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ABSTRACT

This research presents PACE (Providing Authentication through
Computational Gait Evaluation), a novel methodology for gait-
based authentication leveraging the power of deep learning algo-
rithms. The primary objective of PACE is to enhance the security
and efficiency of user authentication mechanisms by capitalizing
on the unique gait patterns exhibited by individuals.This study de-
lineates the development and implementation of a deep learning
model, which was trained on a set of extracted features. These
features, including mean, variance, standard deviation, kurtosis,
and skewness, were derived from accelerometer and gyroscope
data, serving as descriptors of users’ gait patterns for the deep
learning model. The model’s performance was evaluated based on
its ability to classify and authenticate users accurately using these
features. For the purpose of this study, twelve participants were
enlisted, with sensors affixed to their back hip and right ankle to
collect the requisite accelerometer and gyroscope data.The experi-
mental results were highly promising, with the model achieving
an exceptional accuracy rate of 99% in authenticating users. These
findings underscore the potential of PACE as a viable alternative
to conventional machine learning methods for gait authentication.
The implications of this research are far-reaching, with potential
applications spanning a multitude of scenarios where security is of
paramount importance.
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1 INTRODUCTION

In the era of digital transformation, the proliferation of Internet of
Things (IoT) devices has necessitated the development of robust
and efficient user authentication mechanisms. Traditional methods,
such as passwords and biometrics, while widely used, are not with-
out their limitations. Consequently, the exploration of innovative
and non-intrusive means of authentication has gained momentum,
with gait-based authentication emerging as a promising alternative.
Gait, the unique pattern of an individual’s walk, serves as a reliable
biometric identifier. Recent advancements in technology have en-
abled the capture and analysis of gait patterns using devices such as
smartphones and wearable sensors. For instance, Musale, Baek, and
Choi (2018) proposed a lightweight user authentication technique
for IoT systems, called Li-GAT, which exploits various information
collected from IoT devices, including the subconscious level of user
activities, to effectively authenticate users [1]. Similarly, Muaaz and
Mayrhofer (2017) evaluated the robustness of a smartphone-based
gait recognition system against zero-effort and live minimal-effort
impersonation attacks under realistic scenarios [2].

Gait authentication transcends the unidimensional nature of
traditional authentication methods due to its autonomous char-
acteristics. Its potential applications extend beyond device access,
marking its versatility. In the healthcare sector, for instance, gait
authentication can serve as a critical tool for detecting incidents
such as falls or identifying injuries that manifest in irregular gait
patterns. Furthermore, gait authentication can significantly aug-
ment an individual’s quality of life through its integration with
other intelligent systems. In the context of smart homes and smart
vehicles, gait recognition can facilitate anticipatory actions, en-
abling these systems to respond to the user’s needs even before
they are explicitly communicated.

This research presents PACE (Providing Authentication through
Computational Gait Evaluation), a novel methodology for gait-
based authentication leveraging the power of deep learning algo-
rithms. The primary objective of PACE is to enhance the security
and efficiency of user authentication mechanisms by capitalizing
on the unique gait patterns exhibited by individuals. The implica-
tions of this research are far-reaching, with potential applications
spanning a multitude of scenarios where security is of paramount
importance.

2 RELATED WORKS

The field of user authentication leveraging gait patterns has seen
significant advancements in recent years, with various innovative
approaches being proposed.



Musale, Baek, and Choi (2018) introduced a lightweight user
authentication technique for IoT systems, known as Li-GAT (Light-
weight Gait Authentication Technique) [1]. This technique utilizes
various information collected from IoT devices, particularly subcon-
scious user activities, to authenticate users effectively. The approach
not only achieves high accuracy but also reduces resource consump-
tion, making it a promising solution for IoT devices with limited
computational and communication resources.

In another study, Muaaz and Mayrhofer (2017) evaluated the
robustness of a smartphone-based gait recognition system against
zero-effort and live minimal-effort impersonation attacks under
realistic scenarios [2]. This work underscores the importance of
considering potential security threats in the design and implemen-
tation of gait recognition systems. Their findings suggest that gait
recognition systems can be robust against impersonation attacks,
further strengthening the case for gait-based authentication.

Mufandaidza, Ramotsoela, and Hancke (2018) developed a smart-
phone user authentication system that uses a user’s gait pattern
as a biometric feature [3]. The system is designed to continue the
authentication process in the background if the outcome is positive.
If authentication fails, the device’s location information is sent to a
predetermined email address, thereby alerting the authorized user
about the device’s location. This approach demonstrates the poten-
tial for integrating gait-based authentication with other security
measures to enhance overall system security.

Lastly, Lee, Lee, Park, Lee, and Kim (2022) proposed a sensor
compensation algorithm to overcome various real-world factors
that could potentially affect gait-based authentication [4]. They
also introduced new 2D cyclogram features to enhance user au-
thentication performance. This work highlights the importance
of addressing real-world challenges to improve the reliability and
effectiveness of gait-based authentication systems.

These studies collectively highlight the potential of gait-based
authentication as a robust and reliable user authentication method.
They also underscore the need for ongoing research to address
potential challenges and enhance system performance.

3 METHODOLOGY
3.1 Overview

In this section of the research paper, we will discuss the comprehen-
sive approach that was devised to accomplish our primary goals.
These goals include developing a deep learning model capable of
distinguishing between multiple users based on their gait, achiev-
ing the highest level of accuracy by integrating data from all 12
participants into the model, and determining the optimal location
and instrument (gyroscope or accelerometer) for data collection.
To evaluate the performance of our model, we will analyze various
metrics such as the learning curve for accuracy, highest accuracy,
macro precision, macro recall, and F1 score. Additionally, we aim
to identify the combinations of data location and features that yield
the highest possible

3.2 Data Set

The data set utilized for our model was generously provided by
Professor Dr. Jong-Hoon Youn from the University of Nebraska.
This data had already undergone substantial preprocessing, leaving
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feature extraction as the primary task for model preparation, which
we will elaborate on in the feature extraction section of the method-
ology. The dataset comprises both accelerometer and gyroscope
readings from the hip and right ankle of all 12 participants. The
accelerometer data, represented in XYZ coordinates, indicates the
direction and position of device acceleration.In contrast, the gyro-
scope data measures angular velocity across the x, y, and z axes.
Data points were collected approximately every 10 milliseconds,
equating to a gait cycle duration of 1 second in the context of our
project. Consequently, each gait cycle encompasses 100 data points
for each x, y, and z dimension. Each data set comprised approxi-
mately 40,000 data points, which corresponds to an estimated 400
seconds of walking per individual. This substantial volume of data
provided a robust basis for our deep learning model to discern and
learn from the unique gait patterns of each participant. When in-
corporating a second data set for a different location into the model,
there are two methods to consider for inputting the data.

The first method, vertical concatenation, is advantageous due
to its simplicity and efficiency. This approach does not require
any additional hyperparameter input features for the models to
process, which simplifies the model and reduces computational
requirements. However, it may not be the most optimal choice
for deep learning algorithms as it does not consider the potential
relationships between data from different locations [1].

On the other hand, horizontal concatenation involves creating
additional features that have the potential to enhance model perfor-
mance by capturing more complex patterns in the data. However,
this approach may require more processing time due to the in-
creased complexity of the model. Additionally, the introduction of
more features could potentially lead to overfitting if not properly
managed [2].

3.3 Feature extraction

In the initial stages of implementing our deep learning model, we
input preprocessed data without any feature extraction. However,
as the number of users and data points increased, this approach
proved to be insufficient in terms of generating high accuracy and
time efficiency. To enhance the performance of our model in these
aspects, we further processed the data in two crucial ways. The
first of these involved the integration of the following five features:

e Mean: Mean measures the typical steps of a person.

e Variance: Variance tells us how much those strides change
in length.

e Standard deviation: Standard deviation would tell us how
similar or different each step is from their average step.

o Kurtosis: Kurtosis measures if the person has many strides
that are very different from the average stride length.

o Skewness: Skewness tells us if there’s a tendency for the
person to take steps that are mostly longer or shorter than
average

The selection of these features was based on previous studies
that utilized machine learning algorithms and recommendations
from the project mentor. In study [1], the mean, standard devia-
tion, and skew were examined. Initially, only the mean feature was
used, but after showing promising results, variance and standard
deviation were incorporated. The inclusion of these three features



significantly enhanced the model’s performance. Consequently, it
was decided to include kurtosis and skew as the final two features,
which further improved the model’s accuracy. It is important to
note that the effectiveness of these features was influenced by the
adjustment in the number of data points compared to the partic-
ipants’ data used for feature calculation. However, as additional
locations and gyroscope data were introduced, the impact of this ad-
justment seemed to diminish. The reasons behind this phenomenon
will be discussed in detail in the results section of the paper.

The second approach to data processing involved the use of
a sliding window technique. This method was employed in the
computation of the five features, and its effectiveness appeared to be
influenced by the volume of data utilized in the feature calculations.
A unique aspect of this method was that the function’s output was
capable of generating a larger overall number of data points for
the model’s computations, attributable to the retracement window
size.

However, a limitation of the sliding window technique was its
need for continual adjustment based on the volume of user data
being utilized. Generally, an increase in user data necessitated an
expansion in the window size and a corresponding adjustment to
the ratio of retracement to new user data calculation.

It is noteworthy that prior to the incorporation of any additional
instruments or locations into the right ankle accelerometer user
data, the window size appeared to be most optimal when utilizing
0.66% of a single user’s overall data and a retracement of 75

3.4 Model Design and Implementation

The specific type of model utilized in this study was a Deep Forward
Feed neural network. The model itself was relatively simple, con-
sisting of a ReLu activation function and 2 hidden layers. Initially,
the hyperparameters were set as follows: a learning rate of 0.1, 8
hidden units, 15 input features, and an 80:20 train-test split. How-
ever, in order to optimize performance, we conducted experiments
with different numbers of hidden units and found that the model
achieved the best results with 64 hidden units.

Regarding the learning rate, we based our decision on what
is typically considered a default setting. We initially selected the
higher end of the default range but then decided to experiment with
lower values, specifically 0.01 and 0.001. After careful analysis, we
concluded that a learning rate of 0.01 would be most suitable due to
its reduced volatility in accuracy percentage from epoch to epoch
during both testing and training. Additionally, this learning rate
maintained a better learning curve compared to the lower rates.

It is important to note that the input features remained un-
changed throughout the research period, except when multiple
accelerometer and gyroscope data sets were incorporated into the
model. However, the training and test split was consistently main-
tained at the 80:20 ratio and was not altered.

Furthermore, we conducted tests with additional hidden layers,
but these did not result in a significant increase in accuracy. Instead,
the model experienced a substantial increase in the time required
to complete all epochs.
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3.5

During the model’s training and evaluation phase, we undertook
several critical steps to achieve our final results. The evaluation
metrics employed in this phase included:

Model Training and Evaluation

e Accuracy: This metric quantifies the proportion of correct
predictions made by the model across all predictions.

e Macro-averaged Precision: This measure calculates the
precision for each individual’s gait independently and then
averages them, thereby assigning equal weight to each class,
irrespective of its size.

e Macro-averaged Recall: This metric quantifies how many
actual instances of each individual’s gait the model correctly
identified.

e Macro-averaged F1-score: This measure determines the
model’s average performance across all classes in terms of
both precision and recall

These metrics were selected based on the specific requirements of
the project and the nature of the model used.

In the process of training our model, we employed a variety of
data combinations. Initially, the model was trained independently
on each data set, which included data from both the gyroscope and
accelerometer located at the back hip and right ankle. Following
this, we proceeded to train the model using combinations of these
data sets.

As for the training epochs, we ultimately utilized 60,000 epochs.
However, this figure was not arbitrarily chosen. Instead, we adopted
an iterative approach, progressively increasing the number of epochs
in increments of 10,000. This decision was guided by careful obser-
vation of the model’s performance and learning curve, allowing us
to optimize the number of epochs for our specific model and data.

4 RESULTS

4.1 Overview

The analysis of our research results yields a multitude of conclu-
sions, each influenced by various factors such as the number of
features, the implementation of the sliding window, the hyperpa-
rameters, the number of data sets incorporated, and the method
of their concatenation. Our examination of the results commences
with the discussion of the model’s performance when each data set
is input individually. Subsequently, we progress to the evaluation of
the model when two data sets are input, and finally, when three data
sets are incorporated. Throughout this process, we will compare the
distinct aspects of the results derived from each additional data set
and discuss the necessary modifications at each stage. Additionally,
we aim to identify the combinations of data location and features
that yield the highest possible

4.2 Single Data Sets

In our study, we utilized two distinct instruments at two separate
locations: the right ankle and the back hip. At each location, we
collected data from both an accelerometer and a gyroscope. Ini-
tially, the experiments were conducted by processing the raw data,
comprising only the x, y, and z values, without the application of a
sliding window or any additional features.



To mitigate the computational burden associated with processing
large quantities of data, we strategically selected 18,000 data points
from each user. This decision was informed by the observation
that increasing the volume of data led to a substantial increase in
processing time. In the absence of additional features, the model’s
performance was evaluated solely on the basis of accuracy, with the
rankings for each dataset determined accordingly. The following
section delineates the specific outcomes and insights derived from
this approach.

e Back hip accelerometer: accuracy was 43.17%

e Right ankle accelerometer: accuracy was 38.9%
e Right ankle gyroscope: accuracy was 37.59%

e Back hip gyroscope: accuracy was 35.82%

After adding all the features and the sliding window this is how
the model performed again with only accuracy.

Back hip accelerometer: accuracy was 95.12%
Right ankle accelerometer: accuracy was 94.72%
Right ankle gyroscope: accuracy was 94.5%
Back hip gyroscope: accuracy was 94.21%

4.3 Two Data Sets

Following the analysis of individual data sets, we proceeded to
explore the integration of a second data set into our model. The
experiment was conducted using various combinations of data,
including the back hip gyroscope and accelerometer, right ankle
gyroscope and accelerometer, and back hip gyroscope and right
ankle accelerometer.

Two distinct methods were employed in the initial stages of
data deployment. The first approach involved concatenating the
gyroscope data to the accelerometer data collected from the right
ankle, followed by the extraction of the previously mentioned fea-
tures. Subsequently, the data was concatenated again, this time
horizontally, and input into the model as supplementary features.

Upon examination and comparison of the outcomes from this
segment of the experiment, we observed minimal variation in the
final accuracy rate of the model’s predictions between the two
methods. Both approaches yielded an approximate accuracy of 98%
with 10,000 data points from each instrument and 60,000 epochs.
However, a notable difference emerged in the learning rate of the
model. When the data was concatenated horizontally, the model
reached an accuracy rate of 90% around 5,000 epochs, whereas
vertical concatenation required approximately 10,000 epochs to
achieve the same accuracy. It is pertinent to highlight that the
horizontal concatenation necessitated a longer computation time
for feature extraction.

Ultimately, the decision was made to proceed with horizontal
concatenation, despite the increased time requirement. Utilizing the
same extracted features as the single data sets, along with 18,000
data points and 60,000 epochs, the following results were obtained:

e Right ankle accelerometer and gyroscope: accuracy
was 98.83%

e Back hip accelerometer and gyroscope: accuracy was
98.64%

e Back hip gyroscope and Right ankle accelerometer:
accuracy was 98.12%

Accuracy Percentages

98%

Percantage

Figure 1: side by side comparison of the models accuracy
with all the data sets

4.4 Three Data Sets

The final experiment consisted of three data sets: right ankle and
back hip accelerometer and right ankle gyroscope. At first we didn’t
think there would be any improvement in accuracy due to the
amount of data we have, but we were still surprised to see our
models’ accuracy improved to 99.14%. From here we evaluated the
other metrics noted earlier in the paper along with the learning
curve which are shown in the figures. Thew first two images are a
projection of the accuracy of the model.The following two figures
below demonstrate how fast the model learns over 20,000 epochs.
One demonstrates the learning curve for the loss of the model.
While the other is for the learning curve for accuracy.

Accuracy Percentages
100

99%

Percentage

Precision Recall F1-Score

Figure 2: Three metrics of evaluation for the final combi-
nation of data

True label

7

1 10 9 8

Predicted label

Figure 3: show the model prediction for each user



Learning curve
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Figure 4: This figure shows the learning curve for loss
Learning curve for accuracy
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Figure 5: This figure shows the learning curve for accuracy

FUTURE WORK

In order to obtain a more extensive and accurate understanding, we
plan to collect additional data from diverse users and delve deeper
into the impact of certain features that only marginally improved
accuracy. These features were not fully explored due to the already
high accuracy rate and diminishing returns associated with adding
more features. Additionally, an alternative direction for future work
could involve concentrating on authenticating a single individual,
rather than solely differentiating between users.

CONCLUSION

The research paper introduces PACE, a novel method for gait-based
authentication using deep learning. Through careful experimenta-
tion with data sets and feature extraction, the study achieved an im-
pressive accuracy rate of 99.14%. The success of PACE demonstrates
the viability of gait-based authentication as a robust alternative
to traditional methods. Its applications are vast, with potential to
enhance security across various domains. The findings mark a sig-
nificant advancement in user authentication, opening new avenues
for more secure and efficient systems.
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