: can pandemic-related malware 
be detected using a static detector based on Android permissions and machine learning methods. 

Research contributions of this work 

We summarize our research contributions as follows: 

 We review mobile and smartphone use cases and how cybercriminals can exploit mobile 
apps during epidemics and pandemics.  

 We propose and evaluate the use of Android app permissions combined with Machine 
Learning (ML) to enable static detectors for the fast detection of  pandemics-related mobile 
malware at the edge.  

 We propose the use of the total number of app permissions as an extra feature in the 
permission-based static detector (in addition to the app permissions themselves) as an 
approach to increase the accuracy of the detection. 

We organize the rest of the paper as follows. In the next section we review related works. Later 
we present use cases of mobile phones and smartphones apps in epidemics/pandemics. Then we 
review mobile malware during pandemics with a focus on the COVID-19 pandemic. Next, we 
propose the use of app permissions and Machine Learning (ML) as a fast approach to detect 
malware in Android smartphones. Finally, we make some concluding remarks and some final 
recommendations on protection to smartphone users in future pandemics. 

Related Work 

Although the use of  general Android  permissions  to detect malware has been proposed in the 
past using permissions with machine learning [5], permissions with Application Programming 
Interface (API) calls/graphs [6], comparison of permission patterns [7], intents and permissions 
[8], using multiple detectors and observation windows [9], and other techniques combining 
permissions with other static and dynamic approaches [10], these works were developed before 
the onset of COVID-19 pandemic when there was no knowledge on how global pandemic themed 
apps (both benign and malign) were implemented.  
 
During the COVID-19 pandemic, Wang et al. researched and collected a dataset of COVID-19-
themed apps and types (e.g., malware and not malware) with more than 2000 unique apps collected 
from trusted and non-trusted sources including both benign and malign apps [2] and analyzed their 
permissions. In their work, Wang et al. did not propose specific approaches to detect malware for 
pandemic-related apps. Similarly, Sun et al. [11] analyzed the security and privacy of 34 COVID-
19 contact tracing apps with the goal of recommending security practices in the development of 
COVID-19-themed apps, and the development of a tool called COVIDGUARDIAN based on 
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static analysis and data flow analysis to find vulnerabilities of trusted COVID-19-themed apps. 
Recently Manzil and Naik [12] used app permissions with machine learning and achieved an 
accuracy of 81% and 83% respectively with a dataset of 100 app samples using random forest and 
decision trees. It is worth pointing out that the work of Manzil and Naik focused only on COVID-
19-themed apps, and their work is the most similar one to ours but with the following differences: 
(1) we used a bigger dataset of COVID-19 related malware to train our models; (2) we proposed 
and explain why the use of the total number of permissions as an extra feature (in addition to the 
app permissions) is helpful in detecting pandemics-related malware; and (3) our approach, while 
targeting specific type of apps (pandemics-related malware), does not incur significant overhead 
for detection when compared with other approaches (e.g., the approach proposed by Ficco [9] that 
requires more features and an ensemble of ML models to detect malware, or the use of permissions 
with Intents and API calls [13]) that are more resource intensive for the Android Operating 
System’s (OS) . 
 
Pandemics and Cellphones/Smartphones and their Limitations 

Smartphone Apps’ Use Cases During Pandemics/Epidemics 

Recently, the COVID-19 pandemic has highlighted the use smartphones as tools which can be 
used to manage public health emergencies. However, past epidemics and pandemics had leveraged 
the use of smartphones and data generated by mobile cellular communications (Table 1). For 
example, in 2003 a Hong Kong mobile operator launched a Location-Based Service (LBS) via 
Short Messaging Service (SMS) and Wireless Application Protocol (WAP) to notify subscribers 
when a nearby building was contaminated with the Severe Acute Respiratory Syndrome (SARS) 
during the 2003 SARS outbreak in Asia [14]. Radio Frequency IDentification (RFID) was used 
during this SARS outbreak in Singapore for contact tracing inside hospitals [14], allowing health 
officials to identify 10 times faster who an infected person had contact with than using other 
methods. A similar approach was used during COVID-19 in different parts of the world using 
Bluetooth Low Energy (BLE) [6]. 

Table 1. Mobile and smartphone’s use cases during epidemics and pandemics in healthcare-
related applications 

Use case Epidemic/pandemic disease Approach example 
 

Location-Based 
Service (LBS) for 
building infection 

notification 
 

Severe Acute Respiratory 
Syndrome (SARS) outbreak 

Use of SMS and WAP to notify 
subscribers during the 2003 SARS 
outbreak in Hong Kong [14] 

Contact tracing 
 

SARS and COVID-19  Use of RFID to conduct contact 
tracing in Singaporean hospitals 
during the 2003 SARS outbreak [14] 
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Use of Bluetooth Low-Energy during 
the COVID-19 pandemic in contact-
tracing apps worldwide [15] 

Surveillance and 
tracking of virus spread 

  

Cholerae Surveillance of cholerae in wide 
areas using anonymized mobile 
cellular operators’ data from the 2010 
Haiti cholerae outbreak [16] 
 

Disease detection 
 

Zika, Chikungunya, and 
Dengue  

 
Malaria, Ebola, and Marburg 

virus disease 

Use of portable devices and sensors 
used with smartphones to detect 
pathogens in human specimens 
[17][18][19] 

Treatment adherence 
and long-term disease 

management 

Human Immunodeficiency 
Virus (HIV) and tuberculosis 

Use of Short Message Service (SMS) 
text messages in Kenya to remember 
patients to take AntiRetroviral 
Therapy (ART) medication [20] 
 
Similar approaches in other African 
nations for both HIV and tuberculosis 
[21] 
 

Health education  HIV, tuberculosis,  
COVID-19 

 

Mobile applications used by public 
health organizations to inform the 
public about infectious diseases, their 
symptoms, and effects [21] 

Digital Health 
Passports (DHPs) 

 

COVID-19 Mobile applications used by airlines, 
the European Union (EU), USA, 
private organizations, and other 
countries (e.g., Israel) to grant access 
to services for COVID-19 vaccinated 
individuals [22] 
  

Telemedicine and 
communication 

between patients and 
families 

 

COVID-19  Used extensively in the world during 
the COVID-19 pandemic for patients 
to contact practitioners due to 
lockdowns and safety precautions [1] 
 
Used by hospitalized patients in the 
world to contact their families to 
minimize contamination risks. 
 

  

Using only anonymized mobile phone data from cellular operators, Bengtsson et al. [16] created a 
model to survey and track the spread of cholerae in the 2010 Haiti epidemic. Their research showed 
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that mobile operators’ data can help to track and contain the spread of infectious diseases and serve 
as a surveillance mechanism for wide areas.  In 2017, Priye et al. [17] reported on the rapid 
detection of Zika, Chikungunya, and Dengue viruses using a portable device called the “LAMP 
Box”, a smartphone’s camera, and an app to detect and analyze samples of human specimens (e.g., 
blood, urine, and saliva). In a similar way, Yu et al. developed a smartphone app to detect the 
presence of Malaria parasites (P. falciparum) on digital photos captured using a smartphone’s 
camera placed on a microscope’s eyepiece lens when a user places a slide with human blood 
specimens to be examined under the microscope [18]. Natesan et al. [19] developed a similar 
approach for the detection of Ebola and Marburg viruses. 

To adhere to treatment using AntiRetroviral Therapy (ART) for Human Immunodeficiency Virus 
(HIV) management, in 2012, Horvath et al. [20] studied the use of mobile phone SMS text 
messaging and they found based on two Randomized Controlled Trials (RCTs) studies in Kenya 
that weekly mobile phone text-messaging improved HIV viral load suppression by reminding 
patients to take their medications, thus helping them to adhere to their therapy. For long-term 
treatment, Devi et al. [21] found in a literature (covering the period 2005 to 2015) review on long-
term care/management of HIV/AIDS and tuberculosis that mobile phones were successfully used 
for long-term care and management of these diseases in developing countries. They reported that 
73.3% of their reviewed papers (66 papers) reported positive effects on HIV/tuberculosis 
management using mobile phones. Finally, during the COVID-19 pandemic other use cases of 
smartphones (and tablets) apps for public health settings included telemedicine/patient 
communication, health education, and apps implementing Digital Health Passports (DHPs) [22]. 

Limitations of Smartphones and their applications during Pandemics 

While there have been great advances on the use of smartphones for epidemics/pandemics, there 
are also limitations for the successful use of smartphone apps during epidemics/pandemics in 
aspects such as interoperability, effectiveness, politics, design choices and marketing, and security 
and privacy.  

From the interoperability perspective, applications developed during pandemics with a healthcare 
(or fitness) focus use a particular architecture (in hardware or software) that forbids (or makes it 
almost impossible) for users to switch components (e.g., wearables for monitoring), health 
providers, or move healthcare data collected through them. While limitations may be related to 
laws, others are related to the lack of standardization and business models that makes it difficult 
to achieve interoperability among systems [1]. 

Many apps developed during pandemics are not evaluated for their effectiveness before or after 
deployment. For example, Devi et al. [21], in their research about long-term treatment with mobile 
apps for HIV and tuberculosis, found that many research studies lack statistical evaluations on app 
effectiveness and rather used casual/anecdotal observations. The lack of evaluation is exacerbated 
by the need for rapid development of many mobile apps that are created as a public health response 
aimed at an emergent disease (e.g., COVID-19 case), thus impacting an app’s efficacy, reliability, 
and privacy/security.  
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Additionally, the implementation of certain types of smartphone apps for pandemics may be 
subjected to politics. For example, during the COVID-19 pandemic, vaccination passports and 
their smartphone implementations (through DHPs) were subjected to policy decisions that varied 
between U.S. states. DHPs were implemented in the state of New York when COVID-19 
vaccination became widely available [22]. However, in Florida any kind of vaccination passport 
was forbidden by an executive order from Governor Ron DeSantis in April 2021 [23].  

From the perspective of the design and marketing of apps, the approach used to develop, 
implement, promote, and give choices to the public about pandemics-related apps may affect their 
installation. In this context, a recent survey in the U.S. with 1963 respondents which studied why 
somebody would install a contact tracing app for COVID-19 (by exploring the design space of 
contact tracing apps), Li et al. [24] found that the developers’ choice on app design and users’ 
individual differences (e.g., users’ job/work, income, demographics, use of public transportation, 
technology readiness) have a significant impact on whether a person will install a contact tracing 
app over other factors such as app’s security and privacy. They recommend highlighting the public 
health benefit as a leverage to promote contact tracing apps and paying attention to apps’ design 
and marketing strategies among essential/health workers because their higher vulnerability to 
contract an emergent infectious disease such as COVID-19, and people living in rural areas 
because their lower preference on installing contact tracing apps developed by large private 
companies.  

Finally, short software development cycles used to develop and launch applications/systems 
during pandemics can result in data leak (affecting the privacy and security of users) and make 
software systems developed during pandemics vulnerable to cyberattacks. Results from a study 
done during the COVID-19 pandemic in 2021 showed that 78% of the companies surveyed 
believed their technical debt increased during 2021, with most of the technical debt believed to be 
arising from the development of new products [25]. In the same survey, 86% of respondents 
mentioned that launching new digital products/services justified the technical debt incurred. 

Mobile Malware during Pandemics 

Mobile apps developed before COVID-19 for epidemics/pandemics were mostly applications 
developed by well-known organizations as part of health campaigns or prototype systems. 
However, the worldwide availability of smartphones and other wearables at the start of the 
COVID-19 pandemic, and their increasing use as the pandemic progressed [1], made smartphones 
an attractive target of malware which grew quickly during the COVID-19 pandemic.  

More than 2 million installations of mobile malware packages were performed worldwide during 
the fourth quarter of 2020, which almost doubled the number of malware package installations 
during the third quarter of the same year (around 1.1 million in the third quarter of 2021) [26]. 
These numbers began to decrease during 2021, reaching around nine hundred thousand 
installations by the second quarter of 2021 (Figure 1). Hackers also exploited users through 
malware camouflaged as legitimate COVID-19-themed apps. There were at least 370 unique 
COVID-19-themed mobile malware apps developed worldwide as of mid-November 2020 
targeting the Android operating system with most apps released after March 2020 [2].  
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Hackers targeted smartphones during the COVID-19 pandemic not only because of their 
ubiquitous use, but also because of the lack of cybersecurity hygiene of smartphone users around 
the world. Misinformation and mobile malware distribution methods (different from the use of app 
stores), and vulnerabilities such as SMS phishing (by which SMS messages are used to distribute 
malware) and Zero-Click attacks (by which no input from users is needed before deploying an 
attack, but rather by exploiting vulnerabilities in apps already installed) were used by hackers to 
launch attacks on smartphone users during COVID-19 [27]. 

Figure 1. Mobile malicious installation packages detected from Q4 2015 to Q2 2022 based on 
data from Karpersky Lab’s Securelist [27]

Other distribution mechanisms for mobile malware during COVID-19 included messages sent via 
social media apps (e.g., WhatsApp, Instagram, and others), and camouflaged malware distributed 
via app stores for both Android and iOS devices (i.e., Google Play Store and Apple App Store), 
even though app stores blocked more than 1 million attempts to circumvent security measures to 
publish mobile apps [27].

According to Karpsersky data, most of the new worldwide mobile malware in 2021 was in the 
form of AdWare (42.42% of the total), RiskTool (by which malware conceals files, run apps 
silently, or terminate active process, 35.27% of the total), and trojans (programs that claim to 
perform some function while doing something else, 8.86% of the total) [28]. For COVID-19-
themed malware, Wang et al. [2] reported that trojans (56%) and spyware (29%) made most of the 
COVID-19-themed malware in Android as of November 2020. Ransomware made about 7% of 
mobile malware in their study.
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Detecting Pandemics-related Malware Using App Permissions and Machine Learning 

In this section we describe the use of Android app permissions and Machine Learning (ML) to 
detect COVID-19-themed malware. We describe our dataset, the ML models trained, and we 
evaluate the models’ performance, and discuss our results. 

Permissions Dataset 

We obtained our dataset by extracting Android app permissions from the COVID-19-themed apps 
collection curated by Wang et al. [2]. Their collection (made publicly available by its curators) has 
2,500 unique Android Package Kits (APKs) with 370 unique APKs belonging to malicious apps 
collected by mid-November 2020. We used AndroGuard to extract each apps’ permissions from 
their corresponding APK’s manifest.  

Due to errors generated by AndroGuard when extracting app permission data from some of the 
APKs, we ended with permissions of 2016 unique apps (80% of the original dataset) with 277 
labeled as COVID-19-themed malware samples (75% of the original malware samples) and 1739 
labeled as non-malware COVID-19-themed apps (81% of the original non-malware samples). We 
extracted 203 unique permissions from all apps in our dataset. We created a spreadsheet with each 
row storing the permissions used by an app. Each column had a “1” or “0” depending on the use 
of a permission by an app. We also used two more columns specifying the apps’ name and its 
type/class (malware or not). For example, if an app is a malware app and uses all permissions, then 
in the row for that app we store in all columns a value of “1”. Otherwise, if a second app did not 
use any permission and it is not malware, then in the row for that second app we store a value of 
“0” in all columns. Figure 2 illustrates how we stored the permissions in the spreadsheet for the 
Stato COVID-19 Italia Android app. This app uses four permissions, thus a value of “1” appears 
in each of the corresponding permission columns. As this app is not malware, a “0” appears in the 
MALWARE column in figure 2. The resulting spreadsheet has 2016 rows (one row per app) and 
205 columns (203 columns for permissions plus two more for the app name and the class/type). 
This spreadsheet is the dataset we used to train the models. When using the models, the static 
detector extracts the permissions used by the app in the manifest at installation time, counts the 
number of permissions used by the app, and then executes a trained ML model. This process does 
not cause additional overhead for the OS because the Android security model extracts the 
permissions from the manifest at installation time. 

We created the chart shown in figure 3 using our dataset. This chart shows that around 30% of 
non-malware apps used one permission, while most of the malware apps used four or more app 
permissions. The sample mean of the number permissions used by malware apps was u0 = 7.09 
±3.6 permissions per app, and the sample mean of the number of permissions used by non-malware 
apps was u1 = 1.8 ±1.5 permissions per app.  

Assuming a normal distribution on the total number of permissions per app for both malware and 
non-malware apps, we conducted a t-test with H0: u0 - u1  0 (null hypothesis: both app classes use 
the same number of permissions), H1: u0 - u1 > 0 (alternative hypothesis: malware apps use more 
permissions than non- 0 (null 
hypothesis) was rejected (H0 
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result suggests that the total number of permissions used per app can be added as an extra feature 
to detect COVID-19-themed malware.

Figure 2. Permissions used by a COVID-19-themed app and its row in our spreadsheet 

Figure 3. Distribution of total number of app permissions per app class (malware/non-malware) 
for COVID-19-themed Android apps.

Model Creation
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The problem of malware detection can be modeled as a machine learning classification problem 
with two target classes (malware/non-malware). To create the input data for the models we added 
the total number of permissions used by an app as an extra feature (in addition to each app’s 
permissions). 

We used Weka 3.8.6 to train the machine learning classification models. We trained the first set 
of three models using the spreadsheet dataset obtained in the previous section (2016 instances, 203 
app permissions, and the extra column/feature for the total number of permissions), and we trained 
a second set of three ML classification models using an augmented dataset with 3955 instances 
with the same number of app permissions/features (203 app permissions and the extra feature for 
total number of app permissions). We ignored the name of the app when training the models.  

We created the second (augmented) dataset using the Synthetic Minority Oversampling TEchnique 
(SMOTE) [20] to balance the number of malware instances of the original dataset. SMOTE [29] 
is a machine learning technique to generate synthetic data when it is desired build classification 
models for two classes, and one class has significantly less samples compared to the other class 
(malware samples/instances vs non-malware samples/instances in our case). SMOTE generates 
synthetic instances for the minority class that are plausible (i.e., better than duplicating the 
instances in the minority class).  

The SMOTE permissions dataset had 3955 instances (1739 for the non-malware class and 2216 
for the malware class). While this second dataset had more instances for the malware class (1739 
non-malware instances vs 2216 malware instances), the dataset is more balanced than the original 
spreadsheet dataset (1739 non-malware instances vs 277 malware instances).  

We created three classification models with both datasets (six models in total) using OneRule, J48, 
and Naive Bayes algorithms. The OneRule and J48 algorithms build decision tree classification 
models, while the Naïve Bayes builds a probabilistic model for classification. OneRule creates a 
simple classification tree based only on the attribute/feature with the smallest total error as the 
selected attribute/feature to build the classification model. We selected these models because once 
the models are trained, they can be executed very quickly on a smartphone.  

Performance evaluation of proposed models  

We used a 10-fold cross validation on each algorithm with a 66% split for each fold (i.e., we used 
66% of the instances on each fold for model training we used the other 34% to evaluate the 
performance of the models on each fold).  We trained and evaluated the models using Weka 3.8.6 
on a Windows-based Asus laptop equipped with an AMD Ryzen 7 processor running at 2.3 GHz 
and 16GB RAM. For each dataset, algorithm and class, we computed the following performance 
metrics: 

 True positive rate (TP Rate): This is the probability that an instance will be correctly 
classified. 

 False positive rate (FP Rate): This is the probability that an instance will be incorrectly 
classified. In our case this means that an app that is malware is classified as non-malware 
and vice versa. 
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 Precision:  Proportion of actual instances correctly identified within each class. 
 F-Measure: A measure of a model’s accuracy. It is calculated from the precision and 

recall. Values close to 1 means better scores. 
 

Table 2. Evaluation metric results for our classification models 

Algorithm + Dataset Class TP Rate FP Rate Precision F-Measure 

OneRule + SMOTE Non-malware 0.877 0.228 0.751 0.809 
Malware 0.772 0.123 0.889 0.826 

J48 + SMOTE Non-malware 0.98 0.031 0.961 0.971 
Malware 0.969 0.02 0.984 0.977 

Naive Bayes + 
SMOTE 

Non-malware 0.939 0.136 0.844 0.889 

Malware 0.864 0.061 0.948 0.904 

OneRule Non-malware 0.971 0.343 0.947 0.959 
Malware 0.657 0.029 0.781 0.714 

J48 Non-malware 0.983 0.217 0.966 0.974 
Malware 0.783 0.017 0.879 0.828 

Naive Bayes Non-malware 0.965 0.119 0.981 0.973 

Malware 0.881 0.035 0.8 0.838 
 

The performance evaluation presented in Table 2 shows the results of using a 10-fold cross 
validation which is an accepted methodology to evaluate ML models. In this table, we present the 
average values for each measure after training and evaluating each model 10 different times with 
random folds for training and testing the models.  

Discussion of results 

When creating our models using OneRule, we found that the total number of permissions was 
selected as the attribute/feature to build the OneRule models, meaning that this attribute alone is 
the best one to potentially detect a COVID-19-themed app as malware or not. We expected this 
result from our analysis of the sample means of the total number permissions for malware/non-
malware apps (as figure 3 shows) and the statistical analysis we performed on the sample means. 
We observed that, in general, all algorithms performed relatively well but models based on the 
OneRule yielded the worst results when compared with J48 and Naïve Bayes models. 

We obtained the best overall result when using SMOTE with the J48 decision tree algorithm. This 
model (identified as J48+SMOTE in table 2) had the best classification results for all the evaluation 
metrics, especially those associated with the malware class among all models. Our results show 
that a static malware detector specifically targeting pandemic-themed apps can be implemented 
directly in the Android OS because the OS detects the permissions during the APK installation. 
This detector can be used during pandemic times, specifically when users attempt to install apps 
from non-trusted sources, which was frequently the case of COVID-19-themed malware.  
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Although we did not implement our proposed methods on an actual smart phone to measure the 
time or the power consumption to execute a detection (we will conduct these measurements in the 
future), we argue that the computational and power/energy costs to detect pandemics-related 
malware based on permissions on a smart phone does not produce significant overhead because 
(1) Android extracts permissions from app manifests when an app is installed (the OS can run a 
malware detector based on permissions at installation time), and (2) the computational complexity 
of the ML models we tested (OneRule, J48 and Naive Bayes) execute in constant time (O(1)) 
because no extra work is done to extract the features as either a constant number of if statements 
is needed with basic Boolean expressions (to implement OneRule and J48), or a constant number 
of floating point multiplications is needed (Naive Bayes), which are approximately 508 
multiplications (2 classes * 204 features) of single precision floating point operations at installation 
time.  

Conclusion 

We have reviewed the use of smartphones and their use cases during pandemics. We also reviewed 
pandemic-related malware trends during the COVID-19 pandemic. We evaluated the use of 
permissions and machine learning methods to detect COVID-19-themed malware and we found 
that a static malware detector can be developed in Android to detect pandemics-related malware 
with an accuracy of more than 90% using a combination of SMOTE, app permissions, total number 
of permissions, and decision trees. Moreover, from our review of COVID-19 related malware, we 
recommend the following countermeasures to minimize the impact of cyberattacks on smartphone 
users in future pandemics and global crises: 

 Implement a static malware detector as part of the mobile OS as a software update during 
pandemics that can detect and alert about possible malware being installed from a non-
traditional source (e.g., apps downloaded via SMS links or message links in social 
networks that camouflage malware as pandemic-related apps) or a non-trusted source. 

 Increase the training and awareness of cybersecurity and cyberhygiene specifically 
focused on cybersecurity for smartphones during a pandemic. This could be achieved by 
cybersecurity education before a pandemic, and public announcement about mobile 
malware risks during a pandemic to diminish spear phishing attacks and avoid the 
installation of pandemics-related malware. 

 Recommend that any kind of mobile app to be installed during a pandemic to be installed 
from a trusted source (e.g., Google Play Market, Apple App Store). This makes mobile 
malware to be harder to distribute and be installed, especially during pandemics and other 
global crises. 
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