Comparing Classifiers: A Look at Machine-Learning and the
Detection of Mobile Malware in COVID-19 Android Mobile
Applications

Seth Johnson

sjohnson154@unomaha.edu
University of Nebraska at Omaha
Omaha, Nebraska, USA

ABSTRACT

The COVID-19 pandemic was a catalyst for many different trends
in our daily life worldwide. While there has been an overall rise in
cybercrime during this time, there has been relatively little research
done about malicious COVID-19 themed AndroidOS applications.
With the rise in reports of users falling victim to malicious COVID-
19 themed AndroidOS applications, there is a need to learn about
the detection of malware for pandemics-themed mobile apps.. In
this project, we extracted the permissions requests from 1959 APK
files from a dataset containing benign and malware COVID-19
themed apps. We then created and compared eight unique models
of four varying classifiers to determine their ability to identify po-
tentially malicious APK files based on the permissions the APK file
requests: support vector machine, neural network, decision trees,
and categorical naive bayes. These classifiers were then trained
using Synthetic Minority Oversampling Technique (SMOTE) to bal-
ance the dataset due to the lack of samples of malware compared to
non-malware APKs. Finally, we evaluated the models using K-Fold
Cross-Validation and found the decision tree classifier to be the
best performing classifier.
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« Security and privacy — Malware and its mitigation; « Comput-
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1 INTRODUCTION

When COVID-19 started impacting nations worldwide, it appeared
to be an opportunity for developers who were capable and willing
to create malware that was disguised as benign apps to take advan-
tage of the panic that pandemic had created [6] due to the large
increase in individuals working from home on personal machines.
An increase in cybercrimes and malware distributed via phishing
emails and other means (e.g., Short Messaging Systems (SMS), so-
cial networks) contributed to new attack vectors [6]. Trend Micro
reported that “8,840,336 threats related to the COVID-19 were de-
tected in the first half of 2020 with most of the discoveries occurring
in April, coinciding with the pandemic’s peak . . . these threats con-
sist of emails threats, URLs threats, and Malware threats, which
refer directly to the epidemic or indirect”[4]. According to Wang,
nearly 75% of malicious app developers during the pandemic first
utilized their certificates in January of 2020[5].

In this work, we study the relation between permission requests
by an APK files in COVID-19-themed Android applications. By us-
ing the AV Rank, permission spread, and Total Permission Requests
(TPR), we trained and tested four different classification algorithms
to compare their ability to identify malicious APK files. The four
models include Categorical Naive-Bayes (CNB), Support Vector Ma-
chine (SVM), Decision Tree, and Fully Connected Neural Network
(FCNN) models. Additionally, we evaluated the use Synthetic Mi-
nority Oversampling Technique (SMOTE) to balance the training
dataset because of the lack of samples of malware compared to
non-malware. We plan to answer the following questions:

e RQ1: Which model do we believe is best for classifying
malicious APK files?

e RQ2: How does the use of SMOTE affect the accuracy, pre-
cision, and recall of the models evaluated using K-fold cross-
validation (CV) ?

e RQ3: Does considering the total amount of permissions as a
feature APK impact the models’ behavior?

2 RELATED WORK

In addition to compiling the dataset we utilize for our research, the
Wang et al. team collected other information and characteristics
about COVID-19 themed applications. such as origin and target re-
gion, duration of developer activity, the type of malware, frequency
of obfuscation techniques, and frequency of APK repackaging/ app
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replication[5]. Additional works should also be noted here in this
field.

Notable studies in classifying and detecting malware in Android
applications using Machine learning include the 2015 study by
Almin and Chatterjee, who propose the Android Application Ana-
lyzer (AAA) [1]. Their research proposed a method in which they
develop a user-interactive system that collects permission requests
during install time to train k-means clustering models for malware
classification, noting the flaws of signature-based techniques of pre-
existing consumer Antivirus platforms. When compared to these
platforms, the researchers find their approach is more efficient.
However, they recognize that unknown malware types can break
their cluster-based model for malware types with respect to permis-
sion requests, which can be a time-consuming process to rebuild
said clustering [1].

Similarly, the DroidMat system [8] uses machine learning. Droid-
Mat extracts permissions and app “intents” to infer various API calls,
which are then passed to a k-Nearest Neighbors(kNN) classifier to
identify an APK file as benign or malicious. In this research, Droid-
Mat was compared with Androguard, and they found that DrodMat
is more efficient than Andorguard. It notes two specific Android
malware families that DroidMat has trouble identifying due to the
use of installation of the malware payload from an external source,
which circumvents classification.

Other works, in addition of using ML models to detect malware
use permission requests. For example, Droid-Sec uses permission re-
quests and API calls (static analysis) and runtime behavior collected
via DroidBox (dynamic analysis), and behavior to compare a Deep
learning network to Naive-Bayes (NB), Support Vector Machines
(SVM), Logistic Regression (LR), and Multi-layer Perception (MLP),
all optimized using a grid-search technique. They found that the
deep neural network (200 features, 3 hidden layers, 150 neurons
per layer) had the highest accuracy on a training set of 300 apps,
and teste on 200 apps [9].

The 2013 study “PUMA: Permission Usage to Detect Malware
in Android", by Borja Sanz also employs permission requests to
compare the performance of Naive-Bayes, Random Decision Tree,
and Random Forest (RF), which are all supported with a KFold CV
with a 90/10 split. This study collects benign android apps off of
Android marketplaces, and the malicious apps from VirusTotal’s
catalog. This study finds that the RF classifier is best by way of the
Area Under Curve metric[7].

The 2013 study by Amos et al.[2] uses a database of 1738 unique
apps to analyze six classifiers namely, RF, Naive Bayes, Multi Layer
Perceptron (MLP), Bayes Net, Logistic Regression (LR), and J48, all
evaluated with cross-validation. They found that, while many of
these models are commonly applied to different techniques, they
have relatively high False positive rates, even from their highest
performing model, which was a Bayes Net. They concluded that
feature vectors can vary drastically, and while they use a much
larger dataset than those previous studies, they wanted to target
applications from Google Play [2].

There are several aspects about the previously mentioned re-
search. While more recent work deploys machine learning in vari-
ous frameworks, many of these studies comparing classifiers were
done before COVID-19, when there was no knowledge about how
both benign and malign pandemics-related apps would have been
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implemented [5]. We intend to provide insight into this area, com-
paring classification models to statically detect COVID-19-related
Android applications and further contribute detection frameworks
for global emergencies-related apps.

3 METHODOLOGY

3.1 The Dataset

We used a dataset of 1971 APK files collected by Wang et al 2021 to
train and test our classification models [5]. Their study correlated
each APK file with a non-negative integer known as an "AV Rank"
calculated by the online tool, VirusTotal. If it is greater than 0,
at least one Antivirus software flagged the file as malicious [5].
Because of this nature, we use this as the labels set to train and
validate our models. The features we considered were binary arrays
representing the permissions requests extracted from an APK file,
referred to as the “permission spread”, and the sum of that binary
array, or the “Total permissions requested”, or TPR. Of that, 270
APK files were labeled malicious, or about 13.78+0.7% of the 1959
APKs that were successfully analyzed. If we consider Wang et al’s
dataset size of 4,322 total APK files with 611 malicious APK files
out of that, they come up with a rate of about 14+0.5%. Thus, we
confidently believe the dataset used throughout this study is a
proper representation of the original one used by Wang et al. in
their analysis.

During the pre-processing phase of our research, we noticed
some characteristics worth pointing out. Referring to Figure 1, the
frequency of malicious APK files, (represented by the 1 class in
orange in the figure), have more spread out TPR values compared
to the benign class (the blue, 0 class in the figure), which steadily
drops off when the TPR > 10.

Proportional Frequency of APK files requesting up to 60 permissions
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Figure 1: Proportional Frequency of TPR for each APK file.

The permissions requested by our APK files follow a similar to
what the Wang et al 2021 study found, except our most frequently
requested permission was android.permissions.INTERNET, as op-
posed to android.permissions.WRITE_EXTERNAL_STORAGE[5]. This
can be observed in Figure 2. Again, APK files with an AV Rank > 0
are classified as 1/malicious.
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Proportional frequency of the top 15 most requested base AndroidOS Permissions
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Figure 2: The top 15 most requested AndrodiOS permissions.

Because of the small percentage of malicious APK files within
our dataset, we used the Synthetic Minority Oversampling Tech-
nique (SMOTE). SMOTE is an augmentative method that is used
to address class imbalance issues, which is designed to alleviate
class imbalance by creating synthetic samples for the underrepre-
sented, or, minority class. It creates instances that are similar to
already existing minority class samples effectively increasing the
representation of the minority class in a dataset[3]. For our models,
we used SMOTE to artificially increase the ratio of malicious APK
files compared to the non-malicious files. This, in theory, should
increase the model’s sensitivity to the minority class which should
help make more accurate predictions.

We utilize a Python script to compile our dataset APKScanner . py,
which then is used to train and test our four classifiers with a Jupyter
Notebook Modelsv2. ipynb. Figure 3 depicts the flow of execution
for each of these files.
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Figure 3: Process of code execution for this project.

APKScanner.py calls the Androguard Python module to un-
pack and extract the permissions from the APK files within the
dataset. During this process, it stores the failed APK file hash and
runtime error thrown in a text file available for further analysis.
APKScanner . py then compiles a CSV file that consists of the APK
file’s 256 Hash name, the Application name, the package name,
its AV Rank, whether or not another application uses the file, its
TPR, and its permission spread. The data is then processed by
Modelsv2.ipynb, and is executed twice. In each of the two runs,
it calls each of the four models in four different groups that rep-
resent the four different data augmentation scenarios. Each group
uses the same parameters for data preparation: random_state=0
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to fully randomize the order of our dataset and a test_size=0.1
to maintain a 90/10 train/test split.

The first group executes a generic train/test split with an un-
modified dataset, which serves as our control. The second group
calls these classifiers again with a train/test split on a pre-processed
SMOTE dataset. The third group executes KFold CV for each model,
20 folds each, on an unmodified dataset. For the fourth group, KFold
CV is then executed again on the re-processed SMOTE dataset. Each
classifier is called with the same parameters per training condition,
and they all execute a binary classification: 0 if the APK file is
benign, or 1 if it is malicious. Results are then recorded in a text file
that records the average accuracy, F1-score, precision, and recall
values for each model under each training condition. The results
focus on the metrics for the malicious APK file classification. This
script is then called a second time to train models off of a features
dataset that does not consider TPR, but only the permission spread
of each APK file. The performance is recorded in an additional text
file.

3.2 Model Configurations

All models were executed with as close to default configurations
as possible. We chose not to optimize each classifiers’ parameters
for this study. For the CNB classifier, we included an extra parame-
ter,min_categories=len(perms[0]) to manage indexation errors
that occurred from uneven train/test split sizes when performing
K-Fold CV with re-sampled SMOTE datasets. We also found that
our SVM classifier would overfit our data if the kernel was set to
"linear". The decision trees classifier naturally overfit the data, but
passing splitter="random” in the declaration of the classifier mit-
igated this issue. The FCNN was a simple 3 layer network, with an
input layer of size equal to the length of our features set, a hidden
layer with 1959 units, and 2-node output layer.

4 EVALUATION

In order to evaluate our models, we prioritized recall, as it quantifies
the number of correct predictions while also taking into account
false negatives. It is most important that our classifiers correctly
identify malware. Because of the threat malware poses, it would be
better for our classifiers to identify benign software as malicious, as
opposed to the other way around, so we prefer to have more false
positives than false negatives. In addition to our evaluation, we also
consider the F1-score since it’s relationship to both precision and
recall. The performance of each classifier is compared with these
metrics across all groups and both runs to answer our research
questions Run 1 can be visualized by Figure 4, and run 2 can be
visualized by Figure 5.

4.1 Findings
Using these results, we note the following behaviors.
Categorical Naive-Bayes. This classifier had the most unique
behavior out of all other classifiers. In groups 1 and 3 for both runs,
it does not have any precision, recall, or F1-score to report, but does
in groups 2 and 4. While this complicates our understanding of
the classifiers behavior across all 4 groups, it does demonstrate the
significant influence SMOTE has over this dataset. In run 1, group
2, it even obtains a recall value of 1.0, despite having the lowest
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Figure 4: Classifier performance from run 1.

accuracy at 0.48. Run 2 saw all metrics slightly improve across all
groups, but the behavior remained unchanged.

Support Vector Machine. While its recall value improved in
groups 2 and 4 for both runs, the F1-score doesn’t have the same
significant improvement. This is likely due to its precision value.
In run 1, the it held the highest precision value outside the control
group, peaking at 1.0 in group 3. In run 2 it maintains the highest
precision values in groups 1 and 3, even achieving 1.0 precision
in the control group. However, precision drops in groups 2 and 4,
being outperformed by the Decision tree.

Decision Tree. The decision tree consistently had highest recall
and F1-scores in all groups across both runs, only having the recall
value outperformed by CNB in run 1, group 2 . Being introduced to
SMOTE improved the performance further in both runs, oscillating
upwards between groups 1 and 2, and 3 and 4. The values stand

out more in run 1 than run 2, but that’s more likely attributed to
the improvement of the other classifiers’ performance when TPR
was removed from the features set in run 2. That said, it does also
benefit from the change to the features set

Neural Network. In run 1, the FCNN was the only classifier that
didn’t seem to have a consistent pattern to its behavior, giving us
the impression that SMOTE didn’t have a significant impact for this
classifier. Run 2, however, shows a much more significant impact
when SMOTE is applied. This gives us the impression that the
FCNN is quite susceptible to changes in its features set. Regardless
of that finding, it still swaps places with the SVM for having the 2nd
highest values, even slightly dropping recall and F1-scores from
group 3 to group 4 in the second run.
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Figure 5: Classifier performance from run 2.

5 DISCUSSION AND FUTURE WORK

5.1 Research Questions

With our results, we can now address the questions motivating this
research.

RQ1. The decision tree classifier was consistently the best per-
former. We also believe that the CNB is not a good classifier for
our malware problem, given their overall performances across both
runs. The high susceptibility to the balance of data-types in its
dataset and the significant FCNN is also significantly impacted by
the features due to this same fact but performs much more con-
sistently regardless of the classification proportion. It comes close,
but DT doesn’t show the same susceptibility to varying feature sets
and thus remains our preferred classifier.

RQ2. SMOTE seemed to have a significant impact on all classi-
fiers, though the FCNN might be less likely to improve depending
on its feature set. All classifiers saw noticeable boosts in perfor-
mance in run 2, and all but the FCNN.

RQ3. Removing TPR from the feature set had a noticeable impact
on the results of our models. We observe that performance metrics
were comparatively higher on the second run with respect to the
first. The FCNN classifier was most susceptible to this change, with
it’s changes in behaviors in groups 2 and 4 between the two runs.

5.2 Limitations

The most significant limitation was that when we executed the CNB
models, the script did not output the precision, recall, or F1-scores
for the malicious class in groups 1 and 3 for both runs. This had an
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impact when we evaluated all of our classifiers to answer RQ1. Ad-
ditionally, the FCNN threw warnings during its execution in group
4 for both runs, stating that the sampled class (1698 elements) was
larger than the majority class (1605 elements). This behavior was
not as detrimental, but could influence on the FCNN performance
in that group. This, in addition to CNB’s behavior in the groups
where SMOTE was implemented, leads us to believe that the issue
experienced with CNB’s values to be a result of the proportion
of our classes in the datasets that were used to train and test the
classifier.

Additionally, our models were specifically trained our models
for COVID-19-themed Android applications. As a result, our mod-
els could be not as effective when introduced to other types of
applications, or deployed in different circumstances.

5.3 Future Work

We want our models to be useful to as many people as possible in
the event another pandemic breaks out, so we hope to eventually
apply our findings in the development of an Android application
to assist in malware detection and alert an end-user on the risk of
various apps and the permissions they request at install time. We
recognize that in order to achieve this, we may need to broaden
our model’s capabilities in detecting malware beyond applications
that are COVID-19 themed. We plan to implement an optimization
of the parameters of the decision tree classifier to further improve
its performance. Because we restricted the optimization parame-
ters during our study, we feel that this step will further tune this
classifier for a variety of more specific use cases.

Another way we would like to develop our research in the future
is to modify our models to classify malware types. By observing
the behaviors of the application, we could potentially determine
the type of malware the application. This would enable our ability
to detect and warn users of emerging threats more efficiently. Thus,
by comparing the permissions to the malware type, we would then
be able to train our models to identify types of malware more
efficiently, and quite possibly receive better results when testing
files for malware in general.
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